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ABSTRACT
We present Radish, a query compiler that generates dis-
tributed programs. Recent efforts have shown that compiling
queries to machine code for a single-core can remove iterator
and control overhead for significant performance gains. So
far, systems that generate distributed programs only compile
plans for single processors and stitch them together with
messaging.

In this paper, we describe an approach for translating query
plans into distributed programs by targeting the partitioned
global address space (PGAS) parallel programming model
as an intermediate representation. This approach affords a
natural adaptation of pipelining techniques used in single-
core query compilers and an overall simpler design. We
adapt pipelined algorithms to PGAS languages, describe
efficient data structures for PGAS query execution, and
implement techniques for mitigating the overhead resulting
from handling a multitude of fine-grained tasks.

We evaluate Radish on graph benchmark and application
workloads and find that it is 4× to 100× faster than Shark,
a recent distributed query engine optimized for in-memory
execution. Our work makes important first steps towards
ensuring that query processing systems can benefit from
future advances in parallel programming and co-mingle with
state-of-the-art parallel programs.

1 Introduction
The state of the art for query execution on distributed clusters
involves in-memory processing exemplified by systems such
as Spark [38], which have demonstrated orders of magnitude
performance improvement over earlier disk-oriented systems
such as Hadoop [2] and Dryad [21]. These systems still
incur significant overhead in serialization, iterators, and
inter-process communication, suggesting an opportunity for
improvement.

Prior systems have demonstrated orders of magnitude
performance improvements over iterator based query process-
ing by compiling plans for single processors [10, 23, 27, 34].
Frameworks that generate distributed programs only compile
plans for individual processors and stitch them together with
communication calls, retaining the iterator model [15, 33].
These systems have a common shortcoming: they depend
directly on a single-node compiler (e.g. LLVM, JVM) to
perform machine-level optimizations, but these compilers
cannot reason about a distributed program.

The alternative, which we explore in this paper, is to
generate programs for a partitioned global address space
(PGAS) language (e.g., Chapel [11] or X10 [13]), then compile
and execute these distributed programs to evaluate the query.
A key feature of these languages is a partition, which is a
region of memory local to a particular processor and far from
other processors.

Consider this query with a join and multiplication:

SELECT R.a*R.b, R.b, S.b FROM R,S WHERE R.b=S.a;

One side of the join corresponds to the following PGAS
program:

for r in R:

on partition [ hash(r.b) ]

for s in lookup(r.b)

emit r.a*r.b, r.b, s.b

This program is a representation of the physical plan: the
join is a hash join with the relation r as the build relation.
From this code, the PGAS compiler is now free to explore
an additional class of decisions related to distributed exe-
cution on the target machine. The explicit on partition

construct instructs the compiler to send the iteration to the
worker corresponding to the hash of the value r.b. The
multiplication r.a*r.b could be computed either before or
after transmission of tuple r over the network to worker
hash(r.b). In terms of communication, there is no obvi-
ous difference between these two choices; in either case, two
numbers will be sent over the network: (r.a*r.b, r.b) in
one case, and (r.a, r.b) in the other. However, a com-
piler that understands this parallel code and the underlying
architecture will consider the likelihood that the multiply
functional unit is available. This kind of optimization is
inaccessible to both a database-style algebraic optimizer that
cannot reason about the instruction level and an ordinary
shared memory compiler (e.g. LLVM, GCC) that cannot
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reason about partitions. While a query compiler can directly
generate machine or byte code [27]; this is not the case in
any compiler for distributed memory systems.

The approach of targeting PGAS allows us to extend
existing query pipeline compilation techniques, reuse existing
language compilers and runtimes, and simplify the design of
the system. We posit that it may also allow us to integrate
and co-compile handwritten parallel algorithms for difficult
analytics.

Our goal is to automatically generate code that is on par
with good handwritten distributed programs that answer
the query. A näıve translation of a query to PGAS code
results in unnecessary network messages from shared memory
access and CPU overhead from running a task per tuple. We
designed distributed data structures for executing queries
efficiently on the PGAS model. To reduce CPU overhead,
we use lightweight tasks and loop unrolling.

In this paper, we describe Radish, a compiler system
that implements this approach. To evaluate our results,
we evaluate the performance of code generated by Radish
against in-memory distributed query processing systems.
On the linked data benchmark SP2Bench, our system is
12.5×faster than Shark, a query engine built upon the state-
of-the-art in-memory data analysis platform Spark. On
relational microbenchmarks, Radish is between 4× and 100×
faster than Shark.

In summary, this paper makes the following contributions,

1. We design and present a new system for compiling
queries into fast code for distributed memory systems,
by turning pipelines into specific data-centric (as op-
posed to control-centric) tasks, then expressing these
tasks as programs in PGAS languages. By targeting
PGAS code, our approach allows distribution-aware
compilers to apply additional data layout and dis-
tribution-aware optimizations, such as task migration
and parallel loop-invariant code motion.

2. We mitigate the CPU and network layer overheads of
the fine-grained tasks produced by this code genera-
tion technique, primarily through messaging buffering,
inlining tasks, and light-weight task scheduling.

3. We implement our technique as Radish, a query com-
piler that translates relational queries into PGAS code
that runs on distributed memory systems. To the best
of our knowledge, Radish is also the first query pro-
cessing system that integrates with PGAS languages.

4. We use Radish to generate code for Grappa, a PGAS
language and runtime with high-throughput random
access. The system executes queries 12.5× faster than
Shark, which has been shown to have performance
comparable to MPP analytical databases. Although
we only evaluate code generated for Grappa, Radish
is extensible to target other PGAS languages.

The rest of this paper is organized as follows. Section 2
discusses background on PGAS languages and related work
on query compilation. Section 3 explains the PGAS code
generation technique and considerations. Section 4 evaluates
the performance of RadishX. Section 6 discusses how to over-
come challenges of a fine-grained (tuple-per-task) execution
model and the applicability of Radish.

2 Background and Related work
2.1 PGAS languages
PGAS languages are the dominant shared memory languages
for programming distributed memory clusters. Their criti-
cal attribute is that the partitioning of the shared address
space across nodes of the cluster is explicit to allow for the
programmer and language compiler to reason about locality.
Creators of PGAS languages have given evidence for better
productivity than message passing libraries [12, 11, 13, 17,
16] and in some cases better performance due to a distributed-
aware compiler and runtime optimizations enabled by the
abstraction of shared memory [37]. For the techniques in
this paper, we assume that a target PGAS language provides
the following constructs: concurrent tasks, parallel for loops,
and control over data partitioning.

2.2 Code generation for queries
Push-based code generation Recent work has explored
compiling entire queries into source code or bytecode to take
advantage of system-specific compiler optimizations. HIQUE
[23] compiled operators into nested loops and preprocessed
inputs, which the low-level compiler could optimize better
than iterator code. However, the approach materialized
results after each operator. Neumann [27] improves data
locality by exploiting pipelines in the query plan to generically
inline operators. LegoBase [22] improves upon the software
design and capabilities of template-based query compilers by
using staged compilation. One of its staged optimizations is
transforming between a push and pull-based engine. Radish
extends the technique of Neumann to generate PGAS code
to run queries in parallel on distributed memory clusters.
Since LegoBase emits C code, we could extend LegoBase for
distributed systems using the techniques we present.

Targeting code to distributed systems Socialite [32]
outputs Java code for the purpose of integrating Java func-
tions with datalog, and it has been extended to run on
distributed platforms [33]. TupleWare [15] uses LLVM to
analyze UDFs for use by the query planner. Its planner
can also choose between pipeline and vector compilation;
however, it is limited to block-based fetching of data over
the network. Radish takes a holistic approach to code gen-
eration for distributed systems where the entire program is
compiled by a distributed-aware language compiler. This
approach provides at least two benefits over others. First,
high level parallel code allows the low-level compiler to op-
timize pipeline code across communication points. Second,
parallel code written by the programmer can integrate with
generated parallel code.

Removing overheads of tuple-at-a-time While the ben-
efits of compilation to push-based machine code are to re-
duce overheads of reduce iterator overheads and increase
data locality, other systems perform block-based or vector-
ized execution to exploit the efficiency of data parallelism
in modern CPUs. MonetDB/X100 [10] produced unaliased,
vectorized code that is unrolled and software pipelined by
the C compiler. Sompolski et al [34] explored generation of
data-parallel code that makes use of single-processor SIMD
units. While Radish does not generate vectorized code for
the CPU, our evaluated backend, Grappa, uses lightweight
threads and batching of network messages to achieve high
bandwidth. Techniques that take advantage of CPU vector
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Figure 1: Compilation of queries. Boxes are representations
of the query and arrows are transformations. The high-level
difference from a conventional query compiler is generation
of PGAS code followed by generation of machine code with
a distributed-aware compiler.

units are complimentary: since Radish generates PGAS
parallel loops it could use the techniques to make the loops
vector-friendly.

3 Code generation
We extend techniques for pipeline-based code generation for
query plans [27] to produce distributed parallel programs.
Radish parallelizes query execution using tasks and shared
memory in three ways. First, Radish reduces communication
and supports fine-grained updates via careful layout of global
data structures: memory locations that are accessed together
are placed in the same partition. Second, Radish evaluates a
diverse space of plans by considering both fine-grained (tuple
granularity) and coarse-grained (relation granularity) syn-
chronization between pipelines. Third, Radish produces effi-
cient parallel code for each pipeline: the code is data-centric
and exercises the primitives available in distributed-aware
languages. Within a processor, data-centric code makes effi-
cient use of memory bandwidth by sending one tuple through
a pipeline of operators at a time. Since the PGAS compiler
understands communication (i.e., it exposes a shared mem-
ory abstraction), its optimization window extends across
a whole pipeline regardless of communication boundaries.
The query compilation flow is shown in Figure 1. Radish
extends Raco [29], a relational algebra compiler, to generate
its plans. Radish creates a distribution-aware physical plan
consisting of distinct pipelines (Section 3.1), generates code
for each pipeline (Section 3.2), generates synchronization
between pipelines (Section 3.3), and feeds the output to the
PGAS compiler (Section 3.4).

Example query We illustrate Radish code generation with
the query in Figure 2a(top). Figure 2b shows a physical
query plan consisting of hash aggregate and hash join, and
Figure 2a(bottom) shows a candidate program emitted by
Radish. The basic structure of the code is similar to that
of the sequential code generated by the technique in [27]: a
nested loop for each pipeline in the physical plan materializes
an intermediate or a final result. We highlight three aspects of
the parallel PGAS code. First, each loop is made parallel, as
all iterations are independent. Second, there is concurrency
between pipeline tasks: in particular, task 0 (line 1) and task
1 (line 7) can execute concurrently. Pipeline task 2 iterates
over the results of the aggregation and probes the join hash
table. Pipeline task 2 depends on fully materialized results
of the other tasks; this is denoted with sync statements.
Third, data structures for the physical representation, like
the hash table, are implemented similarly to those in shared
memory but have are partitioned. The code represents one

execution strategy for the join and aggregate where the task
migrates (along with required data) to the relevant partition
of the structure (using on partition(...)). The resulting
benefit over näıve shared memory code is that when two
partitioned data are required for an operation such as a hash
table lookup, the operation can occur in a single message
rather than 1-2 for every shared memory read and write.

Radish sends the emitted PGAS code through the PGAS
compiler, which links with the PGAS runtime to generate ma-
chine code. Low level optimizations (e.g. machine-dependent)
performed by the PGAS compiler are complementary to those
of Radish, and depending on the quality of the code from
Radish, some higher level optimizations (e.g. communica-
tion avoidance) are also complementary.

3.1 Physical plan
The Radish physical algebra includes operators based on
global data structures, such as global array-based hash tables
(HT). These operators include those with tuple-grain and
relation-grain synchronization, such as HTAggregateUpdate

/ HTAggregateScan and HTBuild / HTProbe, and those with
only tuple-grain synchronization, such as SYMLeft / SYMRight

(for symmetric hash join). The hash table data structure
backing these operators may be any PGAS implementation
that implements insert, lookup, and iteration. In our eval-
uation Radish’s hash table is a global array of cells, each
having a list of tuples in the same partition. When the code
from Radish is compiled by the PGAS compiler, the data
structure implementation code is optimized along with it.

Figure 2b shows the plan for the publication count query.
Black arrows indicate tuple dependences, where pipelining
may occur, and white arrows indicate full materialization
dependences. Full materialization dependences are created
when a logical operator is broken into two physical operators,
one of which depends on the full results of the other. These
operators, such as the build materialization for hash table
join (HTBuild), are called pipeline breakers.

Radish extends the technique of [27] for translating query
plans into data-centric, pipelined code. In the compiler
design, every physical operator has a two-sided iterator in-
terface (produce and consume), and the operators generate
push-based code. Calls to produce at source operators (e.g.,
HTAggregateScan) generate code to iterate over full rela-
tions. Calls to consume for pipelined operators (e.g., Select)
generate code to process and send the input tuple to the
next operator. Calls to consume for pipeline breakers (e.g.,
HTAggregateUpdate) generate code to materialize the input
tuple.

3.2 Parallel code for one pipeline
Radish indicates that each tuple is allowed to proceed
through the pipeline independently. This property is de-
noted with a parallel loop, or forall (as in Chapel’s [11]).
The forall loop demands that any schedule of iterations
must be serializable to guarantee execution is correct and
deadlock-free. Tasks within a pipeline share the materializing
data structure, so to ensure correctness, updates to this data
structure must be atomic. Updates are discussed further in
Section 3.3.
Radish by default begins an iteration on the partition

where the input tuple resides. Foralls may be nested, which
is required when a pipelined operator, such as the probe side
of many-to-many join, produces multiple outputs.
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1 select * from Author ,
2 (select a_id , count (*) from Article
3 where Article.year < 2000
4 group by a_id) Pubcounts
5 where Author.id== Pubcounts.a_id

1 spawn task0
2 parallel for each t0 in Article
3 if t0.year < 2000
4 on partition(cnt_table[t0.a_id])
5 aggregate t0 in cnt_table[t0.a_id]
6

7 spawn task1
8 parallel for each t0 in Author
9 on partition(join_table[t0.id])

10 materialize t0 in join_table[t0.id]
11

12 spawn task2
13 task0.sync
14 task1.sync
15 parallel for each t0 in cnt_table
16 on partition(join_table[t0.a_id])
17 parallel for each t1 in

join_table[t0.a_id]
18 output Tuple(t1 , t0)
19

20 task0.sync; task1.sync; task2.sync

(a)

HTProbe[a_id=id]

HTAggregateScan

Project[*]

Scan(Article)

Scan(Author)Select(year < 2000)

HTBuild[id]HTAggregateUpdate
[a_id]

h(id)h(a_id)

h(a_id)

tuple dependence
tuple x sent to 
partition F(x)

F(x)

full dependence

pipeline

task 0 task 1

task 2

(b)

Figure 2: Query representations from SQL, plan, and PGAS code. The example is authors’ count of articles published before
2000. (a) Query for authors’ count of articles published before 2000. The lower listing shows pseudocode representing what
Radish would emit to implement the query in PGAS. (b) A physical plan for Radish. A pipeline is comprised of tuple
dependences and broken by a full dependence. The path of a pipeline can span multiple partitions.

Concurrency When executing a forall, a Radish back-
end needs to expose sufficient concurrency to keep the ma-
chine busy, while bounding it to a practical amount (usually
linear in the number of processors). To support this bounding
for nested parallelism, our evaluated backend uses recursive
decomposition. In this technique, a forall is executed by
splitting the iterations into two disjoint subsets: spawning
one subset as a new task and proceeding recursively with
the other. This technique is similar to spawn in the Cilk
workstealing algorithm [9] and scheduling policies in X10
[18].

Radish’s data-centric code generation ensures better data
locality than pull-based execution while the task stays on a
single partition. We extend this concept to the distributed
system is to keep the working set as small as possible. Re-
cursive decomposition limits the spawning of new tasks, but
there is also the question of how to schedule existing tasks.
The task scheduler for our evaluated Radish backend uses the
following heuristic priority: started tasks with local origin,
started tasks with remote origin, unstarted tasks.

Pipeline termination Forall loops execute iterations across
all partitions, so a Radish backend must implement dis-
tributed termination detection. If all iterations are guaran-
teed to execute on one partition, then coarse-grained com-
pletion detection is sufficient, since no partition can receive
tasks from other partitions. A common implementation is
to use a local counter on each partition to track the number
of spawned tasks that are incomplete. Global completion
detection is detected with a single parent task for the pipeline
on every partition entering a barrier upon the local count
reaching zero.

If any given iteration may execute on multiple partitions

(e.g., pipeline 2 in Figure 2b probes a global hash table), then
distributed termination detection is required. A common
technique is a credit scheme [25] where credit is transfered
when a task is spawned remotely. For each pipeline, there is a
global credit tracker. Any construct that spawns or transfers
tasks (e.g., forall on line 15 and 16 and on partition on
line 16), has a reference to the credit tracker for its pipeline so
that it may register new tasks. X10’s async-finish regions
and Chapel’s sync regions rely on lightweight termination
detection of global tasks.

Data movement Radish is row-oriented, so a task needs
data movement when it touches two rows in different parti-
tions, as might happen in a join or aggregate. Naive shared
memory code will incur a network message for every memory
load and store involved in accessing a global data struc-
ture. Radish data structures are laid out to reflect access
patterns and operations move computation to the data (on
partition) to reduce the number of round trip messages
between partitions. This transformation has been shown to
increase performance by an order of magnitude in a variety
of communication-intensive applications [8, 20, 39].

PGAS offers the choice between data movement through
blocking tasks or continuation passing [35]. The optimal
choice depends upon the data. Consider the hash join in the
example query: once the HTBuild pipeline is finished, a task
in the HTProbe pipeline matches its tuple with the assigned
bucket of the hash table. If the probe is 1-to-many and the
probe tuple is large, then bytes sent may be minimized by
sending the build tuple key and reading back the matches,
as with a semi-join. If the probe is many-to-1 and the probe
tuple is large, then the same scheme enhanced with caching
will store retreived matches for other tuples. Finally, if the
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Figure 3: Storage layout for two hash tables in a fully-
pipelined symmetric hash join. The relations (only one
shown) and cells of the hash tables are partitioned across the
global heap. Shown atop the layout is a left lookup insert

of tuple (′e′, 1). The lookup and insertion together must be
atomic to avoid missing or duplicating matches. The two
tables are partitioned the same way so that the atomic
left lookup insert can run in a single partition.

probe is many-to-many or the build tuple is large, then the
optimal choice is to migrate the task to the bucket partition
and process it there.

3.3 Inter-pipeline coordination
To generate code with inter-pipeline parallelism, Radish
wraps each pipeline inside a task spawn. Physical operators
at a pipeline boundary can require either 1) relation-grain
synchronization, when one pipeline depends on the full mate-
rialized result of another, or 2) tuple-grain synchronization,
when two pipelines access data structures concurrently. The
choice of what type of operator to use depends upon weighing
the cost and benefit of concurrency.

Relation-grain synchronization If the physical operator
calls for relation-grain synchronization, Radish generates a
scheduling dependence from the producer to the consumer.
An example of this is HashTableJoin, where the build must
complete fully before the probe starts. The mechanism
for the relation-grain synchronization can be one of 3 cat-
egories: serialization using static program order, producer-
consumer synchronization between the two pipeline tasks,
or dependence-aware scheduling of tasks. Radish uses only
the second because it provides full information to the par-
allel language and does not depend on a special runtime
scheduler. Runtime scheduling of pipelines can take into
account memory constraints and processor utilization. For
deep plans, HashTableJoin with relation-grain synchroniza-
tion will miss opportunities for concurrency by delaying the
probe pipeline: only the lookup itself is actually dependent
on the corresponding build. Other algorithms that do more
fine-grained synchronization, like SymmetricHashTableJoin,
provide more tasks to the runtime.

Tuple-grain synchronization Tuple-grain synchronization
is implemented as atomic operations on mutable data struc-
tures (e.g., hash tables). Mutable data accessed in an atomic
operation must reside in a single partition whenever possible
to avoid distributed transactions. Most PGAS runtimes as-
sign address space partitions to nodes (one hardware shared
memory domain) or to individual threads within a node. For
partition-per-node runtimes, threads in the partition must
synchronize among themselves. For partition-per-thread
runtimes, synchronization is necessary only at the network
interface.

We illustrate tuple-grain synchronization using the exam-
ple of SymmetricHashTableJoin, which uses one hash table
per input. The input pipelines are concurrent, so to avoid
duplicating and missing matches, the insert and lookup in the
two hash tables must be atomic. Figure 3 shows the layout of
two hash tables used in symmetric hash join. By identically
distributing the arrays left hash table and right hash

table and their adjacency lists, the atomic region can be
implemented as a single migration of the probing task to
the owner of left[3] rather than multiple remote reads and
writes.

3.4 PGAS compiler optimizations
Radish uses two optimizations to reduce the communication
involved with global shared memory and fine-grained parallel
loops. First, Radish puts explicit task migration in the
generated code with on partition(...). Tools exist that
inspect data layout to automatically infer good migrations in
PGAS code [20]. Second, we use forall loop-invariant code
motion: if multiple iterations share a region of code, each
partition can execute the region once for all tasks in that
partition. In addition to saving computation, this transfor-
mation is also used to reduce memory footprint and reduce
communication of broadcasted read-only data used within
the body of the loop [7].

4 Evaluation methodology
We have built Radish as an open-source extension to Raco,
a relational algebra+ compiler and optimization framework
[29]. We built a backend to Radish that emits Grappa
[4] code. In the evaluation we refer to Grappa programs
generated by Radish as RadishX. RadishX includes a
variety of hash-based algorithms for joins and aggregations.

The primary goal of our evaluation is to measure the per-
formance of RadishX for executing a variety of data retrieval
and analytical queries. We compared the performance of
query execution between RadishX and the data analytics
system Shark, which is competitive with MPPs [36] and
is optimized for in-memory query execution. A secondary
reason to choose Shark is that it is built upon Spark [38],
so like Radish it has the ability to integrate queries with a
wider class of applications.

In all performance comparison plots, the error bars repre-
sent 95% confidence intervals.

4.1 Setup
Query systems Grappa code emitted by Radish was
linked against the MPI implementation MVAPICH2 v1.9b
[5] (for network communication). In terms of network stack,
Shark uses IP-over-Infiniband, while RadishX uses Infini-
band natively with MPI, allowing kernel-bypass. To run
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experiments on Shark, we adopted the methodology from
[3]. In particular, Shark was configured to read memory-
cached input tables and to write the result of a query to
a memory-cached output table. With these settings, the
fault tolerance system overhead is limited to tracking lineage
of RDD partitions in the control plane. Each worker JVM
was assigned 52GB of memory. The number of reducers for
shuffles was set to the suggested 3 per worker. For all queries,
we verified that the expected number of Spark workers were
assigned tasks.

Hardware We ran all experiments on a cluster of AMD
Interlagos processors. Each node has 32 2.1-GHz cores in two
sockets, 64GB of memory, and a 40Gb Mellanox ConnectX-2
InfiniBand network card. Nodes are connected via a QLogic
InfiniBand switch.

4.2 Benchmark queries
Simple queries We used a collection of single-operator
queries meant for understanding the basic performance dif-
ferences of the two systems. The queries are:

• SEL1 and SEL99 : selection with 1% and 99% selectiv-
ity to vary materialization costs.

• AGG50M and AGG100 : aggregation with 50 million
and 100 unique keys to test out-of-cache and in-cache
accumulation.

• COUNT : aggregation with no grouping.

We generated a relation of 1B rows, 3 integer columns, at
a total of 20GB. The selection and aggregation columns are
distributed uniformly randomly.

Linked data graph queries We used the SPARQL bench-
mark SP2Bench [31] for RDF data. The irregular structure
of the citation graph makes the benchmark challengingi, and
has motivated a numberof specialized RDF systems. For
these experiments, we used the RDF format of the generated
data, with one relation of three columns. We did not perform
the heavy indexing and co-partitioning that is common in
the loading step in RDF databases or triple stores built upon
RDBMSs. With this restriction, the benchmark serves as
a proxy for challenging queries on irregular, network-like
data. To limit the number of operators we had to implement
to evaluate RadishX, we modified the queries to exclude
DISTINCT (affects Q4, Q5a, Q5b, Q9 ), ORDER BY (affects Q2 ),
and range joins (affects Q4 ). We used SP2Bench to generate
a dataset of 100 million triples (10 GB).

4.3 Application queries
Naive Bayes To build a naive Bayes classifier in Radish,
we wrote a training query and a classifier query in Myr-
iaL, the primary language supported by the Raco. Both
queries pivot the input into a sparse format first (input-id,
feature-index, feature-value) so that the remainder of
the query is independent of the number of features. The
training query is comprised of three SQL queries to com-
pute the conditional probabilities. The classifier joins the
conditional probabilities with the input, and then does a
user-defined aggregate to compute argmax over outcomes
and likelihoods.

We use a subset of the Million Song Dataset prepared by
the UCI Machine Learning Repository [6]. The task is to

predict song year in a 515, 345-song dataset from eight timbre
features. Feature values were discretized into intervals of size
10.

Iterative query: PageRank We implemented PageRank
as an iterative SQL query to compare RadishX to a hand-
coded iterative application. Raco supports an input lan-
guage that resembles SQL with sequences and while loops
[19]. Our PageRank implementation uses while for itera-
tions, but the Raco compiler is not yet able to do loop-
invariant motion of physical operators to avoid unnecessary
re-partitioning. To extrapolate performance of PageRank
with these optimizations, we isolated the execution time for
the main iterative work: performing the aggregate sum over
each vertex’s neighbors’ ranks. We compare this time to the
runtime of a hand-coded Grappa version of PageRank that
that uses an adjacency list graph representation explicitly.
We ran experiments using the 1.4-B edge Twitter follower
graph [24].

5 Results
5.1 Performance on simple queries
RadishX performs non-selective scans up to 34× faster than
Shark (see Table 1). The systems are impacted similarly
when materializing many tuples in memory for SEL99. The
relative speedup is less in AGG50M, given that the query
requires all-to-all communication, which is the bottleneck for
both systems. Since the Radish relational optimizer does
not yet use data statistics to inform the plan, it gives the
same plan for both aggregation queries: namely aggregation
with a global hash table. This accounts for the near identical
performance. Shark, on the other hand, takes advantage of
the small number of keys in AGG100 with local combining
to reduce communication. Finally, COUNT runs just as fast
as SEL1 on RadishX because it is doing a similar amount
of work on every tuple. The all-to-one communication of the
single tuple at the end has negligible cost (Radish generates
a collective reduction when there is no grouping). Shark,
on the other hand, experiences overhead even for a small
amount of communication.

Case study: SEL1 We computed a detailed breakdown
of the execution time on the 20GB dataset to understand
the differences between these two diverse systems. We took
sample-based profiles of both systems and categorized CPU
time into five components: network/messaging (low-level
networking overheads, such as MPI and TCP/IP messaging),
serialization (message de-aggregation in RadishX, Java ob-
ject serialization in Shark), iteration (loop decomposition
and iterator overheads), application (actual user-level query
directives), and other (remaining runtime overheads for each
system). Figure 4 shows the results of this analysis. In
Shark, a core spends two-thirds of the time in network code:
given that this query should do little communication, this
component likely includes idle time (appears in profile as
polling the network) that is due to poor load balance and
task spawning. Even so, relative to RadishX, significant
slowdown in Shark is due to overheads that exist in the in-
ner loop of computation: deserialization and iteration. The
serialization overheads are not fundamental to Java vs. C++
but rather come from the way Shark stores tuples in memory.
RadishX had negligble impact from application code, while
Shark spent 5% of its time there (functions directly related
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AGG100 AGG50M COUNT SEL1 SEL99
RadishX (20GB) 6.34 6.27 0.10 0.15 1.34

shark (20GB) 22.69 64.68 14.87 5.15 119.78
Table 1: Running time in seconds for microbenchmark queries. Grappa and Shark ran on 16 nodes.
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Figure 4: Time breakdown for microbenchmark query
SEL1, 20GB. Ignoring network time, both Shark and Spark-
SQL have significant serialization overhead. Compared to
RadishX, Shark’s application code (the filtering operation)
is non-negligible and iteration overhead is 4.3× greater. The
percentages for RadishX are 40.2% network, 47.0% iteration,
12.8% scheduler, and negligble for others.

to the filter operator). Ignoring the network component,
speedups would be 3.1× for only serialization, 1.1× for only
iteration, 1.2× for only application, 0.99× for only scheduling
overhead; the total speedup would be 19×.

To see how much Shark’s performance was impacted by
its storage system design, we ran the same analysis for SEL1
implemented in SparkSQL1. SparkSQL allows tuples in an
RDD to be stored in native memory format (the MEMORY

storage level), potentially allowing faster access than Shark’s
serialized format. SparkSQL still executed SEL1 with a sim-
ilar profile to that of Shark, although it has entirely different
serialization procedures. While Shark spent a lot of time
in object serializations and transforming between column
format, nearly all of the serialization time for SparkSQL
consists of productToRowRDD that transforms the format of
tuples.

5.2 Performance on linked data queries
Figure 5 compares the performance of RadishX and Shark
on SP2Bench. For this comparison, RadishX was instructed
to only generate left-deep join plans. The results are grouped
roughly by category:

• Q3b,Q3c, Q1, Q3a are select-join and are selective so
join input is small

• Q9, Q5a, Q5b, and Q2 are select-join and join input is
large; Q9 includes a union

• Q4 allows for indexes to be used more than once and
has quadratic output size

1At the time of writing, SparkSQL was in alpha and did
not yet support enough of SQL to implement all of the
experimental queries

RadishX has a geometric mean speedup of 12.5× over
Shark. On the highly selective queries Q3b and Q3c, the
geometic mean speedup is 41.4×, which follows the observa-
tion for SEL1. As the number of inputs to the join increase,
the geometric mean speedup is smaller: 18.6× for Q1 and
Q3a and 5.3× for the four join queries with large input.

We performed a breakdown of CPU time in Figure 6.
We highlight Q2 because it involves enough communica-
tion to be interesting. The systems spend nearly the same
amount of CPU time in application computation. About
half of RadishX’s performance advantage comes from effi-
cient message aggregation and a more efficient network stack.
RadishX’s message aggregation moves as few cache lines
as possible through the memory hierarchy for each small
message.

Additional benefit comes from iterating via RadishX’s
compiled parallel forall loops compared to Shark’s dynamic
iterators. RadishX’s scheduling time is higher than Shark
due to frequent context switches in the application and
messaging code, but other components make up for this
overhead. We assign Shark’s in-memory column compression
in the serialization category: SEL1 spent negligible time
in compression, while Q2 spent 9% of its time there. This
is because the shuffle hash joins of Q2 require memory to
store intermediate results. RadishX spends 22× less time in
serialization and 10× less time in iteration; if only these two
components could be accelerated in Shark, the total speedup
would be 1.5×.

The Shark query plans used shuffle hash join as all tables
are estimated to be large. Shark’s execution of these queries
appears to place bursty demands on the network, and is
sensitive to network bandwidth, while we find RadishX to be
more consistent (Section 5.3). On query Q2, Shark achieves
the same peak bandwidth as it can sustain in a random
access benchmark (200MB/s/node) [26], but its sustained
bandwidth is just over half this amount (116 MB/s/node).

The large gap in the performance of Q4 suggests that
RadishX benefits greatly from pipelining relative to the
sequences of shuffle joins performed by Shark. In the next
section we find that RadishX achieves even higher perfor-
mance on this query when we switch to a bushy join plan,
which is one that Shark did not try.

The Shark query planner chooses to do a sequence of joins,
which are performed using shuffle. Although the map outputs
are materialized in memory, these steps are very expensive.

Weak scaling We evaluated weak scaling of the large join
queries on RadishX. Using SP2Bench, we generated datasets
with size 1.4M rows per node. Results are shown in Figure 7.
We expect running time to be flat if RadishX achieves linear
scaling with input size. Q2 and Q5a both scale well, even
though for Q2 the intermediate result size to input size ratio
increases with input size. RadishX does not scale as well on
Q9, which also has an increasing ratio of result to input size.
This is not simply due to small input size: running the full
input size on 8 nodes took on average 21.38s (versus 4.25s
on 64 nodes), meaning RadishX achieves scaling with more
nodes. The quadratic Q4 scales well; although intermediate
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Figure 6: Performance breakdown of speedup of RadishX
over Shark on Q2.

result size to input size ration increases with small input size,
it plateaus at 33 at around 50M rows (SP2Bench generates
data chronologically and the overlap window of two authors’
active years is limited). For Q4 we tried other plans: sym-
metric hash join (SYM) and bushy join shape (bushy). Hash
join (HJ) consistently equals or beats SYM. Bushy is better
for this query because it reduces the intermediate result size
by 3×. SYM scales better in the bushy join shape.

RadishX’s throughput for small network messages de-
pends heavily on buffering. In the average case, the system
must increase the delay for the buffers as the number of
nodes increases to achieve maximum throughput. RadishX
continues to achieve higher total-system throughput by wait-
ing longer to send messages. We find that at 64 16-core
nodes, optimal throughput is achieved for a buffering delay
of around 300 µs.

Compilation time For the SP2Bench queries, Radish
takes on average 0.16 seconds to generate the RadishX pro-
gram. Compiling the RadishX program with the Grappa
compiler takes on average 19.2 seconds.

5.3 Join plans
Pipelining joins We explored the performance of two hash
join implementations in RadishX. Hash table join (HJ) has
a full dependence from build to probe pipelines. Symmetric
hash table join (SYM) has has two independent pipelines
synchronizing at a fine grain, as discussed in Figure 3. We
expected SYM to provide more concurrency by serializing
fewer tasks and thus achieve higher throughput of tuples.

We configured Radish to use the same join order for both
plans and use a left-deep join shape.

Execution traces for SP2Bench Q2 are shown in Figure 8.
The y-axis is the number of outstanding tasks. The black
line is the total tasks for all pipelines. The colored lines are
number of tasks for individual pipelines. The HJ plan is faster.
Qualitatively, the pipelines in the HJ plan peak at different
places and the probe pipeline (in red) is active alone at the
end. The SYM plan looks different: the pipelines are active
together and taper together. The SYM plan reached lower
peak and sustained number of outstanding tasks compared
to the HJ plan. The bytes/sec at the RDMA interface tracks
the outstanding tasks closely and both plans do the same
amount of communication. Separation in time of pipelines
sometimes improves locality and overall processing rate.

5.4 Analytical queries
We also evaluated the performance of RadishX on analytical
applications involving aggregation.

Naive Bayes Figure 9 shows strong scaling for the classifi-
cation query on the Million Song Dataset. The order of the
join between sparse inputs and the conditional probabilities
table was critical to performance. By building the hash table
from the conditional probabilities rather than from the spar-
sified inputs, each probe finds a constant number of matches
(one per outcome).
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Figure 9: Strong scaling of RadishX query-generated naive
Bayes classification

Iterative query: PageRank RadishX gets within 4× the
performance of the hand-coded version of PageRank. We
find the performance difference is due to two factors. 1) The
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Figure 8: Execution trace of two left-deep plans for SP2Bench Q2. Each colored line is a pipeline of the query.

aggregate sum of ranks of neighbors uses indirect lookups into
a hash table (averaging two collisions per access), while the
hand-coded does direct array access. 2) The RadishX version
uses more memory bandwidth as a by-product of isolating the
timed aggregate sum: we forced RadishX to materialize the
input, which is vertex ranks and adjacencies in an unnested
format, while the hand-coded’s vertices have pointers to
edge lists. For reference, the hand-coded PageRank performs
about 2× faster than PageRank on GraphLab [26], even
without using the edge partitioning techniques GraphLab
uses to reduce skew.

6 Discussion
We discuss the overheads induced by the task-per-tuple com-
pilation approach, as well as how Radish should be used.

6.1 Fine grained tasks
Translating a query to parallel data-centric code produces
tasks and remote calls (on partition(...)) at the granu-
larity of a tuple. This approach avoids ingraining low level
details, such as block-based communication, into the inter-
mediate parallel program, allowing the PGAS compiler and
runtime flexibility in how it implements loops and commu-
nication. A challenge of fine granularity tasks and remote
calls is the additional overheads they induce on the network
and CPU. We explain how to mitigate these overheads.

Network overhead Commodity network interfaces criti-
cally rely on sufficiently large packets (on the order of 105

bytes) to achieve most of the available bandwidth of the
network [8]. In modern parallel databases operators often
pull data in chunks over the network [15, 38]. In Radish
programs, the messages pushed over the network by a task
for single tuple are often 3 orders of magnitude smaller. The
Grappa runtime, on which we evaluated RadishX, performs
buffering of messages to utilize network bandwidth. The
communication layer of Grappa buffers small messages into
large network packets with the same destination. If injection
rates of commodity network interface cards improve, then
this software buffering will become unnecessary.

CPU overhead Assigning a task for every tuple in a pipeline
incurs overhead in the CPU for spawning, scheduling, and
context switching. RadishX addresses these overheads in
two ways. First, chunks of iterations of a forall may be
optionally fused at compile time into longer sequential tasks,
similary to [1]. Besides removing the overhead of tasks, it
also enables loop unrolling optimizations for reducing control
overhead and software pipelining to use out-of-order proces-
sors’ reordering window, as in MonetDB/X100 [10]. In the
SP2Bench queries, fusing iterations in RadishX improved
performance by up to 23%. Second, Grappa provides user-
level threading that can switch between contexts in 50 ns
[26]. For a hash table join with blocking probes, lightweight
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blocking tasks automatically execute similarly to prefetch
algorithms [14].

6.2 Using RADISH
Applicability Radish does not support recovery of failed
tasks. Therefore, it is not a replacement for systems like
Spark when running long data-parallel jobs on large clusters.
However, recent efforts have argued that most clusters in
practice are 20-50 machines, a scale at which fault tolerance
is not a dominant concern [15, 30]. As every pipeline in
Radish begins by pulling from a distributed materialized
result, a recovery mechanism could be applied at this level
without reasoning about shared memory.

Compilation time for RadishX is currently quite high
(about 19 seconds). Until this improved with a more efficient
backend compiler (as in [27]), RadishX is applicable for
repetitive queries (like classifiers) or those where the compi-
lation time is amortized by the performance improvement.

Parallel database This paper has focused on pipelined
operators implemented with global data structures. Since
Radish targets a class of general parallel languages, it is ca-
pable of generating code for plans with conventional parallel
database operators, like broadcast and hash partition. The
algorithms used in RadishX are not fundamentally different
from common parallel database operations like hash parti-
tion followed by local join. What differs is its push-based
execution strategy and compiled pipelines.

Integration with PGAS languages Choosing a PGAS
language as an intermediate representation for queries has
three unique advantages beyond the scope of this paper.
First, by making query optimization modular in this way,
queries compiled with Radish can benefit from advances in
the high-performance computing and parallel programming
community (like autotuning of collective communication [28]).
Second, it provides a method of integration and optimization
of queries along with not just conventional UDFs but also
irregular parallel programs. Third, Radish targets a collec-
tion of existing constructs in parallel languages (e.g. forall,
spawn, on partition) that is sufficiently abstract to have a
variety of realizations.

7 Conclusion
We improved the performance of query processing on dis-
tributed memory systems by generating partitioned global
address space (PGAS) programs. Since the PGAS compiler is
distributed-aware, its optimization window extends through
communication boundaries in pipelines of query operators.
To produce efficient PGAS programs, Radish partitions data
structures according to how they are accessed and applies
communication and loop optimizations.

Our evaluation of Radish on benchmarks and applications
showed that this compilation technique offers significant per-
formance improvement over a distributed in-memory query
engine based on iterators. We find that Radish spends less
time in iteration and serialization code. This result suggests
that targeting parallel langauges as an intermediate repre-
sentation is a valuable approach for performance, parallel
language integration, and simpler design of query engines for
distributed systems.
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