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Abstract

Reasoning about concurrent code requires a memory consis-
tency model that specifies which writes to shared memory a
given read may see. Ambiguities or errors in these specifica-
tions can lead to bugs in both compilers and applications. Yet
architectures usually define their memory models with prose
and litmus tests—small concurrent programs that demonstrate
allowed and forbidden outcomes. Recent work has formal-
ized the memory models of common architectures, but each
formalization required substantial effort and several revisions.
As new architectures emerge, there is a growing need for
tools that can aid these efforts.

This paper presents MemSynth, the first system for auto-
matic synthesis of axiomatic memory model specifications
from litmus tests. MemSynth provides an expressive language
for specifying the axioms that define a class of memory mod-
els, sketching a memory model within that class, and writing
litmus tests. Its synthesis engine takes the axioms, sketch,
and tests as input, and searches for a model (if any) that gives
the desired outcomes on all tests. The MemSynth engine is
based on a novel embedding of bounded relational logic in
a solver-aided programming language, which enables it to
tackle complex synthesis queries intractable to existing re-
lational solvers. Thanks to this design, MemSynth can also
solve new kinds of queries, such as a uniqueness check to
discover ambiguities in memory model specifications.

We show that MemSynth can synthesize specifications for
Intel’s x86 in under a second, and for the PowerPC archi-
tecture in 16 seconds from 768 litmus tests. Our uniqueness
check demonstrates several ambiguities in the documenta-
tion for the x86 memory model. We also use MemSynth to
reproduce, debug, and automatically repair a prior paper on
comparing memory models—all in just 2 days.

1. Introduction

Reasoning about concurrent code requires a memory con-
sistency model that specifies the memory reordering behav-
iors the hardware will expose. Architectures typically define
their memory consistency model with prose and litmus tests,
small programs that illustrate allowed and forbidden out-
comes. These ambiguous definitions make reasoning about
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correctness difficult for both developers and tool builders.
Researchers have therefore argued for formalizing memory
models [43]], and have recently formalized models for com-
mon architectures, including x86 [34] and PowerPC [26]].
But each such formalization required several person-years of
effort and several revisions (e.g., [4} 5, 129} 132} 33]]).

This paper addresses the problem of synthesizing specifica-
tions of memory models from litmus tests. The core challenge
we tackle is one of language design and implementation—the
target specification language must be rich enough to express
practical memory models and their litmus tests, while sup-
porting efficient automation. Prior work [2, |5} 25 42]] has
developed many axiomatic frameworks for reasoning about
memory models. These frameworks supply basic axioms
that every memory model in the framework must follow,
expressed as first-order constraints on relations that order
memory events (such as reads and writes). But different
frameworks capture different classes of memory models, and
they evolve over time [2} 13, [7]], so no single framework is
itself a future-proof target for synthesis.

We address this challenge with MemSynth, a new meta-
framework for synthesizing axiomatic specifications of mem-
ory models from litmus tests. MemSynth provides a language
for implementing memory model frameworks, and an effi-
cient engine for synthesizing models in those frameworks.

The language and the engine are both based on a deep em-
bedding of bounded relational logic [22}38] in Rosette [36,
371, a solver-aided host language that extends Racket [19} 131]]
with support for verification and synthesis. Relational logic
combines first-order logic with relational algebra and transi-
tive closure, providing an expressive semantics that subsumes
many recent frameworks (e.g., [5} 25139, !42])). The bounded
version of the logic is decidable by reduction to boolean satis-
fiability, and existing relational solvers [22} 28 38]] are based
on such a reduction. MemSynth takes a radically simpler
approach—it delegates the reduction to its host language.
Rosette includes a symbolic evaluator that can compile the
semantics of its guest languages to efficiently-solvable SMT
constraints. The MemSynth engine layers a domain-specific
synthesis algorithm on top of this evaluator, scaling to pro-
duce specifications of real memory models in seconds.



The MemSynth synthesizer takes as input a sketch [35]]
of a memory model expressed in some framework, along
with a set of litmus tests. The sketch is a formula in rela-
tional logic, with missing expressions (called holes) over
relations defined by the framework. The holes define a fi-
nite space of candidate specifications, which the synthesizer
searches for a memory model that gives the desired outcome
on all provided tests. This search involves solving a syn-
thesis query of the form IM. Ar.7, (IE. Allow(M,T,E)) A
Arery (VE. = Allow(M, T, E)), where M is a memory model
specification, E consists of relations that encode litmus test
executions, and 7p and 7Ty contain litmus tests that demon-
strate allowed and forbidden behaviors, respectively. In princi-
ple, such a query can be discharged by relational solvers [28]
that support higher-order quantification (over the relations
E). In practice, however, our queries are intractable for these
solvers: their languages lack the constructs (such as sketches
and partial interpretations [38]]) that enable MemSynth’s em-
bedded engine to aggressively exploit domain-specific knowl-
edge, extracted from litmus tests and memory model frame-
works, for search space reduction and symmetry breaking.

But MemSynth’s novel design offers advantages that
go beyond scalable synthesis. Being embedded in Rosette,
MemSynth is a full-featured platform for rapid develop-
ment of high-performance tools for reasoning about memory
models. For example, we implement the classic verification
query [30], which determines if a litmus test is allowed
or forbidden by a memory model, in five lines of code.
The resulting implementation outperforms dedicated rela-
tional solvers [22] 28] on these queries, and is comparable
to hand-crafted verifiers for the frameworks we embed in
MemSynth [5 25]. We also implement a novel unigueness
query for refining synthesized memory model specifications
by identifying ambiguities in the set of litmus tests used
during synthesis. The uniqueness query checks whether a
memory model uniquely explains a set of litmus tests, and if
not, synthesizes another model along with a distinguishing
test that illustrates the difference between the two models.

We evaluate the scalability and utility of MemSynth’s
queries by instantiating it with an expressive framework de-
veloped by Alglave et al. [S]]. With this instantiation, Mem-
Synth synthesizes a specification for the notoriously relaxed
PowerPC architecture from 768 litmus tests in under 16 sec-
onds. including definitions for the subtle cumulativity behav-
ior of PowerPC fences. We also synthesize a specification
for the total store ordering (TSO) memory model used by
the x86 architecture in under two seconds, using the litmus
tests from the Intel Software Developer’s Manual [21]]. These
tests do not uniquely define TSO, however: our uniqueness
query finds a second model and a distinguishing test that
demonstrates the ambiguity.

We evaluate MemSynth as a tool-building platform by
reproducing results from an existing paper [25] on comparing
memory models. In the process, we automatically synthesize
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a repair for a discrepancy between our implementation and
the original paper—due to a misprint in the paper—which we
were unable to fix by hand. The repaired instantiation of the
paper’s framework was developed in 2 days by one of the au-
thors and achieves the same performance as the existing tool.

In summary, this paper makes the following contributions:

* We introduce MemSynth, a meta-framework for automat-
ically synthesizing memory model specifications from
litmus tests. MemSynth’s novel design, as an embedded
logic in a solver-aided host language, enables it to scale
to complex memory models such as PowerPC, and to
synthesize models from large sets of examples.

* We demonstrate that MemSynth can be used to answer
advanced queries about memory model specifications,
such as uniqueness, that can aid specification writers and
architecture designers in refining their models. To our
knowledge, MemSynth is the first tool to provide this
form of analysis for memory model designs.

* We show MemSynth’s utility for rapid development of
automated memory model frameworks by constructing
several tools that outperform existing counterparts.

The remainder of this paper is organized as follows.
introduces the MemSynth language for memory models and
litmus tests. [Sec. 3| presents the queries that MemSynth can
answer, and [Sec. 4] describes the algorithms to answer these
queries. shows three case studies using MemSynth, in-
cluding synthesizing and refining a specification of PowerPC
and identifying ambiguities in x86 documentation.
describes related work, and [Sec. 7] concludes.

2. MemSynth Language

MemSynth is a language and an engine for automated reason-
ing about memory models. The language extends bounded
relational logic [22) 138]] with generic support for sketch-
ing [35] and parametric support [2} 42] for specifying litmus
tests and memory models. Thanks to its parameterized design
and expressive underlying logic, MemSynth can host many
existing frameworks for reasoning about specific classes of
memory models. This section reviews the syntax and seman-
tics of relational logic; presents our extensions for expressing
sketches, litmus tests, and memory models; and describes
MemSynth,, an embedding of the Alglave et al. 5] frame-
work for memory models. We use MemSynth, to illustrate
the automated reasoning queries supported by our

engine (Sec. 4), and to demonstrate their scalability (Sec. 3).
2.1 Bounded Relational Logic with Sketches

Relational logic [22]] extends classic first-order logic with
transitive closure and relational algebra. The inclusion of clo-
sure and relations makes this logic ideally suited for reasoning
about memory models. In fact, many recent axiomatic frame-
works for memory models (e.g., [5,125,|39} 142]]) are expressed
as first-order constraints on relations that order memory



events. MemSynth is based on a new embedding of bounded
relational logic [38]] in the Rosette solver-aided language 36,
371, which extends Racket [[19] with support for verification
and synthesis. This embedding includes an explicit construct
for sketching, and its engine is optimized for answering (satis-
fiability) queries about memory models orders of magnitude
faster than general-purpose relational solvers [22, [28]].

Bounded Relational Logic. Bounded relational logic
includes the standard connectives and quantifiers of first-order
logic, along with the standard operators of relational algebra.
A specification (U; D; f) in this logic consists of a universe of
discourse U, a set of relation declarations D, and a formula
f. The universe U is a finite, non-empty set of uninterpreted
symbols. A relation declaration r : [R;, R,] introduces a free
variable r (in essence, a Skolem constant), which denotes a
relation of arity k. Each tuple in this relation consists of &
elements drawn from the universe U. The relations R; and R,
are called the lower and upper bound on r, and specify the
tuples that » must and may contain, respectively. The formula
f may refer to the variables r declared in D, but it may not
include any other free (unquantified) variables.

We define the meaning of a relational specification s =
(U;D; f) with respect to an interpretation as follows. An
interpretation I consists of a universe U(I) and a map of
variables to relations drawn from U (I). We say that I satisfies
the specification s, written as I |= s, if I and s have the same
universe of discourse (i.e., U(I) =U), if R; C I(r) C R, for
each r : [R;,R,] in D, and if the formula f evaluates to ‘true’
in the environment defined by I, i.e., [fJI = T.

The semantics of formulas and expressions are stan-
dard [38]], but we review the most relevant constructs next.
The constant univ denotes the universal relation {{a) |[a € U},
and iden is the identity relation {({a,a) | a € U }. The multiplic-
ity predicates no, some, and one constrain their argument to
contain zero, at least one, and exactly one tuple, respectively.
The cross product X — Y of two relations is the Cartesian
product of their tuples. The join X.Y of two relations is the
pairwise join of their tuples, omitting the last column of X
and first column of Y, on which the two relations are matched.
As we will see in memory model specifications
make heavy use of these constructs.

Example 1. Let the universe be U = {a,b,c,d}, X =
{{a),{c)} a relation of arity 1 with two tuples, and ¥ =
{{a,b),(b,d)} arelation of arity 2 with two tuples. We can
take the cross product, join, and transitive closure of these re-

lations as follows: X =Y = {(a,a,b), (a,b,d),{(c,a,b),(c,b,d)},

XY ={(b)},VY={(a,d)},and *Y = {{a,b), (b,d), (a,d)}.
If we provide the declarations p :1 [{},{(a), {(c),{d)}] and
q 2 [{{a,b)},{{a,b),(b,d)}], then the interpretation [ =
{p — X,q+— Y} satisfies the specification (U;p,q;no q.p)
but it does not satisfy (U; p,q;q.qing).

Expression Sketches. To support synthesis, we extend rela-
tional logic with expression sketches, which define the search
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space for a synthesis query to explore [35]. An expression
sketch G(N,T,d, k) is a finite set of expressions in relational
logic, each of which evaluates to a relation of arity k. The
set contains all expressions of arity k that can be produced
by up to d applications of the production rules of a context-
free grammar with non-terminals N and terminals 7, where
the non-terminals are drawn from expression operators in
relational logic. Expression sketches are a key difference be-
tween MemSynth and other relational logic languages such
as Kodkod [38]] and Alloy* [28]], which require another layer
of embedding—building an interpreter for relational logic
inside relational logic—to achieve the same result.

Example 2. Let X be arelation of arity 1, Y arelation of arity
2,T={X,Y},and N = {+,—}. Then G(N,T,1,1) contains
only the expressions X and X + X, G(N,T,2,1) contains X,
X+X,and X+X+X, and G(N,T,1,2) contains Y, Y +7Y,
and X — X.

Relational DSL. MemSynth is implemented as a
domain-specific language (DSL) in Rosette [36, [37]]. The
MemSynth interpreter INTERPRET(p,I) takes as input re-
lational syntax p and an interpretation /, and executes the
semantics in The interpreter represents relations of
arity k in the standard way [22. 38]], as boolean matrices of
size |U|¥, with each cell denoting the presence or absence of
a given k-tuple. Relational expressions are then interpreted
as matrix operations and formulas as constraints over matrix
entries; e.g., relational join becomes matrix multiplication.

Being embedded in Rosette [36,37], MemSynth is both
an interpreter for bounded relational logic and an engine for
answering relational satisfiability queries—such as finding
an interpretation / that satisfies a specification s, if one exists.
We obtain this engine for free by exploiting Rosette’s sym-
bolic evaluation facilities. To search for a satisfying interpre-
tation / |= s, MemSynth simply evaluates INTERPRET(s, /)
against an interpretation / that binds the free variables in
s to matrices populated with symbolic boolean values (us-
ing the INSTANTIATE function in [Fig. 2). The result of
INTERPRET(s,]) is a symbolic encoding of the semantics
of s, which is then checked for satisfiability with an off-the-
shelf SMT solver [17]]. This lifted evaluation works both on
symbolic interpretations and on specifications that are made
symbolic by the inclusion of expression sketches. This evalu-
ation strategy also offers precise state space control: by ex-
ploiting domain-specific knowledge to reduce the number of
symbolic values in /, MemSynth outperforms state-of-the-art
relational solvers [28]] as we show in[Sec. 5]

2.2 Litmus Tests and Memory Models

A litmus test is a small multi-threaded program together
with a candidate outcome, expressed as a constraint on the
program’s final state. A memory model determines whether
the outcome is allowed or forbidden for the program. For ex-
ample, the Intel Software Developer’s Manual [21]] includes
the following litmus test to illustrate a surprising behavior



specification s == (U;D;f)

universe U == {a|,a]*}

declarations D == {} | {d[,d]*}

declaration  d = ri [b,b]

bound b == {((a[,a]*))*}

formula f == true | false | eine | e=e¢ |noe |

somee |onee | not f | fandf | forf |
fimplies f | fiff f |
allx:e. f|existsx:e. f

expression eu=r|clete|e&e|e—c|ee|
e—e|re|~e|{x:e|f}

arity k = positive integer
relation r = identifier
variable x = identifier
scalar a = identifier
constant ¢ == univ | iden

[U:dy.....dn: )1 = N\ [dIIALFIIA(UI) =U)

i=1
[ [br,bul]l =by S1(r) S by
[true]Z =T
[false]/ = L
[pingll = [plI < [ql7
[p =41l = [P]I = [all
[no plr=[plIco
[some p]I=0C [p]I
[one p]l7 = [[p]i| =1
[mot f17 ==[f11
[fandg]l =[] A [l
[forgli=[f11Vv [gl!
[fimplies g]7 = [f11 = [gl/
[riftgll = [f17 < [gl!

[allx: p. f11 = Apeppr LU =)
[existsx: p. /1 = Ve Lf1ULx :=])
[l =1(r)

[univ]Z = {(a) |ac U(1)}
liden] 7 = {(a,a) |a € U(1)}
[p+all=[p]1VU[ql!
[p&qli=[p]IN[ql!
[p—all =PI\ 411

[p-all ={{p1,-- sPn\q15-- - qm) |
(P1>-spns2) € [P A g1 qm) € [9]1}

[p—all={{p1,- s Pnsq1s- - qm) |
(P1,---.pn) € [PII N a1, am) € [4]1}

[*plI=[pl1Yp.p)IU [p-p-plIU...
[~pli = {{p2,p1) | {P1,p2) € [P]I}
Hx:p| A ={ve lpl | [f1Ux:=])}

a) Abstract syntax

(b) Semantics

Figure 1. The syntax and semantics of bounded relational logic [38].

INTERPRET(p,I)

Inputs: Relational syntax p; interpretation /

Output: Encoding of the semantics of p (according to
with respect to (possibly symbolic) bindings in /

INSTANTIATE(D)

Input:  Set of relation declarations D = {d,...,d,}

Output: Interpretation / that binds each decl. r i [R;,Ry] in D to
a matrix with entries

T (uiy,-..,ui,) €ERy
mliy,...,i] = < freshSymBool()  (u;,,...,u;) € Ry \ Ry
1 otherwise

Figure 2. Functions provided by the MemSynth DSL for
interpreting relational formulas.

allowed by the x86 memory model, where reads may be
reordered with earlier writes:

Test x86/3

Thread 1 Thread 2
1: X < 1 3: Y < 1
2r1 <Y 12r24+X

Outcome: r1 =0Ar2=0
x86: allowed

We assume that all memory locations (denoted by capital
letters) and registers (denoted by r1, r2, etc.) initially hold
the value O unless stated otherwise. The instruction X <— 1
means that 1 is written to the memory location X, and r1 <Y
means that the value at memory location Y is read into register
r1. The outcome is a conjunction of equalities that specify
final values of memory (optional) and registers (mandatory).

Litmus Tests as Relations. Litmus tests have a
natural representation [39] in bounded relational logic: a test
defines a finite universe of discourse U and a set of relations
V over that universe. The universe consists of memory events
(i.e., read, write, and fence instructions), locations, threads,
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and values that appear in the test. The relations V encode the
test’s syntax and candidate outcome. The contents of each
relation are known statically (i.e., the values observed by
each read are known from the test’s outcome predicate), and
MemSynth extracts them automatically from the test.

Definition 1 (Litmus test). A litmus test is a specification
T = (U;V;true), where U is a finite universe of discourse
and V is a set of relation declarations over U that encode the
test’s syntax and candidate outcome as follows:

* Every relation declaration in'V takes the form r i [R,R).
That is, I(r) = R for all interpretations I, and we say that
r is constant.

Unary relations Event, Thread, Location, and Value par-
tition the universe U into memory events, threads, loca-
tions, and values. Value always includes the distinguished
value 0. Event is partitioned by Read, Write, Fence, and
LWFence relations, which contain reads, writes, heavy-
weight fences, and lightweight fences, respectively.

The thd relation is a function from Event to Thread.

loc and val map each event e € Read 4+ Write to the
Location and Value, respectively, that they read or write.

The program order relation po is a strict partial order
over Event (i.e., irreflexive, transitive, and asymmetric);
if (e1,e2) € po, then events ey and ey share a thread (i.e.,
e1.thd = e;.thd) and event e| executes before event e;.

The dependencies relation dep is a subset of po, if
(e1,€2) € dep then event e; depends on event e).

The final value relation final is a partial function from
Location fo Value, specifying constraints on the final state
of memory imposed by the test’s candidate outcome.

Example 3. Consider the litmus test x86/3 above. This
test defines a universe U = EULUT UV with four events
E = {ej,ez,e3,e4}, two locations L = {X,Y}, two threads
T = {t1,12}, and two values V = {0, 1}. Its relations V are:



Read = {(e2),(ea)} Write = {{e1), {e3)}

Fence ={} Thread = {(t1),(©2)}
LWFence = {} Location = {(X),(Y)}
Value = {(0), (1)} dep = {}
po = {{e1,e2),(e3,e4)} final = {}

thd = {{e1,11),(e2,11), (e3,12), (ea,12) }

loc = {{e1,X), (e2,Y),(e3.Y), (e, X) }

val = {(61 s 1>7 <6270>7 <€3, 1>7 <€47O>}
Memory Models as Constraints on Executions. A mem-
ory model consists of axioms that constrain the set of exe-
cutions allowed for a concurrent program, such as a litmus
test. An (arbitrary) execution E of a test is described by a
set of relation declarations, drawn from the test’s universe
(Def. 2). The details of E vary for different memory model
frameworks, so MemSynth is parametric in its definition of
executions. Memory models are defined abstractly
as well. A model takes as input a test 7 and an execution E,
and produces a relational formula that encodes its axioms.
The resulting formula may refer to free variables declared by
T and E, but no other free variables. Given these definitions,
we formalize the notions of allowed and forbidden outcomes

simply as relational satisfiability queries (Def. 4).

Definition 2 (Execution). An execution E = EXEC(T) of a
litmus test T = (U;V;true)) is a set of relation declarations
r [Ry,R,] such that no r appears in V and each R, R, is
drawn from U.

Definition 3 (Memory model). A memory model M(T,E) is
a function that takes as input a litmus test T and execution
E = EXEC(T), and returns a relational formula in which the
only free variables are those declared in T and E.

Definition 4 (Allowed Outcomes). Let T = (U;V;true|) be
a litmus test and E = EXEC(T) an arbitrary execution of T.
The test T is allowed by a memory model M if there exists an
interpretation I such that I |= (U;V,E;M(T,E)). Otherwise,
T is forbidden by M.

To simplify our definitions, in the rest of the paper we write
Allow(M,T,E) = (U;V,E;M(T,E))

to stand for the specification in A litmus test T is
therefore allowed by a memory model M if there exists an /
such that I = Allow(M,T,EXEC(T)).

2.3 MemSynth,

This section illustrates the definitions of executions
and memory models by instantiating them accord-
ing to an axiomatic framework by Alglave et al. [5]. The
framework uses a global-time model of memory. We call our
instantiation of this framework MemSynth,.

2.3.1 Executions

MemSynth, uses two relations, rf and ws, to define the
execution of a litmus test (Def. 3)). The reads-from relation
rf maps each write event to the reads that observe it: if
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po — (Write — Read)
rf — (thd.~thd)
po.Fence.po

PPOsc = po
grfsc L f

PPOT50

grfrso
fencesrso

(> > >

fencesgc = 0

(a) Sequential consistency (b) Total store order

Figure 3. Examples of common memory models defined by
hand in the MemSynth, framework.

(w,r) € rf, then w and r are a write and a read, respectively,
to the same address and with the same value. The write
serialization relation ws places a total order on all writes
to the same location.

Definition 5 (MemSynth, Execution). In MemSynth,, an
execution E of a litmus test T declares two relations:

* The reads-from relation rf is a subset of Write — Read,
such that if (w,r) € tf then (1) w.loc = r.loc and w.val =
rval, and (2) for all w' € Write, if W # w then (W, r) & rf.

* The write serialization relation ws is a subset of Write —
Write, such that if (wi,wz) € ws then wy.loc = wy.loc,
and for every memory location I; € Location, the relation
{(w1,w2) € ws | wy.loc =1} is a total order.

2.3.2 Memory Model

MemSynth, defines a memory model M(T, E) as a relational
formula that constructs a happens-before order and checks
its acyclicity. MemSynth, is parametric in the definition of
a memory model—several different memory models can be
defined within the same framework. This freedom is exposed
through three relations (ppo, grf,fences) that define the al-
lowed intra-thread reorderings, inter-thread reorderings, and
reorderings across fences, respectively. shows exam-
ples of these relations for the common sequential consistency
(SC) and total store order (TSO) models.

Preserved program order. The preserved program order
relation ppo defines which thread-local reorderings are al-
lowed by a memory model. Given the program order relation
po of a litmus test, ppo C po specifies the program-order
edges in po that cannot be reordered. In sequential
consistency allows no thread-local reordering, while total
store order (TSO) allows writes to be reordered beyond later
reads by excluding write-to-read edges from ppo.

Global reads-from. The global reads-from relation grf de-
fines which inter-thread communications create ordering re-
quirements between events. Given the reads-from relation rf
from an execution (Def. 2)), grf specifies the edges in rf that
must be globally ordered. In sequential consistency
allows no reordering, and so every edge in rf creates an or-
dering obligation. On the other hand, total store order (TSO)
allows threads to read their own writes early, and so if a read
observes a write on the same thread, it should not create an
ordering obligation for other threads.



fr £ (~rf.ws) + {(r,w) : Read — Write | (no rf.r) and (r.loc = w.loc)}
ghb £ ppo + ws + fr + grf + fences

(a) Auxiliary relations

Execution £ rfin (Write — Read) & (loc.~loc) & (val.~val)
andno (rf.~rf —iden)
and wsin (Write — Write) & loc.~loc
andno iden & ws
and ws.wsinws
andall a : Write. all b : Write.
(not (@ = b) anda.loc = b.loc)
implies ({a,b) inwsor (b,a) inws)
Init 2 all  : Read. (no rf.r) implies .val = 0
Uniproc £ no *(rf +ws + fr + (po & loc.~loc)) & iden
Thin £ no *(rf + dep) &iden
Final £ all w : Write. (win (univ.ws — ws.univ) and some (w.loc).final)
implies w.val = w.loc.final
Acyclic £ no *ghb & iden
Valid £ Execution and Init and Uniproc and Thin and Final and Acyclic

(b) Axioms

Figure 4. The axioms of the MemSynth, framework extends
those of Alglave et al. [S]], with changes to remove initializa-
tion write events and support outcomes for memory locations.

Fences. The fences relation fences defines which events are
ordered by a memory fence. For example, the x86 architecture
has a fence instruction mfence that serializes all memory
reads and writes issued prior to it. The TSO example in
therefore adds all memory events separated by a
fence to the fences relation. Some relaxed memory models,
such as PowerPC and ARM, also have a notion of fence
cumulativity [20], in which fence operations create orderings
between events on other threads. The rules for cumulativity
are subtle, but MemSynth correctly synthesizes them for
PowerPC in under 16 seconds, as we show in[Sec. 5.1]

Axioms Given the definitions of ppo, grf, and fences,
MemSynth, uses the axioms in [Fig. 4]to specify the memory
model M(T,E). The axioms follow Alglave et al. [3]], with
two changes for better solving performance. First, we omit
initialization write events (events that initialize each memory
location to hold the value 0). Second, we use an explicit Final
axiom to encode outcome constraints on memory locations,
rather than simulating all possible memory states as|Alglave
et al./s herd tool does [[7]].

The first five axioms in|[Fig. 4(b)| define well-formedness
of an execution E. The Execution axiom applies the rules in
to the rf and ws relations. The initialization axiom
Init states that reads absent from the reads-from relation rf
observe the initial value 0. The uniprocessor axiom Uniproc
requires executions to respect coherence at each memory
location. The thin-air axiom Thin prevents executions that
create values out of thin air (i.e., involve cyclic dependencies).
Lastly, the final value axiom Final imposes the constraints
defined by the final relation.

To define whether an execution is allowed, MemSynth,
constructs a global happens-before order ghb reflecting the
orderings between events induced by the memory model.
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The Valid axiom concludes that a litmus test 7 is allowed
by a memory model M if there exists some valid execu-
tion for which the global happens-before relation is acyclic
(i.e., no event is transitively reachable from itself). That is,
MemSynth, defines

M(T,E) = Valid

where the free variables in are instantiated with the
appropriate values from the test 7 and execution E.

3. Memory Model Queries

MemSynth is designed to efficiently answer four queries
about memory models and their specifications:

Verification determines whether a litmus test is allowed or
forbidden by a memory model;

Synthesis generates a memory model that produces desired
outcomes on a set of litmus tests;

Equivalence determines whether two memory models are
equivalent (within certain bounds); and

Uniqueness decides whether a memory model is the only
one that explains the outcomes of a set of litmus tests.

This section defines the MemSynth queries and explains their
utility in building and refining memory model specifications.
shows how to implement these queries to scale to
hundreds of litmus tests and large specifications.

3.1 Verification

The verification query, determining whether a memory model
allows a litmus test, is well-studied in the literature [5) 23,
25139, [42]]. Given a litmus test T = (U; V; true) (Def. [I) and
memory model M (Def. [3), the verification query checks
satisfiability of the formula

3r.[Allow(M,T,EXEC(T))]I

where Allow(M,T,E) = (U;V,E;M(T,E))), as defined in
If this formula is satisfiable, then M allows the test
T (Def. 4). Otherwise, M forbids T. The verification query
involves a straightforward satisfiability check that can be
discharged with any relational solver, including MemSynth.

3.2 Synthesis

The synthesis query generates a memory model that is con-
sistent with the desired outcomes for a set of litmus tests.
Given a set Tp of tests that should be allowed, and a set Ty
of tests that should be forbidden, the synthesis task is to find
a memory model M that allows all tests in 7p and forbids all
tests in 7. This query amounts to solving the formula

M. A 31 [Allow(M,T,EXEc(T))])I
TeTp

A N VI.=[Allow(M,T,EXEc(T))]I
TeTN

(D



In general, M could be any function that implements
but solving such a synthesis query would be in-
tractable. Instead, MemSynth allows the formula returned by
M to contain holes [35] which the synthesizer will complete.
The set of candidate completions for each hole is defined by
an expression sketch (Sec. 2.1)). For example, MemSynth,
defines a memory model using the ppo, grf, and fences re-
lations (Sec. 2.3.7)). To synthesize a memory model from a
set of litmus tests, these three relations are replaced with
expression sketches that define the search space to explore.

The synthesis query involves higher-order universal quan-
tification over the execution relations E for forbidden tests
Tn. The recent Alloy* solver [28]] supports finite model find-
ing for relational formulas with higher-order quantifiers, and
so could in principle solve the synthesis query. In practice,
however, these queries are intractable for Alloy* because its
language lacks crucial constructs for precisely specifying the
size and shape of the search space: expression sketches and
bounds on the contents of declared relations. These limita-
tions motivated our embedding of bounded relational logic in
Rosette (Sec.[2). In[Sec. 4.2] we present a synthesis algorithm
for solving synthesis queries that scales to large expression
sketches and many litmus tests.

3.3 Equivalence

MemSynth can compare two memory models My and Mp for
equivalence. If they are not equivalent, MemSynth generates a
distinguishing litmus test Tp on which they disagree (i.e., one
model allows 7p while the other forbids it). As with existing
work on generating distinguishing tests [24]], the equivalence
check is bounded, proving two models equivalent only up to
a bound on the size of the distinguishing test. These bounds
are defined by a symbolic litmus test, in which some relations
are not constant (in contrast to [Def. ).

Definition 6 (Symbolic litmus test). A symbolic litmus test
Ts = (U;V; f)) is a litmus test (Def.|1) with two modifications:

* Relation declarations in )V are not required to be constant:
some declarations r ;. [R;,Ry] in V may not have R; = R,,.

* The formula f is a well-formedness predicate for the
litmus test, in which the only free variables are those
declaredin V.

The equivalence query solves for a distinguishing litmus
test by checking the satisfiability of two formulas:

dry. [Ts]]lr AdILL [[AHOW(]WA7 Ts,EXEC(Tg))]](IT UI)
/\VI.ﬁ[[AHOW(MB,Ts,EXEC(Ts))]]<[T U[)

to find a test Tg on which My is weaker than Mg (i.e., M, al-
lows a test that Mp forbids), and similarly the second formula

Alr. [Ts) iy A3 [Allow (Mg, Ts, EXEC(T5))] (Ir UT)
AVI.=[Allow(My, Ts, EXEC(Ty)) ] (Ir UT)

for a test on which My is stronger than Mp. In both formu-
las, the symbolic litmus test Tg = (U;V; WFP) includes a
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well-formedness predicate WFP, a relational formula that
ensures the resulting test is a valid program. If either formula
is satisfiable, then Tp = EVAL(Ts,Ir) is a litmus test that
distinguishes the two models M4 and Mp. If both formulas
are unsatisfiable, then M4 and Mp are equivalent on all valid
tests in the search space defined by Tg.

3.4 Uniqueness

The uniqueness query checks whether a memory model M is
the only one that gives the desired outcomes a set of allowed
(7p) and forbidden (7y) litmus tests. To do so, the query
attempts to synthesize a second memory model Mg and a
distinguishing litmus test Ty such that Mg and M disagree on
Ts but agree on all tests in 7p and 7y. If such a model and test
exist, the set of given tests is ambiguous: there are two distinct
memory models that both explain the input tests 7p U Ty.
Establishing uniqueness involves checking the satisfiabil-
ity of a formula that combines synthesis and equivalence:

37, Ms. [Ts)ir A\ 3I. [Allow(Ms,T,EXEC(T))]I
T<Tp
A\ VI.=[Allow(Ms, T, EXEC(T))|
TeTn
A HI.HAHOW(MS, Ts, EXEC(Ts))]] (IT UI)

AVI-[Allow (M, Ts, EXEC(Ts))] (I UT)

and a second formula that swaps Mg and M in the final two
conjuncts (akin to the two equivalence formulas). If either
formula is satisfiable, then My is a second memory model
that produces the desired outcomes on all tests in 7p and Ty,
and Tp = EVAL(Ty,I7) is a litmus test that distinguishes M
and M. If both formulas are unsatisfiable, then M is the only
memory model that produces the desired outcomes. This
uniqueness result is with respect to two bounds: the search
space for Mg (defined using sketches, as for the synthesis
query), and the search space for the symbolic litmus test 7.

The uniqueness query identifies ambiguities in the set
of input litmus tests, and so can form the basis of a refine-
ment loop to guide the development of a memory model
specification. For example, if we take 7p to contain only the
test x86/3 from and 7y to be empty, then many
distinct memory models produce the desired outcomes (TSO,
RMO, PowerPC, etc.). If we take M to be one such model,
the uniqueness query will identify a second model that also
allows test x86/3, and produce a new distinguishing litmus
test Tp to resolve the ambiguity. By deciding the desired
outcome for 7p and adding it to the appropriate set (7p or
Tn), we can repeat the synthesis process to refine the memory
model M. The user can decide on the desired outcome for 7p
by inspecting documentation, executing the test on hardware,
consulting with system architects, or otherwise.

4. Reasoning Engine

This section presents MemSynth’s engine for answering the
queries in[Sec. 3] We show the algorithms to implement these



| function VERIFY(M,T)

2 (U;V;true) - T

3 E < EXEec(T)

4 I+« INSTANTIATE(EUV)

: @ < INTERPRET(Allow(M,T,E),I)
6 return SOLVE(¢) = SAT

7 function EXEC(T = (U;V;true))

8 I < INSTANTIATE(V) > Make an interpretation from V
9 B+ INTERPRET((Write — Read) & (loc.~loc) & (val.~val), 1)

10 B® < INTERPRET((Write — Write) & (loc.~loc), ) >|Fig. 4
11 return {rf ;2 [0,B],ws :» [0,B}*]}

Figure 5. MemSynth’s verification procedure VERIFY takes
as input a memory model M and litmus test T and returns
whether the model allows the litmus test. The EXEC proce-
dure computes relational bounds for an execution E.

queries, and describe key optimizations to make them scale
to real-world memory models.

4.1 Verification

The verification query determines whether a mem-
ory model M allows a litmus test 7. The VERIFY procedure
in[Fig. 3| takes as input a memory model M and litmus test T,
and returns true iff M allows T. The VERIFY procedure first
computes bounds for the relations in the execution E (Def 2)).
Given these bounds, it then checks the satisfiability of the
relational specification Allow(M,T,E). The implementation
of VERIFY is only five lines of code, demonstrating the utility
of our relational DSL for reasoning about memory models.

Bounds Compaction. The EXEC procedure in[Fig. 5|com-
putes bounds for the free relations in a MemSynth, execu-
tion E. A naive bound that includes every tuple of the ap-
propriate arity is sound, but tighter bounds can significantly
improve performance, since the difference between the upper
and lower bounds for each free relation defines the size of
the search space. For MemSynth,, an execution consists of
two relations rf and ws, that specify a reads-from and write
serialization order, respectively (Def. 5). EXEC computes
an upper bound for both relations based on the Execution
axioms in The rf relation contains only tuples (w,r)
where w is a write, r is a read, and both w and r access the
same location with the same value. Likewise, the ws relation
contains only tuples (wy,w) where both entries are writes
to the same location. Compared to naive upper bounds, this
more compact search space improve verification time by an
average of 24 x on the PowerPC tests discussed in

4.2 Synthesis

The synthesis query generates a memory model that
gives the desired outcomes on a set of litmus tests. The space
of candidate solutions is defined by a memory model sketch
M, which is a memory model (Def.3) with some expressions
replaced by associated expression sketches (Sec. 2.1).

Our synthesis procedure, SYNTHESIZE (Fig. 6), takes as
input a memory model sketch M, a set of allowed litmus tests
Tp, and a set of forbidden litmus tests 7y. Given these inputs,
it uses our relational DSL (embedded in Rosette) to generate
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and solve quantified formulas using an off-the-shelf SMT
solver [17]. Because MemSynth represents relations as matri-
ces of boolean values, these formulas quantify over boolean
variables. We found the Z3 SMT solver [17] to be extremely
effective at discharging these formulas—an average of 2—5x
faster than our own heavily-optimized implementation of
counterexample-guided inductive synthesis [35]].

SYNTHESIZE does not try to find a correct model for all
tests in 7p and Ty at once, since this would require encoding
every test in 7 up front. Instead, tests are added to the synthe-
sis query incrementally. The order in which tests are added
can influence synthesis performance; we choose a simple
heuristic that adds tests in increasing order of size, which
optimizes for small search spaces. This incrementalization re-
duces the size of the synthesis query substantially: in[Sec. 5.1}
we show that only 18 of 768 tests were added to the query
when synthesizing a model for PowerPC.

The SYNTHESIZE procedure is sound, and is complete
with respect to the input sketch: if a correct model exists
within the input sketch, SYNTHESIZE will return a solutionE]

Theorem 1 (Soundness). If SYNTHESIZE(M,Tp, Ty) re-
turns a memory model M, then M satisfies[Equation 1

Theorem 2 (Termination). SYNTHESIZE(M, Tp, Ty) termi-
nates when Tp and Ty are finite sets.

Theorem 3 (Completeness). If there exists a model M in the

sketch M that satisfies[Equation 1| and Tp and Ty are finite

sets, then SYNTHESIZE(M, Tp, Ty) will return a model.

4.3 Equivalence

MemSynth can determine if two memory models are equiv-
alent (up to given bounds) by searching for a litmus test on
which they disagree. Our equivalence-checking procedure
COMPARE(My,Mp, Ts) takes as input two memory models
My and Mg, and a symbolic litmus test Ts (Def. 6)), and
returns either a litmus test 7' such that VERIFY(My,T) #
VERIFY (Mg, T), or L if no such test exists within the bounds
of Ts. To search for a distinguishing test 7, COMPARE solves
the two quantified boolean equivalence formulas shown in
using the Z3 SMT solver (as with SYNTHESIZE),
with two additional optimizations described next.

Symmetry Breaking. The symbolic litmus test Ty defines
a search space that contains many redundant candidate tests.
For example, after checking a test T, there is no need to
also check a test T’ that differs from T by a permutation
of the used memory locations (e.g., T’ swaps all instances
of X and Y in the loc relation of T). To improve query
performance, the bounds computation EXEC(Ts) applies lex-
leader symmetry breaking [[15]] to rule out tests that differ only
by a permutation of threads, addresses, or values, similar to
existing work [24]]. The well-formedness predicate WFP(T)
adds several assertions to rule out uninteresting litmus tests

! Proofs are provided in supplementary material.



I function SYNTHESIZE(M, Tp, Ty)

2 S + new IncrementalSMTSolver()
3T ()

4 M < false

5 T < NEXTTEST(M, Tp, Tn, Tu)

6 while 7 # L do

7 ADDTEST(S, M, T, Tp)

8 Tu < TyUT

9 I, < SOLVE(S)
10 if I, = UNSAT then
11 return UNSAT
12 M <+ EVAL(M, 1))
13 T < NEXTTEST(M, Tp, Tn, Tu)
14 return M

> Set of used tests
> Model that forbids all outcomes
> Choose an initial test

> Add encoding of T to S

> Boolean interpretation or UNSAT
> No model exists

> Use I, to fill the holes in M
> Choose the next test

> M gives the expected outcome on all tests in Tp U Ty

(a) Main synthesis routine

I function ADDTEST(S, M, T = (U;V;true), Tp)
E < EXxEec(T)

I < INSTANTIATE(EU V)

| ¢ < INTERPRET(Allow(M,T,E),I)
5 if T € Tp then

6 ASSERT(S, @)

else

8 X < SYMBOLICS(L,E)

9 ASSERT(S,VX. -¢@)

w o

> Symbolic relational interpretation I
> Boolean encoding

> Add an allowed test

> All symbolic booleans from E in I
> Add a forbidden test

(b) Test evaluation

function NEXTTEST(M, Tp, Tn, Tv)
for T € (TpUTy)\ Ty do
if VERIFY(M,T) # (T € Tp) then

1

2 > Iterate over unused tests
3

4 return T

5

> M gives the wrong outcome on T

return L > M gives the expected outcome on all unused tests

(c) Test selection

Figure 6. MemSynth’s synthesis procedure SYNTHESIZE takes as input a memory model sketch M, a set Tp of allowed litmus
tests, and a set Ty of forbidden litmus tests, and returns a memory model that produces the given outcomes on all tests.

(e.g., ruling out tests that refer to a memory location exactly
once, which has no visible effect on inter-thread memory
reorderings). These optimizations reduce the run time of
equivalence queries by 2—-10x.

Concretization. MemSynth partially concretizes the sym-
bolic litmus test Ts. In particular, the query in is
solved with respect to a concrete topology, which fixes the
number of threads and instructions per thread (e.g., a single
query may check only tests with 2 threads of 3 instructions
each). The COMPARE procedure then implements a top-level
search over all topologies using a metasketch [[11]]. The con-
crete topology allows EXEC(7) to compute more compact
bounds (e.g., the thread relation thd becomes entirely con-
crete), which reduces the search space exponentially.

4.4 Uniqueness

The final MemSynth query checks whether a memory model
is unique for a set of allowed tests 7p and forbidden tests 7y .
The uniqueness procedure DISAMBIGUATE(M, Tp, Ty, M, Ts)
takes as input a memory model M, sets of allowed tests 7p
and forbidden tests 7y, a memory model sketch M, and a
symbolic litmus test 7. It returns a new memory model Mg
and test Tp, such that for all T € TpU Ty, VERIFY(M,T) =

VERIFY (Mg, T), but for Tp, VERIFY (M, Tp) # VERIFY (M, Tp).

Since the uniqueness query involves synthesizing a memory
model Mg and litmus test Tp, the implementation of DISAM-
BIGUATE extends SYNTHESIZE and benefits from
the same optimizations as COMPARE.

5. Case Studies

To demonstrate that MemSynth is an effective approach to
reasoning about memory models, we sought to answer three
research questions:
* Can MemSynth scale to real-world memory models such
as PowerPC and x867?
* Does MemSynth provide a basis for rapidly building
useful automated memory model tools?
* Does MemSynth outperform existing relational solvers
and memory model tools?
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5.1 Can MemSynth scale to real-world memory
models such as PowerPC and x86?

This section uses MemSynth to synthesize specifications
for the PowerPC [20] and x86 [21] memory models. The
results (summarized in [Fig. 7)) show that MemSynth scales
to complex real-world models, and that its queries can aid
in the design of memory model specifications by identifying
ambiguities and redundancies in tests and documentation.

5.1.1 Synthesizing a PowerPC Model

The PowerPC architecture is well-known for relaxed memory
behaviors that have proven difficult to formalize. Existing for-
malization efforts have identified subtle mis-specifications [4}
5, 126], making an automated process particularly appealing.
To synthesize a specification for PowerPC, MemSynth uses
a set of 768 litmus tests from |Alglave et al.| [3} 5], which
they generated with their diy tool [6]. These tests vary from
6-24 instructions across 2-5 threads, and while they examine
most aspects of the PowerPC memory model, they are not
intended to be exhaustive. We use the Alglave et al. [S] model
to decide whether each test should be allowed, although we
could use hardware observations instead, as discussed later.

We employ MemSynth, as the basis for the synthesis
process. The memory model sketch replaces the ppo, grf, and
fences relations with expression sketches for the
synthesizer to complete. All three sketches use a grammar
containing all relational expressions e in other than set
comprehension. For the barrier expression fences, we provide
a sketch of the form fences £ Feence + FiwFences Where Frence
and Fiwerence are expression sketches containing Fence and
LWFence, respectively, as terminals. This sketch expresses
the high-level insight that PowerPC features two kinds of
barriers (heavyweight sync fences and lightweight lwsync
fences) that do not interact.

Synthesis. MemSynth synthesizes a model, which we call
PPCy, that agrees with the hand-written model by |Alglave
et al.|on all 768 tests. The synthesis takes 16 seconds, and due
to its heuristics for test ordering, the incremental synthesis
algorithm uses only 18 of the 768 tests to find PPCy.



Input Tests Memory Model Sketch

ppo/grf  fences  State
Arch. |7p| |7y| Time Depth  Depth  Space
PPC 163 605 165 4 4 1406
x86 2 8 2s 4 0 230

(a) Synthesis results

Litmus Test Sketch

Num. Num. State
Arch. New Tests Time Threads Events Space
PPC 10 5.2hrs 2-4 2-6 2165
x86 3 3.4hrs 24 2-6 2l

(b) Uniqueness results

Figure 7. Results of real-world memory model synthesis and
uniqueness experiments for PowerPC and x86. We describe
the memory model and litmus test sketches both in terms of
sketch-specific parameters (e.g., expression sketch depth) and
the number of candidate solutions they contain (i.e., their state
space). The uniqueness results (b) for a given architecture use
the same memory model sketch as the synthesis results (a) for
that architecture. Synthesized models and tests are provided
in supplementary material.

Uniqueness. While the 768 tests described above cover
much of the semantics of PowerPC, they do not identify a
unique model. To resolve this ambiguity, we apply Mem-
Synth’s uniqueness query to enlarge the set until
it identifies a single model. We use the |Alglave et al. model
as an oracle to decide the correct outcome for the generated
distinguishing tests.

MemSynth finds 10 new tests to add to the set. The tests
deal with the semantics of PowerPC barriers; for example:

Test ppc/unique/5
Thread 1 Thread 2
:r1 <+ B L r2<4—A
2 lwsync 5: sync

3 A1 6B+ 2

Outcome: r1 =2Ar2=1
PowerPC: forbidden

After adding the 10 tests, the synthesized model is equivalent
to the Alglave et al. [5] model on all tests up to 6 instructions
across 4 threads, and is the only model (within our sketch)
that produces the given outcomes on all tests.

Discussion. MemSynth is complementary to test-generation
tools such as diy [15]]: these tools can seed the synthesis process
with initial tests, and MemSynth can then identify ambigu-
ities and synthesize new tests to resolve them. While our
experiments use the hand-written model of |Alglave et al.|[3]
as an oracle, we could instead determine litmus test outcomes
by manually consulting documentation or by hardware ex-
periments. For example, |Alglave et al.|[3] also ran their 768
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tests on PowerPC hardware and observed whether each be-
havior occurred. MemSynth is able use the results of these
experiments as an oracle, and synthesizes a new model PPC
in 22 seconds; the resulting model is not equivalent to PPCy.

5.1.2 x86 Ambiguity and Redundancy

The x86 architecture specifies a variant of fotal store ordering
(TSO) as its memory model. The x86 TSO memory model is
defined in the Intel Software Developer’s Manual [21]] with
prose and a set of 10 litmus tests. Though TSO is one of the
simplest memory models, formalizing the subtleties of its
x86 variant has been challenging [[12} [13} (32} 134].

We used MemSynth to synthesize a specification of the
x86 memory model. After extending MemSynth, with sup-
port for atomic operations (x86’s xchg instruction), Mem-
Synth synthesizes a formalization 7SOy that is correct on the
Intel manual’s 10 litmus tests in under two seconds.

Ambiguity. But MemSynth’s uniqueness query
determines that at least one other memory model, 7SO, also

satisfies all 10 tests, while disagreeing with 7SO on a new
distinguishing test:

Test x86/unique/2

Thread 1 Thread 2

Lr1 <A 3:B<4+1

2 r2+B 4 xchg(A, r3)

Initially: r1 =r2=0Ar3=1
Outcome: r1 =1Ar2=0

This test is a variant of the manual’s example 8-1 [21]], but
with an atomic exchange instead of a plain write to location
A. The documentation indicates that x86 should forbid this
outcome, as 7SO does but 7SO, does not.

Repeating the uniqueness query after adding this new test
finds 2 more distinguishing tests that further examine the
semantics of atomic operations. According to the documen-
tation, these tests should also be forbidden. After adding
these tests to the synthesis process, MemSynth is able to
prove that a new synthesized model 750> is unique, up to the
bounds in [Fig. 7 on the size of the model specification and
distinguishing litmus test.

Potential Redundancy. In the paper on their x86-CC for-
malization of the x86 memory model, Sarkar et al. [32] write
that “P8 may be redundant,” where P8 is a principle from the
Intel manual about which reorderings are allowed:

“88.2.3.9: Loads and stores are not reordered with
locked instructions.” [21]]

The manual section describing this principle includes two
litmus tests demonstrating forbidden reorderings. We found
that if we omit these two tests from the synthesis process, the
ambiguity experiment above re-discovers them, suggesting
they are needed to uniquely identify x86’s memory model.



5.2 Does MemSynth provide a basis for rapidly
building useful automated memory model tools?

While previous sections build on MemSynth, and the Alglave
et al. [5] framework, MemSynth is agnostic to the memory
model framework with which it is instantiated. In this section,
we present MemSynth,,;;, an instantiation of MemSynth with
a framework developed by Mador-Haim et al. [24} 25]. The
implementation took only 2 days of work by one of this pa-
per’s authors. Moreover, we use MemSynth to automatically
rectify a discrepancy between our implementation and the
paper’s results that we could not resolve by hand.

5.2.1 The MemSynthy;y Framework

Mador-Haim et al./'s memory model framework [24] 25]
was developed to contrast memory model specifications by
generating a distinguishing litmus test on which two models
disagree (as MemSynth’s equivalence query does). A memory
model is defined by a “must-not-reorder” function F (x,y) that
determines whether two instructions x and y can be reordered.
The framework places syntactic restrictions on F' such that
it admits only 90 models. The authors prove that the size of
litmus test needed to distinguish models in this set is bounded,
and that only 82 of the 90 models are semantically distinct.

5.2.2 Repairing the Framework

After implementing MemSynth,,;, we found that our results
differed from those in the original paper. The paper states
there should be 82 distinct models, but our implementation
found only 12 distinct models. Moreover, the paper identifies
the following as a distinguishing litmus test (i.e., some models
allow it while others forbid it):

Test mh/L2

Thread 1 Thread 2
X<+ 1 3r1 X
2: X <— 2 4: r2 {— X

Outcome: r1 =2Ar2=0

Yet our implementation reported this test (which contains a
load-load coherence violation allowed by SPARC’s RMO
model) to be disallowed by all 90 memory models.

Our manual investigation implicated one of the paper’s
axioms for the happens-before relations:

5. Ignore local: If x is after y in program order, then x
cannot happen before y.

Omitting this axiom from our implementation gave 86 distinct
models, not 82 as expected, and so we hypothesized that the
axiom was necessary but too strong. Since the paper correctly
reports that mh/L2 is allowed by RMO, we believe the paper’s
results are correct but this axiom was misprinted in the paper.
However, the paper’s authors were unable to provide their
implementation for us to compare against [8]].

We first tried to fix the axiom by hand, but despite several
attempts, a correct fix eluded us: our closest results identified
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Figure 8. Performance comparisons between MemSynth and
existing tools for (a) verification and (b) equivalence queries.

78 or 86 distinct models rather than 82. Instead, we used
MemSynth’s relational logic DSL to synthesize a repair. In
relational logic, axiom 5 is written as “no (~po) & hb”, where
hb is the happens-before relation for an execution. To repair
the axiom, we replaced ~po with an expression sketch of
depth 3, and synthesized a completion that gave the correct
outcomes on 9 litmus tests from the original paper on both
TSO and RMO memory models. We were able to synthesize
the following repair in 15 seconds:

no (~((po — rf) & (Write — Read))) & hb

In prose:

Sa. Ignore local: If x is after y in program order, x is a
read, y is a write, and x does not read the value written
by y, then x cannot happen before y.

The repaired axiom allows reads to see local writes early
without affecting the happens-before relation. We believe it is
intended to allow models such as TSO to observe their own
writes early by ignoring the happens-before order. With the
repaired axiom, our pairwise comparison results produce 82
distinct models, identical to the original paper.

5.3 Does MemSynth outperform existing relational
solvers and memory model tools?

This section compares MemSynth to existing relational en-
gines and memory model tools on verification, equivalence,
and synthesis queries.

Verification. shows the time for MemSynth, Al-
loy [22}138]], and herd [[7] to verify 768 PowerPC litmus tests
from[Sec. 5.1] The Alloy results use the PPCy specification
synthesized by MemSynth, while herd (configured in “speed
check” mode) already supports PowerPC. The results show
that MemSynth outperforms Alloy by 10X, and is compara-
ble to herd’s custom decision procedure for memory models.

Equivalence. We used MemSynth and Alloy* [28]] to per-
form a pairwise comparison of 10 different synthesized Pow-
erPC models. shows that MemSynth outperforms
Alloy* on most of these queries: MemSynth can solve twice
as many queries in under one second, and the hardest prob-
lem takes 25 s for MemSynth versus 18 min for Alloy*. With
symmetry breaking and concretization (which cause the large



steps in the MemSynth line in|Fig. 8(b)) disabled, MemSynth
could not solve any of the comparisons in under an hour.

Synthesis. The synthesis query requires higher-
order quantification, and so we compared MemSynth to

Alloy* [28]]. Because Alloy* does not support expression
sketches (Sec. 2), we designed a sketch M that simply
chooses between hard-coded memory models. When given
M = {SC,TSO}, both MemSynth and Alloy* return in under
a second. However, when given M = {SC,TSO,RMO},
MemSynth still returns in under a second, but Alloy* times
out after one hour. This result suggests Alloy* could not
synthesize models from complex expression sketches.

6. Related Work

MemSynth is, to our knowledge, the first tool to provide
synthesis and other higher-order queries for memory model
specifications. It builds on existing work in formalizing and
reasoning about memory models, which this section reviews.

Formalization. Few architectures formalize their memory
models (with the exception of SPARC [40] and Alpha [14])),
and so this task has fallen to researchers. A notable success
is the x86-TSO model [34], which formalizes the memory
model of the x86 architecture. This model was refined through
several papers [29, [32], which revealed ambiguities in the
x86 documentation. In[Sec. 5.1.2] MemSynth’s uniqueness
query automatically identified more such ambiguities.

Another effort has developed several formalizations of the
PowerPC architecture [4}5[7,1261133]]. The PowerPC memory
model allows many more reorderings than x86, and features
cumulative barriers to restore stronger behavior. The specifi-
cation for PowerPC is complex, and several ambiguities in
the PowerPC manual [20] required detailed experimentation
to resolve. The PowerPC formalization effort also developed
a suite of memory model experimentation tools, which we
use in[Sec. 5.1land

Formalization efforts have also brought clarity to emerging
programming language memory models, particularly C11
and C++11 [9} [10]. These efforts have helped check that
the target models provide basic guarantees about important
classes of programs—for example, that all data-race-free
programs have sequentially consistent memory ordering [[1]].
Like hardware memory models, language memory models are
also relational, and some (e.g., the Java Memory Model [27])
have already been formalized [39] in bounded relational logic.
We therefore believe the MemSynth engine can be extended
to language memory models with appropriate selection of a
framework and new structures for litmus tests (Def. I).

Frameworks. Recent work has developed generic memory
model frameworks that can be instantiated with different
architectures. The Nemos framework [42] offers axiomatic
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specifications for a variety of models, such as causal consis-
tency, but (to our knowledge) cannot express microprocessor

models such as TSO. |Alglave et al.| [2} 5, [7] developed an
axiomatic framework for microprocessor memory models. It

admits models for complex architectures such as PowerPC,
and is the basis for our MemSynth, framework
and most experiments in Mador-Haim et al. [23]] de-
veloped a framework for expressing store-atomic memory
models, which we implement in It captures common
models such as TSO, but is restricted enough to prove upper
bounds on the size of distinguishing litmus tests.

Automated Reasoning. One common application of for-
mal memory models is inserting synchronization instructions
that restore sequential consistency in a concurrent program.
Alglave et al. [S]] address this problem for PowerPC with a
specification of the platform’s barrier semantics, including
cumulativity; we automatically synthesize this specification
in Another common application is verification of
concurrent code under relaxed memory models, and several
tools have been developed for this purpose (e.g., [L6, [18]).
All of them rely on formal specifications of memory models
that can be synthesized with MemSynth.

MemSAT [39] is an automated tool that implements the
verification query of for axiomatic memory model
specifications. MemSAT found several discrepancies in the
formalization of the Java Memory Model [27]. MemSynth is
similar to MemSAT in its use of relational logic, but focuses
on hardware memory models and offers richer automated
reasoning queries including synthesis. Wickerson et al. [41]
used Alloy* [28] to implement a tool for automatically com-
paring memory consistency models, similar to MemSynth’s
equivalence query. They show results for both processor and
language memory models, but their tool does not support
MemSynth’s synthesis and uniqueness queries.

7. Conclusion

This paper presented MemSynth, a system for synthesiz-
ing axiomatic specifications of memory consistency models.
MemSynth addresses the challenge of producing memory
model formalizations, which are crucial for reasoning about
concurrent code, from example litmus tests. MemSynth’s
expressive specification language builds on an optimized
bounded relational logic engine, which serves as a plat-
form for developing other novel automated queries, such as
memory model uniqueness. We showed that MemSynth can
synthesize specifications for complex architectures, refine
those specifications by identifying ambiguities, and support
rapid development of automated memory model tools that
outperform hand-crafted versions. As new parallel architec-
tures continue to emerge, MemSynth can help formalize their
memory models rapidly and precisely.
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