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Abstract

The goal of active vision is to change intrinsic or extrinsic properties
of the sensor in order to get new and improved information. In the
case of 3-D object modeling from vision, this can mean moving the
camera to view the scene from a new angle or to get a close-up view
of an object that has been localized and is being modeled. We discuss
using active vision to improve the speed and utility of map completion
and object segmentation. Importantly, in order to be able to process
untextured surfaces, we avoid relying on the existence of distinctive
visual point features.

1 Introduction

One of the most rapidly expanding subfields of commercial robotics is that
of service robotics for indoor environments populated by people. One par-
ticularly important entity in these environments is the object, defined by
physical contiguity and independent movement. Some of the major types of
vision algorithm meant for reasoning about objects are segmentation, recog-
nition and affordance analysis. We have developed multiple algorithms for
segmenting objects in indoor environments using different kinds of motion
cues: change detection [16], dense feature matching [18] and dense nonrigid
motion estimation [19]. One characteristic these three methods have in com-
mon is that they are passive segmentation techniques: each is given a fixed
group of measurements from which to extract a segmentation. We should
be able to improve the speed and accuracy of segmentation if we have ac-
cess to a physical agent with the ability to rearrange the scene to give itself
more information, because future measurements can be directly related to
a notion of what information is contained in past measurements. If the
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robot’s camera is movable, moving it can provide views that would never
be obtained by a passive agent. Humans who might otherwise move the
camera probably won’t know the robot’s intentions or current knowledge,
and it is very unlikely that humans would feel the need to rearrange objects
for the viewing benefit of a camera with a fixed position in the environment,
as they would be unaware that this would be helpful to vision algorithms.
Additionally, some objects are moved by humans, but only very seldom, so
that a robot might not observe movement of all objects in its environment
for months or years after entering service.

These arguments motivate active object segmentation, in which the robot
literally takes matters into its own hands and causes the camera or objects
to move. (The more general concept of active perception was introduced
by Bajcsy [3].) Having the ability to choose what data to process means a
robot can segment objects when it wants and can choose how much of a scene
to understand before moving on. Importantly for algorithms using formal
methods in robotics (e.g. [26]), it is also possible to control the amount of
certainty we have about object boundaries: the robot can manipulate an
object whose configuration it is unsure of until its model has the desired
amount of uncertainty. In this report we present a method for choosing
motions of a camera mounted on a robot to ensure that the robot continually
sees new parts of the scene.

2 Background

This work builds on recent work in online robot mapping and passive object
segmentation.

2.1 Online SLAM

The problem of static SLAM, simultaneous scene mapping and localization
of a camera moving through an unchanging scene, has been the subject of
a great amount of work in robotics since the mid-1980s and [11, 31]. With
the introduction of high-frame-rate RGB-D cameras such as the Microsoft
Kinect (designed by PrimeSense Inc. [7]) and of GPGPU techniques have
come online GPU-based SLAM techniques based on the recursive-filtered
volumetric reconstruction of Curless and Levoy [8]. The geometric map is
represented with a truncated signed distance function (TSDF) over voxels.
This representation permits extraction of a surface at any time, and can be
extended to store surface color. The work described in this report makes
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heavy use of the Patch Volumes online SLAM system [14], a recent GPU-
based volumetric mapping system that can align and add RGB-D frames to
a volumetric map at about ten frames per second.

2.2 Online Object Segmentation

Most of today’s online SLAM systems are meant for static scenes, in which
the camera is assumed to be the only moving thing. In [15] we extend the
Patch Volumes static SLAM system to segment and model multiple rigid
objects. This is the only work we know of that performs dense segmentation
and modeling of multiple scene elements in an online fashion. We use change
detection between the current video and a previously built map to identify
moved objects. We model each of these objects separately, using static
SLAM, and create a background map containing none of the objects seen to
have moved. This system that performs online passive mapping and object
segmentation can be naturally extended to use active vision to control the
movement of the camera. We illustrate this idea in fig. 1, which explains
how online object segmentation with change detection works.

(a) (b) (c)

Figure 1: the advantage of active over passive mapping techniques, illustrated

in the context of change detection. First the camera traverses the path of green

arrows in (a), observing the purple pyramid on the table. After some time passes,

the camera returns to the scene and traverses a similar path in (b), observing the

orange cylinder. It is not possible to decide from only these views whether the

purple pyramid is still present, as the space it would occupy is occluded from all

the camera’s viewpoints. However, if the camera is held by a robot that can control

the camera’s movement, it is possible to view behind the orange cylinder (c) and

observe whether the purple pyramid is present. (In this example, the robot is able

to reason that the pyramid might still be present in the same location. In general

there are other algorithms motivating the choice of viewpoints.)
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2.3 Active Object Segmentation

The goal of this work is to aid 3-D segmentation, given 2-D segmentation
tools such as those mentioned in sec. 1, by viewing previously unseen parts
of the map. The map completion problem is defined as moving the camera
to see all surfaces in the map, and the (less well-defined) active segmentation
problem is to move the camera to improve the speed and/or accuracy with
which we can segment objects.

For our purposes, map completion is a proxy problem for object model
completion. In the online mapping and modeling system just discussed, if
an occluder is removed and we observe an object behind it, change detec-
tion alone cannot segment the object completely because there is no change
detection evidence for the section of the unoccluded object that was behind
the occluder. However, since we know the boundaries of the occluded region
(which includes the object as well as some other surfaces), we can still make
a model that contains the object by taking advantage of having a camera
on the robot. The object and background in the resulting model cannot
be separated perfectly until we see the same region of background without
the object. Therefore we wish to model at least some interesting portions
of each scene we see as completely as possible in order to give us maximal
information for processing future scenes. Another reason to use active vision
for object modeling is that the more complete an object model, the more
useful it is for object discovery.

The most popular paradigms for map completion (sometimes called “ex-
ploration”) are frontier-based and next-best-view exploration. Given a map
representation that divides space into free, surface, and unseen areas, fron-
tiers are defined as the parts of the map that border both free and unseen
space [35]. Frontier-based approaches to map completion iteratively select
frontiers to view with the sensor (usually a camera). Next-best-view ap-
proaches, which are a type of generate-and-test algorithm, select a set of
possible future viewpoints to score according to some notion of usefulness
of a view, which depends on the current contents of the map. Notions of
usefulness on a volumetric map are generally computationally expensive to
calculate.

We introduce a frontier-based framework for solving map completion
and related problems such as active segmentation. We do this with a gen-
eral representation of preferences on what areas are viewed next. We can
incorporate a wide range of preferences for selecting viewing locations so
as, for example, to focus on completing our models of regions we know to
be objects (e.g., from change detection) but that are partly unseen, or to
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prioritize viewing regions of space that are blocking the movement of our
mobile manipulator due to being unseen, but that are likely to be free of
surfaces. We use a computationally inexpensive method for selecting views
given preferences, allowing us to make decisions at a higher rate than any
other 3-D next-best-view approach of which we are aware.

3 Related Work

Every next-best-view view selection algorithm proposes a set of possible
sensor poses for the next sensor reading, selects the best by some metric
(usually based on information gain), moves the sensor to the selected pose,
and integrates the resulting reading into a representation of the scene. In-
formation gain is very hard to define for applications in which the goal is
to measure variables that are currently completely unknown, so most work
uses rough approximations for view scoring. Work on selecting next best
views by using projections of unseen space into potential camera poses goes
back at least to 1985 [6], and there has been a large amount of work recently
using similar algorithms in 3-D, e.g. [25, 33, 29]. Thrun et al. [32] discuss
robot exploration during 2-D mapping by selecting next views to maximize
an approximation of information gain. We compare to such an approach in
3-D.

The most common variant is myopic next-best-view planning, in which
only a single future view is considered. For example, Triebel et al. [33]
select a next pose for a laser range finder to maximize an approximation
to information gain given by assuming a point distribution over readings at
each single scan (in particular, they assume the first voxel along a ray with
occupancy probability over a threshold will be hit by the beam). Their pose
proposal step constrains next views to be reachable by the manipulator on
which their sensor is mounted. Gonzalez-Baños and Latombe [13] select a
next view using a combination of traversal cost and a novelty score given
by the total volume of the currently unseen area that would be seen by the
new view. Potthast et al. [29] use the penetration depth of each hypothetical
pixel ray into an unseen region as an estimate for information gain, reasoning
that the more unseen space could be seen through, the more likely we are
to find out where the surface actually is.

By contrast to these myopic methods, Atanasov et al. [1] select camera
poses for tabletop object classification by planning a sequence of two or more
viewpoints for each pre-segmented object. They maintain a discrete distri-
bution over object models in a database to estimate which known object is
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currently being observed. They include traversal cost in planning. Similarly,
Hollinger et al. [20] first select a set of overlapping views of a ship hull and
plan a path that can use any subset of these views to cover the entire hull for
visual search purposes. They use this method only after building a complete
object model; they use view selection to reduce uncertainty in that model.
In both these projects, view selection and path planning are done off line.

Blodow et al. [5] select next-view poses for a mobile robot with a laser
scanner by ray-tracing in 2-D (similar to a 2-D laser scanner such as a
Hokuyo) at each proposed pose until each ray hits a non-free voxel. Their
score function rewards poses from which the numbers of frontier voxels (rep-
resenting new information) and surface voxels (in order to perform alignment
to the existing map) thus rendered are equal. This is an example of a tech-
nique that fits in both the next-best-view and frontier-based categories.

Holz et al. [21] quantitatively compare frontier-based and non-frontier-
based view selection methods and find that the two frameworks yield similar
results, despite the fact that next-best-view approaches consider more in-
formation in view scoring than the relatively simple frontier-based methods
they test. Their main research contribution is a quantitative study of early
stopping in map completion, in which replanning happens as soon as the
current target map region (part of the frontier) is visible rather than after
the current target pose is reached.

Shen et al. [30] use a gas diffusion model to identify frontiers in a low-
memory, low-computation setting and show that they can produce a map
of similar quality to one produced by a more conventional frontier-based
algorithm operating on a non-embedded platform.

The theory of submodular optimization (an analogue of convexity for dis-
crete optimization) allows for efficient optimization of objectives in which
acquiring the same or similar information loses value over time as the vari-
ables involved are modeled better and better by the growing set of previous
views. Golovin and Krause [12] define adaptive submodularity for problems
in which action selection should depend on recently acquired information.
They present a greedy algorithm for optimization of adaptive submodular
objectives, which is applicable, for example, to the map completion problem.
Javdani et al. [24] note that information gain is not adaptive submodular,
and so is theoretically not usable as an objective for view selection. They
suggest instead using objectives based on hypothesis pruning, in which ac-
tions are selected to reduce the set of plausible hypotheses by the maximum
number of elements at each timestep. They use an objective based on hy-
pothesis pruning with a tactile sensor to do object pose estimation.

One issue in designing map completion-like algorithms is selecting a ter-
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mination condition. Object model completion using probabilistic measures
of completeness as a function of viewing direction is demonstrated by Zillich
et al. [36]. They use point feature matches to a model as the basic unit of
information about an object, and update the model after each view. One
of the nicest features of their work is a condition for when to stop acquir-
ing new views of an object based on the distribution of point features in
its model. Krainin et al. [25] use a similar measure of model completeness
defined at all vertices of an object mesh, which is assumed to be complete
and watertight before view planning.

Our setup is different from those in most of the references above (except-
ing Zillich et al. [36]) in that they all use sensors mounted in fixed positions
on a robot base, whereas we attach a camera to the end of a robot arm.
Our scenario is more general than that of Zillich et al. in that they are inter-
ested in modeling a single object with a known background, whereas we are
interested in modeling the entire scene, starting with no knowledge of any
surfaces in the scene. Therefore we integrate camera motion with a SLAM
system. We use an online SLAM system [14] and we desire to map the
scene as quickly as possible, without spending valuable camera time sitting
in place during slow planning. Our motivation for this decision is the intu-
ition that the more of the time the camera is in motion, the more quickly
we will acquire new information. Since our system is designed for use on a
robot, we want the entire system to run as close to in real time as possible.
This motivates the use of a novel frontier-based approach in which we select
views using a simple scoring method and expect to move only partway to
the selected view before selecting another.

Our ultimate interest is in using view selection for object segmentation.
Possibly the most similar existing work to this goal is that of Holz et al. [22],
who use view selection for object detection in a bin picking task. They use
a pipeline of geometric primitive fitting followed by object detection. Each
voxel in a volumetric map is given a value for view selection purposes; values
are based on the outputs of the two pipeline stages at each voxel, which
can change over time as view selection and the detection pipeline are run
alternatingly. Important differences from our work are that Holz et al. detect
a known object rather than novel ones and that they assume their object’s
shape is composed of a small set of geometric primitives.
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Figure 2: a diagram of our active online mapping and object segmentation system.

Blue nodes are not present in the system of [15]. This diagram should be interpreted

as showing information flow rather than execution flow, as various parts of the

system run in parallel.

4 Framework Overview

We have implemented a view selection and motion planning framework as an
extension to the online 3-D reconstruction and object segmentation system
introduced in [15]. We show a flow chart of modules in the entire system
in fig. 2. We run mapping in one thread, object modeling (introduced in
[15]) in another, view selection and motion planning in a third, and motion
execution also in its own thread. View selection uses the output of mapping,
and produces a control input for a (simulated or real) robot with a movable
camera. For example, the camera can be attached to a kinematic-chain ma-
nipulator or can be free-flying (this is one approach to simulating something
similar to a quadrucopter). Automated view selection could also be used as
a hint to a human carrying the camera, similarly to [10], in which the user
is shown what areas of a map being built are still incomplete.

Active mapping involves 1) view selection, which suggests future camera
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Algorithm 1 pseudocode for our view selection and motion planning algorithm.

This code runs iteratively starting as soon as the map is initialized and ending once

a termination criterion is reached.
Input: map V
1: if V iewTarget defined then
2: Success ← (¬TargetInFreeSpace(V iewTarget,V)
∧¬TargetUnmeasurable(V iewTarget))

3: if Success then
4: (Plan, Success)← TryPlanToPose(p,V)

5: if Success then
6: execute Plan
7: else
8: V iewTarget← undefined

9: if V iewTarget not defined then
10: M← ExtractMesh(V) B Marching Cubes
11: F ← ExtractFrontier(M)
12: V : F 7→ R← ValuateFrontierTris(F)
13: sort F by V B index into F
14: i← 0
15: Success← false
16: while ¬Success and i < |F| do
17: (Tnext, i)← NextTriByValue(F ,V, i)
18: P ← SuggestViewingPoses(Tnext)
19: P ← FilterByStaticReachability(Tnext,P,V)
20: P ← FilterByCollisionChecking(Tnext,P,V)
21: P ← FilterByNonvisibility(Tnext,P,V)
22: P ← FilterByNonmeasurability(Tnext,P,V)
23: for all p ∈ P do
24: (Plan, Success)← TryPlanToPose(p,V)
25: if Success then
26: execute Plan
27: end forall
28: end the experiment if we exhausted the pose suggester (there’s nothing unseen

that we can move the camera to)

poses, and 2) motion planning given a target camera pose. Alg. 1 outlines
our active mapping update algorithm. After initialization of active map-
ping, this update is run repeatedly until an externally defined completion
condition is met.

At any given time there can be a view target (a location on a known
surface or on the 3-D frontier) defined. (Initially there isn’t.) We plan to
move toward a configuration viewing the current target if there is a target.
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We choose a new target when the target becomes seen (i.e. moves off the
frontier into known-free space) or is found to be unmeasurable. (In real
scenes, some surfaces will never or rarely return readings to an infrared
sensor. We model this phenomenon by quantizing view targets, remembering
which quantized targets were viewed but did not return valid depths, and
avoiding targeting these views again.)

Target selection starts with ExtractMesh, which runs the Marching
Cubes [28] mesher for volumetric maps. Our version extracts both the zero
level set of the signed distance function and the boundaries between empty
and unseen space (frontiers), and we use ExtractFrontier to enumerate
only the frontier triangles in this triangulated mesh. ValuateFrontierTris
assigns a viewing utility to each triangle; we will use these values to rank
views later. We run through triangles in decreasing order of utility, sug-
gesting one or more poses from which to view each in turn and attempting
to plan to each of these before giving up on a triangle. Viewing poses are
suggested using only information about the single triangle in question, so
we need to filter them (lines 19–22 of alg. 1) based on reachability given
physical robot constraints, collision checking with the environment, visibil-
ity of the target triangle from the suggested camera pose (again, there can
be obstacles), and information about unmeasurable surfaces (in real scenes,
some surfaces don’t return readings). When planning (line 24) is successful,
we set the triangle’s centroid as the new view target.

Having a long list of potential view targets (a room-sized map in progress
with a 2-cm voxel resolution contains between 100,000 and 1,000,000 frontier
triangles) gives us robustness to failure of planning to a single target. At
any point, if there is any frontier region we are able to plan toward, we can
continue mapping.

5 Simple and Inexpensive Planning

In most previous work, view selection has been a computationally expensive
operation run once each time the robot reaches a new target. We make
view selection/planning inexpensive enough to be run continually while the
robot is moving. This means that we might plan the robot’s motion for, for
example, time interval t ∈ [1, 2) when t = 0 and we don’t yet have all the
map information we will at t = 1. However, because our planning is fast
and we plan short motions, we have almost the most recent information,
and we have the advantage that the robot is continually improving the map
rather than sitting idle during planning. One consequence of this approach
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is that Holz et al. [21]’s “rapid rechecking” isn’t so important for us since
we don’t move the camera very far at a time. Holz et al. check at each
processing iteration whether the current view target has already moved into
free space, and if so cancel the rest of the movement toward it; in our case,
this cancelation consists of setting the view target to “none”. The rechecking
strategy is, of course, still useful: on the map completion problem in a
simulated environment that we will discuss shortly, rechecking saves us 15%
of travel distance and 35% of runtime. All the results we report in this
section use rechecking.

To help ensure that the camera will move continuously, we keep a queue
of up to k = 2 planned future motions pending at all times. The queue size
limit helps avoid planning with too much stale information.

Another motivation for this continual-replanning approach is that the
faster our replanning is, the sooner it can make use of new information in
the environment; in the limit, if planning can run once per incoming frame,
it becomes possible to replan based on objects that move during planning.
This will allow the camera to follow objects that are moving as they are
being observed, in order to complete object models during the movement of
those objects, or to track how nonrigid objects’ shapes change as they move.

One benefit of continual replanning is the ability to use simple and fast
planners. Common options for motion planning of general-case motions are
rapidly exploring random trees [27] and iterative path smoothers such as
CHOMP [37]. A smoother must be initialized with an approximate path
(which can be very simple, such as a straight-line path in configuration
space). We have experimented with both methods. RRTs as implemented
in OpenRAVE [9] run for two to four seconds on our problems (with a large
amount of occlusion in the environment), and CHOMP usually runs for .5 to
1 second. Due to our continual-replanning approach, however, we have an-
other option: configuration interpolation. After selecting an end pose for the
path, for kinematic chains we use linear interpolation in configuration space,
and for a free-flying camera, whose configuration is its pose, we use linear
interpolation of translation and spherical linear interpolation of rotation.
This planner runs in an average of .03 seconds, with a standard deviation
of .02, and takes longer than .1 seconds less than 1% of the time. Linear
interpolation is a reasonable choice because we keep paths short: in order
to avoid having the execution of a path take much longer than planning the
next path, we execute only the beginning of each planned path. Thus each
view target takes one or more executed plans to reach. In return for the
advantage of being able to use very simple planning, we have the potential
disadvantage of not being able to move between two very separated areas
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of the environment that are both interesting; that in general requires more
sophisticated planners. As the emphasis of this work is on simplicity and on
planning only to nearby locations, we leave exploration of this tradeoff for
future work.

6 View Selection

The mesh extraction algorithm in Patch Volumes is a version of marching
cubes modified to provide meshes for both surfaces and the frontier. We
use the centroid and normal of each frontier triangle as a potential view
target location and orientation. We limit the size of this set of triangles by
subsampling with a required minimum distance between samples.

Function ValuateFrontierTris in alg. 1 assigns a value to each fron-
tier triangle according to some idea of how useful it would be for the camera
to view that triangle next. Where the camera might view the triangle from
depends on SuggestViewingPoses, but almost certainly there will be
more than one triangle in the view, so the value of a triangle is allowed to
take information about other parts of the scene into account. Our framework
for view selection is general and the particular algorithm can be anywhere
on the efficiency spectrum, from a simple approach that values all frontiers
the same to a sophisticated algorithm that uses globally defined information
about surfaces in the scene. For example, one of the most common ap-
proaches to scoring views is to render the scene into each view and process
the set of scenels seen by each view. We evaluate such an approach later in
this section.

The simplest goal for a view selection algorithm is map completion: se-
lection of new poses can cease when there is no unseen space left in the
reconstructed map. Some value functions defined to achieve map comple-
tion are given in sec. 7.1. We define a framework for selecting views rather
than a single algorithm because we are also interested in more complex goals.
The effects we can achieve with our per-scenel valuation include:

• Sometimes (e.g., with the use of change detection) we have a partial
segmentation of an object and can perform the rest of the segmentation
if we choose views to see the edge of the surface region known to be
part of the object. By assigning high value to frontier triangles near
interesting surfaces, we can force the system to view unseen parts of
known objects before moving to areas not already known to contain
objects.
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Figure 3: an illustration of potential motions being blocked by unseen space. The

robot (blue) is holding the camera (red). Black shows some of the edges of the

map volume. The camera has already seen a table with an object on it (orange).

Green shows frontiers: edges between free and unseen space. The robot would like

to move the camera to view the left side of the object (a), which is currently on

the frontier, but due to the physical extent of the robot, it would have to penetrate

the unseen space above the table (b) in order to do so. This problem suggests

having a way to prioritize looking at unseen space far from known objects. (Any

algorithm in our framework would still look at the blocking space in this figure

eventually, because all suggested view targets are considered in order; the issue is

one of efficiency rather than completeness.)

• One possibly desirable behavior when modeling objects is to view all
sides of an object before moving to another. This objective function
is very non-submodular and so cannot be achieved by submodular
optimization methods, which have nice theoretical properties [24]. By
defining a value function that rewards both proximity to the current
camera position and proximity to partially modeled objects, we can
achieve this kind of behavior.

• Especially when the robot is a kinematic chain, it is possible for there
to be large regions of unseen space blocking the robot’s path to an
area it needs to reach. See fig. 3 for an illustration. In our framework
it is possible to raise the value of frontiers in such regions over time so
that seeing through them is given higher priority than trying to view
unseen parts of the intended target region.

To guarantee that a view selection system will find all objects in a scene,
map completion must be incorporated into the value function, because any
unseen region of space can contain an object. However, prioritizing space
by using partial information about known objects or about regions in which
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objects are likely to appear (as provided, e.g., by [2]) allows us to make the
best use of our time if it is known that there is a time budget but the budget
is unknown.

7 Experiments

(a) simenv0 (b) simenv1 (c) simenv2

Figure 4: the three simulated environments simenv0/1/2 used in our simulation

experiments. They vary only in the objects on the table.

We show three experiments: one to compare view selection algorithms,
one to demonstrate the use of our framework for object completion, and
one to explore differences between flying and arm-mounted cameras. Due
to limited hardware availability, the experiments we present here are all
in simulation. We use three similar simulated scenes, each containing a
yellow and an orange table inside a room with walls, floor and ceiling that
are varying shades of pink. One scene has no objects on the table, one
has one object, and one has four. These scenes are shown in fig. 4. Each
scene is bounded by walls so that it cannot take infinite time to complete
a map. Each scene is the same size, about 4 m2 horizontally and 2 m
vertically. In two experiments we model a camera attached to a free-flying
small spherical robot (an approximation to a quadrucopter). In the other,
we model a camera mounted on a kinematic chain: a WAM arm [4] attached
to a stationary base. Both models are shown in fig. 5.

All space in the map is initially unseen. To allow the camera to move at
all, we carve out some “known” free space around the robot before starting
mapping. In the case of a free-flying camera we provide a .4-meter cube
of initial free space; in the case of the WAM assembly, we provide space
including the entire robot and some extra space for the arm’s elbow to be
able to bend in its first few movements.

When running with simulated environments, we provide Patch Volumes
with ground-truth alignments rather than using its alignment functionality,
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(a) (b)

Figure 5: the two simulated robot models we use in our experiments. (a) a free-

flying camera (technically mounted to a small white sphere); (b) a camera mounted

on the palm of a WAM arm with a Barrett hand. We do not allow the base of the

WAM to move. In each image the camera viewing direction is indicated with a

green frustum.

because its alignment is unstable in environments with zero color or depth
texture. We have verified empirically that adding a small amount of color
noise to otherwise single-color-valued surfaces is enough to avoid this insta-
bility, but that tactic is unavailable in our current software framework, so
for ease of implementation we avoid running alignment in simulation.

There are at least three types of termination condition we can use in
map completion-related applications: we are done mapping when there are
no frontiers left in the map, when we are no longer able to plan to any
remaining frontier (due to limitations of a kinematic-chain robot or due to
hidden surfaces in the map caused by inaccuracy in alignment), or when
there are no high-value scenels left in our list of potential targets. We end
an experiment when any of these conditions occurs.

In our map completion experiments, when online change detection func-
tionality is not needed, we disable online change detection and object mod-
eling to better evaluate view selection. The object completion experiment
requires change detection to identify surfaces of interest. Therefore runtime
numbers from these different experiments are not comparable.

7.1 Map Completion with a Free-Flying Camera

As a first step toward active segmentation, we evaluate our system on the
simpler problem of map completion in a simulated environment (simenv1).
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This will help us choose a view selection algorithm to modify for the purpose
of active segmentation. We use a free-flying camera, whose robot configura-
tion consists of its pose, represented as a quaternion and 3-D translation. We
compare the performance of four view selection algorithms on this problem:

• random-frontier assigns a random score in [0, 1] to each frontier
triangle. Holz et al. [21] refer to this algorithm as “random frontier”.

• distance-to-cam assigns a score U based on the distance between
the camera pose at the start of planning and the suggested camera
pose X viewing each frontier triangle:

Ud(X) = e−Dp(X), (1)

where Dp(X) gives the pose distance between the camera pose at the
start of planning and camera pose X, calculated as the Euclidean
distance between the translations in meters plus 0.5 times the angular
distance between the rotations in radians. We refer to this pseudo-unit
as “meter-equivalents”.

We could equally well get the distance numbers into the [0, 1] range
by dividing by the maximum distance observed rather than by expo-
nentiating. Either would result in the same ranking of scores.

• info-gain assigns a score based on an approximation to the expected
information gain of the suggested next view over variables representing
the state of each voxel that would be seen. The current scene, including
frontiers, is rendered from each suggested view X and the number of
pixels N(X) in the hypothetical image that would see currently unseen
space is counted. The score is then

Uig(X) = N(X)
maxX∈X N(X) , (2)

where X is the set of camera poses being evaluated. This is similar to
the evaluation function of Blodow et al. [5], with the difference that
since we update the map at each frame, we have no need to include
a measure of map overlap in the evaluation function. The other main
difference between these two algorithms is that we don’t sample our
suggested camera poses randomly.

• traversal-cost measures the approximate traversal cost for the
camera. The score of suggested pose X is

Utr(X) = e−Dt(X), (3)
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whereDt(X) is the approximate traversal cost from the current camera
pose to camera pose X. Distance is calculated as for distance-to-
cam. We approximate the traversal cost similarly to how Wettach et
al. [34] do: we create a graph whose nodes are the centers of a voxel
grid overlaid on the map (for speed, we use a grid with larger resolution
than that used for mapping) as well as the current and all suggested
future camera positions. We then compute shortest paths between all
pairs of nodes. The distance function we use between nodes takes both
translational and rotational distance into account. (We arbitrarily
assign the same rotation as that of the current camera pose to each
node created from an arbitrary voxel center.) For view selection, we
only need to use the distances between the current and each proposed
future camera pose. Wettach et al., who want to move the robot
along the resulting path, additionally use a continuous optimization
to produce a smooth path; we compute paths to use in a separate step,
so do not need to smooth paths here.

Due to the exponential dependence of the number of graph nodes in
this approach on the configuration space dimension, we will probably
need to explore an approach based on a probabilistic roadmap (PRM)
once we move to higher dimensions (e.g. for our 7-dof WAM arm). In
three dimensions we find this approach faster than a PRM.

• info-traversal combines the information gain and traversal cost
objectives additively:

Uit(X) = αUig(X) + (1− α)Utr(X). (4)

We use α = .4, an educated guess.

Table 1 shows numerical measures of the performance of map comple-
tion using each of these view selection algorithms. Each algorithm was
run three times to completion. The shortest path length traversed by the
camera during the whole run should intuitively be achieved by traversal-
cost-based algorithms, and here info-traversal and traversal-cost in
fact do achieve the shortest paths. distance-to-cam achieves the smallest
runtime to map completion. Multiple algorithms have very high rates of
planning success, meaning they successfully avoid selecting next views that
are hard to reach from the current one, which would be a negative quality
in our continual-replanning framework. The quickest algorithm to run each
iteration of view selection and planning is distance-to-cam, which is prob-
ably why it completes the map soonest. random-frontier has a quicker
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Algorithm Runtime (s) Distance # View Planning Avg update
traveled (m) targets success time (s)

run 1

random-frontier 6508 663.3 2685 45% 1.4
distance-to-cam 795 89.9 353 98% 1.4

info-gain 19379 120.5 487 90% 25.6
traversal-cost 4127 89.3 296 98% 13.7
info-traversal 7581 61.3 224 4% 33.6

run 2

random-frontier 3997 426.7 1670 51% 1.0
distance-to-cam 950 112.0 422 95% 1.0

info-gain 50894 260.5 1049 3% 38.8
traversal-cost 3200 74.5 240 76% 12.6
info-traversal 11792 78.6 288 5% 40.7

run 3

random-frontier 5703 592.3 2368 62% 1.0
distance-to-cam 998 108.6 418 12% 1.2

info-gain 30740 193.5 762 4% 30.0
traversal-cost 3641 83.7 272 27% 13.2
info-traversal 8999 53.2 181 2% 48.3

Table 1: comparison of view selection algorithms on the map completion problem
on simenv1. Runtime is in many cases the most important statistic. Distance
traveled may also be important depending on hardware. Planning failure is al-
most always due to collisions with obstacles, and occasionally due to failure to
find a configuration reaching the initial camera pose for the plan. (In the case of
a kinematic-chain robot, this second case is inverse kinematics failure.) “Update
time” refers to time spent per run of view selection and motion planning. This
includes runs in which there is a current view target and no view selection is nec-
essary; such runs can be very fast. Each successive view target is reached after
planning one or more times.

Each run of each algorithm represents a separate process.

Algorithm Runtime (s) Distance # View Planning Avg update
traveled (m) targets success time (s)

random-frontier 6138 638.5 2550 38% 1.1
distance-to-cam 994 118.4 432 38% 1.1

info-gain 42523 246.1 975 16% 27.6
traversal-cost 2807 61.3 209 64% 13.2
info-traversal 31852 176.9 684 1% 46.4

Table 2: comparison of view selection algorithms on the map completion problem

on simenv2. See tbl. 1 for explanation of metrics.

view selection step than distance-to-cam, but has a higher percentage of
failed plans, meaning it must replan more times for each view target update.

Table 2 shows numerical results for map completion on simenv2, which
has qualitatively different topology from simenv1 (there is an object resting
on two others, creating a hole in the surface). Each algorithm was run once
to completion. The runtime numbers are larger than for the less compli-
cated scene simenv1, and planning success rates are lower. On this scene

18



Figure 6: map completion (in terms of observed volume) and total planning success

rate over time for info-traversal. As shown in tbl. 1, the planning failure rate is

96% at the end of the run; here it appears to be 100% because these numbers include

successes as failures. (Each update ends with one planning success.) Qualitative

conclusions from this graph are still valid.

traversal-cost has the shortest path to completion. It is still the case
that distance-to-cam has a shorter update time than any of the other
non-random algorithms.

info-traversal achieves a very short path to view the whole scene,
but has a very low planning success rate. Fig. 6 shows the completeness of
the map produced for simenv1 (taken from fig. 7 graphed with the (approx-
imate) percentage of failed planning runs after each active mapping update
using info-traversal. Completeness levels off while planning failure be-
comes more and more frequent over time. One plausible explanation for
this behavior is that when most of the volume has been observed, when (we
see empirically) there are usually many small unobserved areas left in far-
flung regions of the scene, the information gain objective conflicts with the
traversal cost objective and faraway areas of the scene containing relatively
large unseen regions dominate the top of the list of potential next views.
It is possible that the tradeoff parameter α in the value function would be
best changed over time during mapping; this would be an interesting future
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experiment. Another possibility is that running collision checking before
we limit the length of a path has more negative an effect on view selection
methods that suggest views anywhere in the scene than it does on those that
prefer to suggest views near the current view. To test this hypothesis, we
also ran map completion on simenv2 using info-traversal with collision
checking run only after path length limiting, to reduce checking of collisions
with parts of the map that are not actually traversed until later. This run
had a similar planning success rate of 3%, suggesting that overzealous col-
lision checking is not a major cause of planning failures. (This discussion
is likely to also apply to info-gain, which also has a low planning success
rate on most runs.)

We can also look at how quickly each algorithm reduces the size of the
remaining free space. All these algorithms eventually view all or almost all
surfaces in the map, but they do so at different rates. In fig. 7 we show
how quickly each algorithm reduces the free space in the scene. We show
completion as a function of iteration count rather than of time because
each of these algorithms could be tweaked to be faster or slower; it’s not
at all clear that our implementation of each is the best/most efficient way
to implement it, and we want to offset the table above in which we empha-
size runtime. For example, both info-gain and traversal-cost could be
made faster by greatly limiting the number of options for next viewpoint, as
most previous work using those algorithms has. In particular, most of the
time in the information-gain-based update is spent in rendering the scene
from many viewpoints. However, algorithms like distance-to-cam that
use only information local to a mesh triangle to score that triangle, as op-
posed to spatially dispersed information, allow for considering many view
options quickly. This makes the algorithm fit our framework, which is de-
signed for use with efficient view selection and planning, well. Therefore we
choose to build on distance-to-cam as a view selection method for active
segmentation purposes.

Fig. 8 shows a view of a map of simenv1 made with distance-to-cam
running on a free-flying camera. There are no unobserved surfaces in this
map.

7.2 Map Completion with a Robot Arm

For comparison, we run some view selection algorithms on the map com-
pletion problem on the simenv1 and simenv2 environments, as above, but
using a kinematic-chain robot model. This robot’s configuration consists
of the angles of seven rotational joints. We use the OpenRAVE inverse
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Figure 7: completeness of the map as a function of number of active mapping up-

dates executed on simenv1. Completeness is measured by free space in the scene

that is known free in the map. The x axis is update iterations, which unit is not

a linear function of time. The 100% mark (the top of the graph) is, for compu-

tational reasons, calculated in a way that slightly overshoots what any algorithm

can actually achieve, so although the graph shows each algorithm achieving only

about 95% completeness in terms of volume, each algorithm does in fact view all

the surfaces in the scene.

kinematics module, ikfast, to implement reachability and collision testing.
ikfast gives us correct reachability results well over 99% of the time (but
not 100%).

We show results for the distance-to-cam and info-gain view selection
algorithms in tbls. 3 and 4. We selected these two algorithms in order to
compare a method using only local to one using global scene information
on this robot model. As in the earlier experiment, the local method has
better runtime, which is the single statistic we are most interested in in this
case, as runtime is a limiting factor due to the mapping speed limitations
discussed above.
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(a)

Figure 8: a map of simenv1 made with the distance-to-cam view selection

algorithm running on a simulated free-flying camera.

Algorithm Runtime (s) Distance # View Planning Avg update
traveled (m) targets success time (s)

run 1
distance-to-cam 1025 89.5 270 17% 3.7

info-gain 22628 175.9 562 12% 39.4

run 2
distance-to-cam 1307 119.4 340 20% 3.8

info-gain 28464 192.3 565 11% 50.3

run 3
distance-to-cam 1160 99.8 304 32% 3.7

info-gain 31820 228.2 722 9% 44.0

Table 3: comparison of the closest-frontier and information-gain view selection

strategies on the map completion problem on simenv1 with a simulated kinematic-

chain robot. Each view selection algorithm was run three times to completion.

(Each run of each algorithm represents a separate process.)

Algorithm Runtime (s) Distance # View Planning Avg update
traveled (m) targets success time (s)

distance-to-cam 1002 92.6 267 25% 3.6
info-gain 16062 138.3 435 12% 36.8

Table 4: comparison of the closest-frontier and information-gain view selection

strategies on the map completion problem on simenv2 with a simulated kinematic-

chain robot. Each view selection algorithm was run once to completion.

There are a few differences between these results and those for the free-
flying camera model. Runtimes are greater for the kinematic chain, probably
because reachability and collision checking are more complicated than for
a non-articulated robot. Each algorithm has much lower planning success
with the kinematic chain than with the free-flying model; this may be due to
the limitations of linear interpolation of joint angles as a planning method.
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We have used linear interpolation in previous experiments (not described in
this document), and it has worked well, but there we have mainly used it
for motions through space that is known to be free or assumed to be easily
navigable.

(a)

Figure 9: a cutout of a map of simenv1 made by active mapping running on

a simulated WAM arm (with the distance-to-cam view selection algorithm).

Unseen regions of space are shown in black. The large irregularly shaped unseen

area is the region in which the robot is located (its base does not move) and which

the camera is unable to see through. The end of the table is also unseen because

the arm is unable to move the camera to look at that surface.

Fig. 9 shows part of a map of simenv1 made with distance-to-cam
running on the simulated WAM. There are large areas the camera is unable
to see because of robot arm movement limitations.

7.3 Object-Centric Map Completion

Now we consider the problem of object model completion, one way to do ac-
tive segmentation. In this experiment we wish to model known objects in the
scene as fully as possible without manipulating them, and without mapping
more of the scene than is necessary. Our view selection framework allows
us to design an algorithm for this problem using previously acquired partial
information about object boundaries in the scene. To demonstrate the use-
fulness of using partial segmentation information to inform view selection
for the object model completion problem, we compare two view selection
algorithms. We again model a camera mounted on a free-flying robot. We
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first make a map of simenv0 using map completion, and use it as the back-
ground map against which simenv2 was compared via change detection
to identify surfaces that have changed. As a baseline, we ran map com-
pletion using the distance-to-cam view selection algorithm. To improve
results, we propose a change-detection-based view selection algorithm, de-
noted combined-chdet-camdist, which computes view scores for unseen
triangles as a combination of distance to camera pose and distance to likely-
changed surfaces (defined by having p(m) > .6, although the exact threshold
is not critical):

U(X) = e−min(Dm(t(X)),10)−.4Dp(X), (5)

where t(X) denotes the triangle that pose X is computed in order to
view, and Dm(t) gives the geodesic distance on the scene mesh between
triangle t and the nearest likely-changed triangle. (This metric fails when
there are unseen regions of space disconnected from the surfaces in the map.
This is not a problem for this experiment because disconnected unseen re-
gions are likely to be far from any surfaces, as the camera has to have seen
between the two, and here we are concerned with unseen regions close to
particular surfaces.) The maximum distance (here 10) is used only to avoid
underflow in the result of the exponentiation.

Change detection information is aggregated during mapping in the form
of a voxel grid representing the current scene. At each frame processed by
mapping, the result of change detection between the current frame and the
background map is projected into this grid. We only project information
for pixels that have valid depth values in the frame. For each such pixel
p, whose depth in the frame is z with standard deviation σz, we copy per-
pixel change detection results to each voxel that projects to p with a depth
d ∈ [z − 2σz, z + 2σz]. Because we use a voxel grid for this operation
rather than a set of frames, as we do in [17], the aggregation operation
is constant-time rather than becoming slower as the video being recorded
becomes longer.

As a score measure, we use the count of frontier mesh triangles that are
within 3 cm geodesic distance of any likely-changed surface in the map be-
ing built of the current scene (here simenv2). The more frontier triangles
are very close to likely-changed triangles, the more interesting surfaces in
the scene have not been thoroughly explored yet. The number of such fron-
tier triangles may fluctuate during a run but should eventually be reduced
to a very small number (zero, up to map irregularities that occur in real
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environments). The more quickly this happens, the better the view selec-
tion algorithm is at prioritizing completion of partially seen objects. Once
the last such triangle is observed, the robot is no longer mapping partially
known objects, and until more objects are discovered, mapping proceeds
as in vanilla map completion, or, if the goal of mapping is specifically to
complete known objects, mapping can stop.

We ran each algorithm once, as they are both deterministic modulo con-
currency effects. The initial camera pose observed parts of all the moved
objects in the scene, so that all surface regions of interest initially bor-
dered frontiers. Both algorithms did eventually remove all frontiers near the
moved objects. distance-to-cam observed the last frontier triangle near
a moved surface at the 3950th mapping iteration, 3788 seconds into execu-
tion. The number of frontier triangles near moved surfaces was 213 before
the first camera movement, reached a peak of 4074, and did not dip below
213 for the final time until 4351 seconds into execution. combined-chdet-
camdist performed much better. It observed the last frontier triangle near
a moved surface at the 796th mapping iteration, 775 seconds into execution.
The number of frontier triangles near moved surfaces was 335 before the
first camera movement, and stayed under 300 for the rest of the run. (As
mentioned earlier, these runtime numbers are larger than those in previous
experiments because this experiment required enabling the online change
detection functionality in the online mapping system, which slows mapping
and thus decreases the speed at which the camera can move.)

8 Practical Considerations

We now discuss some practical points in implementing an active mapping
system and in using it on a real robot.

Some surfaces (especially transparent surfaces and shiny black surfaces)
don’t return readings to an infrared depth camera such as we use. The map
used during active mapping must include a representation of regions that
are unseen due to not returning readings rather than due to not having been
viewed yet. We store the number of times each quantized view (quantized
view target position and orientation) has been chosen as a target, and avoid
selecting targets in a single quantization bin more than n = 2 times.

A camera on a robot arm will point in various directions while it is
being moved between targets, due to noncontinuousness of joints in the
arm. The mapping system needs to be robust enough to work with long
intervals of camera views of ceilings, walls and other relatively untextured
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surfaces. This may require either disabling mapping during long movements
or integration of arm odometry into the mapping system. Patch Volumes
currently only uses visual information. Luckily, unlike in next-best-view
planning (e.g. [5]), due to our continuous map aggregation we don’t also
have the related problem of making sure that each new view sufficiently
overlaps existing ones. However, figuring out how to accurately map with
general camera motions is still future work.

The simple planners we use in our continual-replanning framework are
not guaranteed to be able to produce paths. If we have an almost complete
map and there are only a few widely scattered unseen areas left, we may
need a sophisticated planner that is deterministically or probabilistically
complete, such as an RRT, to guarantee that we can continue to find paths
to remaining unseen regions. In general we have a long list of possible view
targets at any given time, and we rely on being able to plan to one of the first
few targets suggested in order for view selection to be fast, so to integrate a
fallback planner with our framework without making it unusably inefficient,
we might have to reduce the set of potential view targets. This has not been
a major problem in practice so far: most of our experimental runs so far
have completed the maps in question despite only having a simple planner
available.

In order to communicate effectively with robotic hardware, our frame-
work uses information about the expected runtime of both an iteration of
mapping and an iteration of view selection plus planning. In particular, if we
expect view selection and planning to last Tplan seconds and each iteration
of mapping to last Tmap seconds, and we want to avoid moving the camera
more than Dmap meter-equivalents (see 7 for a definition of this unit) per
mapping iteration, we ensure that no plan (which is intended to be run while
the next iteration of view selection and planning happens) is of length more
than

Dplanmax = Tplan
Dmap

Tmap
. (6)

At present all these numbers are hardcoded. We estimate Tplan = 100
seconds for info-gain and 1 second for all other algorithms, as info-gain
is so slow that the simulation idles most of the time when a small estimate is
used, and we use Tmap = 1 second from empirical experience. However, any
of these quantities could be continually reestimated at runtime. Regardless
of the source of this information, it generally won’t be perfect, although the
more deterministic the planner is, the better our runtime estimate for it will
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be. It may also be possible to make the system more sophisticated, so that
the motion execution module continually checks whether planning is not
complete and, if not, sends only a very small part of the current trajectory
to be executed, rather than sending the entire output of planning at once.

9 Summary and Future Work

One of the major benefits of using mobile robots for vision is that a robot
can choose how to explore its environment, which a passive vision algorithm
cannot. In this report we have presented a framework for continual view
selection and motion planning in an online active mapping framework, in
which the robot can move the camera. We assign a value to each scene ele-
ment that represents a frontier area in the 3-D map, and prioritize planning
to scenels with high value. We use a simple and fast planner in order to
keep the camera in motion as much of the time as possible. We use this
framework for the map completion problem as well as for a variant empha-
sizing completing models of previously partly seen objects, which is useful
for active object segmentation.

Our planning so far has encompassed kinematic-chain robots, such as
robot arms, and free-flying robots (an approximation to autonomous heli-
copters), but has not included robots with both wheels and arms. Plan-
ning for these is very computationally inefficient [23]. It may be that an
online-updated probabilistic roadmap is the most useful avenue of attack
for bringing motion planning for such a robot into our framework, which
assumes that basic actions such as planning are relatively efficient and can
be run often.

The operation of removing occupied volume from the background map
that is used in [15] might be better done volumetrically, as opposed to
the current rendering-based approach, which throws away some informa-
tion about free space during the surface removal operation. We have just
introduced another operation that is best done in a volumetric map: aggre-
gating change detection results over time, which we use to help define some
value functions, is more efficiently done in a fixed-size voxel grid than in a set
of images. Each image is much smaller than the voxel grids we use for map-
ping, but that representation increases in size as new frames are processed.
For now we implement change detection aggregation in our own volumetric
representation on the CPU, due to Patch Volumes being closed-source, but
ideally both these operations, and probably others, would be implemented
as part of a GPU volumetric mapping API.
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