
Formal Semantics & Verification
for the Border Gateway Protocol

Konstantin Weitz Doug Woos Arvind Krishnamurthy Michael D. Ernst Zachary Tatlock
University of Washington

{weitzkon,dwoos,arvind,mernst,ztatlock}@cs.washington.edu

Abstract
Internet Service Providers (ISPs) use the Border Gateway Protocol
(BGP) to exchange routing information. ISPs use a variety of
formalisms, checkers, and simulators to avoid BGP configuration
errors. However, these tools are based on simplified semantics of
BGP or no semantics at all, and therefore they cannot guarantee
the absence of router misconfigurations. Meanwhile, BGP router
misconfiguration has led to worldwide outages and traffic hijacks.

To enable tools that provide formal guarantees, and to provide a
foundation for future work on BGP, we present the first mechanized
formal semantics of the BGP specification RFC 4271. The semantics
is implemented in Coq. The semantics models all required features
of the BGP specification modulo low-level details such as bit
representation of update messages and TCP.

Three case studies show how to use our semantics to develop
reliable proofs, checkers, and simulators; and provide evidence for
the correctness of our semantics. 1) We formalized and extended the
seminal pen-and-paper proof by Gao & Rexford on the convergence
of BGP, revealing necessary extensions to Gao & Rexford’s original
assumptions. 2) We verified the soundness of the Bagpipe tool
which automatically checks that BGP configurations adhere to given
specifications. 3) We tested the popular BGP simulator C-BGP
against our semantics, revealing a bug in C-BGP.

1. Introduction
The Internet is a collection of interconnected networks run by uni-
versities, corporations, regional ISPs, and nation-wide ISPs. These
networks, collectively known as Autonomous Systems (ASes), use
the Border Gateway Protocol (BGP) to exchange route announce-
ments that describe the paths that packets (e.g. sent via TCP) can
take to travel across the Internet. To route packets reliably and se-
curely, ASes must configure their BGP routers to restrict how route
announcements can be used and exchanged. For example, to avoid
unprofitable routes, an AS codifies its contracts with other ASes in
its BGP router configurations. Because BGP gives ASes freedom to
configure their routers, BGP provides very few general guarantees —
essentially all desirable properties have to be proven for a particular
topology and set of router configurations.

Router configuration is a challenging and error-prone task for
ASes. Large ASes maintain millions of lines of frequently-changing
configurations that run distributed across hundreds of routers [23,
38]. Router misconfigurations are common and have led to highly
visible failures affecting ASes and their billions of users. For
example, in 2009, YouTube was inaccessible worldwide for several
hours due to a misconfiguration in Pakistan [6]. In 2010 and
2014, China Telecom hijacked significant but unknown fractions of
international traffic for extended periods [11, 36, 27, 25]. Goldberg
surveys several additional major outages and their causes [18]. Less
visible is the high cost ASes pay every day to develop and maintain
configurations.

Given BGP’s vital role, there exist router configuration guide-
lines [17, 20, 8, 40], checkers that statically check for router miscon-
figurations [14, 15, 4], and simulators that dynamically check for

router misconfigurations [33, 35, 31, 28]. These aim to help ASes
correctly configure their routers, but they fall short of providing
guarantees about the absence of certain router misconfigurations,
because they are based on simplified semantics of BGP or no seman-
tics at all. For example, Gao & Rexford [17] provide configuration
guidelines. These guidelines were hugely successful, as they formal-
ized existing best practices in router configuration, provide monetary
benefit to the individual ASes, and are proven to prevent Internet
wide BGP divergence. Their proof however is based on a simplified
BGP semantics that does not accurately model the route exchange
within an AS, so their proof does not guarantee that the guidelines
achieve their goal in realistic scenarios.

To improve upon this situation, this paper presents the first mech-
anized formal semantics of the BGP specification RFC 4271 [34].
In contrast to previous semantics [17, 20, 40], our semantics is fully
formal (it is implemented in the Coq proof assistant) and models all
required features of the BGP specification modulo low-level details
such as bit representation of update messages and TCP.

We performed three case studies to provide evidence for the
correctness of our semantics, and to show how to use our semantics
as a basis for reliable proofs, checkers, and simulators that help BGP
administrators avoid router misconfiguration.

1. Formalizing and extending Gao & Rexford’s proof Gao &
Rexford [17] proposed a set of guidelines for BGP router config-
uration, and they proved Internet-wide route convergence if these
guidelines are implemented by every AS on the Internet.

The pen-and-paper proof by Gao & Rexford makes simplifying
assumptions about the BGP protocol. For example, routers have
access to all the routes received by other routers within the same
AS, routes are not sent over a network but are instantly accessible
whenever a router is “activated”, and route announcements cannot be
withdrawn; all these assumptions are frequently violated in practice.

We have extended and formalized Gao & Rexford’s informal
proof. Our proof is formal, mechanized, and uses our semantics
of RFC 4271, which eliminates the aforementioned simplifying
assumptions. Because the proof involves a more accurate model that
introduces new complications, the proof requires additional insights.
For example, because our semantics models both intra-domain and
inter-domain routing, we have to prove intra-domain convergence
of each AS. Attempting this proof revealed that the guidelines
proposed by Gao & Rexford are not sufficient to prove intra-domain
convergence. We thus provide an extension to Gao & Rexford’s
configuration guidelines, and use them to prove convergence.

This extension provides AS administrators with a guideline on
how to configure intra-domain routing to avoid divergence, and
provides network researchers with insights on how to accurately
model intra-domain routing while simulating Internet topologies.

2. Verifying the soundness of the Bagpipe tool Bagpipe [44]
defines a declarative domain-specific language that enables BGP
administrators to express control-plane specifications, such as “an
AS’s routers will never accept routes for invalid IP addresses”, “an
AS’s routers will always forward certain routes to other ASes”, and
“an AS’s routers will always prefer routes from customers over routes
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from providers”. Given a specification expressed in this language,
Bagpipe automatically verifies that an AS’s router configurations
satisfy the given specification.

Bagpipe’s domain-specific language is rich enough to express
specifications inferred from real AS configurations, express spec-
ifications found in the literature (such as the Gao-Rexford guide-
lines [17] and prefix-based filtering [29]), and express specifications
for 10 configuration scenarios from the Juniper TechLibrary [24, 5].

Although Bagpipe found 19 apparent errors in three ASes with
over 240,000 lines of Cisco and Juniper BGP configuration, the
Bagpipe tool itself has not been verified. Therefore, its results might
not be trustworthy. Using our semantics, we formally verified that
Bagpipe is sound, i.e. it will never falsely claim that an AS correctly
implements a specification.
3. Testing C-BGP C-BGP [33] is a popular and widely-used
open-source BGP simulator. C-BGP runs a simulation of a BGP
network. This simulation outputs a trace that captures all the route
announcements exchanged by the routers in the BGP network, and
the routes installed in each router’s routing information bases. We
compared C-BGP against our semantics via randomized differential
testing [13].

We ran C-BGP and our semantics over 100,000 times on BGP
networks with randomly-generated topology, router configurations,
and initial routes. Some tests revealed that C-BGP occasionally
sends announcements even when the routes they are advertising
have not changed. This is not permitted by Section 9.2 of the
BGP specification, and it is therefore rejected by our semantics.
We reported this bug to the C-BGP maintainer, who acknowledged
that the current behavior is incorrect. This bug implies that C-BGP
might not provide the right measurements with respect to route
convergence and thereby provide biased results.
Contributions We have defined a formal, mechanized semantics
for BGP in Coq. We used it to extend and formalize a proof
about the convergence of BGP, to verify a BGP checker, and to
test a BGP simulator. These activities provide evidence that our
semantics is correct and is useful for the development of reliable
tools and guidelines that help BGP administrators avoid router
misconfiguration.

This paper’s contributions include:

• The first mechanized formal semantics of the BGP specification
RFC 4271 [34] which is implemented in Coq. (Section 2).1.
• A formalization and extension of the pen-and-paper proof by

Gao & Rexford on the convergence of BGP, revealing necessary
extensions to Gao & Rexford’s original configuration guidelines
(Section 3).
• A soundness proof of the Bagpipe tool that checks that BGP

configurations adhere to given specifications (Section 4).
• A random differential tester for the BGP simulator C-BGP,

revealing one bug (Section 5).

2. BGP Semantics
This section presents our formal semantics of BGP. It is the first
formal semantics of the BGP specification RFC 4271 [34]. We used
this semantics to formalize proofs about BGP (Section 3), to build
and verify BGP checkers (Section 4), and to test BGP simulators
(Section 5). Our semantics is formalized in 287 lines of Coq code
(excluding comments).

The presentation of our BGP semantics is split into four parts.
Section 2.1 describes how BGP sends messages between routers.
Section 2.2 describes how BGP routers process messages. Sec-
tion 2.3 describes the parameterization of our semantics. Section 2.4
compares our semantics to RFC 4271.

1 Our semantics is open-source, available at bagpipe.uwplse.org

IP := [0,256)× [0,256)× [0,256)× [0,256) — ip addresses
P := IP× [0,33) — prefixes

R⊆ IP — routers
ASN := uint16 — AS number
asn : R→ ASN — router’s AS number

C ⊆ R×R — connections between routers
in(r) := {s | (s,r) ∈C}∪{injected} — r’s incoming connections
out(r) := {d | (r,d) ∈C} — r’s outgoing connections
md(s,d) = if asn(s) = asn(d) then ibgp else ebgp — link mode

A = { — BGP attributes
pref : uint32; — local preferences
communities : P (uint32); — communities (P is powerset)
path : list(ASN); — AS path
. . .

}∪{na} — used when there is no available route to a prefix

M = P×A — update message

Figure 1. General Semantics Definitions.

2.1 Network Semantics
The Internet consists of a network of routers that forward data
packets toward their destination IP addresses. Routers announce
routes—a path through other routers to a destination—via the Border
Gateway Protocol (BGP). Routers announce routes by sending
BGP update messages to one another. An update message means
“I can forward packets to the following destinations.” To a first
approximation, routers send update messages in the following two
cases. Injection: A BGP router that can directly deliver packets to
a certain destination announces that route by sending an update
message to each neighboring router. Forwarding: When a BGP
router receives a route announcement via an update message, it
processes the message and then possibly announces the route by
sending an update message to each neighboring router. The rules
governing this behavior, which is controlled by router configurations,
are made more precise in Section 2.1.4.

Each router thus learns of a route either via injection or the
receipt of an update message. Each router selects at most one of
the learned routes per destination, and forwards packets for that
destination to the router from which the selected route was received.
This process continues until the packet reaches the router that knows
how to directly deliver packets to the destination. A router’s control
plane selects and forwards routes. The control plane runs separately
and asynchronously from the router’s data plane, which forwards
packets using the routes selected by the control plane. BGP operates
on the control plane. Our semantics therefore models only the
control plane, not the data plane.

2.1.1 Topology
The top part of Fig. 1 shows how our semantics represents the
network topology.

The Internet’s routers are operated by Autonomous Systems
(ASes) such as universities, corporate networks, regional ISPs, and
nationwide ISPs. ASes are identified by globally unique 16-bit AS
numbers (ASNs).

The set of routers is represented as a set of IP addresses. Each
BGP router r is connected to a set of other BGP routers called r’s
neighbors. BGP connections are symmetric, i.e. if r is a neighbor
of r′, then r′ is also a neighbor of r. in(r) is the set of routers from
which r can receive update messages; this includes all neighbors of
r plus a dummy neighbor called injected that is used by the router
to inject new routes. out(r) is the set of routers to which r can send
update messages; this is simply the set of all neighbors.
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N := (C→ list(M))× ((r : R)→ S(r)) — network sate
U : Type — uninterpreted router state
S(r) := { — router state

adjRIBsIn : in(r)×P→ A; — received messages
locRIB : P→ A; — selected messages
adjRIBsOut : out(r)×P→ A; — sent messages
uninterpreted : P→U — uninterpreted state

}

Figure 2. Network State. The network state N consists of link state
and router state. Link state keeps track of update messages currently
in-flight list(M) for each connection C, and each routers r’s router
state S(r) keeps track of received, selected, and sent messages, as
well as uninterpreted state U used to store other protocols’ routing
information.

The function md assigns a mode to every connection. Connec-
tions between routers owned by the same AS are in ibgp (internal
BGP) mode, and connections between routers owned by different
ASes are in ebgp (external BGP) mode.

2.1.2 Update Messages
A BGP router announces a route to another router by sending an
update message (RFC 4271, §4). Each update message contains
the set of destination IP addresses p for which the route is being
announced, as well as attributes a that provide additional information
about the route. The attributes are a record whose fields (RFC 4271,
§5) include an AS path (the AS numbers of every AS traversed by
the update message; this list contains, in reverse order, the ASes that
will be traversed by packets sent to the destination IP addresses in p),
a local preference pref (an integer that influences route selection),
and a set of communities which is uninterpreted by the BGP protocol
(32-bit integers used by ASes to announce additional information
about a route). Our semantics is parametric over the attribute’s
fields, and thus can easily be extended to support additional fields
as described in Section 2.3.

A new update message overrides any previous announcement
with the same set of destinations. If the new update message’s
attributes are set to na (not available), the old route is withdrawn. If
this new update message’s attributes are available (i.e. a record), the
old route is withdrawn and replaced by the new route.

Sets of IP addresses are commonly written in Classless Interdo-
main Routing (CIDR) notation: ip/size, where ip is an IP address
and size is a number between 0 and 32. All addresses whose ini-
tial size bits are the same as those of ip are in the set ip/size; for
example, 192.168.1.0 and 192.168.1.42 are in 192.168.1.0/24 but
192.168.2.0 is not. CIDR notation specifies a set of IP addresses that
start with the same prefix, so a set of IP addresses is referred to as
prefix P.

2.1.3 Network State
BGP is a stateful protocol. We refer to the state of a BGP network as
the network state, which consists of link state Γ and router state Σ.

The link state keeps track of all the update messages currently
in-flight in the network. BGP sends messages via a TCP connection,
thus messages on a link from one router to another are ordered. The
link state is modeled as a list of update messages for each connection
between two routers. The message at the head of the list is the next
one to be delivered. The message at the end of the list is the most
recently sent.

The state at each router r is called the router state S(r). A BGP
router maintains state consisting of three tables, known as Routing
Information Bases (RIBs) (RFC 4271, §3.2), that keep track of the
update messages received, selected, and sent by the router. The Adj-
RIBs-In contains all the update messages the router has received,

except those that have been subsequently withdrawn. The Loc-RIB
contains all update message that the router has selected to perform
packet forwarding on the data plane. The Adj-RIBs-Out contains
all the update messages the router has sent, except those that the
router has subsequently withdrawn. A BGP router also maintains
uninterpreted state U . Uninterpreted state consists of all the other
state tracked by the router, such as state from other routing protocols
like OSPF.

The router state is updated every time that a router receives a
new update message. This is modeled using the process function,
which takes a router’s state, and returns the router’s new state and the
messages to be sent to the router’s neighbors. The implementation
of process is defined in Section 2.2.1.

Figure 2 describes how our semantics models the network state.
The network state N is a tuple consisting of the link state and each
router’s router state. The router state S(r) of router r is a record con-
sisting of three mappings from prefixes and neighbors to attributes,
and uninterpreted state. Each mapping models one of the RIBs.

The adjRIBsIn field of r’s state σ : S(r) models r’s Adj-RIBs-In.
The adjRIBsIn maps every incoming neighbor i (including injected)
and prefix p (written as adjRIBsIn(σ, i, p)) to the attributes of the
update message most recently received from r’s neighbor i for prefix
p. It suffices to only store the most recently received update message,
as the BGP specification demands that previously received update
messages are implicitly withdrawn with the receipt of a new update
message from the same neighbor and for the same prefix. It suffices
to only store an update message’s attributes, as the message’s prefix
is uniquely determined by the prefix the attributes are stored for.
If no update message has yet been received for a neighbor and
prefix, e.g. whenever the router is restarted, the adjRIBsIn maps
that neighbor and prefix to na (not available). In practice, the vast
majority of entries in any RIB map to na.

The locRIB field of r’s state σ : S(r) models r’s Loc-RIB.
The locRIB maps every prefix p (written as locRIB(σ, p)) to the
attributes of the update message selected by the router to perform
packet forwarding. It suffices to store only one record of attributes
per prefix, because for a given prefix, a router selects at most one
route for packet forwarding. If no update message is available for a
prefix, or the router chooses to select none of them, the locRIB maps
that prefix to na (not available). The BGP protocol handles prefixes
independently. If two prefixes overlap (one is always contained
inside the other, e.g. 192.168.0.0/16 and 192.168.1.0/24), BGP may
install routes for both prefixes, and the dataplane then chooses the
route with the longest prefix (here 192.168.1.0/24) to forward a
packet (e.g. with IP 192.168.1.1).

The adjRIBsOut field of r’s state σ : S(r) models r’s Adj-RIBs-
Out. The adjRIBsOut maps every outgoing neighbor neighbor o
and prefix p (written as adjRIBsOut(σ,o, p)) to the attributes of the
update message most recently sent to r’s neighbor o for prefix p.
It suffices to only store the most recently sent update message, as
previously sent update messages are implicitly withdrawn. If no
update message has yet been sent for a neighbor and prefix, the
adjRIBsIn maps that neighbor and prefix to na (not available).

The uninterpreted field of r’s σ : S(r) models r’s uninterpreted
state. A router can store different uninterpreted state for each
prefix; thus, the uninterpreted field maps every p (written as
uninterpreted(σ, p)) to an uninterpreted state U . Storing differ-
ent uninterpreted state per prefix, instead of one uninterpreted state
per router, simplifies updating the state as described in Section 2.2.1.
Our semantics is parametric over the uninterpreted state U , but it is
intended to store the routing information needed by other protocols.

With the na value, our semantics unifies two concepts from the
BGP specification. 1) An in-flight update message withdraws an
earlier update message, if its attributes are set to na. 2) A RIB does
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trace(N)

Γ,Σ Γ′,Σ′ trace(Γ′,Σ′)
STEP

trace(Γ,Σ)

N N

SKIP
Γ,Σ Γ,Σ

(p,a) ∈M

σ = (adjRIBsIn(Σ[r], injected, p) := a)

Γ′,σ′ = process(r, p,σ)
INJ

Γ,Σ Γ++Γ′,Σ[r := σ′]

(s,r) ∈C

Γ(s,r) = (p,a) :: ms

σ = (adjRIBsIn(Σ[r],s, p) := a)

Γ′,σ′ = process(r, p,σ)
FWD

Γ,Σ Γ[(s,r) := ms]++Γ′,Σ[r := σ′]

(p,u) ∈ P×U

σ = (uninterpreted(Σ[r], p) := u)

Γ′,σ′ = process(r, p,σ)
UPD

Γ,Σ Γ++Γ′,Σ[r := σ′]

Figure 3. Network Semantics. A trace is a coinductive infinite
sequence of  transitions. A network state consists of the in-
flight messages on each connection Γ and the state at each router
Σ. process implements a router’s message forwarding logic (see
Fig. 4), and returns new messages Γ′ plus the router’s updated
state σ′. m[k := v] is a notation for map/dictionary updates, defined
as (λk′.if k′ = k then v else m(k′)). Γ++Γ′ is a notation for point-
wise list append, defined as (λc.append(Γ(c),Γ′(c))). The notations
(adjRIBsIn(σ, i, p) := a) and (uninterpreted(σ, p) := u) both return
a copy of state σ, with adjRIBsIn and uninterpreted updated respec-
tively.

not contain a route for a certain neighbor and prefix, if it maps to na
for that neighbor and prefix.

2.1.4 Traces
Our semantics models an execution of the BGP protocol as a
coinductive sequence of network state transitions (a trace), starting
from some initial network state.

BGP routers can only perform a fixed set of actions to transition
from some network state (Γ,Σ) to the next network state (Γ′,Σ′).
Our semantics models these transitions with the (Γ,Σ) (Γ′,Σ′)
relation defined in Fig. 3. Most transitions invoke the process
function, which implements a router’s message-forwarding logic
(described later in Fig. 4).

A trace is a sequence of all the transitions taken by an execution
of BGP from some initial state. The BGP protocol might never
converge—for instance, update messages might be sent in an infinite
loop around a network. A trace is thus modeled as a coinductive
infinite sequence of transitions.

Figure 3 describes all four possible network state transitions:
skipping SKIP, injection INJ, forwarding FWD, and uninterpreted
state updating UPD.

Skipping The SKIP transition marks a point in an execution of the
BGP protocol when nothing happens. Neither the link state nor any
of the router states are updated.

Injection Some BGP routers know how to directly deliver packets
for a destination prefix p without involving any other AS. In practice,
routers learn of this fact either via static configuration, or via some
other network protocol such as OSPF [10]. RFC 4271 is vague

in its description of how BGP routers should implement injected
routes (RFC 4271, §9.4). Our semantics models it using the dummy
injected neighbor and the INJ transition. The INJ transition marks a
point in an execution of the BGP protocol when a BGP router
r learns of a new route to directly deliver packets. This route
consists of a prefix p and some attributes a that provide additional
information about the route. The router r first installs the injected
route in the adjRIBsIn for its dummy neighbor (injected), and then
process the route using the process function which takes the router’s
updated state, and returns the router’s new state σ′ and the messages
Γ′ to be sent to router r’s neighbors. For each connection c, the new
messages for c in Γ′ are appended to the existing messages for c in
Γ. Note that any route can be injected, and any injected route can be
withdrawn with na; process provides a configuration hook to filter
unwanted injected routes.

Forwarding The FWD transition marks a point in an execution of
the BGP protocol when a BGP router r has received a route an-
nouncement via an update message m = (p,a) from some neighbor
s. This is only possible if, at the beginning of the transition, the
link state for the connection between s and r is a list with m as
its first element. The router r first installs the received message in
the adjRIBsIn for its neighbor s, and then processes this new route
by calling the process function. The message m is removed from
the link that it was received from. For each connection c, the new
messages for c are appended to the existing messages for c in Γ.

Uninterpreted State Update The UPD transition marks a point in
an execution of the BGP protocol when a BGP router r changes its
uninterpreted state for prefix p. The router r then reprocesses all the
routes of prefix p by calling calling the process function. Storing a
router’s uninterpreted state for each prefix, instead of having just
one uninterpreted state per router, has the benefit that a router can
avoid reprocessing update messages for all other prefixes, if the
update will only affect processing for a subset of prefixes.

2.2 Router Semantics
This section describes how a BGP router processes routes in its
Adj-RIBs-In.

2.2.1 Router Processing
The BGP specification requires a router to execute several steps
in response to a change of its Adj-RIBs-In (e.g. because of an
incoming message) (RFC 4271, §9) for a given prefix; the router’s
configuration customizes some of these steps. The steps are:

1. The configurable import step modifies the attributes of each
received message for the given prefix, resulting in imported
messages. This step can, for example, be useful to filter incoming
messages with invalid prefixes.

2. The decision step selects a single message from all imported
messages for the given prefix. This step can, for example, be
useful to prefer messages from paying neighbors over messages
from neighbors that expect to be paid.

3. The configurable export step modifies the selected attributes for
the given prefix, resulting in an exported message. This message
is sent to the router’s neighbors. This step can, for example, be
useful to block update messages to competitors.

These steps are implemented by the process function (Fig. 4).
The function is invoked as, for example, process(r, p,σ) whenever
router r with state σ receives an update message for prefix p.

The router first imports the attributes from all neighbors in
the Adj-RIBs-In σi and stores the result in the variable I (this
corresponds to step 1 from above). Attributes are imported with
a call to the imp function, which takes the current router r, prefix
p, and neighbor i, as well as the attributes stored in σi for that
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imp : (r : R)→ in(r)→ P→ A→ A — configure import
exp : (r : R)→ in(r)→ out(r)→ P→ A→ A — configure export
dec : (r : R)→U → (in(r)→ A)→ in(r) — select message

process : (r : R)→ P→ S(r)→ ((C→ list(M))×S(r))
process(r, p,σ) :=
let σi := adjRIBsIn(σ)

I := λi.imp(r, i, p,σi(i, p))
i∗ := dec(r,uninterpreted(σ, p), I)
a∗ := I(i∗)
σl := locRIB(σ)[p := a∗]
σo := λ(o, p′).if p′ = p then exp(r, i∗,o, p,a∗)

else adjRIBsOut(σ,o, p′)
Γ := λ(s,d).if s = r∧adjRIBsOut(σ,d, p) 6= σo(d, p)

then [(p,σo(d, p))] else []
in (Γ,{adjRIBsIn := σi; locRIB := σl ;adjRIBsOut := σo;

uninterpreted := uninterpreted(σ)})

Figure 4. Router Semantics. process defines how a router processes
attributes stored in its Adj-RIBs-In. First, r imports all attributes
from the adjRIBsIn σi. Second, r chooses the best imported attribute
a∗ from neighbor i∗ and stores it in the locRIB σl . Third, r exports
a∗ to all its neighbors, storing the result in its adjRIBsOut. m[k := v]
is a notation for map/dictionary updates, defined as (λk′.if k =
k′ then v else m(k′)).

neighbor and prefix, and returns modified attributes. The imp
function is one of BGP’s hooks for customization, defined in a
router’s configuration. The function is usually written in either
the Juniper or Cisco configuration language, which are loop-free
imperative programming languages with domain-specific syntax and
semantics. Our semantics is parametric over the particular language
used, and just requires that the configuration language can be
denoted to a mathematical function. The advantages of this approach
are described in Section 2.3. An implementation of a router can
avoid re-importing old announcements by caching the result of old
announcement imports. The imp function can discard a message by
modifying the message’s attributes to na. For example, to discard all
messages for invalid prefixes invalid, a router can be configured with
the following imp function: λr i p a.if invalid(p) then na else a.

Next, the router uses the dec function to select the incoming
neighbor i∗ whose imported update message attributes a∗ should
be used for routing packets on the data plane (this corresponds
to step 2 from above). How dec chooses a neighbor is defined in
Section 2.2.2. Because dec depends on the router’s uninterpreted
state, it is necessary to reprocess the Adj-RIBs-In every time that
the uninterpreted state changes. The router then stores the selected
attributes in the Loc-RIB. Instead of directly updating the state, the
router returns a new state which is a modified copy of the original
state. The new state’s locRIB is stored in the variable σl .

Next, the router exports the selected attributes to all its neighbors
(this corresponds to step 3 from above). Attributes are exported with
a call to the exp function, which takes the current router r, prefix p,
and neighbor o, as well as the selected attributes a∗ and the neighbor
i∗ from which they were selected, and returns modified attributes.
The exp functions are configured in a similar fashion to the imp. The
router then stores all the exported attributes in the Adj-RIBs-Out σo.

Finally, the router decides which update messages to send. We
model the sent messages as a mapping from every connection (even
those that are not connected to r) to a list of sent messages. For every
connection from some source s to some destination d, the router r
sends a message if and only if r is the connection’s source, and the
Adj-RIBs-Out σo for the destination neighbor d has just changed.

Our semantics models injected routes as being received from the
injected dummy neighbor, and stores them in the adjRIBsIn for the

injected neighbor. Note that any route can be injected into a router.
The router can be configured to only select some of these routes (e.g.
a small set of static routes) by dropping unwanted routes in the imp
function for the injected neighbor.

2.2.2 Route Selection
The BGP specification demands that a router select the update
message with the most preferable attributes, where a router r with
uninterpreted state u prefers attributes a from neighbor i over
attributes a′ from neighbor i′, iff (in order of priority) (RFC 4271,
§9.1.2.2):

1. a has a higher local preference value (pref ) than a′
2. a has a shorter AS path (path) than a′
3. a has a better origin value than a′
4. a has a lower med value than a′
5. i is non-internal, and i′ is internal
6. r assigns a lower interior cost (e.g. computed by the OSPF

protocol, and stored in u) to sending traffic to i instead of i′
7. i has a lower router identifier value than i′
8. i has a lower router address than i′

Attributes with the na value have strictly lower preference than
any other attributes. The reader need not understand all the details
of this list, as router implementations and extensions of BGP often
implement a customized version of this preference relation, e.g.
they may insert an additional check or change the order of the
checks. For this reason, our semantics is parametric over the exact
implementation of the preference relation. The advantages of a
parameterized preference relation are described in Section 2.3.

Below, we first describe the preference relation (i,a)�u (i′,a′)
that our semantics is parametric over. It compares attributes a and a′
received from the neighbors i and i′ by a router with uninterpreted
state u. Second, we describe the function dec which selects attributes
according to this preference relation. Third, we describe a preference
relation a≥ a′ that compares attributes a and a′, without the need
to know the neighbors from which they were received, or the
uninterpreted state. The details of this section are crucial for the
correctness of the Internet convergence theorem proven in Section 3.

Preference Relation for Incoming Attributes Our semantics is
parametric over the exact implementation of the preference relation
(i,a) �u (i′,a′), it just requires that for any router r with uninter-
preted state u, the �u relation is a total preorder, i.e. it is reflexive
((i,a)�u (i,a)), transitive ((i,a)�u (i′,a′)→ (i′,a′)�u (i′′,a′′)→
(i,a)�u (i′′,a′′)), and total ((i,a)�u (i′,a′)∨ (i′,a′)�u (i,a)). The
preference relation demanded by the BGP specification is in fact a
total preorder.

Further, our semantics requires that for any router r with unin-
terpreted state u the preference relation is partially antisymmetric.
If attributes a from neighbor i and attributes a′ from neighbor i′
are equally preferred, then their neighbors must be the same, i.e.
(i,a) ≈u (i′,a′)→ i = i′. In other words, attributes received from
different neighbors are never tied on preference (they are totally
ordered), i.e. i 6= i′ → ((i,a) ≺s (i′,a′)∨ (i′,a′) ≺s (i,a)). We say
that attributes a from neighbor i and attributes a′ from neighbor i′
are equally preferred (i,a)≈u (i′,a′) iff (i,a)�u (i′,a′)∧ (i′,a′)�u
(i,a). Because each neighbor has a unique router address, the prefer-
ence relation demanded by the BGP specification is in fact partially
antisymmetric. However, it is not antisymmetric. For example, con-
sider two announcements a and a′ that differ in their communities,
and were received from the same neighbor i. They will have the
same preference, but will not be equal. Thus, (i,a) ≈u (i,a′) 6→
(i,a) = (i,a′).

Incoming Neighbor Selection Our semantics of BGP selects
the route to forward packets using the dec(r,u, I) function. This
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function chooses the neighbor with the most preferable attributes,
given a mapping I from every neighbor of router r to attributes,
and the router’s uninterpreted state u i.e. ∀i, I(dec(r,u, I)) �u I(i).
The selected neighbor is unique, because attributes from different
neighbors cannot have the same preference (partial antisymmetry).
The selected neighbor exists, because there is at least one neighbor
(injected), and because �u is total.

While the dec function cannot be configured directly, it can be
configured indirectly by configuring the imp function to appropri-
ately change an update message’s pref field. For example, a router
can be configured to select the cheapest available route to forward
packets (ASes usually receive or pay money whenever they send
a packet to another AS), by configuring the imp function to set a
higher pref value for cheaper routes.

Preference Relation for Attributes The preference relation �u
defines how to compare attributes at the same router, but it is
sometimes necessary to also compare attributes at different routers
with different uninterpreted states. Fortunately, the checks 1-4
performed by (i,a) �u (i,a′), up to (but not including) the non-
internal vs internal check, only depend on the attributes a and a′,
not the routers i, i′, and the uninterpreted state u. We can thus say
that attributes a are preferred over attributes a′ (a ≥ a′), if a is
preferred over a′ up to the non-internal vs internal check. The na
value has strictly lower preference than any other attributes. This
relation is a total preorder, but it is not antisymmetric and thus not
an order (i.e. two different attributes may be equally preferred). We
say that attributes a and attributes a′ are equally preferred (a' a′)
iff a≤ a′∧a′ ≤ a.

Because attribute preference is derived from the preference
demanded by the BGP specification, if an announcement a from
neighbor i is preferred over announcement a′ from neighbor i′, then
a is preferred over a′, i.e. (i,a)�u (i′,a′)→ a≥ a′ (the converse is
not necessarily true).

Further, because this preference relation performs all checks
up to the non-internal vs internal check, if an announcement ae
is preferred over an announcement ai, and given a non-internal
neighbor ie and an internal neighbor ii at some router r with
uninterpreted state u, then ae received from ie is preferred over
ai received from ii, i.e. ae ≥ ai→ (ie,ae)�u (ii,ai).

2.2.3 Configuration Restrictions
BGP’s configurability is one of the key reasons for its success, but to
aid reasoning about the correctness of BGP configurations, the BGP
specification places some restrictions on the imp and exp functions.
Our formalizations of these restrictions are shown in Fig. 5.

Restriction 1 and 2 models that imp and exp functions may
not create attributes “out of thin air” for update messages that are
na. Restriction 3 models that exp functions must forward update
messages at most once within an AS. This avoids routing loops.
Restriction 4 models that imp functions must drop update messages
with loops in their path. Restriction 5 models that exp functions must
extend an update message’s AS path whenever a message crosses
an AS border.2

Because real-world BGP configuration languages often enforce
a subset/superset of the above restrictions, our semantics was
developed to make it easy to enforce only a subset/superset of
the restrictions. For example, the router configuration language
used by Juniper-manufactured routers does not enforce restriction 5,
and allows arbitrary manipulations of the AS path. On the other
hand, the C-BGP router configuration language[33], unlike the
specification, ensures that update messages may not be sent back
along the connection that they came from.

2 The BGP spec allows asn(r) to be repeated multiple times to influence tie-breaking.

1. ∀r i p. imp(r, i, p,na) = na
2. ∀r i o p. exp(r, i,o, p,na) = na
3. ∀r i p a.md(i,r) = md(r,o) = ibgp→ exp(r, i,o, p,a) = na
4. ∀r i p a.asn(r) ∈ path(a)→ imp(r, i, p,a) = na
5. ∀r i o p a.md(r,o) = ebgp→

path(exp(r, i,o, p,a)) = asn(r) :: path(a)

Figure 5. Rule Restrictions. BGP requires that the imp and exp
rules cannot create attributes “out of thin air” (1,2), avoid forwarding
loops (3,4), and extend paths appropriately (5).

2.3 Parameterization
Our BGP semantics is parametric over attributes (Section 2.1.2), at-
tribute preference (Section 2.2.2), uninterpreted state (Section 2.1.3),
and router configuration languages (Section 2.2.1).

The fact that our semantics is parameterized has several advan-
tages: 1) it simplifies the semantics’ definition (e.g. we did not have
to formally model all the languages used to configure routers in
practice); 2) it enables extending the semantics (e.g. RFC 1997[7]
adds an additional attributes field, and RFC 4456[3] changes the
attribute selection algorithm); and 3) it enables reasoning about
non-compliant router implementations (e.g. actual router implemen-
tations have their own attribute selection algorithm).

While parameterization does simplify the semantics, we do not
loose any guarantees. A proof that holds for all possible parameter
instantiations of our semantics, also holds for the one actually used
by the verified BGP network.

2.4 Comparison to RFC 4271
Our semantics models the full BGP specification (RFC 4271)
except for low-level details (bit representation of update messages,
version negotiation, establishing BGP connections, and TCP). It
models some extensions such as the communities attribute and route
reflectors. It does not model all optional features, such as route
aggregation. We believe that our semantics could be extended with
these additional features.

The BGP protocol exhibits some surprising behavior that is
nevertheless correctly modeled by our semantics. Following are two
such cases.

A BGP router treats all prefixes independently, even if they
overlap. If a router receives two routes for overlapping prefixes,
e.g. one for prefix p = 192.168.0.0/16 and one for prefix p′ =
192.168.1.0/24, r will install both routes in its Loc-RIB. Whenever
a packet needs to be forwarded on the data plane, e.g. with IP
192.168.1.1, the router will choose the route with the longest prefix
(in this case p′), even if the attributes of the route for the other prefix
are more preferable according to dec.

A BGP router may explicitly withdraw an available route. Con-
sider a router r that has imported attributes a from its neighbor i, has
installed a in its Loc-RIB, and has exported a to its neighbor o. If r
subsequently imports more preferable attributes a′ from some other
neighbor i′, r will install a′ in its Loc-RIB, and export a′ to neighbor
o. If a′ is successfully exported, a will be withdrawn implicitly;
if a′ is dropped on export, a will be withdrawn explicitly. In the
second case, the available route a will be withdrawn from neighbor
o without replacement.

3. Proof of Gao & Rexford’s Guidelines
This section describes our formalization (in the Coq proof assistant)
of Gao & Rexford’s router configuration guidelines and of their
proof that any BGP network implementing these guidelines will
eventually converge.
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Figure 6. AS Router Endomorphism. Every AS has at least one
router. The connections between routers of any two ASes, match the
relationship between the ASes.

Unlike most other networking protocols, BGP has no built-in
mechanism to guarantee network convergence (i.e. routers may
indefinitely flip-flop between routes). Network convergence is
however vital, as a divergent BGP network may not properly forward
packets, and will waste networking resources. A large number
of papers have been published to address the problem of BGP
divergence [20, 8, 42]. Gao & Rexford’s guidelines were also hugely
successful in practice, as they formalized existing best practices in
router configuration, provide monetary benefit to the individual
ASes, and are proven to prevent Internet-wide BGP divergence.

This section is split into three subsections. Section 3.1 formal-
izes Gao & Rexford’s configuration guidelines, as well as their
assumptions about the BGP network’s topology. We also present an
extension to Gao & Rexford’s original guidelines to prevent internal
AS divergence. Section 3.2 presents our formal proof that any BGP
network implementing these guidelines will eventually converge.
This proof follows Gao & Rexford’s original argument, but extend-
ing it to our semantics of RFC 4271 requires additional insights.
Section 3.3 compares our proof with the one provided by Gao &
Rexford.

3.1 Assumptions and Configuration Guidelines
This section formalizes Gao & Rexford’s configuration guidelines,
as well as their assumptions about the BGP network’s topology.
Unless otherwise noted, any assumption made by our proof is also
an assumption made by Gao & Rexford’s original proof.

3.1.1 Topology Restrictions
ASes have various business relationships with one another. This
proof assumes (just like the proof by Gao & Rexford) that the
relationship between any two ASes x and x′ is exactly one of the
following three: Customer to Provider: the customer AS x pays
the provider AS x′ for every packet sent between the two (in either
direction). Customers are usually smaller ASes that pay the larger
provider AS to get access to the entire Internet. We also say that x′ is
in a provider-to-customer relationship with x. Peering: the peer AS x
neither pays nor charges the peer AS x′ for any packet sent between
the two (in either direction). The peering relationship is symmetric.
No Relationship: the two ASes do not directly send packets from
one to the other.

This proof assumes that the connections between routers of any
two ASes match the relationship between the ASes. This is illus-
trated in Fig. 6. Formally, there is a endomorphism between the
ASes with their relations, and routers with their connections. In
other words: every router belongs to exactly one AS, and every
AS has at least one router; any two ASes that are in a customer
to provider relationship only maintain customer to provider con-
nections between their routers, and there exists at least one such
connection; any two ASes that are in a peering relationship only
maintain peering connections between their routers, and there ex-
ists at least one such connection; any two ASes that are not in a
relationship maintain no connections between their routers.

This proof assumes that each AS is in a full-mesh configuration:
each router is directly connected to all other routers of the same AS.
This simplifies the proof of convergence, but in practice some large
ASes avoid the performance penalty of a full-mesh configuration
by using route reflectors [3]. Route reflectors are an optional RFC
extension, supported by our semantics but not by this proof.

This proof assumes that the customer to provider relationships
form a Directed Acyclic Graph (DAG). See Fig. 10 for an example.
This means that each AS can be assigned a level (its AS level),
such that any AS is only a provider to lower-level ASes, and only a
customer to higher-level ASes. This assumption is realistic. ASes on
the lowest level are usually universities or companies that require a
provider to forward and receive packets from the rest of the Internet,
but are not themselves providers to any other ASes. On the second
lowest level are Internet Service Providers like Internet2, which is
a provider to many universities in the US, but is not large enough
to route all prefixes without talking to a provider. On the highest
level are ASes like (the cleverly named) Level3. These can route
any prefix without talking to any provider. Our proof even holds for
DAGs consisting of multiple disconnected components, though this
is not usually the case for the Internet.

Lastly, this proof assumes that the customer to provider rela-
tionships are well-founded, i.e. every customer’s direct or indirect
provider can be reached via a finite number of ASes. Similarly, the
provider to customer relationships must be well-founded.

3.1.2 Network Assumptions
This proof assumes that update messages sent by a BGP router
are eventually delivered. This property is referred to as fairness.
Formally, this proof assumes that for every link state in a trace,
every non-empty connection is associated with a natural number n
such that after n transitions in the trace, the trace contains a FWD
transition that delivers the update message on that link.

This proof further assumes that there exists exactly one AS that
knows how to directly route a certain prefix. Formally, for every
prefix p, there exists exactly one AS x0(p) with exactly one router
r0(p) that injects the route for that prefix with attributes a0(p).
This is usually the case on the Internet, but ASes may violate this
assumption due to misconfiguration [6].

This proof further assumes that after an initial phase where
injections can happen, no new injections will happen, and no existing
injections will be withdrawn (i.e. the trace will contain no INJ
transitions). This is an unrealistic assumption. The Internet as a
whole frequently injects new routes and withdraws already injected
routes, such that the Internet is never in a truly stable state. However,
because the BGP protocol handles prefixes independently, there is
usually enough time for any particular prefix to become stable, even
if some other prefixes are still converging.

Finally, the proof assumes that none of the routers will ever
update their uninterpreted state (i.e. the trace will contain no UPD
transitions). This is again an unrealistic assumption, but works in
practice because only few routers have to choose between routes
based on a router’s uninterpreted state.

3.1.3 Configuration Guidelines
Gao & Rexford’s proof requires that every AS x configures all its
routers to follow three guidelines.

Import Guideline: Routes from customers are preferred over
routes from peers or providers. Formally, attributes imported by a
router r from a customer ic must have strictly higher preference than
attributes a′ imported by any router r′, of the same AS, from a peer
or provider ip, i.e. imp(r, ic, p,a) > imp(r′, ip, p,a′) (> is defined
in Section 2.2.2). This guideline not only aids the Internet’s global
convergence, it also makes financial sense to the individual AS. By
preferring update messages from customers, an AS’s routers will
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prefer to forward packets to paying customers, leading to increased
revenue for the AS.

Export Guideline: Only routes involving customers are exported.
Formally, a router r of x may only export update messages m that
satisfy one of the following three conditions: m is being forwarded
to a customer, or m was directly or indirectly received from a
customer of x, or m was injected. Router r received a message from a
customer indirectly, if some router r′ of x received the message from
a customer and subsequently forwarded it inside the AS to the router
r. This guideline not only aids the Internet’s global convergence, it
also makes financial sense to the individual AS. By blocking update
messages that do not involve customers, the AS avoids establishing
routes that do not involve customers, and thus avoids having to
forward packets that neither the sender nor receiver is willing to pay
for.

Injection Guideline: Injected routes are preferred over all other
routes. Formally, AS x0’s injected attributes a0 must have strictly
higher preference than attributes a imported by any router r, of
the same AS, from any external neighbor i for the same prefix p,
i.e. imp(r0, injected, p,a0) > imp(r, i, p,a). By preferring injected
routes, and exporting them to all neighbors, an AS makes the
route’s prefix available outside the AS, which is usually the intended
behavior.

Our proof extends the above guidelines by Gao & Rexford with
the following guideline:

Internal Guideline: A router is required not to change the prefer-
ence of attributes imported or exported internally. Formally, for any
internal neighbor n of r, imp(r,n, p,a)' a and exp(r, i,n, p,a)' a
(' is defined in Section 2.2.2). This guideline extension is crucial
for our proof (see Section 3.2.1), but was overlooked by Gao &
Rexford’s original proof due to their simplified semantics of BGP.
Individual ASes have financial incentives to follow this guideline,
as it prevents internal divergence, and thus prevents unnecessary
internal traffic that the AS would have to provision resources for.
Many ASes, for example Internet2, already follow this guideline.

3.2 Convergence Proof
The goal of this section is to show that any BGP network will
converge, assuming it follows the assumptions and guidelines from
the previous Section 3.1.

A BGP network converges, iff for every execution trace of the
BGP protocol from some valid initial state, the BGP network will
eventually become stable.

Some proposition P happens eventually, iff there exists a natural
number n, such that P holds for every network state of the trace after
the first n transitions. This terminology is inspired by modal logic.

A BGP network will eventually become stable, iff every AS of
the BGP network will eventually become stable for every prefix. An
AS will eventually become stable for a prefix p, iff every router of
the AS will eventually become stable for prefix p. A router r will
eventually become stable for prefix p, iff it will eventually select
some attributes for prefix p that will never change. Formally, there
exist best attributes ar and a best incoming neighbor ir , such that: 1)
r’s Adj-RIBs-In for p and i∗r will eventually contain ar, and 2) the
imported ar will eventually be preferred over any other attributes a
for p imported from any other incoming neighbor i of r. r’s Loc-RIB
will thus eventually contain the imported attributes ar , and all of the
router’s outgoing connections will eventually become stable for p.

The connection from one router s to another router d will
eventually become stable for prefix p, iff the list of messages for
prefix p on the connection will eventually be empty. Once stable, d’s
Adj-RIBs-In for s will contain the attributes from s’s Adj-RIBs-Out
for d.
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Figure 7. Divergence Example. The AS with router r1 and r2 can
transition between the network state at tn and tn+1 forever, and is
thus not guaranteed to eventually become stable.

An initial state is valid, iff all RIBs map to na, and there are no
update messages on any connection; except that for any prefix p the
injecting router r0(p) has injected its announcement a0(p).

Going forward, we prove all statements of stability for some
given BGP network that complies with Section 3.1, some given
execution trace of that network, and some given prefix p. Our final
theorem will combine these proofs into a proof that holds for all
compliant BGP networks, traces, and prefixes.

The proof that a BGP network will converge proceeds in two
steps. Section 3.2.1 proves that a single AS will eventually become
stable, assuming that some of the incoming connections to the AS
will eventually become stable. This proof is novel. Section 3.2.2 uses
the local convergence proof to show that a BGP network converges
globally. This proof follows Gao & Rexford’s proof, but required
some novel insights.

3.2.1 Internal Stability
The goal of this section is to show that an AS will eventually become
stable, assuming that some of the incoming connections to the AS
will eventually become stable. Note that Gao & Rexford’s simplified
semantics of BGP does not accurately model interactions between
routers within a single AS, and they did not prove any results
regarding internal stability.

To motivate our guideline extensions, consider the following
proof that even without external update messages, an AS may fail to
converge internally.

Example (Internal Divergence). Without our import guideline,
there exists an AS that is not guaranteed to eventually become
stable, even assuming that all incoming connections to the AS will
eventually become stable.

Proof. Consider the example from Fig. 7. The AS x consists of two
routers r1 and r2. To show that x is not guaranteed to eventually
become stable, we construct a trace in which x’s routers keep
changing their Loc-RIBs forever.

Let the network topology surrounding e1 and e2, be such that
we can construct a partial trace where e1 and e2 will eventually
be stable, and that this trace leads to a network state where r1 has
received a message with attributes a1 from e1, and r2 has received a
message with attributes a2 from e2. The AS’s incoming connections
will thus eventually become stable.

Now consider the case where router r1 prefers the attributes a2
over a1, and router r2 prefers the attributes a1 over a2. This can for
example be implemented by increasing the pref value in the imp
function for messages received from internal routers (which violates
our internal import guideline).

Now consider the following extension of the partial trace. Each
router will select the attributes received from the external neighbor,
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Figure 8. Internal Convergence Example. The routers ra and r′a in
D dominate (their routes are better than) the AS’s other routers. The
AS will therefore eventually become stable.

and will export those attributes to the other internal router. This is
the situation at time tn in Fig. 7.

Next, consider extending the trace such that the routers receive
the attributes just sent over the internal connection. Router r1
receives a2. r1 prefers a2 over a1 and selects it. Further, r1 exports
a2 to the internal neighbor r2. exp drops a2 as demanded by rule 3
in Fig. 5. na is not equal to a1, which was previously stored in the
Adj-RIBs-Out, and r1 thus withdraws the previously sent attributes
a1 from router r2 by sending na. The same happens at r2 except
with different attributes. This is the situation at time tn+1.

Next, consider extending the trace such that the routers receive
the withdraws. Now that the internal message has been withdrawn,
they select the external message and do the appropriate export. This
is the same situation as the one at time tn. We can thus continue
extending the trace indefinitely, in such a way that the AS will never
become stable.

Gao & Rexford overlooked the problem of internal stability,
because the original proof by Gao & Rexford uses a simplified
semantics of BGP where every router has instant access to all
messages received by all other routers of the same AS, and an AS
thus instantaneously becomes stable, once all incoming connections
have become stable.

The goal henceforth is to show that an AS x implementing our
guideline extension will eventually become stable, assuming that
there exists a non-empty subset D of x’s routers such that: 1) every
router r in D will eventually become non-internally stable, and 2) D
is dominant (non-internally stable and dominant are defined below).

A router will eventually become non-internally stable iff it
will eventually be stable for non-internal (i.e. either injected or
external) incoming neighbors. Formally, there exist best non-internal
attributes ar and a best non-internal incoming neighbor ir , such that:
1) r’s Adj-RIBs-In for i∗r will eventually contain ar, and 2) the
imported ar will eventually be preferred over any other attributes
a imported from any other non-internal incoming neighbor i of r.
Once non-internally stable, the router’s Loc-RIB might still change.

A set of non-internally stable routers D is dominant, iff the
imported best non-internal attributes of all routers in D are equally
preferred, and the imported best non-internal attributes are strictly
more preferable than any imported non-internal attributes of any
other router in the AS. This is illustrated in Fig. 8. Formally, for
any two routers r and r′ of the AS x where r is in the set D, the
following must hold: 1) If r′ is in D, then r’s imported best non-
internal attributes a∗r must have the same preference as r′’s imported
best non-internal attributes a∗r′ , i.e. a∗r ' a∗r′ . 2) If r′ is not in D,
then r’s imported best non-internal attributes a∗r must always be
strictly preferred over any imported non-internal attributes a′ of r′,
i.e. a∗r > a′.

The proof that the AS will eventually become stable proceeds in
three steps. The Internal Link Invariant shows that the attributes of
any internally sent messages have equal or worse preference than
the best non-internal attributes. Claim A shows that routers in D will

eventually become stable. Claim B shows that all other routers of x
will also eventually become stable.

Lemma (Internal Link Invariant). Eventually, the attributes of
any update message on any internal link will have equal or worse
preference than the best non-internal attributes.

Proof. Any update messages that are already on internal connections
will eventually be delivered due to fairness. It thus suffices to only
show that new update messages sent via internal connections have
equal or worse preference than the best non-internal attributes. We
have to consider two cases: 1) A router (e.g. router ra in Fig. 8)
exports an update message received from an internal neighbor (e.g.
router r′a). By rule 3 of Fig. 5, update messages from internal routers
are blocked on export to other internal routers. Thus, the router
may only send a withdraw (na), and na’s preference is less than or
equal to any attributes (see Section 2.2.2). 2) A router exports an
update message received from a non-internal neighbor (e.g. router
ea). Because of dominance, the attributes of any update message
from a non-internal neighbor are less than or equal to the best
non-internal attributes. The same will be the case for the exported
message, due to our extension to Gao & Rexford’s guidelines (see
Section 3.1.3).

Lemma (Claim A). Any router r in D (e.g. router ra) will eventually
become stable.

Proof. By the definition of dominance, we already know that r’s non-
internal incoming attributes will eventually become stable. What
remains to be shown is that eventually, the router will never receive
an update message with attributes a from an internal connection
i, such that (i,a) is preferable over the router’s best non-internal
attributes (i∗r ,a

∗
r ).

We know that the preference of a is equal or lower to the pref-
erence of a∗r by the Internal Link Invariant. Even if a’s preference
is equal to a∗r ’s preference, a∗r will be preferred because update
messages from non-internal neighbors are preferred over update
messages from internal neighbors (see Section 2.2.2).

Lemma (Claim B). Any router r not in D (e.g. router rb) will
eventually become stable.

Proof. Every routers r′ in D (e.g. router ra) will eventually become
stable by Claim A. In the process, r′ will export its best attributes to
each of its neighbors, including router r. The attributes of the update
message that is eventually received by r have equal preference to
r′’s best attributes by our extension to Gao & Rexford’s guidelines.

Eventually, r will have received the best attributes from each
dominant router. Router r is guaranteed to prefer one of these over all
other attributes, by the definition of dominance, and the preference
relation’s partial antisymmetry (see Section 2.2.2). Once this route
is selected, router r will be stable.

Theorem (Internal Stability). An AS will eventually become sta-
ble, assuming that a non-empty subset D of the AS’s routers will
eventually become non-internally stable, and the set of routers D is
dominant.

Proof. By Claim A and Claim B.

3.2.2 Global Convergence
The proof of global convergence proceeds in three steps. The Path
Invariant shows that any update message will first steadily increase
in its AS level, and then steadily decrease in its AS level. Gao &
Rexford assumed this invariant, but neither stated nor proved it
explicitly. Claim 1 shows that Phase 1 ASes ((in)direct providers of
the injecting AS x0) will eventually become stable. Claim 2 shows
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*
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Figure 9. Path Invariant. Any update message first traverses any
(indicated by ∗) number of (including 0) customer-to-provider
connections, then an optional (indicated by ?) peer connection, and
finally any number of provider-to-customer connections.

AS

customer to
provider

peer

x1 x2

Phase 1 Phase 2

x0

Figure 10. Global Stability Example. Illustrates a BGP network
where AS x1 is connected via all possible relationships (customer-
to-provider, provider-to-customer, and peer) to various neighboring
ASes from all Phases (Phase 1 and Phase 2). The same is true of
x2. Customer-to-provider relationships from Phase 1 to Phase 2 are
impossible.

that Phase 2 ASes (all other ASes) will also eventually become
stable.

Lemma (Path Invariant). Any in-flight update message on a
connection between AS x and x′ is in one of three stages (as
illustrated by Fig. 9): Rising: the message’s AS level has so far
strictly increased with every forwarding. This means that x is an
(in)direct provider of x0, and x′ is a provider of x. Gliding: after the
message’s AS level strictly increased with every forwarding, it is
now sent to a peer. This means that x is an (in)direct provider of x0,
and x′ is a peer of x. Falling: the message’s AS level has previously
increased, potentially glided, and is now decreasing. This means
that x is a provider of x′.

Proof. This invariant is a consequence of Gao & Rexford’s export
guideline. A rising message (i.e. a message from a customer) can
transition to the rising, gliding, or falling stage (i.e. be forwarded
to a provider, peer, or customer); a gliding message (i.e. a message
received from a peer) can only transition to the falling stage (i.e.
be forwarded to a customer); and a falling message (i.e. a message
received from a provider) can only transition to the falling stage (i.e.
be forwarded to a customer).

Lemma (Claim 1). Every Phase 1 AS (an (in)direct provider of the
injecting AS x0) will eventually become stable.

Proof. Using well founded induction on the customer-to-provider
relationship, we have to show that any Phase 1 AS x will eventually
become stable, assuming that every Phase 1 customer AS of x will
eventually become stable. We have to consider two cases:

If x is x0, then r0 is non-internally stable, and the singleton set
containing only the router r0 is dominant, because a0 is better than
any attributes any router could receive from any non-internal source,
by the Injection Guideline. x thus eventually becomes stable by the
Internal Stability theorem.

If x is not x0 (e.g. x is the AS x1 in Fig. 10), then we first show
that the connection from every customer to x will eventually become
stable. We have to consider two cases: 1) If the customer is a Phase
1 AS, the connection will eventually be stable by the induction
hypothesis. 2) If the customer is a Phase 2 AS, the connection will
always be empty (and thus stable) by the Path Invariant — Phase
2 ASes are not (in)direct providers of x0, any message sent by a
Phase 2 AS must thus be in the falling stage, and any connections to
non-customers are thus empty. Note that Phase 2 ASes never send
any messages to Phase 1 ASes.

Knowing that the connection from every customer of x will
eventually become stable, pick the set of customer connections C
that have sent the best attributes. These attributes are preferred over
attributes from peers or providers, because of the import guidelines.
Each router connected to any customers in C is thus non-internally
stable, and the set of routers connected to any customers in C is
dominant. x thus eventually becomes stable by the Internal Stability
theorem.

Lemma (Claim 2). Every Phase 2 AS (not a Phase 1 AS) will
eventually become stable.

Proof. Using well founded induction on the provider-to-customer
relationship, we have to show that any Phase 2 AS x (e.g. x2 from
Fig. 10) will eventually become stable, assuming that every Phase 2
provider AS of x will eventually become stable.

It suffices to show that every router of x eventually becomes
non-internally stable. If this is the case, the set of routers with the
most preferred best non-internal attributes are dominant, and x thus
eventually becomes stable by the Internal Stability theorem.

A router will eventually become non-internally stable, if every
external incoming connection will eventually become stable.

Each external incoming connection is either from Phase 1 or
Phase 2. Every connection from Phase 1 will eventually become
stable by Claim 1. What remains are connections from Phase
2. There are two cases. 1) Connections from Phase 2 providers
will eventually become stable by the induction hypothesis. 2)
Connections from Phase 2 customers and peers will always be
empty (and thus stable) by the Path Invariant — Phase 2 ASes are
not (in)direct providers of x0, any message sent by a Phase 2 AS must
thus be in the falling stage, and any connections to non-customers
are thus empty.

Theorem (Global Convergence). All guideline-conforming BGP
networks converge.

Proof. All ASes will eventually become stable for any given trace
and prefix p by Claim 1 and Claim 2. As the set of prefixes is finite,
this implies that the BGP network will eventually become stable
for any trace. This implies that for all traces, the BGP network
will eventually become stable, and thus that the BGP network
converges.

We have formally stated and verified the above theorem, along
with all its assumptions and lemmas, in Coq.

3.3 Comparison to Gao & Rexford’s Original Proof
The pen-and-paper proof by Gao & Rexford makes various simplify-
ing assumptions about the BGP protocol. For example, routers have
access to all the routes received by other routers within the same
AS, routes are not sent over a network but are instantly accessible
whenever a router is “activated”, and route announcements cannot
be withdrawn.

Our proof uses our semantics of RFC 4271, which eliminates
the aforementioned simplifying assumptions. Because the proof
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involves a more accurate model that introduces new complications,
the proof requires additional insights.

Most importantly, because our semantics models both intra-
domain and inter-domain routing, we have to prove local stability
for each AS (Section 3.2.1), which also requires an extension to Gao
& Rexford’s original configuration guidelines (Section 3.1.3).

Our formal proof also extends Gao & Rexford’s original proof
with novel arguments about edge-cases (e.g. about the injection,
availability, and withdraw of update messages), and with novel
invariants about BGP (e.g. if a property P eventually hold for the
update message in a router r’s Adj-RIBs-Out to some neighbor r′,
then P will eventually hold for every message on the connection
between r and r′, and P will eventually hold for the update message
in r′’s Adj-RIBs-In for r). These edge-cases and invariants are too
plentiful for an in-depth description in this paper.

Furthermore, because our proof is expressed formally in the Coq
proof assistant, it also requires more rigorous and detailed reasoning.
For example, the Path Invariant shows that any update message will
first steadily increase in its AS level, and then steadily decrease in its
AS level. Gao & Rexford assumed this invariant, but neither stated
nor proved it explicitly.

Our proof totals 5123 lines of Coq code. 432 lines formalize
the proof’s assumptions (Section 3.1), 218 lines prove global con-
vergence (Section 3.2.2), 1410 lines prove internal stability (Sec-
tion 3.2.1), and 3063 lines prove invariants about BGP (including
the Path Invariant).

4. Bagpipe
Given BGP’s vital role, there exist several checkers that statically
check for router misconfigurations [14, 15, 4]. These aim to help
ASes correctly configure their routers, but fall short of providing
guarantees about the absence of certain router misconfigurations,
because they are based on simplified semantics of BGP or no
semantics at all.

Bagpipe is one such checker. Bagpipe defines a declarative
domain-specific language that enables an AS’s BGP administrators
to express control-plane specifications, such as “the AS’s routers
will never select routes for invalid IP prefixes”, “the AS’s routers
will always forward certain routes to other ASes”, and “the AS’s
routers will always prefer routes from customers over routes from
providers”. Provided with a specification expressed in this language,
Bagpipe automatically verifies that an AS’s router configurations
satisfy the given specification.

Bagpipe’s domain-specific language is rich enough to express
specifications inferred from real AS configurations, express spec-
ifications found in the literature (such as the Gao-Rexford guide-
lines [17] and prefix-based filtering [29]), and express specifications
for 10 configuration scenarios from the Juniper TechLibrary [24, 5].

Bagpipe was initially developed without any formal semantics
of BGP, which made it difficult to know exactly what the tool was
checking, and if it did so correctly. To evaluate the usefulness of
our semantics, we formally verified the Bagpipe checker, so that
it provides rigorous guarantees about the properties that it checks.
Formally verifying Bagpipe using our semantics had two primary
benefits: 1) it deepened our understanding of the tool, e.g. it lead
to the discovery of the initial network reduction, which is the proof
that justifies Bagpipe’s verification algorithm; and 2) it ensured that
Bagpipe correctly handles all the details of RFC 4271.

The Bagpipe checker along with a pen-and-paper proof of its
soundness is described the Bagpipe paper [44], this section describes
the formal verification of Bagpipe.

4.1 Initial Network Reduction
Given a specification and router configurations for a single AS,
Bagpipe either guarantees that the specification holds, or provides a

counter example to the specification’s assertion. For example, a spec-
ification may assert that “the AS’s routers will never select routes for
invalid IP prefixes”. If Bagpipe returns that this specification holds,
it provides the guarantee that:

∀ t r p n, let (Γ,Σ) := t[n] in invalid(p)→ locRIB(Σ(r), p) = na

This means that for all traces t, routers r, and invalid prefixes
p, the router state Σ after n transition of the trace t[n], does not
have attributes selected for prefix p (Bagpipe currently assumes that
traces are free of UPD and INJ transitions for routers of the AS under
consideration).

Because the set of all traces is infinite, Bagpipe cannot verify
such a specification by searching the set of all traces for a counter
example. To address this challenge, Bagpipe only searches a finite
set of short trace prefixes from the initial state for counter examples,
instead of the infinite space of all traces.

Before the verification process, we only had a vague intuitive
understanding of why this finite search was reasonable. During the
verification process, we developed the initial network reduction,
which justifies searching only this finite space.

The initial network reduction formalizes the observation that if a
BGP router will ever select or forward a particular update message,
it would also do so immediately after initialization, i.e. before it
has received any other update messages. This is because, in the
initial network, the message does not have to compete with any
other messages during the selection phase. A BGP network thus
exhibits “maximal behavior” with respect to a given announcement
at the beginning of its execution trace. Bagpipe exploits this insight
to soundly verify a specification by searching for counter examples
only the finite set of trace prefixes starting in the initial network. We
formally verified the initial network reduction in Coq.

4.2 Bagpipe Correctly Handles RFC 4271
During our verification of Bagpipe we identified two bugs related to
RFC 4271 details. Our prototype checker (1) did not always correctly
verify specifications for na attributes, and (2) incorrectly assumed
that a router can forward announcements to itself. More broadly, by
correctly modeling the low-level details of RFC 4271, our verified
version of Bagpipe found 19 apparent errors in three ASes with over
240,000 lines of Cisco and Juniper BGP configuration. Bagpipe
was also able to guarantee 4 properties of real ASes, and verify
several textbook examples from Juniper’s technical documentation.
We formally verified Bagpipe’s soundness in Coq, our proof totals
2960 lines of Coq code.

5. C-BGP
We evaluated our BGP semantics by randomized differential test-
ing [13] against C-BGP [33], a popular open-source BGP simulator.
In randomized differential testing, randomly generated test cases
are run in multiple implementations of a system and their output
is compared; differences indicate possible bugs. Our application of
randomized differential testing both increases confidence in the se-
mantics’ correctness and demonstrates the semantics’ broader utility
by identifying a bug in C-BGP.

C-BGP enables network engineers to test configurations without
running them on real hardware. It simulates a group of routers
from any number of ASes running the BGP protocol, and allows
users to observe how announcements are exchanged in the network.
Users configure C-BGP by describing a network’s topology, and
by inputting router configurations in a format similar to the one
accepted by Cisco routers. C-BGP is used by network administrators
to determine the effects of changes to their simulation or topology; it
is therefore important that it faithfully reflects the BGP specification.

To test C-BGP (and potentially other BGP simulators), we
developed a program in Coq, based on our semantics, which
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checks sequences of BGP events (deliveries of update or withdraw
messages) to ensure that they are permitted by our semantics of
the BGP specification. We then used Coq’s extraction facility to
extract this program to Haskell. We wrote a parser for C-BGP’s
trace format in order to convert C-BGP’s text traces to checkable
sequences of events. We then used the QuickCheck random testing
tool [9] to write generators for random network topologies and BGP
configurations, which we convert to both C-BGP’s input format and
to the corresponding functions in our BGP semantics (e.g., imp).
This enables us to check C-BGP traces on randomly-generated
inputs to determine whether they agree with our semantics.

We ran this differential testing tool over 100,000 times, on
randomly generated topologies of moderate size and configurations
of moderate complexity. We did not discover any bugs in our
semantics, though we did identify bugs in the differential tester
itself. Using test cases where C-BGP disagreed with our semantics,
we discovered two issues in C-BGP.

When a router’s export filters take two messages mi1 and mi2
to the same message mo, the router will send mo twice in a row to
the same neighbor if it receives both mi1 and mi2, in violation of
Section 9.2 of the BGP specification RFC 4271 [34]. We reported
this bug to the maintainer, who acknowledged it as a bug. We have
submitted a fix to the C-BGP maintainers.

In the course of debugging our differential tester, we discovered
another issue with C-BGP: rejected update messages are not placed
in a router’s adjRIBsIn, leading to a confusing case in which a router
receives a withdraw message when there is no corresponding update
message in its adjRIBsIn. A comment in the C-BGP source code
where such a withdraw is handled indicates that the developers
thought that any case where such a message is delivered is a bug.
While this bug does not lead to incorrect observable behavior (since
it does not affect the trace of delivered messages), it is a violation of
the BGP specification.

The fact that C-BGP and our semantics agree on most test
cases provides evidence that our semantics correctly reflects the
real world.

6. Related Work
In this section, we address related work on BGP formalisms,
checkers, simulators, and software-defined networking.

BGP Formalisms The Stable Paths Problem (SPP) [20] is a
simplified model of BGP for which many theoretical results have
been proven, including that solving SPPs is PSPACE hard [8]. In
contrast to our semantics, SPP does not model all required features
of RFC 4271. For example, SPP does not model routers within an
AS, multiple connections between ASes, Routing Information Bases,
update messages and all their attributes, the full route selection
algorithm, update message withdrawals, and multiple ASes injecting
a route for the same prefix; all these features are frequently used
in practice. Extensions exist to SPP [21, 19, 37] that mitigate some
(but not all) of these limitations.

Gao & Rexford [17]’s proof of Internet-wide route convergence
is based on a simplified model of BGP which, in contrast to our
semantics, does not model all required features of RFC 4271. Gao
& Rexford’s proof has also been adapted to SPP [16].

Andreas Voellmy used Isabelle/HOL to formalize a simplified
model of BGP’s operation at the AS level [40]. Similar to SPP, it
does not model the behavior of individual routers or communication
within an AS. This model was used to verify one policy for one
textbook example configuration.

The Formally Verifiable Routing (FVR) project [42, 41, 43]
provides a formal algebra for reasoning about BGP properties (e.g.
convergence). FVR’s formalism is based on the SPP semantics and
thus has the same limitations.

BGP Checkers and Compilers Propane [4] provides a high-level
language that BGP administrators can use to specify how packets
should be routed though the network. Propane then compiles spec-
ifications written in this language to a collection of BGP router
configurations. This compilation step is currently not verified. We
believe that our semantics could be used to verify the compilation
step of Propane, and similar tools like Nettle [39], to guarantee that
their generated BGP configurations are correct by construction.

Batfish [15] is a Datalog-based BGP configuration checker,
that translates router configurations and a topology description
into Datalog facts. Given these facts, Batfish employs a set of
Datalog rules to populate each router’s routing tables. Batfish’s
model of the BGP data-plane is quite accurate, and can be used to
test properties (e.g. network convergence) given a particular set of
router configurations and received BGP announcements. However,
unlike our semantics, it cannot be used to verify properties for all
configurations and all announcements in the control plane.

rcc [14] is a BGP configuration checker; notable for its adop-
tion by AS administrators, and finding a large number of router
misconfigurations. rcc infers inter-AS relationships from routers
configurations to find violations of route validity and path visibility.
The tool is not based on a formal model of BGP, and reports both
false positives and false negatives.

BGP networks are often symmetrical, which allows BGP check-
ers to exploit techniques recently developed by Plotkin et al. [32].
Our semantics could be used to gain confidence in the correctness
of such checkers.
BGP Simulators There exist many BGP simulators [33, 35, 31,
28], that given a topology and a set of configurations, determine how
traffic will be routed. Network administrators can use simulators
both for debugging existing problems and for testing potential new
configurations. Our semantics can be used to test simulators, as well
as actual implementations of BGP routers, which have been bug
prone in the past [26].
SDN Software defined networking (SDN) is a new paradigm for
intra-domain routing (routing within an AS). With SDN, routing is
controlled by a single program running on a master router, instead of
the interplay between a multitude of individually configured routers.
Much work has been devoted to verifying the behavior of SDNs,
especially on the data plane, including language support [30], model-
checking [2, 12], and full formal verification [22, 1]. By providing
a semantics for BGP, we hope to enable similar achievements for
inter-domain routing (routing between ASes) and the control plane.

7. Conclusion
This paper presented the first mechanized formal semantics of
the BGP specification RFC 4271. The semantics is implemented
in Coq. Our semantics models all required features of the BGP
specification modulo low-level details such as bit representation of
update messages and TCP.

Three case studies showed how to use our semantics to develop
reliable proofs, checkers, and simulators (these case studies also
provided evidence for the correctness of our semantics). 1) We
formalized and extended the seminal pen-and-paper proof by Gao &
Rexford on the convergence of BGP, revealing necessary extensions
to Gao & Rexford’s original assumptions. 2) We verified the
soundness of the Bagpipe tool which automatically checks that
BGP configurations adhere to given specifications. 3) We tested the
popular BGP simulator C-BGP against our semantics, revealing one
bug in C-BGP.
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