
Probabilistic Assertions:

Extended Semantics and Proof

Adrian Sampson Pavel Panchekha Todd Mytkowicz
Kathryn S. McKinley Dan Grossman Luis Ceze

This addendum expands the semantics section in the paper Expressing and
Verifying Probabilistic Assertions in PLDI 2014 and gives the full proof of the
associated theorem.

1 Semantics

This section formalizes a simple probabilistic imperative language, ProbCore,
and Mayhap’s distribution extraction process. We describe ProbCore’s syn-
tax, a concrete semantics for nondeterministic run-time execution, and a sym-
bolic semantics for distribution extraction. Executing a ProbCore program
under the symbolic semantics produces a Bayesian network for a passert state-
ment. We prove this extracted distribution is equivalent to the original program
under the concrete semantics, demonstrating the soundness of Mayhap’s core
analysis.

1.1 Core Language

ProbCore is an imperative language with assignment, conditionals, and loops.
Programs use probabilistic behavior by sampling from a distribution and storing
the result, written v ← D. Without loss of generality, a program is a sequence

P ≡ S ; ; passert C

C ≡ E < E | E = E | C ∧ C | C ∨ C | ¬C
E ≡ E + E | E ∗ E | E ÷ E |R | V
S ≡ V := E | V ← D | S ; S | skip | if C S S |while C S

R ∈ R, V ∈ Variables, D ∈ Distributions

Figure 1: Syntax of ProbCore.

1

of statements followed by a single passert, since we may verify a passert at any
program point by examining the program prefix leading up to a passert.

Figure 1 defines ProbCore’s syntax for programs denoted P , which consist
of conditionals C, expressions E, and statements S.

1.2 Concrete Semantics

The concrete semantics for ProbCore reflect a straightforward execution in
which each sampling statement V ← D draws a new value. To represent dis-
tributions and sampling, we define distributions as functions from a sufficiently
large set of draws S. The draws are similar to the seed of a pseudorandom
number generator: a sequence Σ of draws dictates the probabilistic behavior of
ProbCore programs.

We define a large-step judgment (H, e) ⇓c v for expressions and conditions
and a small-step semantics (Σ, H, s)→c (Σ′, H ′, s′) for statements. In the small-
step semantics, the heap H consists of the variable-value bindings (queried with
H(v)) and Σ is the sequence of draws (destructed with σ : Σ′). The result of
executing a program is a Boolean declaring whether or not the condition in the
passert was satisfied at the end of this particular execution.

The rules for most expressions and statements are standard. The rules for
addition and assignment are representative:

plus
(H, e1) ⇓c v1 (H, e2) ⇓c v2

(H, e1 + e2) ⇓c v1 + v2

assign
(H, e) ⇓c x

(Σ, H, v := e)→c (Σ, (v 7→ x) : H, skip)

Figure 2 gives the full set of rules for the concrete semantics. The rule for the
sampling statement, V ← D, consumes a draw σ from the head of the sequence
Σ. It uses the draw to compute the sample, d(σ).

sample
Σ = σ : Σ′

(Σ, H, v ← d)→c (Σ′, (v 7→ d(σ)) : H, skip)

The result of an execution under the concrete semantics is the result of the
passert condition after evaluating the program body. We use the standard defi-
nition of →∗c as the reflexive, transitive closure of the small step judgment:

passert
(Σ, H0, s)→∗c (Σ′, H ′, skip) (H ′, c) ⇓c b

(Σ, H0, s ; ; passert c) ⇓c b

1.3 Symbolic Semantics

While the concrete semantics describe ProbCore program execution, the sym-
bolic semantics describe Mayhap’s distribution extraction. Values in the sym-
bolic semantics are expression trees that represent Bayesian networks. The re-
sult of a symbolic execution is the expression tree corresponding to the passert
condition, as opposed to a Boolean.

2

plus
(H, e1) ⇓c v1 (H, e2) ⇓c v2

(H, e1 + e2) ⇓c v1 + v2

mult
(H, e1) ⇓c v1 (H, e2) ⇓c v2

(H, e1 ∗ e2) ⇓c v1v2

divd
(H, e1) ⇓c v1 (H, e2) ⇓c v2

(H, e1 ÷ e2) ⇓c v1/v2

real

(H, r) ⇓c r

varb

(H, v) ⇓c H(v)

lt
(H, e1) ⇓c v1 (H, e2) ⇓c v2

(H, e1 < e2) ⇓c v1 < v2

eq

(H, e1) ⇓c v1 (H, e2) ⇓c v2
(H, e1 = e2) ⇓c v1 = v2

and
(H, c1) ⇓c b1 (H, c2) ⇓c b2

(H, c1 ∧ c2) ⇓c b1 ∧ b2

or
(H, c1) ⇓c b1 (H, c2) ⇓c b2

(H, c1 ∨ c2) ⇓c b1 ∨ b2

neg
(H, c) ⇓c b

(H,¬c) ⇓c ¬b

assign
(H, e) ⇓c x

(Σ, H, v := e)→c (Σ, (v 7→ x) : H, skip)

sample
Σ = σ : Σ′

(Σ, H, v ← d)→c (Σ′, (v 7→ d(σ)) : H, skip)

progn
(Σ, H, s1)→c (Σ′, H ′, s′1)

(Σ, H, s1; s2)→c (Σ′, H ′, s′1; s2)

prog1

(Σ, H, skip; s2)→c (Σ, H, s2)

when
(H, c) ⇓c true

(Σ, H, if c s1 s2)→c (Σ, H, s1)

unless
(H, c) ⇓c false

(Σ, H, if c s1 s2)→c (Σ, H, s2)

while

(Σ, H,while c s)→c (Σ, H, if c (s;while c s) skip)

passert
(Σ, H0, s)→∗c (Σ′, H ′, skip) (H ′, c) ⇓c b

(Σ, H0, s ; ; passert c) ⇓c b

Figure 2: The concrete semantics. We use a big-step operational semantics for
conditions and expressions, and a small-step operational semantics for state-
ments and programs. Both use a heap H, which stores variable-value bindings.
The small-step operational semantics uses a stream Σ of draws.

3

The language for expression trees includes conditions denoted Co, real-valued
expressions Eo, constants, and distributions:

Co ≡ Eo < Eo | Eo = Eo | Co ∧ Co | Co ∨ Co | ¬Co

Eo ≡ Eo + Eo | Eo ∗ Eo | Eo ÷ Eo |R | 〈D,Eo〉 | if Co Eo Eo

R ∈ R, D ∈ Distributions

Instead of the stream of draws Σ used in the concrete semantics, the symbolic
semantics tracks a stream offset and the distribution D for every sample. Differ-
ent branches of an if statement can sample a different number of times, so the
stream offset may depend on a conditional; thus, the stream offset in 〈d, n〉 is
an expression in Eo and not a simple natural number. The symbolic semantics
does not evaluate distributions, so the draws themselves are not required. Ex-
pression trees do not contain variables; these are eliminated during distribution
extraction.

The symbolic semantics again has big-step rules ⇓s for expressions and condi-
tions and small-step rules→s for statements. Instead of real numbers, however,
expressions evaluate to expression trees in Eo and the heap H maps variables
to expression trees. For example, the rules for addition and assignment are:

plus
(H, e1) ⇓s x1 (H, e2) ⇓s x2

(H, e1 + e2) ⇓s {x1 + x2}

assign
(H, e) ⇓s {x}

(n,H, v := e)→s (n, (v 7→ {x}) : H, skip)

The syntax {x} represents an expression in Eo, with the brackets intended to
suggest quotation or suspended evaluation. Figure 3 lists the full set of rules.

The rule for samples produces an expression tree that captures the distribu-
tion and the current stream offset:

sample

(n,H, v ← d)→s (n+ 1, (v 7→ {〈d, n〉}) : H, skip)

Each sample statement increments the stream offset, uniquely identifying a
sample expression tree. This enumeration is crucial. For example, enumerating
samples distinguishes the statement x← d; y := x+ x from a similar program
using two samples: x1 ← d; x2 ← d; y := x1 + x2.

The symbolic semantics must consider both sides of an if statement. For
each if statement, we need to merge updates from both branches and form
conditional expression trees for conflicting updates. We introduce a function
merge, which takes two heaps resulting from two branches of an if along with
the condition and produces a new combined heap. Each variable that does not
match across the two input heaps becomes an {if c a b} expression tree in the
output heap. The definition of merge is straightforward and its post-conditions
are:

Ht(v) = a Hf (v) = b a 6= b

merge(Ht, Hf , {x})(v) = {if x a b}
Ht(v) = a Hf (v) = b a = b

merge(Ht, Hf , {x})(v) = a

4

plus
(H, e1) ⇓s x1 (H, e2) ⇓s x2

(H, e1 + e2) ⇓s {x1 + x2}

mult
(H, e1) ⇓s x1 (H, e2) ⇓s x2

(H, e1 ∗ e2) ⇓s {x1 ∗ x2}

divd
(H, e1) ⇓s x1 (H, e2) ⇓s x2

(H, e1 ÷ e2) ⇓s {x1 ÷ x2}

real

(H, r) ⇓s {r}

varb

(H, v) ⇓s H(v)

lt
(H, e1) ⇓s x1 (H, e2) ⇓s x2

(H, e1 < e2) ⇓s {x1 < x2}

eq

(H, e1) ⇓s x1 (H, e2) ⇓s x2
(H, e1 = e2) ⇓s {x1 = x2}

and
(H, c1) ⇓s x1 (H, c2) ⇓s x2

(H, c1 ∧ c2) ⇓s {x1 ∧ x2}

or
(H, c1) ⇓s x1 (H, c2) ⇓s x2

(H, c1 ∨ c2) ⇓s {x1 ∨ x2}

neg
(H, c) ⇓s x

(H,¬c) ⇓s {¬x}

assign
(H, e) ⇓s {x}

(n,H, v := e)→s (n, (v 7→ {x}) : H, skip)

sample

({n}, H, v ← d)→s ({n+ 1}, (v 7→ {〈d, n〉}) : H, skip)

progn
(n,H, s1)→s (n′, H ′, s′1)

(n,H, s1; s2)→s (n′, H ′, s′1 ; s2)

prog1

(n,H, skip; s2)→s (n,H, s2)

if
(H, c) ⇓s {x}

(n,H, bt)→∗s (mt, Ht, skip) (n,H, bf)→∗s (mf , Hf , skip)

(n,H, if c bt bf)→s ({if x mt mf})merge(Ht, Hf , {x}), skip)

while

(n,H,while c s)→ (n,H, if c (while c s))

while0
(H, c) ⇓s {x} ∀Σ, (Σ, {x}) ⇓o false

(n,H,while c s)→ (n,H, skip)

passert
(0, H0, s)→∗s (n,H ′, skip) (H ′, c) ⇓s {x}

(H0, s ; ; passert c) ⇓s {x}

Ht(v) = a Hf (v) = b a 6= b

merge(Ht, Hf , {x})(v) = {if x a b}
Ht(v) = a Hf (v) = b a = b

merge(Ht, Hf , {x})(v) = a

Figure 3: The symbolic semantics produce an expression tree. We use a big-step
style for conditions and expressions, and small-step style for statements. Each
big step has the form (H, e) ⇓s {se} or (H, c) ⇓s {sc}, where e ∈ E, c ∈ C, and
se ∈ Eo, and sc ∈ Co. H maps variables to expressions in Eo.

5

Using the merge function, we write the rule for if statements:

if
(H, c) ⇓s {x} (H, bt)→∗s (Ht, skip) (H, bf)→∗s (Hf , skip)

(H, if c bt bf)→s (merge(Ht, Hf , {x}), skip)

Our symbolic semantics assumes terminating while loops. Symbolic execu-
tion of potentially-unbounded loops is a well-known problem and, accordingly,
our formalism only handles loops with non-probabilistic conditions. A simple
but insufficient rule for while is:

while

(n,H,while c s)→ (n,H, if c (while c s))

This rule generates infinite expression trees and prevents the analysis from ter-
minating. We would like our analysis to exit a loop if it can prove that the
loop condition is false—specifically, when the condition does not depend on any
probability distributions. To capture this property, we add the following rule:

while0
(H, c) ⇓s {x} ∀Σ, (Σ, {x}) ⇓o false

(n,H,while c s)→ (n,H, skip)

Here, the judgment (Σ, {x}) ⇓o v denotes evaluation of the expression tree {x}
under the draw sequence Σ. This rule applies when Mayhap proves that an
expression tree evaluates to false independent of the random draws.

We can now define the symbolic evaluation of programs:

passert
(0, H0, s)→∗s (n,H ′, skip) (H ′, c) ⇓s {x}

(H0, s ; ; passert c) ⇓s {x}

To evaluate the resulting expression tree requires a sequence of draws Σ but
no heap. Figure 4 shows the full set of rules. As an example, the rules for
addition and sampling are representative:

plus
(Σ, e1) ⇓o v1 (Σ, e2) ⇓o v2

(Σ, e1 + e2) ⇓o v1 + v2

sample

(Σ, 〈d, k〉) ⇓o d(σk)

2 Theorem and Proof

Theorem 1. Let (0, H0, p) ⇓s {x}, where x is a finite program. Then (Σ, H0, p) ⇓c
b if and only if (Σ, x) ⇓o b.

Intuitively, this theorem is true because the distribution extraction ⇓s is
just a call-by-need lazy evaluation, and ⇓o is the projection of ⇓c over this lazy
evaluation. We prove the theorem formally here.

The proof of this theorem proceeds by structural induction on p. First,
a few lemmas establish corresponding properties for conditionals, expressions,
then statements, and finally programs.

6

Lemma 1. For e ∈ E, let (Hs, e) ⇓s {x}, and suppose that for every variable
a, (Σ, Hs(a)) ⇓e Hc(a). Then (Hc, e) ⇓c v if and only if (Σ, x) ⇓o v.

Proof. The proof is by induction on e. The condition on Hs and Hc is necessary
because Hs maps variables to expressions in Eo, while Hc maps variables to
real numbers. Note that Σ is unbound; this is because, while Σ is necessary
for sampling distributions in Eo, expressions in E do not involve sampling. We
examine each of five cases individually.

e1 + e2 Let (Hs, e1) ⇓s {x1} and (Hs, e2) ⇓s {x2}. Also let (Hc, e1) ⇓c v1 and
(Hc, e2) ⇓c v2, so that (Hc, e1 +e2) ⇓c v1 +v2 = v. By the definition of ⇓s,
(Hs, e1+e2) ⇓s {x1+x2}, and by induction (Σ, x1) ⇓o v1 and (Σ, x2) ⇓o v2.
Then by the definition of ⇓o, (Σ, x) = (Σ, x1 + x2) ⇓o v1 + v2 = v. Thus
this case is established.

e1 ∗ e2 Analogous to e1 + e2.

e1 ÷ e2 Analogous to e1 + e2.

e1 ÷ e2 Analogous to e1 + e2.

r (Hs, r) ⇓s {r} and (Σ, r) ⇓c r; on the other hand, (Hc, r) ⇓c r. Thus this
case is established.

v (Hs, v) ⇓s Hs(v), while (Hc, v) ⇓c Hc(v). But by hypothesis, (Σ, Hs(v)) ⇓e
Hc(a), so this case is established.

These are all the cases present in the definition of E, so the lemma is com-
plete.

Lemma 2. For c ∈ C, let (Hs, c) ⇓s {x}, and suppose that for every variable
a, (Σ, Hs(a)) ⇓e Hc(a). Then (Hc, c) ⇓c b if and only if (Σ, x) ⇓o b.

Proof. We again use induction, on c. We examine each of five cases individually.

e1 < e2 By the definition of ⇓s, {x} = {x1+x2}. Let (Hc, e1) ⇓c v1 and (Hc, e2) ⇓c
v2, so that b = [v1 < v2]. By lemma 1, (Σ, x1) ⇓o v1 and (Σ, x2) ⇓o v2, so
(Σ, x) ⇓o [v1 < v2] = b. Thus this case is established.

e1 = e2 Analogous to e1 < e2.

c1 ∧ c2 Let (Hs, c1) ⇓s {x1} and (Hs, c2) ⇓s {x2}. Also let (Hc, c1) ⇓c b1 and
(Hc, c2) ⇓c b2, so that (Hc, c1 ∧ c2) ⇓c b1 ∧ b2 = v. By the definition of ⇓s,
(Hs, c1∧c2) ⇓s {x1∧x2}, and by induction (Σ, x1) ⇓o b1 and (Σ, x2) ⇓o b2.
Then by the definition of ⇓o, (Σ, x) = (Σ, x1 ∧ x2) ⇓o b1 + b2 = b. Thus
this case is established.

c1 ∨ c2 Analogous to c1 ∧ c2.

7

¬c1 Let (Hs, c1) ⇓s {x1} and (Hc, c1) ⇓c b1, so that (Hc,¬c1) ⇓c ¬b1. By the
definition of ⇓s, (Hs,¬c1) ⇓s {¬x1}, and by induction (Σ, x1) ⇓o b1, so
that (Σ, x) ⇓o ¬b1 = b. Thus this case is established.

These are all the cases present in the definition of C, so the lemma is com-
plete.

We now prove a lemma which establishes equivalence for statements that do
not contain while loops.

Lemma 3. Let (n,Hs, s)→s (m,H ′s, s
′), where s contains no while statements.

Also suppose that (Σ, n) ⇓o l and (Σ,m) ⇓o l + k. Furthermore let Hc be such
that (Σ, Hs(v)) ⇓o Hc(v) for all variables v. Then (Σ, Hc, s) →∗c (Σ′, H ′c, s

′),
where Σ = σ1 : σ2 : · · · : σk : Σ′. Furthermore, (Σ, H ′s(v)) ⇓o H ′c(v) for all v.

Proof. A few difficulties arise when attempting a naive induction:

• While ⇓c and →c consume an element of Σ, ⇓s and →s simply increment
an offset. Our induction must show that this offset is correctly handled.

• While →c only evaluates one side of an if statement, →s evaluates both.
Proving that this is sound requires proving that the “merge” function
correctly unifies the two branches.

• Non-terminating while loops, especially those involving sampling, are dif-
ficult to handle in the induction. The statement of the lemma guarantees
that the while loop must terminate (since →∗s requires a finite number of
steps), but the possibility for while loops to not terminate still complicates
the proof.

The first problem is avoided by the statement of the lemma: we require
that the symbolic semantics increment the sequence offset by exactly as many
elements as the concrete semantics consumes. The second problem requires a
careful analysis of the “merge” function. This is also why we assume a single
step in→s but a number of steps in→∗c . Finally, the last problem is avoided by
a nested induction over the number of times the while loop is unrolled. Since
we assume the symbolic semantics terminate, the loop must at some point unroll
fully, so the induction is founded.

As mentioned, we induct over the number of steps taken by →∗s. At each
step, we assume that the future steps will satisfy the statement of the lemma.
We consider each case individually.

v := e Assume that (Hc, e) ⇓c xc, so that (Σ, Hc, v := e) →c (Σ, (v 7→ x) :
Hc, skip). Furthermore, suppose (Hs, e) ⇓s {xs}, so that (n,Hs, v :=
e)→s (n, (v 7→ xs) : Hs, skip). By lemma 1, (Σ, xs) ⇓o xs. But then, for
all variables v, we have (Σ, ((v 7→ xs) : Hs)(v

′)) ⇓o ((v 7→ xc) : Hc)(v
′) for

all v′. If we set Σ′ = Σ and k = 0, we find that in this case our theorem
is proven.

8

v ← d Let Σ = σ : Σ′. Then (Σ, Hc, v ← d) →c (Σ′, (v 7→ d(σ)) : Hc, skip) On
the other hand, in the symbolic semantics, ({n}, Hs, v ← d) →s ({n +
1}, (v 7→ 〈d, n〉) : Hs, skip) We can see that if (Σ, {n}) ⇓o l, then (Σ, {n+
1}) ⇓o l + 1, forcing k = 1. Indeed, Σ = σ1 : Σ′. Furthermore, since
(Σ, 〈d, n〉) ⇓o d(σ1) = d(σ), we know that for all v′, (Σ, ((v 7→ 〈d, n〉) :
Hs)(v

′)) ⇓o ((v 7→ d(σ)) : Hc)(v
′). So this case is established.

skip Since there are no symbolic steps for skip, the lemma is vacuously true.

s1; s2 This statement has two cases: where s1 is skip, and where it is not. If
s1 is skip, the case is trivial, so suppose s1 is not skip. Furthermore,
let (n,Hs, s1)→s (m′, H ′s, s

′
1). By induction, we also have (Σ, Hc, s1)→∗c

(Σ′′, H ′c, s
′
1), with the expected properties relating Σ′ and k, and H ′c and

H ′s. But then since (n,Hs, s1; s2)→s (m′, H ′s, s
′
1; s2) and (Σ, Hc, s1; s2)→∗c

(Σ′′, H ′c, s
′
1; s2), this case is established with m = m′ and Σ′ = Σ′′. (We

omit the lemma that s1 →∗ s′1 implies s1; s2 →∗ s′1; s2, with the expected
behavior of the other parameters.)

if c s1 s2 First, consider that per lemma 2, we know that if (Hc, c) ⇓c b, and
(Hs, c) ⇓s {xs}, then (Σ, xs) ⇓o b. Now consider two sub-cases: b is
true, and b is false. If b is true, then for all expressions yt and yf , the
expression if xs yt yf must evaluate to the same result as yt; otherwise if
b is false, to the same result as yf .

Now, depending on b, either (Σ, Hc, ifcs1s2)→ (Σ′, H ′c, s1) or (Σ, Hc, ifcs1s2)→
(Σ′, H ′c, s2). We know that (n,Hs, s1)→∗s (mt, Hst, skip) and (n,Hs, s2)→∗s
(mf , Hsf , skip). But then by induction, we know that (Σ, Hc, s1) →∗c
(Σt, Hct, skip) or (Σ, Hc, s2) →∗c (Σf , Hcf , skip), where the relationship
of Σt to mt, of Σf to mf , of Hct to Hst, and of Hcf to Hsf are as ex-
pected. Thus, when (n,Hs, if c s1 s2) → (m,H ′s, skip), we know that
(Σ, Hc, if c s1 s2) → (Σ′, H ′c, skip) as required, where Σ′ is Σt or Σf de-
pending on the condition, and where H ′c is Hct or Hcf , again depending
on the loop condition.

All that remains to prove is that the symbolic inference rule for the if rule
correctly combines Hst and Hsf , and likewise correctly combines mt and
mf . Recall that b is the value of the loop condition, and the loop condi-
tional evaluates symbolically to xs. We do a case analysis on b. First, sup-
pose b is true. Then Σ′ = Σt, so we know that Σ′ = σ1 : · · ·σk : Σ′ where
(Σ,m) = (Σ, if xsmtmf) ⇓o k. Similarly, since H ′s = merge(Hsf , Hst, xs),
we know that for all variable v, (Σ, H ′s(v)) = (Σ, merge(Hst, Hsf , xs)(v))
This is equal to either (Σ, if xs (Hst(v)) (Hsf (v))) or (Σ, Hst(v)), both of
which evaluate to Hct(v) = H ′c(v) because xs evaluates to b which is true,
and because (Σ, Hst(v)) = Hct(v) by induction. The case where b is false
is analogous to the case where b is true.

Thus this case is established.

This was the last remaining case (we assume that s1 contains no while
statements), so the lemma is done.

9

We now extend the equivalence to programs that contain while loops. We
require that the symbolic evaluation terminate.

Lemma 4. Let (n,Hs, s) →∗s (m,H ′s, skip). Further suppose that for all vari-
ables v, (Σ, Hs(v)) ⇓o Hc(v). Then (Σ, Hc, s) →∗c (Σ′, H ′c, skip), and further-
more for all variables v, (Σ, H ′s(v)) = H ′c(v) and also Σ = σ1 : · · · : σk : Σ′,
where (Σ,m) ⇓o l + k (where (Σ, n) ⇓o l).

Proof. We proceed by structural induction on s.

v := e There are no while loops in this statement, so it follows from lemma 3.

v ← d Analogous to v := e.

skip Analogous to v := e.

s1; s2 We must have (n,Hs, s1)→∗s (n′, H ′′s , skip), so by induction (Σ, Hc, s1)→∗c
(Σ′′, H ′′c , skip), with the usual relation between Σ′′ and n′, and between
H ′′s and H ′′c . But then again by induction (n′, H ′′s , s2) →∗s (m,H ′s, skip)
implies (Σ′′, H ′′c , s2)→∗c (Σ′, H ′c, skip). Thus, (Σ, Hc, s1; s2)→∗c (Σ′, H ′c, skip),
and this case is established.

if c s1 s2 If (n,Hs, ifcs1s2)→∗ (n′, H ′s, skip), we must have (n,Hs, s1)→∗ (nt, H
′
st, skip)

and (n,Hs, s2)→∗ (nf , H
′
sf , skip). Then, analogously to the argument in

lemma 3, this case can be established.

while c s There are two inference rules concerning the symbolic semantics of while
loops, so we must prove that both are sound.

First consider the rule While0. If it applies, we must have (Σ, x) ⇓o
false for (Hs, c) ⇓s {x}, and thus (by lemma 2) (Hc, c) ⇓c false. Then
(Σ, Hc,whilecs)→∗ (Σ, Hc, skip). But by assumption, (n,Hs,whilecs)→
(n,Hs, skip), so the inductive statement holds.

Second, consider the rule While in the symbolic semantics. It is identical
to the corresponding rule for while, so by induction this case is estab-
lished.

These are all the cases for S, so the lemma is proven.

Finally, we can prove our Theorem 1.

Theorem 2. Let (0, H0, p) ⇓s {x}, where x is a finite program. Then (Σ, H0, p) ⇓c
b if and only if (Σ, x) ⇓o b.

Proof. First, note that Hc = Hs = H0, so that (Σ, Hs(v)) ⇓o Hc(v) for all v (by
the rule for constants).

Let the program p be s ; ; passert c. If (0, H0, p) ⇓s {x}, then (0, H0, s) →∗s
(n,Hs, skip). Then by lemma 4, (Σ, H0, s)→∗s (Σ′, Hc, skip, with the expected
relation between Hc and Hs. But then due to this relation, if (Hs, c) ⇓s {y},

10

(Hc, c) ⇓c b if and only if (Σ, y) ⇓o b (the lemma to prove this would be a
straightforward induction over y).

Thus, (Σ, H0, p) ⇓c b if and only if (Σ, x) ⇓o b, and our theorem is proven.

While complex, this theorem shows that the distribution extraction per-
formed by Mayhap is sound.

11

(Σ, e1) ⇓o v1 (Σ, e2) ⇓o v2
(Σ, e1 + e2) ⇓o v1 + v2

(Σ, e1) ⇓o v1 (Σ, e2) ⇓o v2
(Σ, e1 ∗ e2) ⇓o v1 ∗ v2

(Σ, e1) ⇓o v1 (Σ, e2) ⇓o v2
(Σ, e1 ÷ e2) ⇓o v1 ÷ v2 (Σ, r) ⇓o r

(Σ, n) ⇓o k
(Σ, 〈d, n〉) ⇓o d(σk)

(Σ, e1) ⇓o v1 (Σ, e2) ⇓o v2
(Σ, e1 < e2) ⇓o v1 < v2

(Σ, e1) ⇓o v1 (Σ, e2) ⇓o v2
(Σ, e1 = e2) ⇓o v1 = v2

(Σ, c1) ⇓o b1 (Σ, c2) ⇓o b2
(Σ, c1 ∧ c2) ⇓o b1 ∧ b2

(Σ, c1) ⇓o b1 (Σ, c2) ⇓o b2
(Σ, c1 ∨ c2) ⇓o b1 ∨ b2

(Σ, c) ⇓o b
(Σ,¬c) ⇓o ¬b

(Σ, c) ⇓o true (Σ, e1) ⇓o v
(Σ, if c e1 e2) ⇓o v

(Σ, c) ⇓o false (Σ, e2) ⇓o v
(Σ, if c e1 e2) ⇓o v

Figure 4: The semantics for our simple expression language. Σ is a stream of
draws, and σk is the k-th element of Σ.

12

