
1

CodeStats: Big Stats for Big Code

JOHN TOMAN and NATHANIEL YAZDANI

We present a software system, CodeStats, to empirically validate the prevalence of syntactic pat-
terns in real-world codebases. Our prototype implementation supports only Java codebases. A
domain-speci�c language for queries facilitates concise expression of syntactic patterns, while
also mitigating misuse of the CodeStats computational infrastructure. For scalability, a distributed
system executes the queries in map-reduce fashion. Our evaluation demonstrates that CodeStats
can e�ciently quantify the frequency of syntactic patterns useful to designers of program analyses
across a signi�cant amount of real-world source code.

1 INTRODUCTION
Designers of program analyses routinely trade o� the accuracy (soundness) of their analysis
in order to gain precision on program behaviors that matter most for real-world software.
This practice permits a program analysis to make simplifying assumptions about di�cult-
to-model language constructs, such as self-interpretation (e.g., JavaScript’s eval). This
practice has gained such momentum and acceptance that the term soundy has arisen in
recent years to describe such program analyses [1, 2].

Unfortunately, designers of program analyses can only justify the pro�tability of such
trade-o�s by appealing to shared assumptions and intuitions among their own commu-
nity of programmers, who are predominantly academic researchers. These assumptions
and intuitions are not always accurate with respect to the reality of professional soft-
ware development. For instance, program analyses for JavaScript e�ectively ignore self-
interpretation, yet a recent study discovered that nearly all JavaScript programs make use
of self-interpretation at some point, by fault of common libraries [3].

We present a system, CodeStats1, with which the designer of a program analysis may
(in)validate assumptions and intuitions about the empirical use of a language construct in
real-world code.

2 OVERVIEW
The CodeStats system consists of three major design elements: the query language (sec-
tion 3), the query engine (section 4), and the sample base of source code (section 5). The
query language constrains the expressible queries to those deemed most useful for the
intended purpose of CodeStats while also preventing undesirable or unintended uses of
the computational infrastructure. The query engine e�ciently evaluates a query across
the sample base of source code, aggregates the results, and reports the �nal statistics. The
sample base of source code serves as a representative set of source code with respect to
which the frequency of the syntactic pattern described by a query is evaluated.

Currently, CodeStats is an early research prototype. While the system is not inherently
speci�c to any one programming language, our prototype implementation is specialized
1https://github.com/uwplse/codestats

https://github.com/uwplse/codestats

2 John Toman & Nate Yazdani

to Java, and the current design of the query language is somewhat specialized to object-
oriented languages (i.e., also applicable to languages like C# or Kotlin). One uses the
system by uploading a query in our domain-spei�c language, which the query engine then
evaluates across a sample set of codebases. The system outputs the calculated statistics
along with some performance measurements to a log �le.

3 QUERY LANGUAGE
The design of the query language promotes concision and mitigates misuse of the query
engine. The query language is quite intentionally not Turing-complete; the language
lacks recursion (i.e., loops) and user-de�ned functions. A program in the query language
can only assert a simple predicate on either expressions or statements and select how
to count successful matches (i.e., occurrences where the predicate is satis�ed). The only
recurrence possible in a query is due to the special indices * and ?, which mean “for every
element in the list” and “for at least one element in the list,” respectively. This constrained
expressivity prevents malicious or otherwise abusive users from exploiting the query
engine for arbitrary computation. Figure 1 presents the syntax of the query language.

Proдram ::= Query∗

Query ::= Ident :Mode Syntax Ident (within Ident)? where Conjunctive
Mode ::= exists

�� count
Syntax ::= expression

�� statement
Conjunctive ::= Disjunctive (and Disjunctive)∗

Disjunctive ::= Atomic (or Atomic)∗

Atomic ::= Attribute is (not)? (constant
�� static �� local �� null)�� Attribute has type Strinд�� Attribute Compare Literal�� (Conjunctive)

Attribute ::= Ident(.Ident([Index])?)∗

Index ::= *
�� ? �� 0 �� 1 �� . . .

Compare ::= !=
�� == �� < �� <= �� >= �� >

Literal ::= Number
�� Strinд

Fig. 1. Syntax of the query language.

Query De�nitions. A query in our domain-speci�c language is a sequence of query
de�nitions, each of which names and describes an individual statistic to compute. The
query language only supports predicated counting statistics, which tally the syntactic
entities satisfying a predicate. The language supports predicates over two sorts of syntactic
entities: expressions and statements. The count mode indicates a direct count of successful
matches. For a bit greater �exibility, the exists mode limits the number of matches per

CodeStats 3

method to one; in other words, the exists mode enacts a tally of methods that contain at
least one expression/statement satisfying the predicate. Lastly, a query de�nition may also
re�ne another query de�nition using a within clause; the semantic meaning is as if the
the re�ned query de�nition’s predicate were conjoined before the current one’s predicate.

Query Predicates. A query predicate is a collection of atomic predicates combined together
with Boolean conjunction and disjunction. An atomic predicate asserts a simple property
on attributes of the expression or statement. Depending on the kind of expression or
statement, valid attributes may include the kind of expression or statement, the list of
argument/operand expressions, the receiver expression, etc. Trait checks (i.e., checks for
constant, static, local, and null) are supported by expressions of any kind.

Attributes. Table 1 brie�y summarizes the supported attributes in our prototype imple-
mentation of CodeStats. Essentially, attributes expose the interface of the Java abstract syn-
tax tree (AST) rooted at the expression or statement. Since di�erent expressions/statements
may have di�erent AST structure, accessing an invalid attribute falsi�es the atomic predi-
cate. The attributes kind and host are present on expressions and statements of any kind.
To allow syntactic patterns that depend on the particular kind of expression or statement,
query predicates are always evaluated with Boolean short-circuit semantics.

kind supported a�ribute keys
unop type, operand
array_ref type, index, array
binop type, operands, lop, rop
cast_expr type, cast_type, castee
alloc type, allocType, constrArgs
new_array type, size, baseType
method_call type, args, method
instance_method_call type, args, method, receiver
fieldref type, field
instance_fieldref type, field, base_ptr
field type, name, declaringClass
return_stmt ret_val
assign_stmt lhs, rhs
invoke_stmt method_call
method returnType, paramType, name, signature, declaringClass

Table 1. Summary of supported a�ributes.

Example. Figure 2 presents an example of a program in the query language. The statistic
counts every expression that is an instance method invocation, in the body of a non-static
method, passing the current receiver object for at least one formal argument. The identi-
�er self_argument names the resultant statistic. This example demonstrates a common
idiom in query de�nitions; earlier conjuncts progressively constrain the expression to
the structure expected by the syntactic pattern, namely instance method invocations in
non-static method bodies. This idiom prevents accidental falsi�cation of the predicate due

4 John Toman & Nate Yazdani

to accessing an invalid attribute (recall that the set of valid attributes depends on the kind
of expression or statement).

self_argument : count expression e where {
e.kind == "InstanceInvoke" and
e.host is not static and
e.args[?] is this

}

Fig. 2. Example of a query in the domain-specific language.

4 QUERY ENGINE
The query engine is a distributed system consisting of three major components: the query
compiler, the query evaluator, and the query cluster. The following paragraphs describe
these components in turn.

Query Compiler. The query compiler translates a program in the query language (sec-
tion 3) into a Java module. Attribute accesses are translated into �eld accesses and method
calls on a polymorphic runtime representation of the AST for the current expression or
statement. This representation permits �exibility, as the query compiler may add support
for new attributes without signi�cant (or possibly any) modi�cation to the query language.
For instance, adding support for a new language (e.g., Scala) would not require any changes
to the query language.

Query Evaluator. The query evaluator constructs the appropriate runtime representation
for an expression or statement and calls the compiled Java module to perform the query.
The query evaluator is built with the Soot framework for syntactic processing of Java
bytecode. The query evaluator includes both a local and distributed runner, the former for
debugging the system during development and the latter for use with the query cluster in
a production (or rigorous testing) environment.

Query Cluster. The query cluster distributes the work to perform a query on the entire
set of codebase samples over a pool of worker nodes in map-reduce fashion. Since the
query language constrains user queries to be simple, local, and �ne-grained, the overall
work to perform a user query is massively parallelizable; a distributed architecture can
exploit this property to scale the query engine to a potentially massive sample of codebases
(“big code”). To achieve this, the query cluster is built on top of the Hadoop framework for
distributed data processing. The mapper simply invokes the query evaluator over a chunk
of the dataset (i.e., a chunk of Java bytecode), and the reducer aggregates the results of
query evaluations as speci�ed by the user’s query. For resiliency, the mapper can tolerate
local failures from the query evaluator, which may occur due to bugs in the query compiler,
partially corrupted bytecode, or bytecode from an unsupported version of Java. The query
cluster pulls the data (i.e., sample source code) from a cache stored on an HDFS volume.

CodeStats 5

5 CODEBASE SAMPLES
For the sake of our prototype system, we manually collected and prepared sample codebases
for use by the CodeStats system. We drew about half of our codebase samples from the
GitHub Trending list for Java repositories; for the rest, we used signi�cant, well-known
Java projects, such as Eclipse and several Apache projects. To prepare the sources for
use by CodeStats, we compiled each project into Java archives (.jar �les), extracted the
bytecode, and uploaded the bytecode into Hadoop stream �les onto a Hadoop Distributed
Filesystem (HDFS) connected to the query engine’s cluster. Table 2 lists the codebases used
as samples.

Name Repository
Kotlin Compiler https://github.com/JetBrains/kotlin/tree/master/compiler
LibreO�ce https://cgit.freedesktop.org/libreo�ce
mvnForum https://sourceforge.net/projects/mvnforum/�les/mvnForum/
OkHttp https://github.com/square/okhttp
Mozilla Rhino https://github.com/mozilla/rhino
RxJava https://github.com/ReactiveX/RxJava
Apache Solr https://repo1.maven.org/maven2/org/apache/solr/
Spring Framework https://github.com/spring-projects/spring-framework
Apache Tomcat https://github.com/apache/tomcat
Apache Commons https://repo1.maven.org/maven2/org/apache/commons/
Eclipse https://git.eclipse.org/c/
Elasticsearch https://github.com/elastic/elasticsearch
Glide https://github.com/bumptech/glide
Groovy https://github.com/apache/groovy
Google Guava https://github.com/google/guava
H2 Database Engine https://github.com/h2database/h2database
Javalin https://github.com/tipsy/javalin
Jenkins https://github.com/jenkinsci/jenkins
Jetty https://github.com/eclipse/jetty.project

Table 2. Codebases used for sample source code.

We used this methodology so that our sample codebases were representative of professional-
quality software, the usual target for program analyses. A more mature version of CodeStats
could automatically crawl the web for Java sources to use, though this could introduce
concerns around the selection criteria, due to the potential for undesired statistical bias in
the sample codebases.

6 EVALUATION
We evaluated CodeStats against the project goal of validating simplifying, yet semantically
signi�cant, assumptions about program behavior used in the design of program analyses.
For this evaluation, we chose to investigate the following such program behaviors:

(1) Accessing public �elds on an object of a di�erent class
(2) Using the Object-provided condition-variable mechanism

https://github.com/JetBrains/kotlin/tree/master/compiler
https://cgit.freedesktop.org/libreoffice
https://sourceforge.net/projects/mvnforum/files/mvnForum/
https://github.com/square/okhttp
https://github.com/mozilla/rhino
https://github.com/ReactiveX/RxJava
https://repo1.maven.org/maven2/org/apache/solr/
https://github.com/spring-projects/spring-framework
https://github.com/apache/tomcat
https://repo1.maven.org/maven2/org/apache/commons/
https://git.eclipse.org/c/
https://github.com/elastic/elasticsearch
https://github.com/bumptech/glide
https://github.com/apache/groovy
https://github.com/google/guava
https://github.com/h2database/h2database
https://github.com/tipsy/javalin
https://github.com/jenkinsci/jenkins
https://github.com/eclipse/jetty.project

6 John Toman & Nate Yazdani

(3) Instantiating language-native arrays, especially with dynamic size
(4) Invoking language re�ection with dynamic arguments

Assuming the absence of program behavior (1) is useful for program analyses based on
separation logics, in which the heap is partitioned into disjoint, non-interfering regions.
Such an assumption would be reasonable because the common practice in object-oriented
languages like Java is to provide getters and setters for �elds that validate all updates.

Assuming the absence of program behavior (2) is useful for program analyses simply
due to its complexity, which necessitates concurrent reasoning. Such an assumption is
reasonable because the Object-provided condition-variable mechanism is widely believed
to be uncommonly used.

Assuming the absence of program behavior (3) is useful because array reasoning is
prone to permeate the design of a program analyses2. Such an assumption is reasonable
because using higher-level collection abstractions (e.g., lists) is widely considered better
programming practice, as they o�er greater convenience.

Assuming the absence of program behavior (4) is useful due to the intractability of
modeling arbitrary invocations of language re�ection. Such an assumption is reasonable —
at least for the evaluation of our system — because it is standard among program analyses
for Java.

Results. We implemented queries for CodeStats to quantify the prevalence of the pre-
viously mentioned program behaviors, each of which admits a precise syntactic pattern
in the query language. We hosted the query engine on a cluster of 3 dedicated virtual
servers (m4.large con�guration, with 2 virtual processors and 8 GiB of memory) on the
Amazon Web Services (AWS) cloud-computing platform, augmented by 3 comparable
“spot” instances3.

Table 3 presents the statistics computed to quantify the prevalence of the previously
described program behaviors. Related statistics were grouped together into combined
queries. Where informative, we performed method counts (exists statistics) in additional
to the raw expression counts (count statistics). The codebase sample set, described in
greater detail by section 5, consisted of 1,024,351 methods and approximately 200 times as
many expressions (as counted by bytecode instructions).

2Moreover, higher-level collections may admit simpler, more e�ective semantic models in a program analysis.
3An AWS “spot instance” is a transient virtual server that consumes spare computational resources in the
datacenter.

CodeStats 7

Description Total occurrences Methods with 1+ occurrences Query time
Read of public �eld 134,275 36,939 25m, 46sWrite to public �eld 29,315 9,749
Condition-variable call 1,206 987 25m, 36s
Array creation 101,913 - 25m, 32sArray creation (constant) 80,208 -
Re�ection call 3,507 - 25m, 36sRe�ection call (dynamic) 1,309 -

Table 3. Statistics computed for evaluation.

Analysis. Our results validate and invalidate some common assumptions about the
chosen program behaviors. As expected, accesses to public �elds, particularly (and most
critically) for writes. Similarly, we found that use of the Object-provided mechanism
for condition variables is exceedingly rare. Interestingly, we found that the majority of
array instantiations, while somewhat rare, used constant sizes; this could make a useful
assumption in the design of a program analysis. Contrary to the widely held belief by the
research community, we found that use of language re�ection more commonly involves
dynamic arguments. (While uncommon, the few uses of language re�ection typically serve
a critical function in the overall architecture of a Java framework.)

7 DISCUSSION
Long term, our vision is to develop a public web service. Through this web service, the
designer of a program analysis may submit a query to validate an assumption about the
prevalence of a syntactic pattern and receive a publicly accessible link to a quantitative
report of the systems’ �ndings. When the designer publishes a paper on their program
analysis, they may reference this report to justify their assumptions. Not only could this
assuage concerns over more common assumptions, it could enable designers to make
further useful assumptions about language features, even when the infrequency of the
corresponding syntactic pattern goes against the intuition of the research community.
Realizing this vision requires a signi�cant investment of time and money, neither of which
is currently available for the project in the scope of one quarter.

8 CONCLUSION
This report presented CodeStats, a system to calculate the frequency of syntactic patterns
in a representative sample base of Java source code. The target application is for designers
of program analyses to validate their assumptions about the prevalence of di�cult-to-
model language constructs. A domain-speci�c query language provides a concise interface
that also guards against misuse of the system, and a distributed query engine e�ciently
evaluates user queries at scale. The report’s evaluation supported the e�cacy of CodeStats
for its intended application on a large sample set of real-world codebases.

8 John Toman & Nate Yazdani

REFERENCES
[1] Maria Christakis and Christian Bird. 2016. What Developers Want and Need from Program Analysis: An

Empirical Study. In Proceedings of the 31st IEEE/ACM International Conference on Automated Software
Engineering (ASE 2016). ACM, New York, NY, USA, 332–343. DOI:http://dx.doi.org/10.1145/2970276.
2970347

[2] Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondřej Lhoták, J. Nelson Amaral, Bor-Yuh Evan
Chang, Samuel Z. Guyer, Uday P. Khedker, Anders Møller, and Dimitrios Vardoulakis. 2015. In Defense of
Soundiness: A Manifesto. Commun. ACM 58, 2 (Jan. 2015), 44–46. DOI:http://dx.doi.org/10.1145/2644805

[3] Gregor Richards, Christian Hammer, Brian Burg, and Jan Vitek. 2011. The Eval That Men Do: A
Large-scale Study of the Use of Eval in Javascript Applications. In Proceedings of the 25th European
Conference on Object-oriented Programming (ECOOP’11). Springer-Verlag, Berlin, Heidelberg, 52–78.
http://dl.acm.org/citation.cfm?id=2032497.2032503

http://dx.doi.org/10.1145/2970276.2970347
http://dx.doi.org/10.1145/2970276.2970347
http://dx.doi.org/10.1145/2644805
http://dl.acm.org/citation.cfm?id=2032497.2032503

	Abstract
	1 Introduction
	2 Overview
	3 Query Language
	4 Query Engine
	5 Codebase Samples
	6 Evaluation
	7 Discussion
	8 Conclusion
	References

