
MetaSync: File Synchronization Across Multiple Untrusted
Storage Services

Seungyeop Han, Haichen Shen, Taesoo Kim†, Arvind Krishnamurthy, Thomas Anderson, and David Wetherall
University of Washington, †Georgia Institute of Technology

University of Washington Technical Report UW-CSE-14-05-02

Abstract
Cloud-based file synchronization services, such as Dropbox
and OneDrive, are a worldwide resource for many millions
of users. However, individual services often have tight re-
source limits, suffer from temporary outages or even shut-
downs, and sometimes silently corrupt or leak user data.

We design, implement, and evaluate MetaSync, a se-
cure and reliable file synchronization service that uses mul-
tiple cloud synchronization services as untrusted storage
providers. To make MetaSync work correctly, we devise a
novel variant of Paxos that provides efficient and consistent
updates on top of the unmodified APIs exported by existing
services. Our system automatically redistributes files upon
adding, removing, or resizing a provider.

Our evaluation shows that MetaSync provides low up-
date latency and high update throughput, close to the per-
formance of commercial services, but is more reliable and
available. MetaSync outperforms its underlying cloud ser-
vices by 1.2-10× on three realistic workloads.

1. Introduction
Cloud-based file synchronization services have become
tremendously popular. Dropbox reached 200M users in
November 2013, doubling its customer base over the pre-
vious year [10]. Many competing providers offer similar
services, including Google Drive, Microsoft OneDrive, Box,
and Baidu in China. These services provide very convenient
tools for users, especially given the increasing diversity of
user devices needing synchronization. With such resources
and tools, mostly available for free, users are likely to upload
ever larger amounts of personal and private data.

Unfortunately, not all services are trustworthy or reliable
in terms of security and availability. Storage services rou-
tinely lose data due to internal faults [4] or bugs [12, 20, 27],
leak users’ personal data [11, 28], and alter user files by
adding metadata [5]. They may block access to content (e.g.,
DMCA takedowns [35]). From time to time, entire cloud ser-
vices may go out of business (e.g., Ubuntu One [7]).

Our work is based on the premise that users want file syn-
chronization and the storage that existing cloud providers of-
fer, but without the exposure to fragile, unreliable, or inse-
cure services. In fact, there is no fundamental need for users
to trust cloud providers, and given the above incidents our
position is that users are best served by not trusting them.
Clearly, data can be encrypted by a user before being stored

in the cloud for confidentiality only. More generally, De-
pot [24] and SUNDR [23] showed how to design systems
from scratch in which users of the cloud storage obtain data
confidentiality, integrity, or availability without trusting the
underlying storage provider. However, these designs rely on
fundamental changes to both client and server; our question
was whether we could use existing services for these same
ends?

Instead of starting from scratch, MetaSync provides
file synchronization on top of multiple existing storage
providers. We thus leverage resources that are mostly well-
provisioned, normally reliable, and inexpensive. While each
service provides unique features, their common purpose is
to synchronize a set of user files between personal devices
and the cloud. By combining multiple providers, MetaSync
provides users larger storage capacity, but more importantly
a higher reliability and higher performance service.

The key challenge is to maintain a globally consistent
view of the synchronized files across multiple clients, us-
ing only the service providers’ unmodified APIs without
any centralized server. We assume no direct client-client or
server-server communication. To this end, we devise two
novel methods: 1) pPaxos, an efficient client-based Paxos
algorithm that maintains globally consistent state among
multiple passive storage backends (see §3.3), and 2) a sta-
ble deterministic replication algorithm that requires minimal
reshuffling of replicated objects on service re-configuration,
such as increasing capacity or even adding/removing a ser-
vice (see §3.4).

Putting it all together, MetaSync can serve users better
in all aspects as a file synchronization service; users need
trust only the software that runs on their own computers.
Our prototype implementation of MetaSync, a ready-to-use
open source project, currently works with 5 different file
synchronization services, and it can be easily extended to
work with other services.

2. Goals and Assumptions
The usage model of MetaSync matches that of existing file
synchronization services such as Dropbox. A user config-
ures MetaSync with account information for the underly-
ing storage services, sets up one or more directories to be
managed by the system, and shares each directory with zero
or more other users. Users can connect these directories
with multiple devices (we refer to the devices and software
running on them as clients in this paper), and local up-

1 2014/10/11

dates are reflected to all connected clients; conflicting up-
dates are flagged for manual resolution. This usage model is
supported by a background synchronization daemon (Meta-
Syncd shown in Figure 1).

For users desiring explicit control over the merge process,
we also provide a manual git-like push/pull interface with a
command line client. In this case, the user creates a set of
updates and runs a script to apply the set atomically using
command line scripts. The system accepts an update only
if it has been merged with the latest version pushed by any
client. Any client can pull the latest version.

In terms of security, our baseline design allows for the
backend services to be curious, unreachable, or unreliable.
The storage services may try to discover which files are
stored along with their content. Some of the services may be
unavailable due to network or system failures; some may ac-
cidentally corrupt or delete files. However, we assume that
service failures are independent, services implement their
own APIs correctly (except for losing and corrupting user
data), and communications between client and server ma-
chines are protected. We also consider extensions to this
baseline model where the backend services have faulty im-
plementations of their APIs or are actively malicious (§3.6).
Finally, we assume that clients sharing directories and run-
ning MetaSync are trusted.

With this threat model, the goals of MetaSync are:
• No direct client-client communication: All clients should

be able to coordinate synchronization without any di-
rect communication among them. In particular, they never
need to be online at the same time.

• Availability: User files are always available for both read
and update despite any predefined number of service out-
ages and even if a provider completely stops providing
any access to its previously stored data.

• Confidentiality: Neither user data nor the file hierarchy
is revealed to any of the storage services. Users may opt
out of confidentiality for better performance.

• Integrity: The system detects and corrects any corruption
of file data by a cloud service, to a configurable level of
resilience.

• Capacity and Performance: The system should benefit
from the combined capacity of the underlying services,
while providing faster synchronization and cloning than
any individual service.

3. System Design
This section describes the design of MetaSync as illustrated
by Figure 1. MetaSync is a distributed, synchronization sys-
tem that provides a reliable, globally consistent storage ab-
straction to multiple clients, by using untrusted cloud storage
services. The core library defines abstractions for cloud stor-
age services, and all components are implemented on top
of those abstractions, making it easy to incorporate a new
storage service into our system (§3.7). MetaSync consists of

MetaSync MetaSyncd

MetaSync Core

(command line) (sync daemon)

Synchronization
manager

Storage service
manager Translators

(e.g., encryption)(e.g., pPaxos) (e.g., replication)

Local storage

OneDrive Dropbox Google Drive

Remote services

...

(e.g., object store)
Backend abstractions

Sync. abstraction
Storage abstraction

Figure 1: Overview of design. MetaSync has three main components:
storage service manager to coordinate replication; synchronization manager
to orchestrate cloud services; and translators to support data encryption
and integrity. The components are implemented on top of an abstract cloud
storage API, which provides a uniform interface to storage backends such
as Dropbox and Google Drive. MetaSync currently supports two front-
end interfaces: a command line interface for users and a synchronization
daemon for automatic monitoring and check-in.

three major components: synchronization manager, storage
service manager, and translators. The synchronization man-
ager ensures that every client has a consistent view of the
user’s synchronized files, by orchestrating storage services
using pPaxos (§3.3). The storage service manager imple-
ments a deterministic, stable mapping scheme that enables
the replication of file objects with minimal shared informa-
tion, thus making our system resilient to tear-down or recon-
figuration of storage services (§3.4). The translators imple-
ment optional modules for encryption and decryption of file
objects in services and for integrity checks of retrieved ob-
jects, and these modules can be transparently composed to
enable flexible extensions (§3.5).

3.1 Data Management

MetaSync has a similar underlying data structure to that of
git [18] in managing files and their versions: objects, units
of storing files, are identified by the hash of their content to
avoid redundant use of storage; directories form hash trees,
similar to Merkle trees [26], where the root directory’s hash
is the root of the tree. This root hash uniquely defines a
snapshot. Unlike git, MetaSync divides and stores each file
into chunks, called Blob objects, in order to maintain and
synchronize small or large files efficiently.

Object store. In MetaSync’s object store, there are three
kinds of objects—Dir, File and Blob—each uniquely identi-
fied by the hash of its content (annotated with an object type
as a prefix in Figure 2). A File object contains hash values
of Blob objects and their offsets. A Dir object contains hash
values of File objects and their names.

In addition, MetaSync maintains two kinds of metadata
to provide a consistent view of the global state: shared data,
which all clients can modify; and per-client data, which only
the single owner (writer) client of the data can modify.

2 2014/10/11

objects/D

.metasync/

/F
/B

config/ce..

head_client1

head_client2

...

†��

†
��

†

�� shared data
per-client data

‡

‡ object store

1a..
ab..

b2..

Type Dir: Dab..

Date : 04/14/14

dir1 : Dac..
dir2 : Dad..

: F1b..file1

File: F1b..

Date : 04/13/14

00.. : B2a..
10.. : B3c..

: Bdc..20..

File names Offsets

Blob: B3c..

0x ...

0x ...

...

Clients' view

...

Blob: Bdc..

*

prev_client1†

prev_client2†

 /e2..
*

Global view *

dir1/
dir2/
file1

version: v10
master: Dab..
config: ce...

Figure 2: File management in a client’s local directory. The object store
maintains user files and directories with content-based addressing, in which
the name of each object is based on the hash of its content. MetaSync also
maintains two kinds of metadata: shared, which all clients update; and per-
client, for which the owner client is the only writer. Therefore, while the
object store and per-client files can be updated without synchronization,
updates to the shared files require coordinated updates of the backend
stores; this is done by the synchronization manager (§3.3).

Shared data. MetaSync maintains a piece of shared data,
called master, which is the hash value of the root direc-
tory in the most advanced snapshot. It represents a consistent
view of the global state; every client needs to synchronize its
status against the master. Another shared piece of data is the
configuration of the backend services including information
regarding the list of backends, their capacities, and authen-
ticators. When updating any of the shared data, we invoke
a synchronization protocol built from the APIs provided by
existing cloud storage providers (as described in §3.3).

Per-client data. MetaSync keeps track of clients’ states
by maintaining a view of each client’s status. The per-
client data include the last synchronized value, denoted
as prev clientID, and the current value representing the
client’s recent updates, denoted as head clientID. If a client
hasn’t changed any files since the previous synchronization,
the value of prev clientID is equal to that of head clientID.
As this data is updated only by the corresponding client, it
does not require any coordinated updates. Further each client
stores the copy of its per-client data into all backends after
updating it.

3.2 Overview

MetaSync’s core library maintains the above data structures
and exposes a reliable storage abstraction to applications.
The role of the library is to mediate accesses and updates to
actual files and metadata, and further interacts with the back-
end storage services to make file data persistent and reliable.
The command line wrapper of the APIs works similarly with
version control systems.

Initially, a user sets up a directory to be managed by
MetaSync; files and directories under that directory will be
synchronized. This is equivalent to creating a repository in
typical version control systems. Then, MetaSync creates a
metadata directory (.metasync as shown in Figure 2) and

local update (async) Dropbox:

objects/F
.metasync/

/F
/D

head_client1

...

†

��

��

‡

2a..
1b..

bc..

Client1

objects
master
head_client1

...

†

��

‡

Google Drive:
objects
master

head_client1

...

†

��

① update objects
and local copy of head

(async)

③ run pPaxox
on master

(sync)

② put objects
(async)

remote put (async)
pPaxos (sync)

Service providers

‡

*

*prev_client1†

prev_client1†

prev_client1†

Figure 3: Workflow for check-in in MetaSync. À MetaSync converts the
file to an object, and updates its local copy of head to point to the newly-
updated root directory (§3.1). Á Then, MetaSync asynchronously puts new
objects redundantly into backend services, based on our mapping scheme
(§3.4). Â Finally, MetaSync runs pPaxos (§3.3) to update master, providing
a consistent view to the global state among clients accessing multiple
storage backends. Note that it may run garbage collection later to remove
unused objects (§3.8).

starts the synchronization of file data to backend services
based on user configuration.

Each managed directory has a name (called namespace)
in the system to be used in synchronizing with other clients.
Upon initiation, MetaSync creates a folder with the name
in each backend. The folder at the backend storage stores
the same set of files as clients, along with a subset of objects
based on the mapping we explain later. A user can have mul-
tiple directories having different configurations and compo-
sition of backends to synchronize only necessary files for
each client.

When files in the system are changed, an update happens
as follows (see Figure 3): (1) the client updates the local ob-
jects and head client to point to the current root; (2) stores
the updated data blocks on the appropriate backend services;
and (3) proposes its head client value as the new value for
master using pPaxos (as described in the next subsection).
The steps (1) and (2) do not require any coordination, as
(1) happens locally and (2) proceeds asynchronously. Note
that these steps are provided as separate functions to appli-
cations, thus each application or user can decide when to run
each step; crucially, a client does not have to update global
master for every local file write.

3.3 Consistent Update of Global View: pPaxos

The file structure described above allows MetaSync to min-
imize the use of synchronization operations. Each object
in the object store can be independently uploaded as it
uses content-based addressing. Each per-client data (e.g.,
head client *) is also independent since we ensure that only
the owning client modifies the file. Thus, synchronization to
avoid potential race conditions is necessary only when a
client wants to modify shared data (i.e., master and configu-
ration information).

3 2014/10/11

Challenges. In a distributed environment where multiple
clients and storage providers are involved, it is not straight-
forward to coordinate updates to data that can be written
by multiple clients at the same time. Since the backend
storage services cannot communicate with each other in
MetaSync, protocols for synchronization should be per-
formed by clients, but without any direct communication
among them (e.g., one client might be offline). Rather,
clients communicate indirectly through storage providers.
Furthermore, our protocol should enable each client to make
progress even when some services are down or slow.

pPaxos. Creating a consistent view for the value of shared
data can be reduced to the problem of having the clients
come to a consensus on what is the next updated value of
the data. Since clients do not have communication channels
between each other, they need to rely on storage services
to achieve this consensus. While the backend services do
not provide support for the consensus algorithm, we devise
a variant of Paxos [22], called pPaxos (passive Paxos) by
using their exposed APIs. Using pPaxos, a client proposes
an updated value of the shared data.

We overview pPaxos by relating it to the classic Paxos
algorithm (see Figure 4(a)). Each client works as a proposer
and learner, and it relies on backend services as acceptors.
The major challenge here is that we cannot assume that the
backend services will implement the Paxos acceptor algo-
rithm and provide the corresponding APIs. Instead, we re-
quire them to provide a simple storage API corresponding
to that of an append-only list (Figure 4(c)). The append-only
list atomically appends an incoming message at the end of
the list. This abstraction is either readily available or can be
layered on top of the interface provided by existing stor-
age service providers. With this append-only list abstrac-
tion, backend services can act as passive acceptors. While
these acceptors cannot actively decide as to which proposal
is promised or accepted, clients who retrieve a set of mes-
sages stored on the list can determine the “accepted” de-
cisions, under the assumption that other clients follow the
pPaxos protocol as well. This is why we refer to the storage
providers as passive acceptors; acceptors delegate the deci-
sions to clients and only respond with what they have stored
on the append-only list.

With a log, all clients see the same order; thus they come
to the same conclusion as to which proposal is accepted.
Since the underlying APIs vary across services, we summa-
rize the details of how MetaSync provides the append-only
list abstraction for each provider in Table 4. Note that the
set of pPaxos acceptors need not be the same as the set of
storage service backends.

Algorithm. With the availability of an append-only list ab-
straction, the algorithm itself becomes a simple adaptation
of the classic Paxos, but one where the decision making is
performed by proposers. It mainly replaces acceptors’ re-
sponses by client actions to fetch the logs and make deci-

Paxos Disk Paxos pPaxos

Proposer Proposer Proposer

Acceptor Acceptor Acceptor

a register

...

disk blocks

Propose Accept Propose Check
① ② ① ②

append-only
list

Propose Check
① ②

(a) (b) (c)

Figure 4: Comparison of operations between a proposer and an acceptor
in Paxos [22], Disk Paxos [17], and pPaxos. When proposed, an acceptor
in Paxos makes a decision and sends it to the proposer, whereas proposed
data is stored in per-client disk blocks in Disk Paxos and in an append-only
list in pPaxos. In Disk Paxos, the proposer needs to check a block for every
client to determine which proposal was accepted. In comparison, Paxos can
be considered as having a register to store the proposal.

sions based on the contents of the logs. Associated with each
backend service is a structure that keeps the internal state
of its corresponding acceptor (Figure 5 Lines 1-4). As Fig-
ure 5 shows, (1) when a client wants to propose a value, it
sends a PREPARE to all the acceptors with a round number
(Lines 7-8). This round number should be unique over pro-
posers (e.g., client IDs could be used to break ties). Then,
the client updates its status values for the acceptors by fetch-
ing and processing the acceptor logs (Lines 25-29). It aborts
this round of the proposal if it sees an acceptor who has al-
ready promised a round number which is larger than its cur-
rent round number (Line 10). (2) If there are any accepted
proposals, it proposes the accepted value with the largest
proposal number to the acceptors; otherwise, it proposes its
own proposal with the current round number by sending
ACCEPT REQ to all acceptors (Lines 12-19). The ACCEPT REQ

will be accepted when a majority of acceptors have a smaller
or equal round number (Lines 20-21, 30-32). (3) When it is
accepted by the quorum, it can conclude that it has com-
mitted the new updated value (Line 23). In case it fails, it
does random exponential back-off and tries again with an
increased round number (Lines 33-36).

Note that this setting and the following algorithm is sim-
ilar to that of Disk Paxos [17]. pPaxos can be considered
as an optimized version of Disk Paxos ((Figure 4(b)). As il-
lustrated in Figure 4, Disk Paxos requires a check of each
disk block per client to determine whether the proposal is
accepted, and given the passive storage interface, checking
each block requires one round trip to the backend. pPaxos re-
quires fewer round trips by taking advantage of the append-
only list abstraction. Moreover, pPaxos could reach a con-
sensus with fewer rounds than Disk Paxos because of know-
ing the order of messages. For Disk Paxos, once a proposer
sees any proposal with a larger round number, it needs to
abort its current round. A proposal that could have com-
mitted in a certain round in classic Paxos or pPaxos fails
to commit in Disk Paxos merely because the proposer reads

4 2014/10/11

1: struct Acceptor
2: round: promised round number
3: accepted: all accepted proposals
4: backend: associated backend service

Proposer

5: procedure PROPOSEROUND(value, round, acceptors)
prepare:

6: concurrently
7: for all a← acceptors do
8: SEND(〈PREPARE,round〉 → a.backend)
9: UPDATE(a)

10: if a.round > round then abort
11: wait until done by a majority of acceptors

accept:
12: accepted←∪a∈acceptorsa.accepted
13: if |accepted|> 0 then
14: p← argmax{p.round|p ∈ accepted}
15: value← p.value
16: proposal← 〈round,value〉
17: concurrently
18: for all a← acceptors do
19: SEND(〈ACCEPT REQ, proposal〉 → a.backend)
20: UPDATE(a)
21: if proposal /∈ a.accepted then abort
22: wait until done by a majority of acceptors

commit:
23: return proposal
24: procedure UPDATE(acceptor)
25: log← FETCHNEWLOG(acceptor.backend)
26: for all msg ∈ log do
27: switch msg do
28: case 〈PREPARE,round〉
29: acceptor.round←max(round,acceptor.round)
30: case 〈ACCEPT REQ, proposal〉
31: if proposal.round ≥ acceptor.round then
32: acceptor.accepted.append(proposal)
33: procedure ONRESTARTAFTERFAILURE(round)
34: INCREASEROUND
35: WAITEXPONENTAILLY
36: PROPOSEROUND(value,round,acceptors)

Passive Acceptor

37: procedure ONNEWMESSAGE(〈msg,round〉)
38: APPEND(〈msg,round〉 → log)

Figure 5: pPaxos Algorithm.

a next-round prepare message with a larger round number;
this scenario is avoided in pPaxos.

pPaxos in action. MetaSync maintains two types of shared
data: master hash value and service configuration. Unlike
a regular file, the configuration is replicated in all back-
ends (in their object stores). Then, MetaSync can uniquely
identify the shared data with a three tuple: (version,
master hash, config hash).

Version is a monotonically increasing number which is
uniquely determined for each master hash, config hash
pair. This tuple is used in pPaxos to describe the status of a
client and is stored in head client and prev client.

The pPaxos algorithm explained above can determine a
single value. MetaSync utilizes a single pPaxos instance to

APIs Description

propose(prev, next) Propose a next value of prev. It returns
the accepted next value, which could be
next or some other value proposed by
another client. To the same prev, it
always return the same value.

get recent() Retrieve the most recent value. It may
return a stale value.

Table 1: Abstractions for consistent update.

(v10, Dab.., ce..)

prev_client1 head_client1

(v11, Dg2.., ce..)

(v11, De1.., ce..)
prev_client2

(v12, De1.., f0..)

head_client2

Current Master

configs/ce..
 /f0..Client1

Global View

Client2 Same value
Next version

Figure 6: An example snapshot of pPaxos status with two clients. Each
circle indicates a pPaxos instance. Client1 synchronized against v10.
It modified some files but the changes has not been synchronized yet
(head client1). Client2 changed some files and the changes were made into
v11, then made some changes in configuration and synchronized it (v12).
After then, it hasn’t made any changes. If client1 tries to propose the next
value of v10 later, it fails. It needs to merge with v12 and creates v13 head.
In addition, the client can learn configuration changes when getting v12.

determine and store the next value of the tuple. Then, we
build functions listed in Table 1 by using multiple pPaxos
instances. To do so, we maintain a pPaxos instance per
synchronized value. Each client keeps the last value with
which it synchronized (prev cilent). When it proposes a
new value, it runs pPaxos for the previous value to update it
to the new value. If the instance has already accepted another
value, then the client learns it as its proposal is not accepted.
In this case, the client needs to find the most updated value
by searching for the highest pPaxos instance number. Then,
it can try to update the most updated value after merging
with it. It can repeat this until it successfully updates the
master value with its proposed one. This data structure can
be logically viewed as a linked list, where each entry points
the next hash value, and the tail of the list where the next
value is undetermined can be considered as the most up-
to-date value. Figure 6 illustrates an example snapshot of
pPaxos status.
Merging. Merging is required when a client synchronizes
its local changes (head) with the current master that is dif-
ferent from what the client previously synchronized (prev).
In this case, proposing the current head as the next update
to prev returns a different value than the proposed head as
other clients have already advanced the master value. The
client has to merge the changes between prev and the cur-
rent master into its head. To do this, MetaSync employs
three-way merging as in other version control systems. It al-

5 2014/10/11

lows many conflicts to be automatically resolved. Of course,
three-way merging cannot resolve all conflicts, as two clients
may change the same parts of a file. In such cases, it can del-
egate applications to make a decision. In our current imple-
mentation of sync daemon, for example, it generates a new
version of the file with .conflict.N extension, which allows
for the users to resolve it later.

3.4 Replication: Stable Deterministic Mapping

MetaSync replicates objects (in the object store) redundantly
across R storage providers (R is configurable, typically R =
2) to provide higher availability even when a service is tem-
porarily inaccessible. This also provides potentially better
performance over wide area networks. However replication
comes at the cost of maintaining shared information regard-
ing the mapping of objects to services. In our settings, where
the storage services passively participate in the coordination
protocol, it is particularly expensive to provide a consistent
view of this shared information. Not only that, MetaSync
requires a mapping scheme that takes into account storage
space limits imposed by each storage service; if handled
poorly, lack of storage at a single service can block the en-
tire operation of MetaSync, and typical storage services vary
in the storage space they provide, ranging from 2 GB in
Dropbox to 2 TB in Baidu. More importantly, MetaSync’s
mapping scheme should consider a frequent reconfiguration
of storage services (e.g., increasing storage capacity); upon
changes, the re-balancing of distributed objects is guaran-
teed to be minimal. In this section, we describe our stable
deterministic mapping algorithm, its goals, and a concrete
example.
Goals. We desire a stable, deterministic mapping scheme
that locates each object to a group of services over which
it is replicated. Given a hash of an object (modulo H), the
mapping should return a replication set, as indicated below:

map : H→{s : |s|= R,s⊂ S}

where H is the hash space, S is the set of services, and R is
the number of replicas.
The mapping scheme should meet three requirements:
R1 Support variations in storage size limits across different

services and across different users.
R2 Share minimal information amongst services.
R3 Minimize realignment of objects upon removal or addi-

tion of a service.

To provide a balanced mapping that takes into account of
storage variations of each service (R1), we may use a map-
ping scheme that represents storage capacity as the num-
ber of virtual nodes in a consistent hashing algorithm [21,
33]. Since it deterministically locates each object onto an
identifier circle in the consistent hashing scheme, MetaSync
can minimize global sharing of information among storage
providers (R2).

1: procedure INIT(Services, HashSpace)
2: H← HashSpace
3: . H: bigger values produce better mappings
4: N←{(sId,vId) : sId ∈ Services,0≤ vId < Cap(sId)}
5: . Cap: normalized capacity of the service
6: for all i < H do
7: map[i] = Sorted(N, key = md5(i,sId,vId))
8: return map
9: procedure GETMAPPING(ob ject,R)

10: i← hash(ob ject) mod H
11: return Uniq(map[i], R)
12: . Uniq: the first R distinct services from the given list
13: . R: the number of replications

Figure 7: The deterministic mapping algorithm.

However, using consistent hashing in this way has two
problems: an object can be mapped into a single service over
multiple vnodes, which reduces availability even though the
object is replicated, and a change in service’s capacity—
changing the number of virtual nodes, so the size of hash
space—requires MetaSync to reshuffle all the objects dis-
tributed across service providers (R3). To solve these prob-
lems, we introduce a stable, deterministic mapping scheme
that maps an object to a unique set of virtual nodes and also
minimizes reshuffling upon any changes to virtual nodes
(e.g., changes in configurations). This construction is chal-
lenging because our scheme should randomly map each ser-
vice to a virtual node and balance object distribution, but at
the same time, be stable enough to minimize remapping of
replicated objects upon any change to the hashing space. The
key idea is to achieve the random distribution via hashing
(e.g., md5 of a tuple, a service and its vnode id), and achieve
stability of remapping by sorting these hashed values; for ex-
ample, an increase of storage capacity will change the order
of existing hashed values by at most one.
Algorithm. Our stable deterministic mapping scheme is
formally described in Figure 7. For each backend storage
provider, the mapper utilizes multiple virtual storage nodes,
where the number of virtual nodes per provider is propor-
tional to the storage capacity limit imposed by the provider
for a given user. (The concept of virtual nodes is similar to
that used in systems such as Dynamo [13].) Then it divides
the hash space into H partitions. H is configurable, but re-
mains fixed even as the service configuration changes. H
can be arbitrary large, with larger values producing better-
balanced mappings for heterogeneous storage limits. During
initialization, the mapping scheme associates differently or-
dered lists of virtual nodes with each of the H partitions. The
ordering of the virtual nodes in the list associated with a par-
tition is determined by hashing the index of the partition, the
service ID, and the virtual node ID. Given an object hash n,
the mapping returns the first R distinct services from the list
associated with the (n mod H)th partition, similar to Ren-
dezvous hashing [34]. These are then the storage services
over which MetaSync replicates the object.

Note that this mapping function takes as input the set of
storage providers, the capacity settings, value of H, and a

6 2014/10/11

S = {A(1), B(2), C(2), D(1)}
N = {A1, B1, B2, C1, C2, D1}

m[0] = [A1, C2, D1, B1, B2, C1] = [A, C]
m[1] = [B2, B1, C1, C2, A1, D1] = [B, C
...
m[19] = [C2, B1, D1, A1, B2, C1] = [C, B

H=20

]

]

S = {A(1), C(2), D(1)}
N = {A1, C1, C2, D1}

m[0] = [A1, C2, D1, C1] = [A, C]
m[1] = [C1, C2, A1, D1] = [C, A
...
m[19] = [C2, D1, A1, C1] = [C, D

]

]

S = {A(1), C(2), D(1), E(3)}
N = {A1, C1, C2, D1, E1, E2, E3}

m[0] = [A1, E2, E1, C2, D1, C1,E3] = [A, E C]
m[1] = [C1, E1, E3, C2, A1, E2, D1] = [C, A
...
m[19] = [C2, E3, E2, D1, E1, A1, C1] = [C, E D

]

]

(a) New mapping after service B(2) is removed

(b) New mapping after service E(3) is added

R=2

Service D has 1GB storage

: Service config
: Normalized config
: Hash space
: Replication

S
N
H
R

Figure 8: An example of deterministic mapping and its reconfigurations.
The initial mapping is deterministically generated by Figure 7, given the
configuration of four services, A(1),B(2),C(2),D(1) where the number
in a parenthesis represents the capacity of each service. (a) shows a new
mapping after service B is removed from the initial service configuration,
and (b) shows a new mapping after service E(3) is added after (a). The
grayed mappings indicate the new replication upon reconfiguration, and the
dotted rectangle in (b) represents replications that will be garbage collected.

hash function. Thus, it is necessary to share only these small
pieces of information in order to reconstruct this mapping
across different users sharing a set of files. The list of ser-
vices and the capacity limits (see S in Figure 8) is part of
the service configuration and is shared through the config

file. The virtual node list is populated proportionally to ser-
vice capacity, and the ordering inside each list is determined
by a uniform hash function. Thus, the resulting mapping of
objects onto services should be proportional to service ca-
pacity limits for large values of H (R2 holds). Finally, when
N nodes are removed from or added to the service list, an
object needs to be newly replicated into at most N nodes.
Example. Figure 8 illustrates an example of our mapping
scheme with four services (|S| = 4) providing 1GB or 2GB
of free spaces–for example, A(1) means that service A pro-
vides 1GB of free space. Given the replication requirement
(R= 2) and the hash space (H = 20), we can populate the ini-
tial mapping as in Figure 8. Subfigures (a) and (b) illustrate
the realignment of objects upon the removal of service B(2)
and the inclusion of a new service E(3). The gray-marked
services in the replication set indicates the realignment of
objects producing the same hash value in the hash space.

3.5 Translators

MetaSync provides a plugin system, called Translators, for
encryption and integrity check. Translators is highly modu-
lar so can easily be extended to support a variety of other
transformations such as compression. Plugins in Translators

should implement two interfaces, put and get, which will
be invoked before storing to and after retrieving from back-
end services. Plugins are chained, so that when an object is
stored, MetaSync invokes a chain of put calls in sequence.
Similarly, when an object is retrieved, it goes through the
same chain but in reverse.

Encryption translator is currently implemented using a
symmetric key encryption (AES). MetaSync keeps the en-
cryption key locally, but does not store on the backends.
When a user clones the directory in another device, the user
needs to provide the encryption key. Integrity checker runs
hash function over retrieved object and compares the digest
against the file name. If it does not match, it drops the object
and downloads the object by using other backends from the
mapping. It needs to run only in the get chain.

3.6 Fault Tolerance

To operate on top of multiple storage services that are often
unreliable (they are free!), faulty (they scan and tamper with
your files), and insecure (some are outside of your country),
MetaSync should be designed to tolerate faults. MetaSync
achieves fault-tolerance via replication (§3.4) for data and
via pPaxos for consistency control (§3.3).
Data model. By replicating each object into multiple
backends (R in §3.4), MetaSync can tolerate loss of file
or directory objects, and tolerate temporal unavailability or
failures of R−1 concurrent services.
File integrity. Similarly with other version control sys-
tems [18], the hash tree ensures each object’s hash value
is valid from the root (master, head). Then, each object’s
integrity can be verified by calculating the hash of the con-
tent and comparing with the name when it is retrieved from
the backend service. The value of master can be signed to
protect against tampering. When MetaSync finds an altered
object file, it can retrieve the data from another replicated
service through the deterministic mapping.
Consistency control. MetaSync runs pPaxos for serializ-
ing updates to the shared value for config and master. The
underlying pPaxos protocol requires 2 f +1 acceptors to en-
sure correctness if f acceptors may fail under the fail-stop
model.
Byzantine Fault Tolerant pPaxos pPaxos can be easily
extended to make it resilient to other forms of service fail-
ures, e.g., faulty implementations of the storage service APIs
and even actively malicious storage services. Note that even
with Byzantine failures, each object is protected in the same
way through replication and integrity checks. However, up-
dates of global view need to be handled more carefully. We
assume that clients are trusted and work correctly, but back-
end services may have Byzantine behavior. When sending
messages for proposing values, a client needs to sign it. This
ensures that malicious backends cannot create arbitrary log
entries. Instead, the only possible malicious behavior is to
break consistency by omitting log entries and reordering

7 2014/10/11

APIs Description

(a) Storage abstraction
get(path) Retrieve a file at path
put(path, data) Store data at path
delete(path) Delete a file at path
list(path) List all files under path directory
poll(path) Check if path was changed
share(path, email) Share path with email

(b) Synchronization abstraction
append(path, msg) Append msg to the list at path
fetch(path) Fetch a log from path

Table 2: Abstractions for backend storage services.

them when clients fetch them; a backend server may send
any subset of the log entries in any order. Under this setting,
pPaxos works similarly with the original algorithm, but it
needs 3 f +1 acceptors when f may concurrently fail. Then,
for each prepare or accept, a proposing client needs to wait
until 2 f +1 acceptors have prepared or accepted, instead of
f + 1. It is easy to verify the correctness of this scheme.
When a proposal gets 2 f +1 accepted replies, even if f of the
acceptors are Byzantine, the remaining f +1 acceptors will
not accept a competing proposal. As a consequence, compet-
ing proposals will receive at most 2 f acceptances and will
fail to commit. Note that each file object is still replicated at
only f + 1 replicas, as data corruption can be detected and
corrected as long as there is a single non-Byzantine service.
As a consequence, the only additional overhead of making
the system tolerate Byzantine failures is to require a larger
quorum (2 f + 1) and a larger number of storage services
(2 f +1) for implementing the synchronization operation as-
sociated with updating master.

3.7 Backend abstractions
Storage abstraction. Any storage service having an inter-
face to allow clients to read and write files can be used as a
storage backend of MetaSync. More specifically, it needs to
provide the basis for the the functions listed in Table 2(a).
Many storage services provide a developer toolkit to build a
customized client accessing user files [14, 19]; we use these
APIs to build MetaSync. Not only cloud services provide
these APIs, it is also straightforward to build these functions
on user’s private servers through SSH or FTP. MetaSync
currently implements storage backends with many different
services: Dropbox, GoogleDrive, OneDrive, Box.net, Baidu,
and local disk.
Synchronization abstraction. To build the primitive for
synchronization, an append-only log, MetaSync can use any
services that provide functions listed in Table 2(b). How
to utilize the underlying APIs to build the append-only log
varies across services. Note that the set of services for syn-
chronization abstraction does not need to be the same with
storage service backends. We summarize how MetaSync
builds it for each provider in Table 4.

Component Lines of code

Synchronization Manager 325
Storage service 5,099
Translators 78
Mapping scheme 258
Etc 2,339
Total 8,099

Table 3: Components of our MetaSync prototype, and their estimated
complexity, in terms of lines of Python code.

3.8 Other Issues
Sharing Sharing a folder for collaboration is one of the
important features in many synchronization services. As
backend services support sharing, MetaSync allows users to
share a folder and work on the folder. While not many back-
end services have APIs for sharing functions—only Google
Drive and Box have it among services that we used—others
can be implemented through browser emulation. The per-
son who initiated sharing may also stop sharing similarly.
Once sharing invitation is sent and accepted, synchroniza-
tion works the same way as in the one-user case. If files
are encrypted, we assume that all collaborators share the
encryption key.
Collapsing directory All storage services manage indi-
vidual files for uploading and downloading. As we see later
in Table 6, throughput for uploading and downloading small
files are very low compared to those for larger files. As an
optimization, we collapse all files in a directory into a single
object when the total file size is small enough.
Garbage collection Each object is immutable, hence mod-
ifying a file creates new objects and leaves the old objects as-
sociated with the file obsoleted. To prevent waste of space,
we must perform garbage collection periodically. A client
doing garbage collection first retrieves each client’s head
from the backends. If there are distinct head files for a client,
it finds the most up-to-date version. Traversing through tress
from the head files and the master, objects not appearing in
any client’s tree can be safely removed. Note that when user
wants to keep old versions, they can create a snapshot by
storing a root pointer of the snapshot, and objects used in the
snapshots would not be garbage collected.

4. Implementation
We have implemented a prototype of MetaSync in Python,
components of which are summarized in Table 3. The cur-
rent prototype supports five backend services including Box,
Baidu, Dropbox, Google Drive and OneDrive, and works
on all major OSes including Linux, Mac and Windows.
MetaSync provides two front-end interfaces for users, a
command line interface similar to git and a synchronization
daemon similar to Dropbox.
Abstractions. Storage services provide APIs equivalent to
MetaSync’s get() and put() operations defined in Table 2.
Since each service varies in its support for the other opera-
tions, we summarize the implementation details of each ser-

8 2014/10/11

Service Synchronization API Storage API
append(path, msg) fetch(path) poll(path)

Box
Google
OneDrive

Create an empty path file and add msg as
comments to the path file.

Download the entire comments attached on
the path file. To reduce the overhead of
downloading the entire log, obsoleted com-
ments are deleted during a garbage collec-
tion.

Use events API, allowing long polling. But
it monitors over all files rather than a specific
directory. (Google, OneDrive: periodically
list pPaxos directory to see if any changes
since the last fetch.)

Baidu Create a path directory, and consider each
file as a log entry containing msg. For each
log entry, we create a file with a mono-
tonically increasing sequence number as its
name. If the number is already taken, we will
get an exception and try with a next number.

List the path directory, and download new
log entries since last fetch (all files with sub-
sequent sequence numbers).

Use diff API to monitor if there is any
change over the user’s drive. But it monitors
all files in the account rather than a specific
directory.

Dropbox Create a path file, and overwrite the file with
a new log entry containing msg, relying on
Dropbox’s versioning.

Request a list of versions of the path file. Use longpoll delta, a blocked call, that
returns if there is a change under path.

Disk† Create a path file, and append msg at the end
of the file.

Read the new entries from the path file. Emulate long polling with a condition vari-
able.

Table 4: Implementation details of synchronization and storage APIs for each service. Note that implementations of other storage APIs (e.g., put()) can be
directly built with APIs provided by services, with minor changes (e.g., supporting namespace).

vice provider in Table 4. For implementing synchronization
abstractions, append() and fetch(), we utilized the com-
menting features in Box, Google and OneDrive, and version-
ing features in Dropbox. If a service does not provide any
efficient ways to support synchronization APIs, MetaSync
falls back to the default implementation of those APIs that
are built on top of their storage APIs, described for Baidu in
Table 4. Note that for some services, there are multiple ways
to implement the synchronization abstractions. In that case,
we chose to use mechanisms with better performance.
Front-ends. The MetaSync daemon monitors file changes
by using inotify in Linux, FSEvents and kQueue in Mac and
ReadDirectoryChangesW in Windows, all abstracted by the
Python library watchdog. Upon notification, it automatically
uploads detected changes into backend services. It batches
consecutive changes by waiting 3 more seconds after noti-
fication so that all modified files are checked in as a single
commit to reduce synchronization overhead. It also polls to
find changes uploaded from other clients; if so, it merges
them into the local drive. The command line interface allows
users to manually manage and synchronize files, The usage
of MetaSync commands is similar to that of version control
systems (e.g., metasync init, clone, checkin, push, pull).

5. Evaluation
This section answers the following evaluation questions:
• What are the performance characteristics of pPaxos?
• How quickly does MetaSync reconfigure mappings as

services are added or removed?
• What is the end-to-end performance of MetaSync?

Each evaluation is done on Linux servers connected to
campus network except for synchronization performance in
§5.3. Since most services do not have native clients for

Service Free space Cost
(GB) ($/GB/year)

Box 10 GB $0.60
Baidu 2048 GB $0.80
Dropbox 2 GB $1.20
Google Drive 15 GB $0.24
OneDrive 7 GB $0.50

Table 5: Amount of free space provided by each service and costs for
additional space, as of May 2014.

Linux, we compared synchronization time for native clients
and MetaSync on Windows desktops.

Before evaluating MetaSync, we first summarize free
space available from each service in Table 5. In our ex-
periments, the free space is up to 2082 GB combining all
five service providers. Users can also add more free or com-
mercial services, or even multiple accounts in the same ser-
vice. In addition to the amount of storage, MetaSync’s goal
is to build a reliable and performant service on top of po-
tentially fragile backend services. We measured the perfor-
mance variance of commercial services in Table 6 via their
APIs. One important observation is that all services are slow
in handling small files. This provides MetaSync the oppor-
tunity to beat their performance by combining small objects.

5.1 pPaxos performance

We measure how quickly pPaxos reaches consensus as we
vary the number of concurrent proposers. The results of
the experiment with 1-5 proposers over 5 storage providers
are shown in Figure 9. A single run of pPaxos took about
3.2 sec on average under a single writer model to verify ac-
ceptance of the proposal when using all 5 storage providers.
This requires at least four round trips: PREPARE (Send, Fetch-
NewLog) and ACCEPT REQ (Send, FetchNewLog) (see Fig-
ure 5) (there could be multiple rounds in FetchNewLog de-

9 2014/10/11

Services 1 KB 1 MB 10 MB 100 MB
U.S. China U.S. China U.S. China U.S. China

Baidu 0.7 / 0.8 1.8 / 2.6 0.21 / 0.22 0.12 / 1.48 0.22 / 0.94 0.13 / 2.64 0.24 / 1.07 0.13 / 3.38
Box 1.4 / 0.6 0.8 / 0.2 0.73 / 0.44 0.11 / 0.12 4.79 / 3.38 0.13 / 0.68 17.37 / 15.77 0.13 / 1.08

Dropbox 1.2 / 1.3 0.5 / 0.5 0.59 / 0.69 0.10 / 0.20 2.50 / 3.48 0.09 / 0.41 3.86 / 14.81 0.13 / 0.68
Google 1.4 / 0.8 - 1.00 / 0.77 - 5.80 / 5.50 - 9.43 / 26.90 -

OneDrive 0.8 / 0.5 0.3 / 0.1 0.45 / 0.34 0.01 / 0.05 3.13 / 2.08 0.11 / 0.12 7.89 / 6.33 0.11 / 0.44

KB/s MB/s MB/s MB/s

Table 6: Upload and download bandwidths of four different file sizes on each service from U.S. and China. This preliminary experiment explains three design
constrains of MetaSync. First, all services are extremely slow in handling small files, 7k/34k times slower in uploading/downloading 1 KB files than 100 MB
on Google storage service. Second, the bandwidth of each service approaches its limit at 100 MB. Third, performance varies with locations, 30/22 times faster
in uploading/downloading 100 MB when using Dropbox in U.S. compared to China.

0

5

10

15

20

25

30

35

40

1 2 3 4 5

L
at

en
cy

(s
ec

)

#Proposers

Google
Dropbox

OneDrive
Box

Baidu
All

Figure 9: Latency (sec) to run a single pPaxos round with combinations of
backend services and competing proposers: when using 5 different storage
providers as backend nodes (all), the common path of pPaxos at a single
proposer takes 3.2 sec, and the slow path with 5 competing proposers takes
7.4 sec in median.

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5

L
at

en
cy

(s
ec

)

#Clients

Google-DiskPaxos
Dropbox-DiskPaxos

G,D,O-DiskPaxos
Google-pPaxos

Dropbox-pPaxos
G,D,O-pPaxos

Figure 10: Comparison of latency (sec) to run a single round for Disk Paxos
and pPaxos with varying number of clients when only one client proposes
a value. Each line represents different backend setting; G,D,O: Google,
Dropbox, and Onedrive. While pPaxos is not affected by the number of
clients, Disk Paxos latency increases with it.

pending on the implementation for each service). It took
about 7.4 sec with 5 competing proposers. One important
thing to emphasize is that, even with a slow connection to
Baidu, pPaxos can quickly be completed with a single win-
ner of that round. Also note that when compared to a sin-
gle storage provider, the latency doesn’t degrade with the
increasing number of storage providers—it is slower than
using a certain backend service (Google), but it is similar
to the median case as the latency depends on the proposer
getting responses from the majority.

Next, we compare the latency of a single round for
pPaxos with that for Disk Paxos [17]. We build Disk Paxos

with service providers APIs by assigning a file as a block
for each client. Figure 10 shows the results with varying
number of clients when only one client proposes a value.
As we explain in §3.3, Disk Paxos gets linearly slower with
increasing number of clients even when all other clients are
inactive, since it must read the current state of all clients.

5.2 Deterministic mapping

We then evaluate how fairly our deterministic mapping dis-
tributes objects into storage services with different capac-
ity, in three replication settings (R = 1,2,3). We tested
our scheme by synchronizing source tree of Linux ker-
nel 3.10.38, consisting of a large number of small files
(464 MB), to five storage services, as detailed in Table 7.
In R = 1, where we upload each object once, MetaSync lo-
cates objects in balance to all services—it uses 0.02% of
each service’s capacity consistently. However, since Baidu
provides 2TB (98% of MetaSync’s capacity in this configu-
ration), most of the objects will be allocated into Baidu. This
situation improves for R = 2, since objects will be placed
into other services beyond Baidu. Baidu gets only 6.2 MB
of more storage when increasing R = 1→ 2, and our map-
ping scheme preserves the balance for the rest of services
(using 1.3%). Even for the challenging case, S = 5,R = 3
where an object is stored in more than a majority of ser-
vices, MetaSync’s mapping scheme produces distribution of
objects that uses close to an even fraction of each storage,
yet deterministic and resilient to reconfiguration (which we
evaluate next).

The entire mapping plan is deterministically derived from
the shared config. The size of information to be shared is
small (less than 50B for the above example), and the size of
the calculated mapping is about 3MB.

The relocation scheme is resilient to changes as well,
meaning that redistribution of objects should be minimal.
As in Table 8, when we increased the configured replica-
tion by one (R = 2→ 3) with 4 services, MetaSync repli-
cated 193 MB of objects in about half a minute. When we
removed a service from the configuration, MetaSync redis-
tributed 96.5 MB of objects in about 20 sec. After adding
and removing a storage backend, MetaSync needs to garbage
collect redundant objects from the previous configuration,

10 2014/10/11

Repl. Dropbox Google Box OneDrive Baidu Total
(2 GB) (15 GB) (10 GB) (7 GB) (2048 GB) (2082 GB)

R = 1 77 (0.09%) 660 (0.75%) 475 (0.54%) 179 (0.20%) 86,739 (98.42%) 88,130 (100%)
0.34 MB (0.02%) 2.87 MB (0.02%) 2.53 MB (0.02%) 0.61 MB (0.01%) 463.8 MB (0.02%) 470.1 MB (0.02%)

R = 2 5,297 (3.01%) 39,159 (22.22%) 25,332 (14.37%) 18,371 (10.42%) 88,101 (49.98%) 176,260 (100%)
27.4 MB (1.34%) 206.4 MB (1.34%) 138.2 MB (1.35%) 98.3 MB (1.37%) 470.0 MB (0.02%) 940.3 MB (0.04%)

R = 3 13,039 (4.93%) 66,964 (25.33%) 54,505 (20.62%) 41,752 (15.79%) 88,130 (33.33%) 264,390 (100%)
67.2 MB (3.28%) 355.7 MB (2.32%) 294.8 MB (2.88%) 222.7 MB (3.11%) 470.1 MB (0.02%) 1410.4 MB (0.07%)

Table 7: Replication results by our deterministic mapping scheme (§3.4) for Linux kernel 3.10.38 (Table 9) on 5 different services with various storage space,
given for free. We synchronized total 470 MB of files, consisting of 88k objects, and replicated them across all storage backends. Note that for this mapping
test, we turned off the optimization of collapsing directories. Our deterministic mapping distributed objects in balance: for example, in R = 2, Dropbox,
Google, Box and OneDrive used consistently 1.35% of their space, even with 2-15 GB of capacity variation. Also, R = 1 approaches to the perfect balance,
using 0.02% of storage space in all services, and R = 3 provides the strongest fault-tolerance (f = 2), resilient against simultaneous failures of two services.

Reconfiguration #Objects Time (sec)
Added / Removed Replication / GC

S = 4,R = 2→ 3 101 / 0 33.7 / 0.0
S = 4→ 3,R = 2 54 / 54 19.6 / 40.6
S = 3→ 4,R = 2 54 / 54 29.8 / 14.7

Table 8: Time to relocate 193 MB amount of objects (photo-sharing work-
loads in Table 9) on increasing the replication ratio, removing an exist-
ing service, and adding one more service. MetaSync quickly rebalances its
mapping (and replication) based on its new config. We used four services,
Dropbox, Box, GoogleDrive, and OneDrive (S = 4) for experimenting with
the replication, including (S = 3→ 4) and excluding OneDrive (S = 4→ 3)
for re-configuring storage services.

which took 40.6/14.7 sec for removing/adding OneDrive
in our experiment. However, the garbage collection will be
asynchronously initiated during idle time.

5.3 End-to-end performance

We selected three workloads to demonstrate performance
characteristics. First, Linux kernel source tree (2.6.1) repre-
sents the most challenging workload for all storage services
due to its large volume of files and directory (920 directories
and 15k files, total 166 MB). Second, MetaSync’s paper rep-
resents a causal use of synchronization service for users (3
directories and 70 files, total 1.6 MB). Third, sharing pho-
tos is for maximizing the throughput of each storage service
with bigger files (50 files, total 193 MB).

Table 9 summarizes our results for end-to-end perfor-
mance for all workloads, comparing MetaSync with the na-
tive clients provided by each service. Each workload was
copied into one client’s directory before synchronization
is started. The synchronization time was measured as the
length of interval between when one desktop starts to up-
load files and the creation time of the last file synced on the
other desktop. We also measured the synchronization time
for all workloads by using MetaSync with different settings.
MetaSync outperforms any individual service for all work-
loads. Especially for Linux kernel source, it took only 12
minutes when using 4 services (excluding Baidu located out-
side of the country) compared to more than 2 hrs with na-
tive clients. This improvement is possible due to using con-

0

10

20

30

40

50

60

70

S,R=1
Dropbox

S,R=1
Google

S,R=1
OneDrive

S=2
R=1

S=2
R=2

S=3
R=1

S=3
R=2

Ti
m

e
(s

ec
)

Figure 11: Time (sec) to clone an entire storage of 193 MB photos. When
using individual services as a backend (Dropbox, Google, and OneDrive),
MetaSync took 40-70 sec to clone, but MetaSync could improve the per-
formance of cloning, 25-30 sec (30%) by leveraging the distributions of
objects across multiple services.

current connections to multiple backends, and optimizations
like collapsing directories. Although these native clients may
not be optimized for the highest possible throughput, con-
sidering that they may run as a background service, it would
be beneficial for users to have a faster option. It is also worth
noting that replication helps sync time, especially when there
is a slower service, as shown in the case with S = 5,R = 1,2;
a downloading client can use faster services while an upload-
ing client can upload a copy in the background.

Clone. Storage services often limit their download through-
put: for example, MetaSync can download at 5.1 MB/s with
Dropbox as a backend, and at 3.4 MB/s with Google Drive,
shown in Figure 11. Note that downloading is done already
by using concurrent connections even to the same service.
By using multiple storage services, MetaSync can fully ex-
ploit the bandwidth of local connection of users, not limited
by the allowed throughput of each service. For example,
MetaSync with both services and R=2 took 25.5 sec for
downloading 193 MB data, which is at 7.6 MB/s.

6. Related Work
A major line of related work, starting with Farsite [2] and
SUNDR [23] but carrying through SPORC [15], Frien-
tegrity [16], and Depot [24], is how to provide tamper re-
sistance and privacy on untrusted storage server nodes. Un-

11 2014/10/11

Workload Dropbox Google Box OneDrive Baidu MetaSync
S = 5,R = 1 S = 5,R = 2 S = 4,R = 1 S = 4,R = 2

Linux kernel source 2h 45m > 3hrs > 3hrs 2h 03m > 3hrs 1h 8m 13m 51s 18m 57s 12m 18s
MetaSync paper 48 42 148 54 143 55 50 27 26
Photo sharing 415 143 536 1131 1837 1185 180 137 112

Table 9: Synchronization performance (sec) of 5 native clients provided by each storage service, and with four different settings of MetaSync. For S = 5,R= 1,
using all of 5 services without replication, MetaSync provides comparable performance to native clients–median speed for MetaSync paper and photo sharing,
but outperforming for Linux kernel workloads. However, for S = 5,R = 2 where replicating objects two times, MetaSync outperform >10 times faster than
Dropbox in Linux kernel and 2.3 times faster in photo sharing; we can finish the synchronization right after uploading a single replication set (but complete
copy) and the rest replication will be scheduled in background. To understand how slow straggler (Baidu) affects MetaSync’s performance (R = 1), we also
measured synchronization time on S = 4 without Baidu, where MetaSync vastly outperforms all of commodity services

like MetaSync, these systems assume the ability to specify
the client-server protocol, and therefore cannot run on un-
modified cloud storage services. A further issue is equivo-
cation; servers may tell some users that updates have been
made, and not others. Several of these systems detect and
resolve equivocations after the fact, resulting in a weaker
consistency model than MetaSync’s linearizable updates. A
MetaSync user knows that when a push completes, that set
of updates is visible to all other users and no conflicting
updates will be later accepted. Like Farsite, we rely on a
stronger assumption about storage system behavior – that
failures across multiple storage providers are independent,
and this allows us to provide a simpler and more familiar
model to applications and users.

Likewise, several systems have explored composing a
storage layer on top of existing storage systems. Syndi-
cate [29], for example, is designed as an API for applica-
tions; thus, they delegate design choices such as how to man-
age files and replicate to application policy. Further, unlike
MetaSync, Syndicate assumes a separate metadata service.
RACS [1] uses RAID-like redundant striping with erasure
coding across multiple cloud storage providers. Erasure cod-
ing can also be applied to MetaSync and is part of our fu-
ture work. SpanStore [36] optimizes storage and computa-
tion placement across a set of paid data centers with differing
charging models and differing application performance. As
they are targeting general-purpose infrastructure like EC2,
they assume the ability to run code on the server.

Perhaps closest to our intent is DepSky [3]; it proposes a
cloud of clouds for secure, byzantine-resilient storage, and
it does not require code execution on the servers. The most
significant difference is that we note that we can construct an
atomic append primitive on all existing file synchronization
services; this allows us to build our system around pPaxos,
an efficient Paxos implementation for this context. DepSky,
by contrast, assumes loosely synchronized clocks to support
multiple writers. It also only provides strong consistency
for individual data objects, while MetaSync provides strong
consistency across all files in a repository.

Our implementation integrates and builds on the ideas in
many earlier systems. Obviously, we are indebted to earlier
work on Paxos [22] and Disk Paxos [17]; we earlier pro-
vided a detailed evaluation of these different approaches.

We maintain file objects in a manner similar to a distributed
version control system like git [18]; the Ori file system [25]
takes a similar approach. However, MetaSync can combine
or split each file object for more efficient storage and re-
trieval. Content-based addressing has been used in many
file systems [6, 9, 23, 25, 32]. MetaSync uses content-
based addressing for a unique purpose, allowing us to asyn-
chronously uploading or downloading objects to backend
services. While algorithms for distributing or replicating ob-
jects have also been proposed and explored by past sys-
tems [8, 30, 31], the replication system in MetaSync is de-
signed to minimize the cost of reconfiguration to add or sub-
tract a storage service and also to respect the diverse space
restrictions of multiple backends.

The coupling between user’s local disk and cloud storage
may cause the data loss and inconsistency in the cloud due to
the local data corruption and crashes during synchronization.
Even worse, such data corruption may pollute all copies on
other devices. ViewBox [37] detects corrupt data through
data checksumming and ensures the consistency by adopting
view-based synchronization. MetaSync can also guarantee
data integrity through the hash-based file objects and provide
linearizable updates by using pPaxos.

7. Conclusion

MetaSync provides a secure, reliable, and performant file
synchronization service on top of popular cloud storage
providers. By combining multiple existing services, it en-
ables a highly available service during the outage or even
shutdown of a service provider. To achieve a consistent up-
date among cloud services, we devised a client-based Paxos,
called pPaxos, that can be implemented without modifying
any existing APIs. To minimize the redistribution of repli-
cated files upon a reconfiguration of services, we developed
a deterministic, stable replication scheme that requires min-
imal amount of shared information among services (e.g.,
configuration). MetaSync supports five commercial storage
backends (in current open source version), and outperforms
the fastest individual service in synchronization and cloning,
by 1.2-10× on our benchmarks. MetaSync is available for
download and use; please contact the program chair for an
anonymous copy.

12 2014/10/11

References
[1] H. Abu-Libdeh, L. Princehouse, and H. Weatherspoon.

RACS: A case for cloud storage diversity. In Proceedings of
ACM Symposium on Cloud Computing (SoCC), 2010.

[2] A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken,
J. R. Douceur, Jon, J. Howell, J. R. Lorch, M. Theimer, and
R. P. Wattenhofer. FARSITE: Federated, available, and reli-
able storage for an incompletely trusted environment. In In
Proceedings of the 5th Symposium on Operating Systems De-
sign and Implementation (OSDI), pages 1–14, 2002.

[3] A. Bessani, M. Correia, B. Quaresma, F. André, and P. Sousa.
DepSky: Dependable and secure storage in a cloud-of-clouds.
In Proceedings of ACM EuroSys conference, pages 31–46,
2011.

[4] C. Brooks. Cloud Storage Often Results in Data Loss.
http://www.businessnewsdaily.com/1543-cloud-
data-storage-problems.html, October 2011.

[5] S. Byrne. Microsoft OneDrive for business modifies files
as it syncs. http://www.myce.com/news/microsoft-
onedrive-for-business-modifies-files-as-it-
syncs-71168, Apr. 2014.

[6] B. Calder, J. Wang, A. Ogus, N. Nilakantan, A. Skjolsvold,
S. McKelvie, Y. Xu, S. Srivastav, J. Wu, H. Simitci, J. Haridas,
C. Uddaraju, H. Khatri, A. Edwards, V. Bedekar, S. Mainali,
R. Abbasi, A. Agarwal, M. F. u. Haq, M. I. u. Haq, D. Bhard-
waj, S. Dayanand, A. Adusumilli, M. McNett, S. Sankaran,
K. Manivannan, and L. Rigas. Windows Azure storage: A
highly available cloud storage service with strong consistency.
In Proceedings of the 23rd ACM Symposium on Operating
Systems Principles (SOSP), pages 143–157, 2011.

[7] Canonical Ltd. Ubuntu One: Shutdown notice. https://
one.ubuntu.com/services/shutdown.

[8] A. Cidon, S. M. Rumble, R. Stutsman, S. Katti, J. Ousterhout,
and M. Rosenblum. Copysets: Reducing the frequency of data
loss in cloud storage. In Proceedings of the 2013 USENIX
Conference on Annual Technical Conference (ATC), pages
37–48, 2013.

[9] A. T. Clements, I. Ahmad, M. Vilayannur, and J. Li. Decen-
tralized deduplication in SAN cluster file systems. In Pro-
ceedings of the 2009 USENIX Conference on Annual Techni-
cal Conference (ATC), 2009.

[10] J. Constine. Dropbox hits 200m users, unveils new
“for business” client combining work and personal files.
http://techcrunch.com/2013/11/13/dropbox-hits-
200-million-users-and-announces-new-products-
for-businesses, Nov. 2013.

[11] J. Cook. All the different ways that ’icloud’
naked celebrity photo leak might have happened.
http://www.businessinsider.com/icloud-naked-
celebrity-photo-leak-2014-9, Sept. 2014.

[12] J. Ćurn. How a bug in dropbox permanently deleted my 8000
photos. http://paranoia.dubfire.net/2011/04/how-
dropbox-sacrifices-user-privacy-for.html, 2014.

[13] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,
and W. Vogels. Dynamo: Amazon’s highly available key-

value store. In Proceedings of the 21st ACM Symposium on
Operating Systems Principles (SOSP), pages 205–220, 2007.

[14] dropbox-api. Dropbox API. https://www.dropbox.
com/static/developers/dropbox-python-sdk-1.6-
docs/index.html, Apr. 2014.

[15] A. J. Feldman, W. P. Zeller, M. J. Freedman, and E. W. Felten.
SPORC: Group collaboration using untrusted cloud resources.
In Proceedings of the 9th USENIX Conference on Operating
Systems Design and Implementation (OSDI), 2010.

[16] A. J. Feldman, A. Blankstein, M. J. Freedman, and E. W.
Felten. Social networking with Frientegrity: Privacy and in-
tegrity with an untrusted provider. In Proceedings of the 21st
USENIX Conference on Security Symposium, 2012.

[17] E. Gafni and L. Lamport. Disk Paxos. Distributed Computing,
16(1):1–20, Feb. 2003.

[18] git. Git Internals - Git Objects. http://git-scm.com/book/
en/Git-Internals-Git-Objects.

[19] google-api. Google Drive API. https://developers.
google.com/drive/v2/reference/, Apr. 2014.

[20] G. Huntley. Dropbox confirms that a bug within selective sync
may have caused data loss. https://news.ycombinator.
com/item?id=8440985, Oct. 2014.

[21] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine,
and D. Lewin. Consistent hashing and random trees: Dis-
tributed caching protocols for relieving hot spots on the world
wide web. In Proceedings of the Twenty-ninth Annual ACM
Symposium on Theory of Computing (STOC), pages 654–663.
ACM, 1997.

[22] L. Lamport. The part-time parliament. ACM Transactions on
Computer Systems, 16(2):133–169, 1998.

[23] J. Li, M. Krohn, D. Mazières, and D. Shasha. Secure untrusted
data repository (SUNDR). In Proceedings of the 6th Confer-
ence on Symposium on Operating Systems Design and Imple-
mentation (OSDI), pages 1–9, 2004.

[24] P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi, M. Dahlin,
and M. Walfish. Depot: Cloud storage with minimal trust. In
Proceedings of the 9th USENIX Conference on Operating Sys-
tems Design and Implementation (OSDI), pages 1–12, 2010.

[25] A. J. Mashtizadeh, A. Bittau, Y. F. Huang, and D. Mazières.
Replication, history, and grafting in the Ori file system. In
Proceedings of the 24th Symposium on Operating Systems
Principles (SOSP), pages 151–166, 2013.

[26] R. C. Merkle. A digital signature based on a conventional
encryption function. In In Proceedings of the 7th Annual
International Cryptology Conference (CRYPTO), pages 369–
378, Santa Barbara, CA, 1987.

[27] E. Mill. Dropbox Bug Can Permanently Lose Your
Files . https://konklone.com/post/dropbox-bug-can-
permanently-lose-your-files, October 2012.

[28] M. Mulazzani, S. Schrittwieser, M. Leithner, M. Huber, and
E. Weippl. Dark clouds on the horizon: Using cloud storage
as attack vector and online slack space. In USENIX Security,
2011.

[29] J. Nelson and L. Peterson. Syndicate: Democratizing cloud
storage and caching through service composition. In Proceed-

13 2014/10/11

http://www.businessnewsdaily.com/1543-cloud-data-storage-problems.html
http://www.businessnewsdaily.com/1543-cloud-data-storage-problems.html
http://www.myce.com/news/microsoft-onedrive-for-business-modifies-files-as-it-syncs-71168
http://www.myce.com/news/microsoft-onedrive-for-business-modifies-files-as-it-syncs-71168
http://www.myce.com/news/microsoft-onedrive-for-business-modifies-files-as-it-syncs-71168
https://one.ubuntu.com/services/shutdown
https://one.ubuntu.com/services/shutdown
http://techcrunch.com/2013/11/13/dropbox-hits-200-million-users-and-announces-new-products-for-businesses
http://techcrunch.com/2013/11/13/dropbox-hits-200-million-users-and-announces-new-products-for-businesses
http://techcrunch.com/2013/11/13/dropbox-hits-200-million-users-and-announces-new-products-for-businesses
http://www.businessinsider.com/icloud-naked-celebrity-photo-leak-2014-9
http://www.businessinsider.com/icloud-naked-celebrity-photo-leak-2014-9
http://paranoia.dubfire.net/2011/04/how-dropbox-sacrifices-user-privacy-for.html
http://paranoia.dubfire.net/2011/04/how-dropbox-sacrifices-user-privacy-for.html
https://www.dropbox.com/static/developers/dropbox-python-sdk-1.6-docs/index.html
https://www.dropbox.com/static/developers/dropbox-python-sdk-1.6-docs/index.html
https://www.dropbox.com/static/developers/dropbox-python-sdk-1.6-docs/index.html
http://git-scm.com/book/en/Git-Internals-Git-Objects
http://git-scm.com/book/en/Git-Internals-Git-Objects
https://developers.google.com/drive/v2/reference/
https://developers.google.com/drive/v2/reference/
https://news.ycombinator.com/item?id=8440985
https://news.ycombinator.com/item?id=8440985
https://konklone.com/post/dropbox-bug-can-permanently-lose-your-files
https://konklone.com/post/dropbox-bug-can-permanently-lose-your-files

ings of the 4th Annual Symposium on Cloud Computing, pages
46:1–46:2, 2013.

[30] E. B. Nightingale, J. Elson, J. Fan, O. Hofmann, J. Howell,
and Y. Suzue. Flat datacenter storage. In Proceedings of the
10th USENIX Conference on Operating Systems Design and
Implementation (OSDI), pages 1–15, 2012.

[31] D. A. Patterson, G. Gibson, and R. H. Katz. A case for redun-
dant arrays of inexpensive disks (RAID). In Proceedings of
the 1988 ACM SIGMOD International Conference on Man-
agement of Data, pages 109–116, 1988.

[32] S. Quinlan and S. Dorward. Venti: A new approach to archival
data storage. In Proceedings of the 1st USENIX Conference
on File and Storage Technologies (FAST), 2002.

[33] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service for
internet applications. In Proceedings of the 2001 Conference
on Applications, Technologies, Architectures, and Protocols
for Computer Communications (SIGCOMM), pages 149–160,
2001. ISBN 1-58113-411-8.

[34] D. Thaler and C. V. Ravishankar. Using name-based mappings
to increase hit rates. IEEE/ACM Transactions on Networking,
6(1):1–14, 1998.

[35] Z. Whittaker. Dropbox under fire for ‘DMCA take-
down’ of personal folders, but fears are vastly overblown.
http://www.zdnet.com/dropbox-under-fire-for-
dmca-takedown-7000027855, Mar. 2014.

[36] Z. Wu, M. Butkiewicz, D. Perkins, E. Katz-Bassett, and H. V.
Madhyastha. SPANStore: Cost-effective geo-replicated stor-
age spanning multiple cloud services. In Proceedings of
the 24th ACM Symposium on Operating Systems Principles
(SOSP), pages 292–308, 2013.

[37] Y. Zhang, C. Dragga, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. Viewbox: integrating local file systems with
cloud storage services. In Proceedings of the 12th USENIX
Conference on File and Storage Technologies (FAST), pages
119–132. USENIX, 2014.

14 2014/10/11

http://www.zdnet.com/dropbox-under-fire-for-dmca-takedown-7000027855
http://www.zdnet.com/dropbox-under-fire-for-dmca-takedown-7000027855

