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ABSTRACT
Satellite is a methodology, tool chain, and data-set for un-
derstanding global trends in website deployment and acces-
sibility using only a single or small number of standard end
hosts. Satellite collects information on DNS resolution and
resource availability around the Internet by probing the IPv4
address space. These measurements are valuable in their
breadth and sustainability - they do not require the use of
a distributed measurement infrastructure, and therefore can
be run at low cost and by more organizations. We demon-
strate a clustering procedure which accurately captures the
IP footprints of CDN deployments, and then show how this
stepping-stone allows for more accurate determination of cor-
rect and incorrect IP resolutions. Satellite reveals the preva-
lence of CDNs by showing that 20% of the top 10,000 Alexa
domains are hosted on shared infrastructure, and that Cloud-
Flare alone accounts for nearly 10% of these sites. The same
data-set detects 4819 instances of ISP level DNS hijacking
in 117 countries.

1 Introduction
Even after several generations of elaborate measurement plat-
forms, it remains difficult to perform an in-depth analysis of
how the web content is distributed or even to understand the
extent to which web access is open and unfettered. This lack
of understanding emerges in the questions we cannot easily
answer: Which countries have servers operated by Google or
Microsoft? Which sites are powered by various content dis-
tribution networks (CDNs) such as Akamai or CloudFlare?
Which ISPs run caching proxies or other stateful middle-
boxes? Which websites have degraded availability due to
network interference? And so on.

While we may have some understanding of what to mea-
sure to answer these questions, there is no existing data set
or measurement platform that can aid us in answering these
questions. In fact, there are many challenges to both assem-
bling the measurement data and analyzing it to characterize
the current state of web content distribution. First, we would
need measurements from globally distributed vantage points
in order to characterize global website accessibility. While
there has been some limited success at crowd-sourcing mea-
surements and/or taking advantage of a globally distributed

measurement platform such as PlanetLab, the research com-
munity has not yet been able to collect a data-set that is rep-
resentative of a large fraction of countries and ASes. Second,
since the deployment and accessibility characteristics vary
significantly across websites and time, the data-sets should
be collected at a fine-grained and timely manner. Third, the
analysis of how websites employ CDNs and the identifica-
tion of network interference are interrelated and have to be
tackled jointly in order to obtain an accurate characteriza-
tion. For example, when ISPs block websites by redirecting
them to a block page, that server is easily misconstrued as a
CDN node for that geographical region. Conversely, websites
served through globally distributed CDNs can be confused
with willful redirection of traffic by a local ISP. We need to
determine the expected IPs of CDN deployments in order to
characterize the abnormalities that are interference.

In this paper, we present a measurement tool chain and
analysis system called Satellite that is designed to address
the above challenges. First, we address the need for global
measurements by developing a measurement system that uses
a single end-host to collect DNS resolutions from a large
number of globally-distributed and open DNS resolvers. In-
stead of pursuing crowd-sourced deployments or analyzing
limited snapshots of data obtained from operators in privi-
leged positions, we instead focus on what is possible from
active measurements conducted by a single end-host. Doing
so both reduces the barrier to entry for organizations to run
their own independent measurements, and removes the com-
plex work of coordinating a distributed testbed and verifying
the untrusted dataset collected from it.

Second, we build a measurement tool chain and infrastruc-
ture that performs these measurements in a timely manner
and validates them to eliminate noisy data. Internet scanning
from a single end-host is less complex or expensive than the
deployment of a measurement platform, but it remains time-
consuming and bandwidth intensive. The validation chal-
lenges for our data are similar to those faced by distributed
measurement systems. Probing from a single vantage point is
susceptible to the manipulation of results - a domain or ISP
can respond differently to known measurement machines than
to other traffic. We address these issues in the implementation
of Satellite.
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Third, we analyze the serving infrastructure for top In-
ternet sites, and show that this understanding is inherently
interlinked with an understanding of network interference.
We present an automatic clustering process that is able to
identify CDN infrastructure from the collected data. The
responses which do not fit expected clusters are also interest-
ing, because they allow us to identify interference without
worrying about mis-classifying CDNs. Through this analysis
we are able to both monitor the growth of shared hosting
platforms, and trends in network-level interference which
cause sites to become inaccessible.

Satellite is a public project consisting of the code for data
collection and analysis, a growing 9 month repository of col-
lected data, and derived presentations of site structure and
interference. The focus on public release reduces the need
for others to trust us in the interpretation of data. Instead,
Satellite is designed to be operated by multiple interested
organizations - allowing for independent auditing and confir-
mation of collected data. This also improves our confidence
in the sustainability of the project, and our ability to amass a
longitudinal data set of changing Internet behavior.

From interpretation of Satellite data, we are able to corre-
late the addresses of domains across ISPs to learn the cus-
tomer pools of CDNs. Looking at the pools of IPs, we can
learn the points of presence of CDNs and which CDNs have
business relationships with which ISPs. By looking at which
locations resolve to which points of presence we can un-
derstand the geographic areas served by different points of
presence. By tracing the patterns of divergence from clusters,
we are able to separate the effects of network interference
from confounding site distribution factors.

We now summarize the contributions of Satellite:
• A software platform for mapping CDNs, middleboxes, and

DNS consistency from a single end host.
• Data on the reachability and routes to 10,000 popular do-

mains over the last year.
• A method for inferring ISP level behavior by aggregating

responses of individual hosts.

2 Background and Related Work
The active probing techniques used by Satellite build upon
a long history of Internet measurements. The subsequent
analysis of connectivity data has been tackled by previous
generations of censorship measurement systems, though it
differs in the breadth of the measurements and the ability to
handle noisy data.

Active scanning of the Internet has been used to measure
important properties of ISPs already, and has been shown
to reasonably map individual CDNs [13, 5]. In particular,
the rate of churn of DHCP reservations within consumer
ISPs [18] has been estimated and the presence of Bluecoat
DPI boxes [17] has been detected with this technique. Active
probing was used for the Internet census characterization of
scale [3] and more generally in the web security space to mea-
sure the uptake of software updates and vulnerabilities [21,

8]. It has not yet to the best of our knowledge been used to in-
dependently measure the footprints of CDNs or longitudinal
ISP-level interposition on traffic.

What to Measure

Determining domains of interest is by itself a tough prob-
lem. There are many billions of DNS records in use on the
Internet [4, 10], forcing the choice of some sample. Previ-
ous measurement studies have used either top domains as
reported by a neutral provider like Alexa [2], or used a more
targeted list [11]. One of the most popular lists for censorship
work is the list of sensitive domains maintained by Citizen
Lab [20].

How to Measure

Researchers have invested considerable effort in the mea-
surement of network interference, both by using participants
within target networks [11, 15] and through purely external
mechanisms [6, 22]. DNS has been a measurement focus,
largely because it is a commonly manipulated and unsecured
protocol. DNS reflection against remote open resolvers has
also been proposed for censorship measurement [24], but we
still don’t publicly collected data for analysis across both
countries and time.

Determining Site Presence

While determining which sites are of interest is hard, deter-
mining whether a given IP is a valid host for a site is even
harder. In their investigation of CDNs in 2008, Huang et.
al [13] arrive at a similarly sized list of open resolvers as
Satellite (280,000), and use them to map a specific CDN.
They create their list of resolvers starting from DNS servers
observed by Microsoft video clients, rather than direct prob-
ing. Specific CDNs like Google have also been crawled
through the use of EDNS queries to simulate the presence
of geographically diverse clients [5]. Research focusing on
censorship, like the analysis of Open Network Observatory
data [12], have used ASN diversity to determine if IPs are
valid for a domain but have not used CDN footprints.

There are also many commercial sites which offer traffic
information for web sites. We know that some of this data
is crowd-sourced through browser plugins, while other por-
tions come from automatic robot crawling. For instance, the
Alexa rankings are based off of a browser plugin which mon-
itors the browsing habits of a small number of participating
users. Some sites also show which sites run on identical IP
addresses [14]. In practice we find that these systems appear
to do direct lookups of IPs, since geographical distribution
is not surfaced. They also do not appear to do significant
identification of CDN IP spaces, since CDN’ed sites are not
fully aggregated.

3 Design
Satellite uses a single scheduler to measure and analyze data.
This process manages both the data collection and subsequent
aggregation and analysis and is designed as a weekly cron
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job. In broad strokes, the measurement framework performs
the following steps:

• Domain Determination Selects candidate domains to mea-
sure, and resolves their true names.

• Probing Scans the Internet for active DNS resolvers and
web servers, and calculate which to target for primary
measurement.

• Resolution Measures candidate domains against discov-
ered resolvers and hosts.

• Aggregation Aggregates measured data for efficient pro-
cessing.

• Clustering Calculates fixed-points of CDN clusters through
a repeated scoring of resolution likelihood.

• Extraction Recovers the IPs belonging to CDNs, along
with ASN level divergence from expected behavior.

In the remainder of this section we explain the procedure
of each step, and provide insight into the collection and pro-
cessing of data.

3.1 Domain Determination
To understand how sites behave, we must first know the sites
we are interested in monitoring. It is unrealistic to monitor
all domains on the Internet, since there are technically an
infinite number of registered domains due to the dynamic
nature of sub-domain resolution. Without a priori knowledge
of CDNs and their expected IPs around the world, we need to
monitor a representative set of domains to organically learn
that knowledge.

We accomplish this goal by targeting the top 10,000 world-
wide domains as measured by Alexa[2]. All of these do-
mains receive high amounts of traffic. The least popular,
qualcomm.com1, is estimated to receive over 10,000 visi-
tors per day.

In our selection process, we make HTTP requests to each of
these domains, since many of the bare domains (e.g. expedia.
com) statically redirect to a primary domain (e.g. www.
expedia.com), which can be served differently. When
we detect these redirections, we include both the bare and
prefixed domains in subsequent steps. This occurs for roughly
one forth of monitored domains.

3.2 Probing
Our measurements are based on gathering data on how do-
mains behave for different clients around the world. There
are several options available for such collection. Tradition-
ally, researchers have used cooperating hosts in a variety of
networks[16, 20]. More recently, the EDNS extension has
allowed clients to indicate that they are recursively resolving
on behalf of another to better resolve responses.[23, 5] While
very few domains support EDNS, we can take advantage
of the same behavior that it is designed to fix. By making
requests to many different resolvers, we can learn the dif-
ferent points of presence for target domains. For instance,
1In April, 2015

Figure 1: DNS servers discovered in each Country. We find
over 5000 ASNs and 169 countries host more than 20 distinct
DNS resolvers.

the 8.8.8.8 resolver is operated by Google and provides
a US-centric view of the world, while 180.76.76.76,
“BaiduDNS”, provides a Chinese centric view.

We enumerate IPs serving as DNS resolvers, by probing
the IPv4 Address space with zmap. Of the 32 million open
DNS servers recorded by the Open Resolver Project [19], we
find roughly 12 million respond to requests reliably. Of these,
we find that 7 million servers across 1.5 million class-c (/24)
networks respond correctly and offer recursive resolution.
These servers provide coverage of 20,000 ASNs, as shown
in Figure 1. There are statistically valid numbers of servers
active in 169 countries.

3.2.1 Ethics of Collection

Our measurements prompt machines in remote networks to
resolve domains on our behalf. This traffic to remote net-
works may result in unintended harm to these servers, and as
such we do our best to minimize the impact we cause in our
collection.

Open DNS resolvers are a well known phenomenon, and
lists of active resolvers can already be downloaded without
the overhead we incur in scanning. We find that the act
of scanning the IPv4 address space to find active resolvers
does generate abuse complaints from network operators. By
maintaining a blacklist of networks which have requested
de-listing, we have not received any complaints related to our
scanning or subsequent resolutions in the last quarter. We
have never received a complaint due to overloading a DNS
resolver, or the follow-up probes rather than the initial scan.

The Alexa top 10k, while not a perfect list, provides the
diversity needed to organically discover important CDNs
without the need for hard-coding. Looking at the smaller
global 1,000 domain subset, we find that under a quarter of
the domains we cluster into CDNs are listed. For services
like CloudFlare which partition their IP space across different
domains, our clustering algorithm would be overly cautious
without access to appropriate diversity.

We attempt to abide by the 7 harm mitigation principles
for conducing Internet-wide scanning outlined by the zmap
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project[8]. In particular, we (a) coordinated with the network
administrators at our university to route complaints back to
us, (b) ensured we would not overload the network, (c) host
a web page explaining the measurements with opt-out pro-
cedure, and have clear reverse DNS entries assigned to the
measurement machine, (d) clearly communicate the purpose
of measurements in all communications, (e) honor any opt-
out requests we receive, (f) make queries no more than once
per minute, and spread network activity out to accomplish
needed data collection over a full one-week period, and (g)
spread the traffic over both time and source addresses allo-
cated to our measurement machine.

To get a better sense of the impact our queries have on
resolvers, we operated an open DNS resolver. In a 1 week
period after running for 1 month, the resolver answered over
one million queries, including 800,000 queries for domains
in the Alexa top 10,000 list. Satellite made only 1,000 of
these requests.

We have additionally adopted a policy of only probing
DNS servers seen running for more than a month to reduce
the chance that we will send queries to non-official recursive
resolvers. This reduces our server set by 16%2. Measure-
ments in IP churn indicate that the bulk of dynamic IPs turn
over to subsequent users on the order of hours to days.[25]

3.3 Resolution
Our goal in Satellite is to provide a tool for longitudinal map-
ping of the accessibility and distribution of web entities. To
regularly detect updates and modifications, we must constrain
the amount of time we are willing to allow probing to run.
Given the goal of weekly measurements of 10,000 domains
from a single host, we find we must sample each domain
across 1/10th (or roughly 200,000) of discovered DNS re-
solvers. This results in a resolution time of roughly 48 hours
at a probe rate of 50,000 packets per second.

Our probing is accomplished by extending zmap with a
custom ‘udp multi’ mode, where hosts are sent one of several
packets. The packet sent is chosen based on the destination IP
address only, resulting in a stable set of requests across mea-
surement sessions - the same resolvers will receive the same
queries each week. This approach was chosen for efficiency,
multiple scanning processes and accompanying pcap filters
increased CPU load and resulted in dropped packets. Since
we only query known reliable DNS servers, we have a high
response rate on scans, shifting the bottleneck in scanning to
the processing of incoming packets.

The result of a 48 hour collection process is a 350GB
directory containing tuples of resolver IPs, queried domain,
time-stamp, and received UDP response.

3.4 Aggregation
Our goal in aggregation is twofold. First, we hope to reduce
the full amount of collected data to a format that is man-
ageable for interactive interaction and analysis. Second, we
2Specifically comparing the live resolvers discovered between
March 20th and April 20th.

Figure 2: Number of IPs needed for consensus. For 60% of
domains, 1 IP accounts for 75% of all resolutions, and for
80% of domains, 10 IPs capture 95% of resolutions.

hope to draw out patterns both between domains which share
common resolution characteristics, and behavior between IPs
within individual administrative domains.

To accomplish this, our first step is to interpret response
data by attempting to parse each received packet as a DNS
response, validating that it is a response to the query we ex-
pected to send, and saving the response A records. Through
this process we build up a mapping from resolver ASN (Au-
tonomous System, the level of an ISP) to resolved IPs for each
domain. The resulting mapping is only 3 GB, and is used as
the basis of subsequent processing. The 100-fold reduction
comes from stripping the formatting and other fields of the
DNS responses, and from aggregating responses by ASN.
Scanning this file to map a basic function on the parsed JSON
of each domain takes under 5 minutes on a single 2.5GHZ
core of our lab machine, and the format is embarrassingly
parallel if more complex task need to be distributed.

After this initial aggregation, we can quickly process and
calculate additional views of data to aid our understanding.
Each week, we automatically build lookup tables for all re-
solved IPs for each domain, and all domains resolving to each
IP. We record 5,337,315 distinct IP resolutions for our sample
of domains, located within 6,742 distinct ASNs.

The domain resolutions we have collected already provide
insight into the inner workings of these popular websites. In
Figure 2, we consider how much diversity is found in the
responses for each domain. If almost all responses contain
a single IP address, we can be pretty sure that the domain is
‘single homed’, and has a single address. In our monitored
domains, we see this behavior in 60%, of resolutions, the far
left data points in the graph. As we move right, we capture
more domains which use a simple load balancing scheme, and
find that roughly 80% of domains have four or less ‘dominant‘
IPs. This view of domains doesn’t capture the use of anycast
IP addresses, but does indicate that even for top domains,
the majority has a single or small set of ‘correct’ addresses.
The remainder use geographically distributed infrastructure,
requiring the use of more complex analysis.
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3.5 Clustering
To find the points of presence of CDNs, we cluster domains
in a three step process. First, we aggregate IPs to their first
3 octets for efficiency. Second, we compute a similarity
metric between domains, based on how much of the time they
resolve to the same destinations. Finally, we extract cliques
within the similarity matrix, which represent the resolution
patterns of shared Infrastructure.

3.5.1 Prefix Aggregation

We find many instances of CDNs which will load balance
sites across one or many class-C prefixes. With 200,000
resolutions per domain, we notice significant performance
improvements from first aggregating IPs before further com-
parison. For example, a typical Google domain is resolved to
6,200 distinct IPs, but only 1,300 distinct prefixes. In practice,
this speeds up generation of the subsequent generation of a
similarity matrix by a factor of 4 - to 1 hour instead of 4.

In addition, we find that for interactive manipulation of
the data it is often useful to ignore the ‘tail’ IPs for faster
speed. filtering the data to only IPs which account for at
least 1% of resolutions for domains, we are able to reduce
processing in the following steps to 5 minutes instead of an
hour. This speed is efficient enough that we are able to tune
subsequent process and see how algorithmic changes effect
our final clusters much more rapidly. We do not use this
stripping in our final calculations, since the additional time is
needed to classify the less-common IP addresses as well.

While we gain performance from these aggregations, we
must also justify their safety, and decide if they reduce the
meaning of our analysis. In particular, consider the assump-
tion that any IP within a Class-C prefix is valid for a site. We
validate this assumption by looking at the BGP announce-
ments for the prefixes observed, and find that 0% (a total of
37 IPs) are in a more precise than /24 resolution. This figure
indicates that for just about all of these prefixes, the choice
of IP is within the control of the site or CDN operator.

3.5.2 Domain Similarity

We compute domain similarity by measuring how many total
resolutions of two domains are to the same prefixes. This can
be thought of as the fraction of times domains resolve to an IP
to which the other domain has also been resolve to. In fact, the
resolutions of a domain are a vector of resolutions to different
IPs, and our desired metric is the cosine distance between
two such vectors. For intuition of why this is a reasonable
approach, consider a single-homed domain, which resolves to
one IP most of the time. We would like that IP to matter much
more in comparisons with other domains, than IPs which the
domain has resolved to only rarely. The “angle” of the vector
in this case is in the direction of this primary IP, making a
comparison of angles an appropriate metric.

We next use this similarity matrix to calculate a confidence
for whether any given IP address resolution of a domain
is correct. To calculate our confidence in a resolution, we

Figure 3: Domain similarities with and without repetition. An
initial similarity calculation finds 25,000 edges with similarity
above 95%. After 5 iterations of scoring, our process settles
on 75,000 “strong” edges, and has stabilized with less than
1000 such edges added after the 6th iteration.

say the probability a domain resolves to an IP is equal to
the average similarity between that domain and the other
domains which have resolved to that IP, weighted again by
frequency of resolution. To score whether we believe that
google.com resolves to 192.168.0.1, we would look
at other domains which have resolved to 192.168.0.1 and
weight their similarities to google.com by how much of
the time they resolve to 192.168.0.1.

We then repeat the generation of our similarity matrix us-
ing the additional weighting of our IP confidence scores. We
repeat this loop generation until we reach a fixed point, gener-
ally 5-6 iterations. Figure 3 shows the effect of recalculation
on the distribution of domain similarity. Without iteration
to the fixed point, we see many domains which have partial
similarity. Through iterative weighting of IPs and domain
similarities, we are able to focus on the emergent clusters
to more clearly define sites which are co-hosted on shared
infrastructure.

We can also perform a similar process at a country, or even
AS level, to cluster sites which share infrastructure at more
fine grained levels. This allows us to identify sites which use
multiple infrastructure providers, for instance we note that
firefox.com.cn is a generic CNAME to ChinaCache in
most countries, but in China it resolves to IPs within the local
ASNs.

This co-location of sites can interestingly also reflect some-
what on interference practices within ISPs. While the use
of random or blocked IP resolution simply removes our con-
fidence in the answer, the presence of a specific block site
results in a clear cluster of the ‘bad’ domains within an ad-
ministrative region. While this is not the focus of this study,
we expect that the data can also prove useful for censorship
analysis.

3.5.3 Clique Extraction

Finally, we calculate the individual domain clusters by find-
ing strongly connected cliques within our similarity matrix.
We perform this task by using the Vote/BOEM process rec-
ommended by [9], which considers the task of partitioning
a data-set with full pairwise affinities in the context of doc-
ument clustering. The process first performs an allocation
of elements to create initial clusters, and then uses ‘best one
element moves’ to search for better clusterings. This process
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Domain Rank
ebay.de 77
cntv.cn 79
indiatimes.com 110
dailymail.co.uk 114
etsy.com 149
cnet.com 151
deviantart.com 168
forbes.com 175

Figure 4: The highest ranked domains identified in the ‘Aka-
mai‘ cluster.

CDN Size Representative Domain
Cloudflare 803 life.com.tw
Akamai 391 ebay.de
Google 180 google.com
Cloudfront 131 kickstarter.com
Incapsula 122 www.juicyads.com
Fastly 90 www.adroll.com
Dyn 83 theverge.com
Edgecast 68 www.lemonde.fr
Automattic 50 time.com
AliCloud 44 www.163.com

Figure 5: Largest CDN clusters. The top 10 CDNs account
for 20% of monitored domains.

created acceptable clusters, and is computationally efficient.
Table 4 shows an example of the highest popularity sites
which were clustered into a CDN which upon examination
appears to represent the Akamai infrastructure. The largest
clusters are shown in Table 5. We count the 10 largest shared
hosting platforms hosting 1967 domains, making up almost
20% of those measured.

For most CDNs, our clique extraction process results in
a single cluster representing the shared infrastructure. The
notable exception is CloudFlare, which occupies 49 of the the
roughly 200 clusters we create of four or more domains. This
multiplicity is due to the use of ‘ray’s, where each domain
hosted by the service is assigned to a partition with a specific
allocation of IP addresses. This strict delineation results in a
multiplicity of clusters. This is acceptable for our calculations
of whether IP addresses are appropriate for a given domain,
but sub-optimal for generating a single entry representing
the entire Cloudflare footprint. For now, we hand-code the
multiple clusters as Cloudflare, but we are actively working
to integrate reverse-DNS lookups to perform this additional
level of aggregation automatically. It is also noticable that
Akamai, one of the largest CDN providers, is represented by
a suspiciously low number of domains. We find that while
Akamai transfers a large amount of traffic, their primary
service choices account for this behavior. Akamai offers
either bandwidth for large content items, which are served off
of subdomains of akamai itself, so will not be given weighting
in a count of domains. Their enterprise ‘alta’ solution works

by routing customer IP blocks over the Akamai backbone,
but those IPs will remain specific to individual sites and will
not cluster with other Akamai customers.[1]

3.6 Interference Detection
Using resolution data in tandem with knowledge of CDN
footprints and a confidence metric for IP resolutions, we are
well prepared to detect instances of ISP level interference.

The main question, “who is blocking what?” can be an-
swered by finding ASN outliers for domains. There are sev-
eral ways in which an ASN could be an outlier, which corre-
spond to different forms of interference. Some of these, like
the lack of response to queries within an ASN, can be isolated
as a unique event that Satellite data alone can characterize.
Other methods, like redirection to a block page, are harder to
differentiate from legitimate site behavior, like the use of a
geographically-specific edge cache.

We first look for deviation from expected cluster behav-
ior at an ASN level. This means looking at resolutions of
a domain in an ASN, where the IPs for one domain have
low scores, or where there are few resolutions while other
domains are resolved at a normal level.

We then use a decision tree to classify deviations as ‘sus-
picious’. We choose this approach because there are several
approaches to interference which are known to be both in
common use, and can be easily distinguished from normal
behavior. By making decisions in this way we are able to pro-
vide a conservative estimate without worrying as much about
the impact of false-positives, since there’s a clear reason why
each instance is classified as such. The categories we classify
as interference are:

• Too few resolutions or too many invalid resolutions are
received.
• A domain which is otherwise ‘single-homed’ (in the IP

sense) resolves to non-standard locations.
• A domain with otherwise ‘dominant‘ ASN resolves to

many ASNs.
• Resolution is specific to the ASN, and deviates from ex-

pected CDN bounds.

All of these classes of interference can be inferred from
the resolution data we have already computed. Our initial
ASN-level aggregation allows us to directly find invalid or
suppressed resolutions. We showed in Figure 2, that the
majority even of the most popular domains are single-homed,
which is used for the second two decisions. Finally, for
detected CDNs, we have shown that we can determine the
expected IP footprints of those clusters. When resolutions
deviate from those expected footprints, we can make the final
decision.

4 Evaluation
4.1 Address Validation
To validate our ranking and clustering algorithms, and our
data collection process more generally, we make web re-
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Figure 6: Validation Accuracy. For each of the 4,000 domains
with favicons, we compute the score for how many of the IPs
for that domain we correctly include as ‘valid’, compared to
which IPs serve what we believe to be the correct favicon.
95% of the inaccuracy is false negative, indicative of our
conservative clustering of CDNs like CloudFlare.

quests to each resolved IP address as a potential location
of each sampled domain. More specifically, we connect to
each IP which has been seen as a candidate, and request
the ‘/favicon.ico’ file, using the domain as the ‘Host‘ header.
We record hashes of all returned content, and compare these
hashes against copies of the favicons fetched using local DNS
resolution to determine whether an IP is correctly acting as a
host for a given site.

Over a total of 965,522 completed resolutions, 82% of
resolved IPs are deemed ‘correct’. 5,479 domains are skipped
in this validation, because no authoritative favicon was found
when we directly request their favicon. They are not used
when we evaluate the performance of our clustering approach.

In figure 6, we show the agreement between this validation
process and the confidence scores for IPs used in our cluster-
ing algorithm. While there is noticeable divergence between
the IPs in our scorings and the favicon results, over 95% of
those failures are false-negatives - Our algorithm was overly
conservative in creation of clusters, and would reject IPs the
favicon process showed to be correct. The vast majority of
these false-positives occur due to situations like CloudFlare,
where empirically only a single partition of IPs is resolved
for domains, but in practice all of the IPs are able to answer
requests for any of the hosted domains.

In principle, validations like the use of favicons we’ve
conducted, or signals like reverse DNS lookups can also be
used in the clustering process to further refine which IPs
are believed ‘correct’ for domains. To us though, this re-
sult shows that the DNS resolutions themselves are able to
produce largely reliable mappings of CDN IP addresses.

4.2 Website Points of Presence
While we have shown in this paper that the Satellite tech-
nique is able to accurately map the IPs which are operated
by targeted websites, we have not yet shown the implications
of that data. Here, we attempt to characterize the dominate

CDN IP Space Distinct ASNs
CloudFlare 107008 75
Akamai 264960 489
Google 476416 1036
Cloudfront 128512 21
Incapsula 12288 17
Fastly 8192 17
Dyn 2304 9
Edgecast 24832 65
Automattic 3584 5
AliCloud 41728 42

Figure 7: The number of IPs we cluster into each of the
ten largest shared infrastructure platforms. The magnitude
variance in size between Dyn, Fastly, Automattic and the
others is primarily an indication on their relative reliance on
Anycast.

Figure 8: Points of presence of the top ten CDNs from Table
5. Note that Anycast is not accounted for here, so distribution
is actually higher.

content distribution entities in the Internet today, and provide
some insight into where they operate and the international
nature of the Internet today.

In Table 7, we show the IP space we estimate for the largest
CDN clusters. These platform each have unique network
structures, and use a range of technologies including rotating
IPs and anycast, which make it difficult to directly compare
scale from these numbers. For instance, most Google IPs
resolve to IPs within Google’s own ASN, while IPs from
Akamai are largely resolved to IPs located in the ASNs of
consumer ISPs.

In figure 8, we use the geolocation of ASNs to count which
countries these providers are located within. One striking fea-
ture of this geolocation exercise is to note that the 10 largest
content distribution networks contain points of presence in at
least 145 countries.

We can also see in this data the growing balkanization of
the Internet [7]. In large countries which are pushing for
more regulation of network sites, we see an increased amount
of content resolved locally, rather than from external IP ad-
dresses. In 9, we plot how many of the domains are resolved
to each country. We see at least 18% of all domains resolving
to an in-country IP address for resolvers in China, while other
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Figure 9: How many domains are resolved to servers in each
country.

Figure 10: Number of domains inaccessible in each country.

countries like Mexico resolves only 6% of domains locally.

4.3 Interference
Our confidence scoring of how well IPs represent domains
helps us address an ongoing pain point in interference mea-
surement: how to know if a returned IP address is “correct”.
The primary issue in this determination traditionally has been
whether an IP that is not the same what the research resolves
through canonical resolution is a CDN mirror or an incorrect
response. Using CDN footprints along with more simple
heuristics for single-homed domains allow us to identify in-
stances of inaccessibility with higher confidence.

Figure 10 shows the number of largely inaccessible do-
mains found in a single snapshot of collected data. We find
at least 5 of the monitored domains to be inaccessible in at
least one ASN network in over 78 countries.

We then divide the instances of observed interference

Figure 11: Types of interference by country. Domains in
countries shaded red were inaccessible largely due to random-
ization of the IP space, those in green featured inaccessibility
primarily in domains hosted on CDNs.

across other factors. Figure 11 shows a comparison of inter-
ference for sites on CDN infrastructure versus those which
are single-homed. While roughly 80% of sites are single
homed, we see as much interference is directed at distributed
sites, perhaps due to their popularity. This indicates that naive
approaches have been missing a significant fraction of total
interference instances.

5 Conclusion
Satellite is already a valuable system for understanding CDNs
and measuring the prevalence of interference is a variety of
networks. There are several areas for continued development
that will extend the value of the system. In particular, our
development efforts are focused on: (1) Integrating anycast IP
address geographic resolution to get a better sense of where
sites are located. (2) Developing a web site to interactively
explore collected data. (3) Integration of additional probing
mechanisms including reverse DNS, service detection, and
IP level connectivity.

In this paper we have presented Satellite, a system for
measuring web infrastructure deployments and availability
from a single external vantage point. We hope that by low-
ering the bar for collecting, aggregating, and understand-
ing these measurements we can make the data much more
available. We see Satellite as enabling consistent, long-term
measurements of network conditions, providing increased
transparency into understanding cloud connectivity, and mon-
itoring interference around the world. We’ve shown the
magnitude and growing predominance of the CDN indus-
try amongst the top Alexa domains. Using the same data,
we’ve also shown evidence of changing interference condi-
tions around the world over the last year. Satellite is a fully
open platform, and both the recorded data, and code allowing
others to run their own measurements are available online at
http://satellite.cs.washington.edu.
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