SpaceSearch: A Library for Building
and Verifying Solver-Aided Tools

Konstantin Weitz

University of Washington, USA
weitzkon@cs.washington.edu

Emina Torlak

University of Washington, USA
emina@cs.washington.edu

Abstract

Many verification tools build on automated solvers. These
tools reduce problems in an application domain (e.g., data-
race detection) to queries that can be discharged with a highly
optimized solver. However, tool builders rarely formally ver-
ify these reductions to ensure that the solver’s output estab-
lishes the desired high-level property, decreasing confidence
in the soundness of these tools.

This paper presents SpaceSearch, a library for developing
solver-aided tools within a proof assistant. A user builds their
solver-aided tool in Coq against the SpaceSearch interface,
and then verifies that the results of the interface’s operations
can be lifted to establish the tool’s desired high-level proper-
ties. Once verified, the tool can be extracted to an efficient
implementation in a solver-aided language (e.g., Rosette) that
instantiates the SpaceSearch interface with calls to an un-
derlying SMT solver. This combines the strong correctness
guarantees of developing a tool in a proof assistant with the
high performance of modern SMT solvers. This paper also
introduces new optimizations for such verified solver-aided
tools, including parallelization and incrementalization.

We evaluate SpaceSearch by building and verifying two
solver-aided tools. The first, SaltShaker, checks that Rock-
Salt’s x86 semantics satisfies STOKE’s x86 specification.
SaltShaker identified 7 bugs in RockSalt and 1 bug in STOKE.
After these systems were patched by their developers, Salt-
Shaker verified their agreement in under 2h. The second tool,
BGProofss, is a verified version of an existing Border Gate-
way Protocol (BGP) router configuration checker. BGProofsg
scales to checking industrial configurations spanning over
240 KLOC, identifying 19 configuration inconsistencies with
no false positives.

Steven Lyubomirksy

University of Washington, USA
sslyu@cs.washington.edu

Michael D. Ernst

University of Washington, USA
mernst@cs.washington.edu

Stefan Heule

Stanford University, USA
sheule@cs.stanford.edu

Zachary Tatlock

University of Washington, USA
ztatlock@cs.washington.edu

1. Introduction

Solver-aided tools are used in a variety of domains includ-
ing data-race detection [15, 23, 11], memory-model check-
ing [32], and compiler optimization validation [17, 10]. Such
tools reduce complex properties in their application domain
to simpler queries that can be checked by a high performance
automated solver. In practice, the correctness of these reduc-
tions is rarely formally verified, decreasing confidence in the
soundness of the tool.

Past work has helped mitigate this problem by provid-
ing solver-aided host languages, such as Smten [34] and
Rosette [30, 31]. These languages provide a higher-level
interface to the underlying solver, which reduces the effort re-
quired to build solver-aided tools by orders of magnitude and,
because the implementation is simpler, improves confidence
in the tool’s correctness.

However, solver-aided host languages are not designed
to support formal reasoning about the meaning of solver
calls in terms of the tool’s application domain. Such rea-
soning is often necessary, since reductions to satisfiability
typically depend on sophisticated domain knowledge, making
them difficult to get right [35, 32, 10, 25]. For example, PEC
is a solver-aided tool for verifying compiler loop optimiza-
tions [10]; it decomposes the proof of equivalence between
the original and optimized code (its application domain prop-
erty) by splitting the code at its branching points, and using
an SMT solver to establish the equivalence of the resulting
straight-line code fragments. Ensuring that the equivalence of
these straight-line code fragments can be “stitched together”
to prove the optimization correct requires reasoning in a
higher-order logic [28].

Even after a problem has been reduced to a solver
query, various optimizations are typically required to achieve
good performance, including selecting the right solver data
types [27, 26, 21], query incrementalization [22], and query
parallelization [9]. Without the ability to formally reason

2016/11/22

about solver results, it is difficult to ensure that such opti-
mizations maintain the soundness of the tool.

This paper presents SpaceSearch, a library that provides
a higher-level interface for building and formally verifying
solver-aided tools within a proof assistant, i.e., SpaceSearch
is a solver-aided host language for proof assistants. Using the
expressive logic of the proof assistant, programmers can for-
mally verify that the results of SpaceSearch’s operations are
sufficient to establish the desired application domain property.
Once a solver-aided tool is implemented against this interface,
it can be extracted (translated) to a solver-aided host language
(e.g., Rosette) where the SpaceSearch interface is instanti-
ated with calls to an SMT solver. This combines the strong
correctness guarantees of developing a tool in a proof assis-
tant with the high performance of modern SMT solvers. To
enable construction of efficient tools, SpaceSearch employs a
modular design that factors its interface into multiple abstract
data types (ADTs). Thanks to this design, SpaceSearch can
be easily extended with new backends and optimizations,
including incrementalization and parallelization.

We evaluate SpaceSearch on two solver-aided tools. First,
we built and verified SaltShaker, a solver-aided tool that
checks, for all possible machine states, that an x86 instruction
executed by RockSalt’s Coq x86 semantics [19] behaves
according to its instruction specifications extracted from
STOKE [24]. SaltShaker verified the RockSalt semantics
of over 15,000 instruction instantiations in under 2h, found 7
bugs in RockSalt, and found 1 bug in STOKE. We reported
these bugs, and they were subsequently fixed by the respective
developers.

Second, we modified Bagpipe [35], a solver-aided tool
written in Rosette that checks Border Gateway Protocol
(BGP) configurations. Bagpipe’s main algorithm relies on
a sophisticated reduction from its domain-specific BGP
problem to a set of SMT queries. To gain confidence that
Bagpipe’s reduction was correctly implemented, previous
work! reimplemented Bagpipe as BGProofy in Coq and ver-
ified its reduction. But that implementation times out on all
industrial-scale configurations, so up to now, Bagpipe used
the unverified implementation. This paper describes how we
used SpaceSearch to extract BGProofy (to Rosette) to ob-
tain an efficient verified implementation dubbed BGProofss.
Instead of timing out, BGProofss with SpaceSearch runs
on industrial configurations with over 240 KLOC, finds 19
inconsistencies, and due largely to parallelization, provides
the same performance as the unverified Bagpipe prototype.

This paper’s contributions include:

e The SpaceSearch library, which exposes an interface for
constructing solver-aided tools in proof assistants, as well
as formal denotational semantics to reason about this
interface (Section 3).

! Submitted as supplemental material

Space : Type — Type
[_1: Space(A) — P(A)

empty 4 : Space(A)
single 4 : A — Space(A)
union 4 : Space(A) — Space(A) — Space(A)
bind 4, g : Space(A) — (A — Space(B)) — Space(B)
[empty] = 0
[single(z)] = {«}
[union(s,t)] = [s] U [¢]
[bind(s,)] = | [£(a)]
a€ls]
search 4 : Space(A) — option(A)

[s]=0
a € [9]

search(s) = None =
search(s) = Some(a) —

Figure 1. SpaceSearch Basic ADT.

e Various backends for SpaceSearch’s high-level interface
that enable solving search problems using brute force,
parallel, incremental, and SAT/SMT search (Section 4).

e An evaluation of SpaceSearch via the construction of two
solver aided tools: SaltShaker checks the correctness of
x86 instruction semantics in RockSalt (Section 5), and
BGProofss checks the correctness of Border Gateway
Protocol (BGP) configurations (Section 6).

2. Overview

SpaceSearch provides a high-level interface to solver op-
erations and their semantics in a proof assistant, enabling
development and verification of solver-aided tools. Instead of
exposing a low-level solver interface (e.g., SMTLib [3] data
types and commands), SpaceSearch provides a high-level in-
terface inspired by Smten [34]. This interface exposes solver
functionality as operations to construct and to automatically
solve search problems, leading to both compact high-level
encodings and high-performance solver-aided tools [34].
This section presents an overview of SpaceSearch opera-
tions for constructing and solving search problems, a deno-
tational semantics to reason about these operations, and an
explanation of how they are implemented on extraction. We
also show how to use SpaceSearch to build and verify a toy
solver-aided tool for solving n-Queens problems.

2.1 SpaceSearch Interface

The SpaceSearch interface (Figure 1) provides the search
problem type, operations to construct search problems, and an
operation to solve these problems. The SpaceSearch interface
can be implemented either naively within the proof assistant

2016/11/22

(e.g., via the use of a finite set library), or efficiently by
extraction to a solver-aided host language (e.g., Rosette).

Search Space Type. SpaceSearch uses the type Space(A)
to represent search problems, which we call search spaces,
for solutions of some type A. SpaceSearch assigns meaning
to a search problem s by providing the function [s], which
denotes s to a subset of the inhabitants of A (the powerset
P(A)). For example, the search problem of finding a “prime
number greater than 1000 can be thought of as the problem
of finding a value in the subset of numbers containing only
“prime numbers greater than 1000”.

Constructing Search Spaces. SpaceSearch provides four
operations to construct search spaces. The empty 4, operation
constructs a search problem with no solutions, single 4 ()
with exactly one solution x, and union 4 (s, t) with solutions
of type A that are either in s or t. The bind s p(s, f) oper-
ation creates a search problem by first applying f to every
solution of type A in s, and then combining the solutions of
type B from the resulting search problems into one. These
operations are subscripted by the type of solutions in the
search problem, but we omit subscripts that can be easily
inferred from the context.

Note that the operations for constructing search spaces do
not require the corresponding SpaceSearch implementation to
actually enumerate the entire space. Because ADTs hide their
implementation details, SpaceSearch is free to choose which
ever internal representation is most efficient for conducting
searches over a particular ADT’s space.

Solving Search Spaces. SpaceSearch also provides the
search operation, which takes a search space s, and either
returns None, which means that the search space s is empty;
or Some(a), which means that a is a solution to s. In the case
of multiple solutions to s, the interface only specifies that one
arbitrary solution is returned.

2.2 n-Queens Example

To illustrate SpaceSearch, we apply it to build and verify a
simple solver-aided tool for solving n-queens problems. A
solution to an n-queens problem places n queens on an 1 X n
chessboard so that no two queens attack each other, defined
as two queens sharing the same column, row, or diagonal. We
first describe a solver-aided algorithm for finding a solution
to an n-queens problem, and then use the semantics of
SpaceSearch to show the algorithm’s correctness.

n-Queens Algorithm. Figure 2 shows a SpaceSearch im-
plementation of the n-queens solver taken from a Smten
tutorial [33]. The implementation consists of three functions:

solveNQueens takes the problem size n and uses the search
operation to find a solution in the space of non-attacking
queens. This space is constructed by binding over a space
of queen placements placements(n,n), and only keeping
those placements that are non-attacking.

solveNQueens(n : Integer) : option(list(Integer X Integer))
search(bind(placements(n, n), (Aq.
if noAttack(q) then single(q) else empty))).

placements(n,0) := single([])
placements(n, S(x)) :=
bind(range(0,n), (\y : Integer.
bind(placements(n, x), (A\q : list(Integer X Integer)
single((z,y) 2 q)))))

noAttack(q : list(Integer x Integer)) : bool :=
distinct(map(fst, q)) A distinct(map(snd, q)) A
distinct(map(plus, q)) A distinct(map(minus, q))

Figure 2. N-Queens in SpaceSearch.

placements(n, m) is a space containing placements for m
queens on an n X n chessboard. The space contains the
placements that position the ™ queen (out of m) in the
x — 1™ column (z-value) and any row (y-value) contained
in the space range(0,n) of integers [0..n).

noAttack(q) checks whether a placement of queens ¢ is
non-attacking. This is implemented by checking that the
column (x-values, accessed using fst) of all queens is
distinct, that the row (y-values, accessed using snd) of all
queens is distinct, that the column plus row (z + y) of all
queens is distinct (plus sums the components of a pair),
and that the column minus row (z — y) of all queens is
distinct (menus subtracts the components of a pair).

n-Queens Algorithm Correctness. The Smten algorithm
employs two optimizations, which we prove correct using the
SpaceSearch semantics and Coq.

The first optimization reduces the space of all queen
placements to the space containing only the placements
placements(n,n) that put each queen in a different column
(z-value). We can prove this optimization correct in Coq, as
any placement of two queens on the same column leads to an
attack, and is thus not a solution.

The second optimization improves the performance of
the noAttack check. Instead of checking that no two queens
share the same diagonal (distance between the two queens’ -
values equals distance between the two queens’ y-values), it
checks that the sums and differences of all queen placements
are distinct. We prove this optimization correct by formalizing
the intuitive argument given in the Smten tutorial [33].

2016/11/22

P(A) = A — Prop

0 = Aa. L
{z} = da.a=z
sUt = Aa.s(a) Vi(a)

UaeS f(a) = Ab.Fa.s(a) A(f(a))(b)

Figure 3. Ensembles.

The tutorial uses the following tables to explain why the
optimization is correct for a 4 x 4 chessboard:

X X
01123 0 1 2 3
112314 —-1] 0 1 2

Y2345 Y= [=1[0 | 1
31415|6 3| -2|-1| 0
sum (z +y) difference (z —y)

The first table labels the cell at position z, y with the sum
x + y, while the second table labels the cell x,y with the
difference —y. Observe that any two queens with a different
sum of z,y are also on a different diagonal going from
bottom-left to top-right. Similarly, any two queens with a
different difference of z,y are also on a different diagonal
going from top-left to bottom-right. The optimized noAttack
check therefore enforces the rules of the puzzle.

While we omit both proofs for brevity, we note that Space-
Search enables us to verify the solver-aided tool that will even-
tually be executed, not just a model of an n-queens algorithm.

3. The SpaceSearch Interface

The SpaceSearch interface exposes operations to construct
and solve search problems in proof assistants. SpaceSearch
bundles its operations by functionality into Abstract Data
Types (ADTs) [16]. In general, ADTs provide (1) operations
for introducing values of some abstract type and (2) opera-
tions for eliminating values of that type. This section presents
the SpaceSearch ADTs for constructing and solving search
problems.

3.1 Constructing Search Problems

Basic ADT. SpaceSearch denotes (Figure 1) a search prob-
lem for solutions of type A to a subset of A. In the theorem
prover, this subset is represented by an ensemble—a function
that maps every value of type A to a proposition Prop (i.e.
a logical claim). An ensemble s contains the value a if and
only if the proposition s(a) is true (i.e. if s(a) is a provable
logical claim). This is summarized in Fig. 3.

Using ensembles, the empty set) is the function that maps
every element a in A to the false proposition L, the singleton
{x} is the function that maps every element a to the proposi-
tion that is only true if a is equal to «, the binary union s U ¢
is the function that maps every element a to the proposition
that is only true if a is either contained in s or in ¢, and the

Integer : Type

[_1: Integer — Z

intPlus : Integer — Integer — Integer
[intPlus(n,m)] = [n] + [m]

intFull : Space(Integer)

[intFull] = An. T

bv : N — Type

[_Jn:bv(n) = {m:N|m<2"}
bvZeroy, : bv(n)

[bvZero,] =0

Figure 4. SpaceSearch Integer and BitVector ADTs.

infinitary union J,, f(a) is the function that maps every
element b to the proposition that is only true if there exists a
value a in s, such that b is in the ensemble returned by f(a).

Infinite Search Problems. The Basic ADT is sufficient to
construct full spaces of finite types, e.g., the full space of the
bool type is: union(single(true), single(false)). But these
basic operations cannot be used to construct infinite spaces,
like the space of all integers. SpaceSearch thus provides
additional ADTs to construct infinite search spaces.

Figure 4 describes SpaceSearch’s Integer ADT, which
provides the Integer type. Elements n of type Integer are
denoted to the mathematical integers Z with [n] (this func-
tion has the same syntax as, but is different from, the function
provided by the Basic ADT). The ADT also provides con-
stants and operations on integers, such as intPlus, which are
denoted to the corresponding constants and operations on the
mathematical integers.

The most interesting value provided by the Integer ADT
is the intFull space. This space contains every one of the
infinitely many integers, and is thus denoted as the ensemble
that returns the true proposition T for every integer. As we
will see in Section 3.2, providing this space has potential
implications on the solvability of search problems.

Specialized Search Problems. While the Basic ADT can
be used to construct search problems for any of Coq’s native
types, these problems cannot always be solved efficiently.
For example, we initially tried to build SaltShaker using
Coq’s native implementation of bit vectors. But we found
that even simple space constructions, like the space of all
32-bit vectors equal to 5, cannot be searched efficiently (i.e.,
within a day). SpaceSearch therefore also exposes ADTs to
construct specialized search spaces that certain solvers can
search more efficiently.

2016/11/22

Callable : Type — Type — Type
calla,p : Callable(A,B) - A — B

callableBind o, : Space(A) — Callable(A, Space(B)) — Space(B) preciseSearch(s) = Some(a) =

callableBind(s,r) = bind(s, call(r))

Figure 5. SpaceSearch Callable ADT.

minus 4 : Space(A) — Space(A) — Space(A)

[minus(s,t)] = [s] \ [¢]
incSearch(s,t, f) := search(bind(minus(s,t), f))

Figure 6. SpaceSearch Minus ADT and Incremental Search.

Figure 4 describes SpaceSearch’s BitVector ADT, which
provides the bv(n) type for bit vectors of size n, as well as
constants and operations on bit vectors (not shown). Elements
of type bv(n) are denoted to the natural numbers up to 2”. Us-
ing the Rosette Backend, these bit vectors are extracted to the
bit vector theory provided by the underlying SMT solver. The
result is that the aforementioned space construction (of all 32-
bit vectors equal to 5) can be searched in fractions of a second.

Callable Search Problems A weakness of the SpaceSearch
interface is that it cannot be efficiently implemented directly
in Coq. To see why, consider the expression bind(s, f). No
matter how the space s is implemented, an implementation
of search in Coq will have to invoke f for every element in
s (which is very slow or impossible), because in Coq, the
only way to learn anything about a function is via function
invocation.

SpaceSearch gets around this problem with the use of
extraction. Once extracted, the SpaceSearch interface can
be efficiently implemented because the target language’s
interpreter can inspect a function’s source code, and can thus
provide an efficient implementation of bind. For example, if
the interpreter recognizes that the function f’s source code is
equivalent to single, it can just replace bind(s, f) with s.

To also allow the efficient implementation of bind in Coq,
SpaceSearch provides callableBind (Fig. 5), a version of
bind whose second argument is a value that can be called,
but depending on the Callable type, may also support other
operations, such as looking the value’s abstract syntax tree.
The callableBind operation takes as input a search space s
and a callable r, calls r on every solution in s, and returns
the search problem containing all the solutions produced
by calling r. A callable r of type Callable(A, B) can be
called using the call operation, which converts r to a function
from A to B. The callableBind(s,r) operation thus has the
semantics of bind(s, call(r)).

preciseSearch , : Space(A) — option(A)

[s] =0
a € [s]

preciseSearch(s) = None =

heuristicSearcha : Space(A) — option(option(A))
heuristicSearch(s) = None = T
heuristicSearch(s) = Some(None) = [s]=0
heuristicSearch(s) = Some(Some(a)) = a € [s]

Figure 7. Search ADTs.

Space Minus and Incremental Search All of the opera-
tions in the aforementioned ADTs are monotonic: whenever
the input spaces to these operations grow in size, the output
size grows or stays the same. However, in some applica-
tions, it is useful to be able to reduce the size of a space. In
particular, having a notion of subtracting spaces allows for
performance gains by incrementalizing searches.

Figure 6 describes the Minus ADT and the incremen-
tal search function incSearch(s,t, f). This function returns
all the solutions of bind(s, f) assuming that bind(t, f) has
already been searched and has no solutions. As a result,
incSearch(s, t, f) avoids having to perform the bind on a por-
tion of the space that is already known not to return a solution.

The incSearch(s, t, f) function is useful for applications
that apply computationally expensive functions f to spaces
that change often, but only in relatively few, easily isolated
ways. For example, SaltShaker applies a computationally ex-
pensive verification function to every element in a frequently
changing set of instructions.

3.2 Solving Search Problems

This section explains how to find solutions to search problems
constructed using SpaceSearch ADTs. SpaceSearch’s inter-
face comes with ADTs to perform both precise and heuristic
based search. These ADTs are formalized in Fig. 7.

Precise Search. The preciseSearch operation takes as in-
put a search space s and returns either None, which means
that the search space s is empty, or Some(a), which means
that a is a solution to s. In the case of multiple solutions
to s, the interface only specifies that one of them has to be
returned, without specifying which one.

Unlike Smten, preciseSearch does not wrap search results
in the IO monad. This enables the use of SpaceSearch in pure
functional code, and simplifies reasoning in Coq. It is also
safe because all SpaceSearch implementations (including
Rosette) are pure (always returning the same solution for
the same search problem), and support nested search queries.
To also support impure and non-nesting implementations,
SpaceSearch’s interface could easily be extended with another
ADT that wraps search results in the IO monad.

2016/11/22

Basic
Specialized
Callable
Heuristic

Native

Dec. Rosette

Undec. Rosette

Places

Figure 8. SpaceSearch Backend ADT Instances. A box means that the row’s
backend provides an instance of the column’s ADT. An arrow ¢ <— j means
that 7 depends on . A dotted instance is automatically derived from the
instance it depends on (indicated by a dotted arrow).

Heuristic Search. The heuristicSearch operation takes as
input a search space s and returns either Some (N one), which
means that the search space s is empty; Some(Some(a)),
which means that a is a solution to s; or None, which
means that the heuristicSearch operation could not deter-
mine whether s contains a solution or not.

The heuristicSearch operation is important because
some search problems are undecidable and thus lack a
preciseSearch operation that always returns a result. For
example, the intFull operation from the Integer ADT can
be used to construct undecidable search problems (search
problems constructed using only Basic ADT are, however,
always decidable). One of the challenges of this library is to
statically prevent the use of preciseSearch on undecidable
search problems. Section 4 shows how the separation of the
SpaceSearch interface into multiple ADTs achieves this goal.

The heuristicSearch operation is not only useful for
undecidable problems, but it can also be used to perform
QuickCheck [5] style testing. Such an implementation of
heuristicSearch (s) generates multiple elements of type
A, and tests whether one of these elements is a solution to
the search space s. If a is a solution, the operation returns
Some(Some(a)). If none of the elements is a solution, it
returns None.

4. The SpaceSearch Backends

SpaceSearch provides three backends that implement the vari-
ous ADTs contained in the SpaceSearch interface. The Native
Backend (Section 4.1) provides an inefficient, but provably
correct, implementation of SpaceSearch directly in Coq; the
Rosette Backend (Section 4.2) implements SpaceSearch in-
terfaces using Rosette primitives on extraction to Racket; and
the Places Backend (Section 4.3) implements SpaceSearch’s
Callable ADT using Distributed Places [29] on extraction to
Racket. Figure 8 provides an overview of the ADT instances
provided by each backend, as well as the dependencies be-
tween these ADTs instances.

Space(A) = list(A)

[s1(a) = in(a,9)

empty =[]

single(x) = [z]

union (s, t) = append(s,t)
bind(s, f) = flatten(map(f,s))
preciseSearch([]) = None
preciseSearch(a ::) = Some(a)
minus(s,t) = listMinus(s,t)
heuristicSearch(s) := Some(preciseSearch(s))
Callable(A, B) = A—>B

call(r) = r

callableBind (s, r) = bind(s,r)

Figure 9. SpaceSearch Native Backend.

4.1 Native Backend

The Native Backend (Fig. 9) instantiates the Basic ADT’s
Space type with the type of lists, and denotes a list to an
ensemble using the in predicate. The in(a, s) predicate is
true iff @ is an element of the list s. empty is then just the
empty list, single(x) is the singleton list of x, union(s,t)
concatenates the two lists s and ¢, and bind(s, f) first maps
f over every element in s, and then flattens the resulting list.
Infinite ADTs are not supported; for example, the Native
Backend does not provide an instance for the Integer ADT ,
because intFull—the list of all integers—does not exist.

The Native Backend instantiates the Precise ADT’s
preciseSearch operation by simply returning the first ele-
ment in the list, if there is one. This implementation therefore
depends on details of the Native Backend’s Basic ADT im-
plementation, namely that Spaces are lists. Space subtraction
also depends on the fact that Spaces are lists in the Native
Backend. The Native Backend’s implementation of minus
calls the listMinus(l, ") function, which simply removes all
elements in the list I’ from the list /.

The Heuristic and Callable ADTs are implemented using
existing operators from the Precise ADT and Basic ADT
respectively. In the Heuristic ADT, heuristicSearch just
performs a preciseSearch, and will thus never return an
imprecise result. In the Callable ADT, Callable(A, B) is
implemented as an ordinary function A — B, and call is
thus just the identity function; using this definition of callable,
callableBind is implemented as a direct invocation of bind.
The Heuristic and Callable ADT instances do not depend
on any implementation details of the Native Backend, and
can thus be automatically derived from any Precise ADT and
Basic ADT instance respectively.

We found the Native Backend useful for efficient search of
small search problems, for testing a solver aided tool directly

2016/11/22

empty £ (lambda () (assert false))
single(z) £ (lambda () x)
union(s,t) £ (lambda ()

(if (symbolic-bool) (s) (t)))
bind(s, /) 2 (lambda () ((£ (5)))
preciseSearch(s) £ (solve (s))
heuristicSearch(s) = (solve (s))

Figure 10. SpaceSearch Decidable and Undecidable Rosette Backend.

within Coq, and for verifying that SpaceSearch’s interface is
not vacuous, i.e., it can be implemented and proven correct.

4.2 Rosette Backend

The Rosette Backends provide an efficient implementation
of SpaceSearch’s ADTs using the Rosette language [30, 31],
which extends Racket with primitives for constructing solver
aided tools. A program using the Rosette Backends can be
proven correct against the SpaceSearch interface in Coq, but
can only be executed after extraction to Racket.

Rosette Background. Rosette [30, 31] extends Racket with
the following solver-aided primitives: symbolic values, which
are created using functions such as (symbolic-bool) and
(symbolic-integer); assertions, which are created using
the assert construct; and solver queries, which are made via
the solve construct. The solve(e) query takes an expression
e and tries to find a concrete assignment to any symbolic
values in e such that no assertion in e is violated. If solve
finds a valid concrete assignment c, it returns the expression
e, where symbolic values have been replaced with concrete
values from the assignment c.

For example, the following Rosette program checks De
Morgan’s law Vz y. z Ay <= —(—z V —y) by checking
that its negation is unsatisfiable:

(solve
(let ((x (symbolic-bool)) (y (symbolic-bool)))
(if (eq? (and x y) (not (or (mot x) (mot y))))
(assert false) (cons x y))))

The solve query tries to find an assignment to = and y such
that the if-condition evaluates to false to avoid the assertion
failure. If solve found such an assignment (which it does
not), it would return the tuple (cons x y) concretized with
the values of the assignment (i.e., a counterexample). With
this encoding, the verified property holds iff every execution
of the program fails.

The solve query works by translating the input expression
into an SMT-LIB [4] formula and solving it with an off-the-
shelf SMT solver.

Extraction to Rosette. SpaceSearch provides two Rosette
Backends. The Decidable Rosette Backend implements those

SpaceSearch ADTs that only allow the construction of decid-
able search problems (i.e., it does not implement the Integer
ADT), and can therefore implement the Precise ADT. The
Undecidable Rosette Backend also implements SpaceSearch
ADTs that allow the construction of undecidable search prob-
lems, but can therefore only implement the Heuristic ADT.

The Rosette Backends implement SpaceSearch ADTs us-
ing parameters, which are extracted to the Racket terms
described in Fig. 10. Coq’s built-in extraction mechanism
compiles Coq expressions to a target language, in our case
Racket. Coq’s extraction mechanism also supports the defi-
nition of extraction parameters—uninterpreted expressions
that, at extraction time, are instantiated with an expression
in the target language. In Fig. 10., p £ e indicates that the
parameter p is extracted to the target language expression e.

To a first approximation, both Rosette Backends extract
a search space to a symbolic value such that the valid
instantiations of the symbolic value are equal to the solutions
of the search space. In particular, single(x) evaluates to the
concrete value z, i.e., a symbolic value with exactly one
instantiation; union(s,t) evaluates to an symbolic value
that, depending on the value of a symbolic boolean, is
either the symbolic value s or the symbolic value t; empty
evaluates to (assert false), i.e., a symbolic value with
no instantiations; and bind(s, f) evaluates to a call of the
function f with the symbolic value s.

The preciseSearch(s) and heuristicSearch(s) operations
both call the solve query, which returns an instantiation of
the symbolic value s (if there is one), and therefore a solution
to the search problem that s represents. Rosette’s solve
query is deterministic (in that it always returns the same result
when invoked with the same arguments) when used with a
determinstic SAT/SMT solver like Z3. The only difference
between preciseSearch(s) and heuristicSearch(s) is that
for preciseSearch(s), we know that it can never be called
with an undecidable search problem, and thus that it will
always either return a solution or indicate that s is empty.

Extraction to Rosette in this simplified fashion leads to
problems with the evaluation order of symbolic values. For ex-
ample, (if (symbolic-bool) 42 (assert false)) has
the solution 42, while the following term has no solution,
because the assertion is executed before the if statement:

(let ((x (assert false))) (if (symbolic-bool) 42 x))

The Rosette Backends overcome this problem by wrapping all
symbolic values in functions that take no arguments (thunks);
and evaluating these thunks in the appropriate order.

Specialized ADT Extraction. The implementation of the
BitVector and Integer ADTs is straightforward. The ADTSs’
constants and operations are parameterized and extracted to
the appropriate Rosette constants and operations.

Using SpaceSearch’s specialized ADTs is one way to build
efficient solver-aided tools. Another way is to develop solver-
aided tools using native Coq data types, and on extraction

2016/11/22

Callable(A, B) Worker(A, B)
call(r) = runWorker(r)
callableBind(l,w) 2 (bind (map (spawn w) 1) get)

spawn := (lambda (w a)
(et ((ch (dynamic-place (quote worker-place))))
(put ch w) (put ch a) ch)))

worker-place := (lambda (ch)
(put ch (runWorker (get ch) (get ch))))

Figure 11. SpaceSearch Distributed Places Backend.

use another feature of Coq’s extraction mechanism: the fea-
ture of literally replacing Coq definitions (not parameters)
with arbitrary target language expressions. While this ap-
proach is arguably less principled, it also has two advantages.
First, it enables the efficient use of existing frameworks with
SpaceSearch (we used this feature in SaltShaker). Second,
it simplifies reasoning because native Coq types can pro-
vide judgemental equalities, whereas ADTs can only pro-
vide propositional equalities. For example, the native integer
0 + n is judgementally equal to n, whereas the ADT In-
teger intPlus(intZero,n) is only propositionally equal to
n. SpaceSearch supports both approaches, as each has its
strengths and weaknesses.

4.3 Distributed Places Backend

The Places Backend provides a parallel, distributed imple-
ment of SpaceSearch’s Callable ADT using the Distributed
Places [29] Racket library.

Distributed Places Background. The Distributed Places
library provides the dynamic-place operation that takes
the name of a function, and runs the function identified
by that name on some thread of some node of a cluster.
The dynamic-place operation also allows communication
between the thread and its caller, by creating a channel that
is both passed to the function running on the cluster and
returned to the caller of the operation. This communication
channel can be used to send and receive messages using the
put and get operations respectively.

Extraction to Places. The Places Backend implements the
Callable ADT as described in Fig. 11. The Callable ADT
does not implement the Basic ADT, but instead reuses the
existing Native Basic ADT implementation. Every Space(A)
is thus implemented as a list(A).

The callableBind(l,w) implementation first spawns a
new thread with the worker w for every element (solution)
a of the list (space) [, then gets the list of results generated
by each thread, and finally flattens these result lists into one
final result list. The spawn(w, a) operation runs the worker

w on task a and returns the result. This is implemented by
first spawning a thread with dynamic-place, where we use
quote to pass the name of the worker-place function, and
then sending the worker w and task a to that thread. Upon
receipt, the worker-place function calls the runWorker
function to run the worker w on the task a, and then sends
the result of this call back to via the communication channel.

The Places Backend must also provide instances for the
Callable type and call operation of the Callable ADT. Ideally,
the Places Backend would have the same instantiation as the
Native Backend: a Callable is a function. This would give
users of the Backend maximal flexibility by running arbitrary
functions with arbitrary inputs and outputs. However, such
an implementation is not possible because each callable, its
input, and its output are sent over a network, which means
that these values have to be serializable (i.e., it must be
possible to convert them to a list of bits), and functions are
not serializable, both in Coq and Racket.

It is, however, possible to serialize statically defined func-
tions. These are functions that have a globally visible name
at compile time; e.g., worker-place is a statically defined
function, but (lambda (x) x) is not. The dynamic-place
operation takes the name of a statically defined function,
sends that name over the network, and runs the function with
that name on the thread that it spawns. This means that users
of dynamic-place can send arbitrary functions, as long as
they are defined statically.

The Places Backend exposes this capability of the Places
library (sending statically defined functions) in Coq as fol-
lows. The Places Backend instantiates Callable and call with
two parameters, Worker and run Worker (which is a stati-
cally defined function) respectively, but the Places Backend
does not specify how to extract them. The extraction is speci-
fied by the user of the backend. Specifically, a user can define
and extract parameters representing elements of the Worker
type, and then extract run Worker to an arbitrary function.
For example, a user can specify

succ : Worker(natural, list(natural)) 2 (quote succ)
AN

sqrt : Worker(integer, list(double)) = (quote sqrt)
runWorker = (lambda (w a) (cond

((eq? w (quote succ)) (list (+ 1 a)))

((eq? w (quote sqrt)) (list (sqrt a) (= (sart a)))))),

where callableBind([1, 4, 9], sqrt) evaluates to the list [—1, 1,
—2,2, -3, 3] of the square roots of [1, 4, 9], and callable Bind(
[1,2, 3], succ) evaluates to the list [2, 3, 4] of the successors
of [1,2,3].

A user of the Places Backend must ensure serializability.
The Worker type in the Callable ADT makes this easy—
serializability is ensured when for all A and B: all values of
Worker(A, B) are serializable, and Worker(A, B) is only
inhabited if all values of A and B are serializable.

The callableBind(s,r) operation can be more efficient
than a normal bind whenever s has a medium-sized number

2016/11/22

rocksalt : instr — rocksaltOracleType — state — state
rocksaltOracle Type := N — bu(1)

spec : (i : instr) — specOracleType(i) — state — state
specOracle Type(i) := bv(specOracleBits(i))

specOracleBits : instr — N

saltShaker(i : instr) : option(state X specOracleBits(i)) :=
preciseSearch(
bind(stateFull, (Aso : state.
bind (bvFull(specOracleBits(1)), (Ao : specOracle Type(i).
if ewxists(Aw. spec(o, so) =7
rocksalt(flagOracle(w), so))
then empty else single(so,0))))))

flagOracle(w : bv(5)) : rocksaltOracleType := X in.
if 4 <5 then w(i] else bvZero

state := {
eaz : bv(32); ecz : bv(32); edx : bu(32); ebz : bu(32);
esp : bu(32); ebp : bv(32); esi: bv(32); edi: bv(32);

cf :bu(1); pf : bu(1); 2f : bu(1); sf : bu(1); of : bu(1)
}
stateFull : Space(state) :=
bind (bvFull(32), (Aeaz’. bind(bvFull(32), (Aebz'. ...
single({eax := eax’; ebx := eba’;...})))))

Figure 12. SaltShaker.

of solutions that are easily enumerable, and the callable r
performs an expensive computation.

5. SaltShaker: Verifying x86 Semantics
5.1 SaltShaker Overview

RockSalt [19] is a formal checker for the safety of Native
Client [36] code, a sandbox developed by Google. Part of this
checker is a specification of a subset of the x86 instruction set
that powers most desktops and servers today. Since Rocksalt
is developed in Coq, it has a relatively small trusted code
base, but (among other things) it relies on the correctness of
its x86 semantics. We developed SaltShaker, which checks
that the RockSalt semantics for a given instruction is sound
with respect to another x86 specification.

The official Intel x86 specification [8] (a 3,800 page
document using English and informal pseudo-code) details
that certain instructions can have undefined output; that is,
for particular locations, the CPU is free to store arbitrary

bits. RockSalt (and other formal x86 semantics) model this
explicitly by being parameterized over an oracle that provides
a stream of bits that can be used to make non-deterministic
choices to fill the undefined output locations. More formally,
RockSalt provides

rocksalt : instr — rocksaltOracle Type — state — state

which, for a given instruction, oracle and input machine state,
returns a new state that captures the result of execution the in-
struction. rocksaltOracle Type is modeled as N — bv(1) and
can be thought of as providing a stream of bits to make any
non-deterministic choice that may be required. In addition to
inherent undefined outputs in x86, RockSalt can also use the
oracle to over-approximate some outputs of an instruction if
providing a precise semantics is difficult or not needed.

To prove the soundness of RockSalt for a given subset of
instructions, we compare its semantics to another specifica-
tion. This specification similarly provides a function spec that
produces an output state given an instruction, oracle and input
state. For practical purposes, we assume that the specification
also provides a function specOracleBits : instr — N, which
returns the number of non-deterministic choice bits that are
required for a given instruction.?

We instantiate spec with the semantics found in STOKE [24],
a stochastic super-optimizer that uses SMT solvers to prove
the equivalence of optimizations on x86 programs. The speci-
fication used in STOKE was largely automatically learned [7].
The instantiation is implemented by pretty-printing STOKE’s
semantics of instructions to Rosette functions (using a small
custom extension of STOKE), and then extracting spec and
specOracleBits from that.

RockSalt and STOKE support slightly differently subsets
of the machine state, and thus in SaltShaker, state consists
of the common subset. In particular, this includes the eight
32-bit general purpose registers (eaz, ecx, edx, . . .), as well
as five 1-bit flags: ¢f (carry), pf (parity), zf (zero), sf (sign),
and of (overflow). STOKE provides a semantics for x86-64,
the 64-bit extension of x86, whereas Rocksalt only supports
32 bits. Because x86-64 is largely backwards compatible, it
is sufficient to map the parts of the machine state common to
both architectures. However, a mapping is more difficult for
memory, as addresses are 32 and 64 bits respectively. At the
moment, memory is not part of our machine state.

With these definitions, SaltShaker checks that the Rock-
Salt semantics of a given instruction ¢ is sound, where sound-
ness is defined as follows: any property P provable in Rock-
Salt about the output of ¢ also holds for the output of any
x86 specification compliant CPU implementation cpu run-
ning ¢. Such a specification compliant cpu makes a concrete
choice for all unspecified outputs and is a function of type
instr — state — state that no longer requires an oracle.

2In practice, this is easy to ensure, as the official Intel specification says
exactly how many output bits are undefined.

2016/11/22

Formally, we require
Vso P epu. (Yo. P(rocksalt(i, 0, s0))) — P(cpu(i, so))

Since the soundness property quantifies over the proposition
P, itis higher-order and thus cannot be directly encoded in the
logic of a first-order solver like Z3. Instead, SaltShaker uses
SpaceSearch to search for a start state sg and specification
oracle o, such that there is no RockSalt oracle o, for which
the specification spec(os, so) and RockSalt rocksalt(o,., so)
are equal.

To make this check practical, we make the following
(sound) approximation. Instead of existentially quantifying
over the infinite space of all RockSalt oracles, SaltShaker
searches over oracles that only provide at most five non-
deterministic bits (and returns O otherwise). This choice
is useful because most often only the flag registers are
undefined (and there are only five flags in our machine state).
Furthermore, the space of all oracles of this kind is finite
and small (2° to be precise), and therefore the existential
quantifier can be replaced by a disjunction.

This approach is incomplete but sound: whenever Salt-
Shaker returns None, then for any start state and specification
oracle, there is a RockSalt oracle such that the specification
and RockSalt are equal, which implies the soundness property.
We have proven this formally in the Coq proof assistant. Fig-
ure 12 provides all definitions and shows the implementation
of SaltShaker.

5.2 SaltShaker Evaluation

Our evaluation of SpaceSearch seeks to answer the following
research questions:

¢ Q1: Can SpaceSearch be used to build and verify solver-
aided tools that are both efficient and effective?

® (Q2: Can SpaceSearch be used with unchanged, existing
Coq developments?

® Q3: Are specialized SMT data-structures more efficient
than native Coq data-structures?

® Q4: Does incrementalizing the search improve perfor-
mance over repeated searches?

We ran SpaceSearch on all 40 opcodes that are supported
by both RockSalt and STOKE, using a single computer with
an Intel 17-4790K CPU and 32 GiB of memory. Every opcode
(e.g., add) gives rise to many different instruction variants,
for different operand sizes (8, 16 or 32 bits) and operand
types (constant or register), and every instruction variant can
be instantiated with different concrete operands (e.g., add
eax, 8 Or add al, bl). We tested 15,255 different instruction
instantiations (or just instructions, for short), using both
random operands (random registers or random constants) as
well as constants from a fixed set of “interesting* bit patterns
(e.g., 0, -1, 2™ for various n, etc.).

Q1: Verifying these instructions took 1.8h (0.43s per in-
struction), and initially 72.7% percent of instructions showed

at least 1 bit where the semantics of RockSalt and STOKE
differ. We investigated the differences, consulted the manual
to determine the correct behavior and reported all issues to
the developers of RockSalt and STOKE. After working with
the developers, we were able to trace all of the inconsistencies
to 7 underlying issues in RockSalt and 1 issue in STOKE?.
All of these have been fixed since.

Specifically, RockSalt (1) computed wrong result and flags
due to using a location that had already been overwritten (sev-
eral instructions affected); (2) incorrectly computed on 32-bit
values for 16-bit versions of bst and bsr; (3) used the wrong
bits to compute parity flag (of all instructions with a par-
ity flag); (3) computed wrong flags for addition/subtraction
with carry/borrow; (4) computed wrong flags for comparison,
addition, and subtraction; (5) computed wrong flags for mul-
tiplication; and (7) computed wrong flags for sh1d and shrd.

Despite these errors, the implementation of NaCL that was
verified using the RockSalt semantics [19] is likely correct,
because the bugs that we found were mostly in the compu-
tation of flags or were introduced in a refactoring after the
release of the verified NaCL implementation (issue 1 above).

STOKE computed the incorrect result for the rcr instruc-
tion due to a bug in STOKE's pretty-printer, which is used by
SaltShaker. The bug cannot be triggered when using STOKE
directly to reason about programs.

SaltShaker reported a false positive on 57 instruction in-
stantiations that use the RockSalt oracle to non-deterministically
set the instruction’s 32-bit results (whereas the flag oracle
we use only allows for at most 5 non-deterministic choices).
SaltShaker also found 113 instruction instantiations (1 op-
code) where the STOKE semantics is over-approximating
(i.e., leaves an output unspecified even thought the official
Intel semantics does specify its behavior).

Q2: In building SaltShaker, we made only slight modifica-
tions to RockSalt (20 LOC). Specifically, we replaced the bit
vector extraction to OCaml with an extraction to Rosette (5
LOC), extracted a frequently used combination of bit vector
operations to a more efficient implementation (6 LOC), and
rewrote a function that was inefficient due to Racket’s call by
value semantics (9 LOC).

This compatibility with existing Coq frameworks is one of
the strengths of SpaceSearch over low-level solver interfaces.
The bind operator enables this compatibility. Once we con-
structed the space of all machine states s, we were able to call
bind on s, and then just write a function for checking that
RockSalt’s x86 interpreter is equivalent to the specification
for a concrete machine state.

In fact, SaltShaker can even bind over some parts of an
instruction (e.g., all possible values of an immediate operand)
and can thus verify billions of instruction instantiations
in seconds. We did not use this feature in our evaluation,

3 We group failures by the conceptually underlying issue in the source code of
the semantics. If a single function computes the parity flag for all instructions
with a parity flag, then we consider this a single underlying issue.

2016/11/22

100 T T
independent
incremental
monolithic

time (min)

K W
—§ L e - 90 -0 999 =8
0 2 4 6 8 10 12 14 16

Figure 13. Performance gains of incrementalizing SaltShaker.

however, because STOKE, a tool that was developed with an
SMT solver in mind, only provides semantics for concrete
instruction instantiations over symbolic machine state.

Q3: We initially tried to verify SaltShaker using Coq’s
native implementation of bit vectors. While the space of
all bit vectors is efficiently searchable, even simple space
constructions, like the space of all 32-bit vectors that are equal
to 5, cannot be searched efficiently. SpaceSearch’s support
of SMT data-structures is thus crucial for the construction of
efficient solver-aided tools.

Q4: SaltShaker cannot feasibly check all x86 instruction
instantiations (the space of 32-bit immediates alone is already
too large). Instead, we recommend a user of SaltShaker only
check those instruction instantiations that are actually used in
the program that is being verified against Rocksalt, rerunning
SaltShaker whenever the set of used instructions changes.

To improve the performance of this workflow, we provide
a version of SaltShaker that takes as input a list (space) of
instructions ¢ that have already been checked and a list (space)
of instructions s that need to be checked. SaltShaker then
incrementally checks the instructions in s with:

incSearch(s, t, Mi.optionToSpace(saltShaker(1)))

Fig. 13 shows the results of the following experiment:
Given a test set of 15,255 instructions, we split it into 15
partitions of 1,017 instructions each. We compare the time to
run a monolithic search over partitions 1 through n, to run
an incremental search over partitions 1 through n assuming
that 1 through n — 1 have already been searched, and to run
saltShaker on each individual instruction in partition 7 only.

The results of this experiment show that incremental
search is much faster than monolithic search. However,
incremental search incurs a slight overhead compared to
running the verification function on only the new instructions.
This overhead is caused by the (currently) quadratic algorithm
used to subtract the spaces.

6. BGProofss: Verifying BGP Configurations
6.1 BGProofss Overview

Whenever someone wants to watch a video, send an email,
or check the news on the Internet, they have to communicate
with a server that is potentially on the other side of the world.
The Internet itself is a network made up of smaller, inter-
connected but autonomous networks run by Internet Service

verifyISP(c : Config, s : Property) : option(Path x Anno) :=

preciseSearch(callable Bind (
bind(fullPath(c), Ap.single((c, s, p))), verifyPathWorker))

verifyPathWorker : Worker(Config X Property X Path,
Space(Path x Anno)) £ (quote verifyPathWorker)
runWorker 2 (Lambda (_ csp) (verifyPath csp)))

optionToSpace(Some(a)) := single(a)
optionToSpace(None) := empty

verifyPath(c, s, p) : Space(Path x Anno) :=
optionToSpace(preciseSearch(
bind(full Announcement, (Aa : Anno.

if check(c, s, p,a) then empty else single(t,a))))

Figure 14. BGProofss.

Providers (ISPs) like Comcast, MIT, and IBM. For the end-
to-end communication over the Internet to work, each ISP
must notify all other ISPs of the destinations (like the video/e-
mail/news server) that it can communicate with (either di-
rectly, or indirectly through another ISP). ISPs do so by send-
ing route announcements via the Border Gateway Protocol
(BGP). Once all ISPs have been notified of all destinations,
anyone can communicate with anyone else on the Internet.
To ensure reliable and secure communication, ISPs must
configure their BGP routers to restrict how route announce-
ments can be used and exchanged. For example, ISPs config-
ure their routers with policies to never use route announce-
ment to bogus destinations like localhost. Because BGP gives
ISPs freedom to configure their routers, BGP provides very
few general guarantees—essentially all desirable properties
have to be proven for a particular set of router configurations.
Bagpipe is a solver-aided tool, written in Rosette, that
enables ISPs to express desirable properties and automati-
cally check them for a given set of router configurations. To
gain confidence that Bagpipe’s reduction was correctly imple-
mented, previous work reimplemented Bagpipe as BGProofy
in Coq and verified its reduction. But that implementation
times out on all industrial-scale configurations, so up to now,
Bagpipe used the unverified implementation. In this section,
we use SpaceSearch to extract BGProofy, to Rosette, dubbed
BGProofss, and thus actually run the verified algorithm.
Figure 14 describes BGProofss’s checking algorithm.
verifyISP.* Given a desirable property s : Property and a set
of router configurations ¢ : Config, the verifyISP function

4 The presentation of this algorithm is simplified. Check the original paper
for more details.

2016/11/22

checks that any announcement a : Anno forwarded along
any path p : Path through the network satisfies the desirable
property s (where the space of paths fullPath is derived from
the router configurations c).

BGProofss’s algorithm uses the Distributed Places Back-
end to check the desirable property in parallel, for the set of
all paths. To do so, verifylSP enumerates all paths, and binds
each path p (along with the configuration c and desirable prop-
erty s) to the verifyPath function (which is called indirectly
via the Worker/runWorker mechanism). The verifyPath
function in turn uses the Rosette Backend to check the desired
property symbolically for all announcements a.

BGProofss’s algorithm is subtle, as it only checks that a
single announcement forwarded along a single path satisfies
the desired property, but it does not check that multiple
announcements forwarded along multiple paths concurrently
also satisfy the desired property. However, we have proved
BGProofss is sound, based on the verification of BGProofy,.

6.2 BGProofss Evaluation

In this evaluation of SpaceSearch, we wanted to answer the
following research questions:

¢ Q1: Can SpaceSearch be used to build and verify solver-
aided tools that are both efficient and effective?

® Q2: Can SpaceSearch’s parallelization API improve
solver-aided tool performance?

Just like in the original Bagpipe paper [35], we ran an
experiment which checked desirable properties for three
ISPs: the nation-wide ISP Internet2, the regional ISP BelWii,
and the local ISP Selfnet. Their configurations total over
240,000 lines of Cisco and Juniper code. BGProofss ran
this experiment on Amazon EC2 with 2 instances of type
c3.8xlarge, each with 32 virtual-cores and 60 GB of memory.

Q1: BGProofss ran the experiment in a total of 82h,
the cost for which is about $30 using EC2 spot instances.
During the verification, BGProofss found 19 cases where
the configurations did not implement a desirable property,
verified 4 desirable properties, and issued no false positives.
This is the same as in the original paper.

Q2: BGProofss can check the desired property for each
path independently, which means that, apart from a short
startup period, BGProofss’s algorithm is embarrassingly
parallel. With over 1,000,000 paths to check, parallelization
over paths thus improved performance roughly by the number
of CPU cores used during the evaluation.

7. Related Work

Solver-aided tools. Advances in solver technology, includ-
ing SMT, SAT, and model-finding, have made solver-aided
tools a compelling option in many domains; here, we briefly
mention a handful of representative examples. Boogie [13]
and related tools [12, 11] enable general-purpose verifica-
tion by compiling verification conditions to SMT queries.

Alive [17] and PEC [10] verify compiler optimizations us-
ing a solver back end. Batfish [6] verifies data plane proper-
ties using a Datalog solver; Vericon [2] verifies policies for
software-defined networking controllers using an SMT solver.
All of these tools reduce queries in some application domain
to queries answerable by an automated solver. But none of
these tools come with mechanically-checked proofs that this
reduction is sound.

Solver-Aided Domain Specific Languages. Solver-aided
host languages like Smten [34] and Rosette [30, 31] provide a
higher-level interface to underlying solvers, and automatically
optimize the orchestration and construction of solver queries.
The higher-level interface often leads to less developer effort
and order-of-magnitude improvements in code size, while
maintaining the performance of hand-crafted solver-aided
tools [34].

SpaceSearch itself can be viewed as a solver-aided lan-
guage, whose interface is inspired by Smten, and which ex-
ecutes solver-aided tools efficiently by extracting them to
Rosette. But SpaceSearch extends the state of the art in three
ways. First, by exposing its interface in a proof assistant,
along with a formal semantics, solver-aided tool developers
can verify their optimizations and domain reductions. Second,
by providing operations for parallelization and incremental-
ization, SpaceSearch pushes the boundary on automatically
orchestrating solver queries even further. Finally, by splitting
its interfaces across various ADTs, SpaceSearch is easily ex-
tensible with advanced solver features and provides static
guarantees about a solver’s timeout behavior.

Integration of Proof Assistants and Solvers. Various SAT
solver have been built and verified in proof assistants like Coq
and Isabelle [14, 20, 18], and they provide an interface against
which solver-aided tools can be verified. But verified solvers
are currently too slow to be used in most solver-aided tools,
and do not provide the additional features of SMT solvers.

Witness checkers [1] alleviate these performance problems
by checking the correctness of each individual SMT solver
result, instead of verifying the entire solver. However, even
a witness checked solver still provides a low-level solver
interface, and is thus harder to use than the interface provided
by solver-aided languages.

Both verified and witness checked solvers can be used as
drop-in replacements for the solver invoked by SpaceSearch.

8. Conclusion

This paper presented SpaceSearch, a library that provides
a high-level interface for building and formally verifying
solver-aided tools within a proof assistant. In essence, Space-
Search is a solver-aided host language for proof assistants.
SpaceSearch provides a Coq interface against which users
build their solver-aided tool and verify that the results of the
interface’s operations establish the tool’s desired high-level
properties. Once verified, the tool can be extracted to several

2016/11/22

backends, including a backend in the Rosette solver-aided lan-
guage that instantiates the SpaceSearch interface with calls to
the Z3 SMT solver. Through its backends, SpaceSearch com-
bines the strong correctness guarantees of a proof assistant
with the high performance of modern SMT solvers.

Our evaluation on two solver-aided tools, SaltShaker and
BGProofss, showed that SpaceSearch can be used to build
and verify solver-aided tools that are both efficient and
effective. SaltShaker identified 7 bugs in RockSalt and 1
bug in STOKE in under 2h. BGProofss scales as well as
its unverified hand-crafted predecessor, checking industrial
configurations spanning over 240 KLOC and identifying
19 configuration inconsistencies with no false positives. We
found that SpaceSearch can be used with almost unchanged
existing Coq developments; that SpaceSearch’s SMT data-
structures are more efficient than native Coq data-structures;
and that SpaceSearch’s incrementalization and parallelization
improve performance. These results show that SpaceSearch
is a practical approach to developing efficient, verified solver-
aided tools.

References

[1] M. Armand et al. “A Modular Integration of SAT/SMT
Solvers to Coq through Proof Witnesses”. In: CPP.
2011.

[2] T. Ball et al. “VeriCon: Towards Verifying Controller
Programs in Software-defined Networks”. In: PLDI.
2014.

[3] C. Barrett, P. Fontaine, and C. Tinelli. The Satisfiability

Modulo Theories Library (SMT-LIB). www . SMT-LIB. org.

2016.

[4] C. Barrett, P. Fontaine, and C. Tinelli. The Satisfiability
Modulo Theories Library (SMT-LIB). www . smt—-1ib.
org. 2016.

[5S] K. Claessen and J. Hughes. “QuickCheck: A Lightweight
Tool for Random Testing of Haskell Programs”. In:
ICFP. 2000.

[6] A. Fogel et al. “A General Approach to Network
Configuration Analysis”. In: NSDI. 2015.

[71 S. Heule et al. “Stratified Synthesis: Automatically
Learning the x86-64 Instruction Set”. In: PLDI. 2016.

[8] Intel. Intel 64 and IA-32 Architectures Software Devel-
oper Manuals, Revision 325462-057US. 2015.

[9] J.Jeon et al. “Adaptive Concretization for Parallel Pro-

gram Synthesis”. In: Computer Aided Verification -

27th International Conference, CAV 2015, San Fran-

cisco, CA, USA, July 18-24, 2015, Proceedings, Part II.

2015.

S. Kundu, Z. Tatlock, and S. Lerner. “Proving Op-

timizations Correct Using Parameterized Program

Equivalence”. In: 2009 ACM SIGPLAN Conference

on Programming Language Design and Implementa-

tion. 2009.

[10]

(11]
(12]
[13]

[14]

[15]

[16]

(17]

(18]

(19]
[20]

(21]

[22]

(23]
[24]

[25]

(26]

[27]

(28]

[29]

S. K. Labhiri, S. Qadeer, and Z. Rakamaric. “Static and
Precise Detection of Concurrency Errors in Systems
Code Using SMT Solvers”. In: CAV. 2009.

K. R. M. Leino. “Dafny: An Automatic Program Veri-
fier for Functional Correctness”. In: LPAR. 2010.

K. R. M. Leino. This is Boogie 2. Tech. rep. 2008.

S. Lescuyer and S. Conchon. “Improving Coq Propo-
sitional Reasoning Using a Lazy CNF Conversion
Scheme”. In: FroCoS 2009. 2009.

G. Li and G. Gopalakrishnan. “Scalable SMT-based
Verification of GPU Kernel Functions”. In: FSE. 2010.
B. Liskov and S. Zilles. “Programming with Abstract
Data Types”. In: Proceedings of the ACM SIGPLAN
Symposium on Very High Level Languages. 1974.

N. P. Lopes et al. “Provably Correct Peephole Optimiza-
tions with Alive”. In: PLDI. 2015.

F. Mari. “Formal verification of a modern SAT solver
by shallow embedding into Isabelle/HOL”. In: TCS 50
(2010).

G. Morrisett et al. “RockSalt: Better, Faster, Stronger
SFI for the x86”. In: PLDI. 2012.

D. Oe et al. “versat: A Verified Modern SAT Solver”.
In: VMCAI 2012.

P. Panchekha and E. Torlak. “Automated Reasoning
for Web Page Layout”. In: Proceedings of the 2016
ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Ap-
plications. 2016.

P. M. Phothilimthana et al. “Chlorophyll: Synthesis-
aided Compiler for Low-power Spatial Architectures”.
In: Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementa-
tion. 2014.

M. Said et al. “Generating Data Race Witnesses by an
SMT-based Analysis”. In: NFM. 2011.

E. Schkufza, R. Sharma, and A. Aiken. “Stochastic
Superoptimization”. In: ASPLOS. 2013.

H. Sigurbjarnarson et al. “Push-Button Verification
of File Systems via Crash Refinement”. In: OSDI’16.
2016.

H. Sigurbjarnarson et al. “Push-Button Verification of
File Systems via Crash Refinement”. In: /2th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 16). 2016.

R. Singh et al. “Modular Synthesis of Sketches Using
Models”. In: Verification, Model Checking, and Ab-
stract Interpretation - 15th International Conference,
VMCAI 2014, San Diego, CA, USA, January 19-21,
2014, Proceedings. 2014.

Z. Tatlock and S. Lerner. “Bringing Extensibility to
Verified Compilers”. In: PLDI. 2010.

K. Tew et al. “Distributed Places”. In: TFP. 2014.

2016/11/22

[30]

[31]

[32]

[33]

[34]

[35]

[36]

E. Torlak and R. Bodik. “A Lightweight Symbolic
Virtual Machine for Solver-aided Host Languages”. In:
PLDI. 2014.

E. Torlak and R. Bodik. “Growing Solver-aided Lan-
guages with Rosette”. In: Onward! 2013.

E. Torlak, M. Vaziri, and J. Dolby. “MemSAT: Check-
ing Axiomatic Specifications of Memory Models”. In:
PLDI. 2010.

R. Uhler. Tutorial 2 - Symbolic Computation. https:
//github. com/ruhler/smten/blob/master/
tutorials/T2-SymbolicComputation.txt.2014.
R. Uhler and N. Dave. “Smten with Satisfiability-based
Search”. In: OOSPLA. 2014.

K. Weitz et al. “Scalable Verification of Border Gate-
way Protocol Configurations with an SMT Solver”. In:
OOPSLA. 2016.

B. Yee et al. “Native Client: A Sandbox for Portable,
Untrusted x86 Native Code”. In: S&P. 20009.

2016/11/22

