
MATIC: Adaptation and In-Situ Canaries for
Energy-Efficient Neural Network Acceleration

Sung Kim†, Patrick Howe†, Thierry Moreau‡, Armin Alaghi‡, Luis Ceze‡, Visvesh Sathe†

Department of Electrical Engineering†, Paul G. Allen School of Computer Science and Engineering‡

University of Washington
Seattle, WA, USA

Abstract—We present MATIC (Memory Adaptive Training
with In-situ Canaries), a voltage scaling methodology that ad-
dresses the SRAM efficiency bottleneck in DNN accelerators. To
overscale DNN weight SRAMs, MATIC combines the characteris-
tics of destructive SRAM reads with the error resilience of neural
networks in a memory-adaptive training process. PVT-related
voltage margins are eliminated using bit-cells from synaptic
weights as in-situ canaries to track runtime environmental varia-
tion. Demonstrated on a low-power DNN accelerator fabricated in
65nm CMOS, MATIC enables up to 3.3× total energy reduction,
or 18.6× application error reduction.

I. INTRODUCTION

Deep neural networks (DNNs) have demonstrated state-of-
the-art performance on a variety of signal processing tasks, and
there is growing interest in DNNs for next-generation IoT and
embedded platforms. However, recent work has shown that for
accelerators that reduce or eliminate DRAM access, on-chip
SRAM dedicated to synaptic weights accounts for greater than
50% of total system power [1]. The on-chip memory problem
is particularly acute in DNNs with classifier layers, where
data-reuse techniques [2], [3] are ineffective since classifier
weights are unique, and account for greater than 80% of total
weight parameters [4]. Voltage scaling can enable significant
static and dynamic power reduction, however read and write
stability constraints have historically prevented more aggressive
scaling for SRAM - SRAM is either placed on a separate
voltage rail hundreds of millivolts higher than the rest of the
design, or the system shares a unified voltage domain. In
either case, significant energy savings from voltage scaling
remain unrealized due to SRAM operating voltage constraints,
translating to shorter operating lifetime.

II. BACKGROUND AND CONTRIBUTIONS

A. Deep Neural Networks

Deep neural networks (DNNs) are a class of bio-inspired
machine learning models that are represented as a directed
graph of neurons [5] (Figure 1). DNN operation can be divided
into two key mechanisms: (1) training and (2) inference:

(1) During inference, a neuron k in layer j implements the

composite function z(j)
k = f

(
N(j−1)

∑
i=1

w(j)
k,i z(j−1)

i

)
. z(j−1)

i denotes

the output from neuron i in the previous layer, and w(j)
k,i denotes

the weight in layer j from neuron i in the previous layer to
neuron k. f (x) is a non-linear function, typically a sigmoidal
function or rectified linear unit (ReLU).

Technical Report UW-CSE-2017-05-01

In matrix form, the neuron composite function is equivalent
to the matrix-vector product in Eq.1 (with f (x) computed
element-wise). Hence, DNN execution is especially amenable
to dataflow hardware architectures designed for linear algebra.

z(j) = f


w(j)

1,1 . . . w(j)
1,N

...
. . .

...
w(j)

M,1 . . . w(j)
M,N


z(j−1)

1
...

z(j−1)
N

= f
(

W(j)z(j−1)
)

(1)

(2) Training involves iteratively solving for weight parameters
using some variation of gradient descent. Given a weight w(j)

i,k ,
its value at training iteration n is given by

w(j)
k,i [n] = w(j)

k,i [n−1]−α
∂J

∂w(j)
k,i [n−1]

, where J is a suitable loss

function (e.g., mean-squared error or cross-entropy).

The partial derivatives of the loss function w.r.t. the weights
are computed by propagating error backwards via the chain
rule (backprop). For example, for a network with a single
hidden layer, sigmoid activations f (x) = 1/(1+e−x) and mean-
squared loss, the error gradient w.r.t. a weight w(2)

k,i is given by
∂J

∂w(2)
k,i

=
∂J

∂ z(J)
∂ z(J)

∂x
∂x

∂w(2)
k,i

. MATIC relies on the observation

that backprop makes error at the output, including artificial
error created by weight perturbations, observable by all weights
in the network.

Fig. 1. General architecture of a fully-connected DNN

B. Weight Adaptation

The simplified example in Figure 2 shows how trainable
weight parameters imbue neural networks with intrinsic re-
silience to error. The network in Figure 2(a) is initialized with
8-bit integer weights such that the network loss is zero for the

Fig. 2. (a) Weight values pre and post-adaptation. (b) Error, output value,
and error gradient characteristics across SGD iterations.

(a)

0.55 0.60 0.65 0.70 0.75
Voltage (V)

0.0
0.2
0.4
0.6
0.8
1.0

Fa
ilu

re
 R

at
e

(b)

Fig. 3. (a) SRAM 6T bit-cell with mismatch-induced input offset (b) Read-
failure rate with Monte Carlo simulation of 10K bit-cells.

training set. The network uses a sigmoid activation function, and
square loss with stochastic gradient descent (SGD) for training
[5]. At iteration 1 we apply a static mask to bit ’4’ of w(2)

1,2
to simulate a fault, and observe the adaptation of surrounding
weights after several iterations of SGD. Figure 2(b) shows that
while masking w(2)

1,2 initially degrades error performance, the
surrounding weights adapt after several iterations of SGD; the
large, non-zero gradients illustrate the backprop mechanism
compensating for the error injected to w(2)

1,2.

C. SRAM Read Failures

Figure 3 shows a simplified 6T SRAM bit-cell model.
Variation-induced mismatch between bit-cell devices creates
an inherent state-independent offset [6]. This offset results in
each bitcell having a “preferred state.” For instance, the bit-cell
depicted in Figure 3 favours driving out to logic ’0’. Due to
statistical variation, larger memories are likely to see a number
of cells with significant offset error.

As supply voltage scales, the diminished noise margin
allows the bit-cell to be flipped to its preferred state during a
read. Once flipped, the bit-cell retains state, favouring its (now
incorrect) bit value due to the persistence of the built-in offset.
Consequently, the occurrence of memory bit-cell read failure at
low supply voltages is random in space, but essentially provides
stable read outputs consistent with its preferred state. The read
failures described above are in distinct from bitline access-time
failures, which can be corrected with ample timing margin.

D. Contributions

In this paper we present MATIC (Memory Adaptive
Training with In-situ Canaries), the first hardware/algorithm
co-design methodology that exploits the inherent error tolerance
of DNNs to aggressively scale the voltage of weight SRAMs
with little to no accuracy loss. In addition to the development
of MATIC, we design and implement SNNAC, a low-power

Fig. 4. Overview of the MATIC compilation and deployment flow.

Fig. 5. The modified DNN training algorithm and injection masking process.

DNN accelerator for energy-constrained mobile devices, and
demonstrate state-of-the-art performance.

III. VOLTAGE SCALING FOR DNN ACCELERATORS

MATIC (Figure 4) uses two techniques to operate SRAMs
past their point of failure while maintaining application
accuracy across PVT variation: (A.) Memory-adaptive training,
and (B.) in-situ synaptic canaries.

A. Memory-adaptive Training

Memory-adaptive training leverages the inherent resilience
of neural networks to adapt around bit-errors in synaptic
weights that result from voltage scaling past Vmin,read . Random
mismatch results in bit-cells that are biased towards a given stor-
age state. If a bit-cell stores the complement of its "preferred"
state, performing a read at a sufficiently low V DD flips the cell
and subsequent reads will be incorrect but largely stable [6].
SRAM read failures, as described above, are profiled post-
silicon and incorporated into the backpropagation (backprop)
algorithm (as described in Section II-B) with an injection mask
(Figure 5). During every training iteration, the injection mask
preserves the fractional portion of a given synaptic weight and
applies bit-masks (that correspond to bit failures in SRAM)
to the fixed-point weight. The masked weight is used in SGD
before being recombined with its fractional part and weight
update. Preserving the fractional weight is critical, since it
enables gradual value-shifts that occur over multiple (fractional)
weight updates.

Fig. 6. Simulated performance of memory-adaptive training on MNIST.

Fig. 7. NPU-mC interaction, and in-situ canary-based SRAM VDD control.

To evaluate the feasibility of memory-adaptive training, we
first examine the memory-adaptive training flow with simulated
SRAM failure rates. At each voltage, a proportion of randomly
selected weight bits are fixed to either ’1’ or ’0’, where the
proportion of fixed bits is determined from SPICE Monte Carlo
simulation. Figure 6 shows that a significant fraction of bit
errors can be tolerated before application error degrades.

B. In-Situ Synaptic Canaries

The in-situ canary circuits are bit-cells directly from
synaptic weight SRAMs that facilitate SRAM supply-voltage
control (Figure 7). Traditional canary circuits replicate critical
circuits to detect imminent failure, but require added margin
and are vulnerable to PVT-induced mismatch. Instead, MATIC
uses synaptic weights themselves as in-situ canary circuits,
leveraging a select number of bit-cells that are on the margin
of failure to maintain a target bit-cell read failure rate. The
operation of canary relies on two key observations:

1. Since the most marginal, failure prone bit-cells are chosen
as canaries, canaries fail before other performance-critical
bit-cells.

2. Neural networks are robust to a small fraction of uncom-
pensated errors [7]. As a result, the failure states of canary
bit-cells are not critical for overall performance, and canaries
can be selected directly from synaptic weights.

At runtime, in-situ canary bits are polled periodically to
determine whether supply voltage modifications should be
applied. While we use an integrated microcontroller in the test
chip described below, the runtime controller can be implemented
with faster or more efficient circuits, if required. For our tests
we use a binary control policy where SRAM supply voltage
is adjusted in 1mV steps upon detecting a failing/succeeding
canary bit-cell. Since we pick the most marginal, failure prone
bit-cells, at runtime only canary bits are re-written. For canary
selection, we conservatively select eight distributed, marginal
canary bit-cells from each weight-storage SRAM.

IV. DNN ACCELERATOR ARCHITECTURE

To demonstrate the effectiveness of MATIC, we implement
a light-weight SoC called SNNAC (Systolic Neural Network
AsiC) in 65nm CMOS. The SNNAC architecture (Figure 8) is
based on the systolic dataflow design from SNNAP [8], heavily
modified for SoC integration. The SNNAC core consists of a
fully-programmable central Neural Processing Unit (NPU) that
contains eight multiply-accumulate (MAC)-based Processing
Elements (PEs) arranged in a systolic ring. Energy-efficient
PE compute is acheived with fixed-point arithmetic with 8-22
bit precision, and each PE uses a dedicated voltage-scalable

Fig. 8. Architecture of the SNNAC DNN Accelerator.

SRAM bank to enable local storage of synaptic weights.
The systolic ring is attached to the activation function unit
(AFU), which minimizes energy footprint with piecewise-
linear approximations of activation functions (e.g., sigmoid,
ReLU). Programmability is acheived with statically compiled
instruction schedules, which time-multiplex the computation of
each DNN layer onto the systolic array. SNNAC also includes a
sleep-enabled OpenMSP430-based microcontroller (mC), which
handles runtime control and off-chip communication.

V. EXPERIMENTAL RESULTS

At 25C and 0.9V, SNNAC nominally operates at 250 MHz
and dissipates 16.8 mW, achieving a 90.6% classification rate
on MNIST [9]. The other application benchmarks include face
detection (MIT CBCL face database [10]), and 2 benchmarks
from the approximate computing suite AxBench [11]. We find
that the compiled SRAMs (rated at 0.9V) exhibit read failures
starting from 0.53V, with all reads failing at ~0.4V (Figure
9(a)). Figure 11 shows how MATIC recovers application error,
resulting in an 18.6× reduction in average error-increase (AEI)
versus naive hardware (Table I). To avoid biasing the application
error analysis, all benchmarks use compact DNN topologies
that minimize intrinsic over-parameterization (Figure 9(b)).

For energy-efficiency we consider the operation of SNNAC
in 3 feasible operating scenarios, HighPerf (high performance),
EnOpt_A (energy optimal, separate logic/SRAM voltages),
and EnOpt_B (energy optimal, single voltage domain). At
the minimum-energy point (MEP) across the 3 cases, MATIC

0.40 0.44 0.48 0.52
SRAM Voltage (V)

10-5
10-4
10-3
10-2
10-1
100

Re
ad

 F
ai

l R
at

e

(a) (b)

Fig. 9. (a) Measured SRAM read-failure rate at 25C. (b) Topology selection
to avoid overparameterization - each point is a unique DNN topology.

Fig. 10. Energy-per-cycle measurements for the SNNAC test chip.

TABLE I. DNN BENCHMARKS, AND APPLICATION ERROR MEASUREMENTS.

Benchmark Description Error Metric DNN Error@0.9V Error@0.50V Error@0.50V Error@0.46V Error@0.46V AEI AEI Reduction
Topology (nominal) (naive) (adaptive) (naive) (adaptive) (naive) (adapt.) (0.46V-0.52V)

mnist [9] Digit recognition Classif. rate 100-32-10 9.4% 70.7% 13.0% 84.0% 15.6% 0.65 0.050 12.5
facedet [10] Face detection Classif. rate 400-8-1 12.5% 33.6% 15.6% 47.7% 15.8% 0.38 0.056 6.7
inversek2j [11] Inverse kinematics Mean sq. error 2-16-2 0.032 0.169 0.040 0.245 0.050 0.50 0.019 26.7
bscholes [11] Option pricing Mean sq. error 6-16-1 0.021 0.094 0.023 0.094 0.026 0.67 0.023 28.4
Average - - - - - - - - - - 18.6

TABLE II. ENERGY EVALUATION WITH MATIC-ENABLED SCALING.

Param/Config. HighPerf Base EnOpt_A Base EnOpt_B Base

Logic Voltage (V) 0.9 0.9 0.55 0.55 0.55 0.9
SRAM Voltage (V) 0.65 0.9 0.5 0.9 0.55 0.9
Frequency (MHz) 250 - 17.8 - 17.8 -
Total (pJ/cycle) 48.96 67.08 19.98 49.23 20.60 67.08
Logic 30.58 30.58 12.73 12.73 12.73 30.58
SRAM 18.37 36.50 7.24 36.50 7.86 36.50
Energy Reduction 1.4× - 2.5× - 3.3× -

Fig. 11. Error performance of SNNAC, with and without MATIC deployed.

enables up to 3.3× total energy reduction, and 5.1× energy
reduction in SRAM (Table II, Figure 10). We note that SRAM
energy is minimized at 0.5V with a 38% SRAM bit-cell
failure rate, which translates to an 87% classification rate on
MNIST (versus 29.3% for naive hardware). To demonstrate
system stability over temperature, we execute the application
benchmarks in a chamber with ambient temperature control,
and sweep temperature from -15C to 90C for a given nominal
voltage. Figure 12(a) shows the SRAM voltage settings dictated
by the in-situ canary system for an initial setting at 0.5V,
with 0% mismatch with the expected error. Table III shows
that the MATIC-SNNAC combination achieves state-of-the-art
energy-efficiency and wider operating-voltage range compared
to other FC DNN accelerators. The performance of SNNAC is
either better than or comparable to state-of-the-art convolutional-
centric (Conv.) accelerators, despite the lack of data and filter
reuse techniques in unique FC-layers.

VI. CONCLUSION

In this paper we presented MATIC, the first hard-
ware/algorithm co-design methodology that addresses the
energy-efficiency bottleneck imposed by synaptic weight
SRAMs. Key developments and contributions include

1. Memory-adaptive training - a technique that leverages
the adaptability of neural networks to train around errors
resulting from SRAM voltage scaling.

2. In-situ synaptic canaries - the use of bit-cells directly from
weight SRAMs for voltage control and variation-tolerance.

In addition, we designed and implemented SNNAC, a low-
power DNN accelerator fabricated in 65nm CMOS (Figure 12(b-
c)). Demonstrated on SNNAC, the application of MATIC results
in 3.3× total energy reduction and 5.1× energy reduction in
SRAM, or 18.6× reduction in application error, thus enabling
robust and energy-efficient operation for a general class of
DNN accelerators.

(a)

Technology TSMC GP 65nm
Core Area 1.15×1.2mm
Voltage 0.44-0.9V
Frequency 1.8-250 MHz
Power 0.1-16.8 mW
Energy 19.9-67.1 pJ/cycle

(b) (c)

Fig. 12. (a) SRAM VDD set by the in-situ canary system, initialized at 0.5V,
25C. (b) Chip performance summary. (c) Die microphoto.

TABLE III. PERFORMANCE COMPARISON

Low-power embedded, FC High-performance, Conv.
This Work ISSCC’17 [12] ISCA’16 [1] VLSI’16 [3] ISSCC’16 [2]

Process 65nm 40nm 45nm 40nm 65nm
Area 1.4 mm sq. 7.1 mm sq. 0.64 mm sq. 2.4 mm sq. 12.2 mm sq.
DNN Type FC FC FC Conv. Conv.
Power 0.37 mW 0.29 mW 9.2 mW 33 mW 278 mW
Frequency 17.8 MHz 3.9 MHz 800 MHz 204 MHz 200 MHz
Voltage 0.44-0.9V 0.63-0.9V 1V 0.55-1.1V 0.82-1.17V
Efficiency 400.5 GOPS/W 374 GOPS/W 174 GOPS/W 1.6 TOPS/W 243 GOPS/W

ACKNOWLEDGMENT

The authors would like to thank Fahim Rahman, Rajesh Pamula,
and John Euhlin for design support.

REFERENCES

[1] S. Han et al., “EIE: Efficient Inference Engine on Compressed Deep
Neural Network,” in ISCA, 2016, pp. 243–254.

[2] Y.-H. Chen et al., “Eyeriss: An Energy-Efficient Reconfigurable Accel-
erator for Deep Convolutional Neural Networks,” in ISSCC, 2016.

[3] B. Moons et al., “A 0.3-2.6 TOPS/W precision-scalable processor for
real-time large-scale convnets,” in VLSIC, 2016, pp. 1–2.

[4] A. Krizhevsky et al., “Imagenet classification with deep convolutional
neural networks,” in NIPS, 2012.

[5] C. M. Bishop, Pattern Recognition and Machine Learning (Information
Science and Statistics). Springer-Verlag New York, Inc., 2006, 2006.

[6] A. J. Bhavnagarwala et al., “The impact of intrinsic device fluctuations
on CMOS SRAM cell stability,” JSSC, vol. 36, pp. 658–665, Apr. 2001.

[7] O. Temam, “A defect-tolerant accelerator for emerging high-performance
applications,” in ISCA, June 2012, pp. 356–367.

[8] T. Moreau et al., “SNNAP: Approximate Computing on Programmable
SoCs via Neural Acceleration,” in HPCA, 2015.

[9] Y. LeCun et al., “MNIST handwritten digit database,” 2010. [Online].
Available: http://yann.lecun.com/exdb/mnist/

[10] M. Alvira et al., “An Empirical Comparison of SNoW and SVMs for
Face Detection,” MIT, Cambridge, MA, Tech. Rep., 2001.

[11] A. Yazdanbakhsh et al., “AxBench: A Multi-Platform Benchmark Suite
for Approximate Computing,” IEEE Des. Test, 2016.

[12] S. Bang et al., “14.7 A 288 uW programmable deep-learning processor
with 270KB on-chip weight storage using non-uniform memory hierarchy
for mobile intelligence,” in ISSCC, Feb 2017, pp. 250–251.

