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ABSTRACT
Universities are experiencing record enrollments in CS1 courses
and are struggling to keep up with demand while also offering a
quality experience to an increasingly diverse population. Scalable,
online tools will be an important part of meeting this challenge.
Current tools available to CS1 students often provide very limited
feedback. Faded worked examples are a proven pedagogical tech-
nique that can provide richer feedback, but there there are many
open questions about how best to deliver them in an online sys-
tem. Furthermore, few empirical studies explore the design and
impact of these types of tools in CS1 courses. In this technical re-
port, we present Practicum, a suite of new online tools that provide
step-by-step explanations of CS1 concepts and gradually fade these
explanations over a series of problems. Our system exploits the pro-
cedural nature of these concepts to synthesize explanations from
example problems. We studied the impact of these tools by deploy-
ing Practicum in a large CS1 course with over 1000 students. Though
a controlled study in the CS1 lab sections found that Practicum did
not improve performance compared to existing materials, students
who used Practicum on their own did perform better on the exams.
These students were more likely to be female, have less program-
ming experience, and plan on a non-computer science major. These
results demonstrate Practicum has the potential to improve learning
in a CS1 course, and is accessible to less traditional CS1 students,
making it a promising vehicle for for further exploration into the
design of interactive tools for CS1.

CCS CONCEPTS
• Social and professional topics→CS1; •Applied computing
→ Interactive learning environments;
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1 INTRODUCTION
Introductory computer science courses at many universities face
both strained resources due to increasing enrollments and a con-
tinuing need to attract and retain a more diverse population of
students. New scalable online tools to support CS1 learning have

the potential to help address both of these concerns. Unfortunately,
the current tools available to CS1 students often only provide very
limited feedback to the student, such as whether their solution to a
practice problem is correct.

A large body of research supports using worked examples as an
effective pedagogical technique. A worked example consists of an
example problem and step-by-step instructions leading to the solu-
tion. They have been shown to improve learning in a variety of do-
mains, including LISP programming [20] and statistics [16]. Worked
examples have been shown to be even more effective when the tran-
sition between viewing demonstrations and independent problem
solving is gradually faded [16]. Faded worked examples are gain-
ing interest among computer science education researchers [18],
especially in the context of introductory courses (e.g., [6]).

Though researchers have identified faded worked examples as
an effective technique, there is much the research community does
not know about optimal ways to deliver them in an online system.
It is challenging to hand-author worked examples and appropri-
ate fading mechanisms, which makes it difficult for researchers to
answer these questions empirically. It would be valuable to have
an automated and fully parameterized system in order to facilitate
the exploration of a variety of design choices such as choice of ex-
planations, the progression of examples, and how explanations are
faded away. As a first step toward this goal, we present Practicum,
an online system capable of synthesizing step-by-step explanations
for example problems, and automatically fading these explanations
over a series of problems.

Practicum builds upon O’Rourke et al.’s framework for automati-
cally generating interactive tutorials for procedural knowledge [13].
O’Rourke et al. applied this approach to math problems such as
subtraction, but did not extend it to more complex domains or study
its use in the wild. We have applied this technique to three types of
problems present on our institution’s CS1 exams and studied our
system’s impact when integrated into CS1.

We deployed Practicum in a CS1 course at our institution with
over 1000 students in order to gain an initial understanding of
how this type of tool impacts student performance. The research
questions to be addressed were: (1) Does the scaffolded and more in-
teractive practice available in Practicum lead to better performance
compared to the existing lab materials? and (2) How do students
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who use Practicum on their own perform compared to those who
do not?

We ran a controlled experiment in the official lab sections com-
paring students who used Practicum to students who used the
existing, limited feedback materials. We also made the system avail-
able to all students, and studied how those who used it compared to
those who didn’t. While Practicum did not improve lab quiz scores
relative to existing materials, students who used it on their own
performed better on the types of exam questions targeted by our
system. Overall, Practicum shows promise for improving learning
in CS1 in situations where one-on-one human tutoring is not avail-
able, and we believe it can be used as a testbed to study questions
about the design of interactive tools for CS1 more deeply in the
future.

2 RELATEDWORK
2.1 Worked Examples
Worked examples have been the subject of substantial study over
the past few decades. When it comes to their use in computer sci-
ence in particular, however, existing work is far less comprehensive.
Skudder and Luxton-Reilly’s review of the computer science edu-
cation literature found there has been little research into worked
examples in computer science [18], particularly when it comes to
formal studies. One exception includes Margulieux et al.’s experi-
ments with worked examples in Android App Inventor, focusing on
the effect of sub-goal labeling [10]. Morrison et al. further studied
the interaction of subgoal labels and worked examples when ap-
plied to a text-based programming language [12], finding that the
effectiveness of worked examples could be improved by including
subgoal labels.

We depart from this previous work in that we studied our edu-
cational intervention fully integrated into a CS1 course. This is an
important perspective, and one that is underrepresented in the lit-
erature. This kind of work is necessary to make an effective case for
the adoption of these techniques, as it demonstrates their immediate
applicability.

A key issue to consider in the design of any instructional mate-
rials is the demand placed on a learner’s working memory by the
learning tasks, known as cognitive load [21]. Since working mem-
ory is limited, Cognitive Load Theory holds that learning suffers
when the total working memory requirements exceed a learner’s
limited capacity [15]. Thus, it is incumbent on instructional systems
to direct students’ attention toward those aspects of the material
important for learning and away from extraneous aspects. Educa-
tional research has shown that failing to sufficiently focus attention
on appropriate features can interfere with recall and transfer [4].

Hence, we relied upon the known best practices for worked ex-
amples in our design of Practicum. Based on the principles described
by Atkinson et al. for effective worked examples, we avoided the
split attention effect by keeping the individual steps of our problem-
solving procedures small and focused on a single part of the UI [1].
We also incorporated subgoal labeling by including steps in our
solving procedures that provide descriptions of the current subgoal,
such as, when the problem includes executing a conditional branch,
displaying “Let’s find the first branch that evaluates to true” before

going into the specific steps to determine which branch will exe-
cute. Multiple studies on worked examples for computer science
have found that providing students with subgoal labels improves
learning outcomes [11, 12]. Furthermore, areas for specific tasks
are visually separated and labeled, including a variable bank for
tracking and updating the values of local variables. We did not
follow Atkinson et al.’s recommendation to pair examples and prac-
tice problems, as later research has shown faded worked examples
effectively combine examples and practice [16].

2.2 Tools for CS1
A tremendous number of tools have been developed for computer
science education. In the informal taxonomy of such tools used by
Pears et al., our system would most naturally fall under visualiza-
tion tools [14]. Practicum would not count as a generic visualization
system like those surveyed by Sorva et al. since it visualizes specific
types of problems rather than arbitrary Java programs [19]. Unlike
many of the tools discussed in those reviews, or others such as
JSVEE [17], our system goes beyond visualization, and provides
interactivity and faded step-by-step explanations. A recent generic
visualization system, Online Python Tutor, exemplifies this differ-
ence [7]. While both it and Practicum step through code line-by-line,
visualizing the program state at each step, the difference is one of
breadth versus depth. Online Python Tutor offers the ability to visu-
alize a much wider variety of programs, whereas Practicum offers a
more interactive and scaffolded visualization of a narrower set of
programs. Kumar has generated step-by-step explanations of code
execution and expression evaluation, but the explanations are not
faded and focus on building students’ mental model of general exe-
cution semantics rather than teaching a specific problem-solving
procedure [8, 9].

Intelligent tutoring systems are another type of system developed
for introductory programming (e.g., [2, 5]). These systems tend to
focus on responding intelligently to user mistakes, whereas our
system’s focus is providing the step-by-step explanations necessary
for faded worked examples.

2.3 Automated Instructional Scaffolding
Practicum builds upon O’Rourke et al.’s framework for automated
faded worked examples [13]. Under this framework, a designer
chooses a problem domain and describes the thought process to
solve these problems as a procedure or thought process algorithm
(TPA). An interpreter steps through this algorithm line-by-line,
generating an explanation for each line using a set of mappings
between programming language constructs and UI elements pro-
vided by the designer. In this way, explanations can be generated
for any problem the procedure can solve. User interactions can be
similarly generated, prompting a student for input at key points.

With Practicum, we make a substantial extension to this previous
work. First, we extend this approach to the more complex domain
of CS1 concepts. Problem visualization and user interactions are not
tied to a grid, as they were for the previous applications, and some
of our problem solving procedures must model mentally simulating
Java code. Second, the previous evaluation of this framework did
not fully integrate its implementations into an ongoing course.
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3 PRACTICUM
Practicum currently provides fadedworked examples for three types
of problems in Java: (1) evaluating pure expressions, (2) determining
the results of code snippets containing if/else constructs, and (3)
determining the results of code snippets containing simple array
operations inside a for loop. Instructors reported that students
struggled with these problems on the CS1 exams at our institu-
tion. All three of these problem types can be solved by following
an imperative procedure, so they are amenable to automation by
O’Rourke et al.’s framework.

All three problem types have a constrained format and are de-
signed to test specific skills. We based our development of the
thought process algorithms (TPAs) on the problem-solving strate-
gies our CS1 TAs teach students to use. Practicum automatically
generates all parts of the worked examples based on the example
problem and the TPA, including the visualized problem state, the
highlighting of relevant UI elements, and the explanation text. In
developing the TPAs, our goal was to help students become familiar
with the behavior of certain classes of Java programs. Specifically,
we wanted to take the problem-solving strategies CS1 TAs teach
students to use on these problems and extract those into proce-
dures. These strategies are intended to be instructive and accessible.
Furthermore, we wanted to teach procedures that students could
perform on paper to facilitate transfer to the in-class exams. An
important feature of the design of Practicum, however, is its modu-
larity with respect to a specific TPA. To alter the way the system
explains a type of problem, an educational technologist can mod-
ify or replace the corresponding TPA. While the UI might require
modification to support the new TPA, the underlying architecture
is agnostic.

3.1 Problem Types
In an expression problem, the user is asked to evaluate a pure
expression. An expression is represented as a collection of opera-
tors and operands. Practicum currently covers arithmetic (including
both integer and floating point division), modulo, and string con-
catenation. See Figure 1 for an example of an expression problem
in progress.

Our expression problem TPA consists of two phases. In the first
phase, the student resolves all multiplication, division, and modulo
operators. They’re asked if there are any such operators in the
current expression, and then, if there are, to select the leftmost such
operator and its operands. They compute the result of applying
the operator, creating a new expression. Once all multiplication,
division, and modulo operators have been resolved, a second phase
begins where all addition and subtraction operators are resolved
in the same manner. Prompts remind users about integer division,
string concatenation, as well as the behavior of modulo.

An if/else problem consists of a Java method definition, and a
corresponding method call. See Figure 1 for an example of an if/else
problem in progress. The method definition takes one or more ints,
contains several if/else constructs, as well as lines that modify a
local variable, and ends by printing several of the method’s local
variables. The user is asked to determine what is printed out as a
result of a particular method call. Aside from the code itself (with
visual cues for the current line, previously executed lines, and lines

not executed due to conditional branching), a variable bank shows
the current values of all local variables.

The TPA we created for if/else problems is based on mentally
simulating the Java code line-by-line. All lines, with the exception
of the println at the end of the problem, are an if, an else, or
modify a local variable. In the case of the latter, the student updates
the variable bank to reflect the new value. When a conditional con-
struct is encountered, the student evaluates one or more conditions
and determines which branch will execute. If there is a branch (or
possibly more than one) that won’t be executed as a result, the
student crosses out the lines that will be skipped. The crossing out
of lines is a technique CS1 TAs at our institution will suggest to
students to help them keep track of what has already been done.

Array problems are similar to if/else problems in many ways.
They too consist of a method definition and call, and maintain a
variable bank displaying local variables. See Figure 1 for an example
of an array problem in progress. The method always takes one array
of ints, and contains a for loop that performs some operation over
the array. The CS1 TAs at our institution reported students’ errors
often stemmed from mistaking the array length or forgetting about
zero-indexing, so the variable bank displays the length of the array
as a separate variable and displays the array indices above the array
values. The solution to an array problem is the final array values.

Like if/else, the array problem TPA is based on simulating the
code line-by-line. Steps include evaluating the loop condition, up-
dating array elements, and incrementing the loop variable. There
are some places where the TPA calls attention to specific pieces of
data, like explicitly recording the array indices and the array length.
The TPA also goes into detail when resolving array references as
resolving array values can be difficult for CS1 students. It highlights
the array location being referenced, and then replaces the reference
with the value at that location.

3.2 Fading
Practicum supports four levels of fading, designed to provide a
smooth transition from a fully explained example to an example
the user completes entirely independently. Fading level one is a
full demonstration of the example problem with no user input
required. Every step in the TPA is fully explained, and the correctly
solution shown. Fading level two introduces interactivity. At every
appropriate step in the TPA, the user is prompted to provide the
correct answer for that step. The prompt explains what input the
system is expecting. For example, in an expressions problem, the
user will be asked to select the next operator that will be resolved,
and then to select its left and right operands. In an if/else problem
or an array problem, the user will be asked what line will execute
next, as well as the result of a conditional, whether part of an if
or a for loop. If a user enters an incorrect answer three times, the
correct answer is displayed and the user is allowed to proceed.

Fading level three removes some of the scaffolding. All the steps
of the TPA are still included, but in most cases, instead of telling
the user what input is expected, the system instead prompts them
to “Try the next step on your own!” If the user gives an incorrect
response, the prompt explaining what input is expected is shown.
Fading level four further removes scaffolding by skipping all non-
interactive TPA steps. At this level, the user proceeds through the
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Figure 1: Clockwise from left, the interfaces for an expression problem, an if/else problem, and an array problem. In the
expression problem, the task is to evaluate the expression. Each line corresponds to evaluating one operator, starting at the
top. The current operator and operands are highlighted and the prompt explaining the current step is shown to the left. In
the if/else problem, the task is to determine what is output be the println. The Problem menu at the top allows the user to
select method calls with different arguments. The central box displays the prompt and the method declaration, highlights the
current line, and crosses out the lines of conditional branches that didn’t execute. The Variable Bank displays the values of
all local variables. In the array problem, the task is to determine the final values of the array. The primary difference of this
interface from if/else is the inclusion of a Scratch Area, which is used to diagram the steps involved in resolving references to
array elements. In all three problem interfaces, the user can enter a final answer in the Solution box at the top at any time.

problem essentially unaided, receiving explanations in a just-in-
time fashion (i.e., only in response to an incorrect step). This final
level is designed to closely mimic the process of following the
solving procedure on paper.

The properties of an optimal fading progression in this context
are not well understood, and thus it is important the mechanism for
triggering a transition between these fading levels is a parameter
of Practicum. For the deployment described below, we used a fixed
progression based on the number of problems a user had attempted.
The first problem would be fully explained (first fading level), and
the next three would prompt the user for input at each step (second
fading level). The fifth and sixth problems would be at the third
fading level with some scaffolding removed and every problem
from the seventh onward would be at the final fading level. This
progression was tracked separately for each problem type (i.e.,
regardless of how many expression problems a student has done,
their first if/else problem is fully explained).

4 METHODOLOGY
To assess whether it could be successfully integrated into a real-
world setting and to investigate its impact on learning outcomes,
we deployed Practicum in a large CS1 course. Integration into a
real-world setting was necessary to demonstrate the viability of
the system, particularly with respect to its potential use in future
work on the optimal design choices for such a system. We as a

community don’t have a great understanding of how to optimally
design a faded progression worked examples for computer science,
so our goal was not to evaluate the impact of our particular design
in Practicum. Instead, this deployment was intended to capture the
impact of Practicum holistically, including the ways in which it was
used and the effects of that use on the opportunities for transfer
occurring as a natural part of the course. Integration into a real-
world setting was necessary to demonstrate the viability of the
system, particularly with respect to its potential use in future work
on exploring design choices for such a system. The instructor of the
course was a researcher involved in the development of Practicum.

4.1 Design
Our deployment consisted of two concurrent studies, one experi-
mental and one observational. The experimental study took place
in three weeks of the official lab sections of the course, which are
optional, for-credit opportunities for students enrolled in the main
CS1 course. Each section consists of about 40 students and meets
in a computer lab for 50 minutes once per week. Students work
through an interactive slide deck of review material and practice
problems related to the most recent lectures, and TAs are present to
offer one-on-one help. Three specific weeks were chosen because
each of them focused on one of the three problem types included
in Practicum. The study was a between-subjects design with two
conditions, with half of the lab sections randomly assigned to each



Practicum: a scalable online system for faded worked examples in CS1

condition. In the control condition, students worked through the
interactive slide deck used in previous offerings of the course. The
slide deck’s interactive feedback is limited to whether a given an-
swer is correct or not. In the experimental condition, the practice
problems on the slides were replaced with a link to a special version
of Practicum that provided a faded progression of example problems
with detailed interactive explanations, but otherwise identical to
those in the slide deck. In both conditions, students completed a
short quiz at the end of the lab.

The observational study took place over the entire course. Af-
ter the corresponding lab was complete, problems of that type on
Practicum were made available to the course at large as an op-
tional study tool. Course staff informed students that they could
use Practicum to study for some of the problems on the course
exams.

4.2 Participants
Participants were students enrolled in a CS1 course at a public
university in the northwestern United States. We made Practicum
available to all students in the course. See Table 1 for a breakdown
of the different subgroups.

Subgroup Size Gender
All enrolled students 1098 34% female
Enrolled in a lab section 392 38% female
Experimental condition 184 35% female
Control condition 208 40% female
Practicum users not enrolled in a lab 293 34% female

Table 1: Participant demographics

4.3 Procedure
We collected the following data as part of our deployment: (1)
detailed usage data for Practicum, including the problems each
student completed and the UI interactions involved, (2) course data
including lab attendance, scores on end-of-lab quizzes, and exam
scores broken down by question, and (3) responses to a survey sent
to all students at the start of the course, which included questions
about choice of major and previous programming experience. It
is important to note that measuring the number of problems a
student completed required some judgment. Practicum allows a
user to move to a different problem at any point, so students may
leave off working through a problem as soon as they feel they
understand what’s going on rather than continuing to the final
step. Hence, for our analysis we consider a problem to have been
completed if the student either (1) entered a correct answer in the
solution box, or (2) worked through more than half of the steps in
the problem.

5 RESULTS
We describe the results from our experimental and observational
studies comparing the learning outcomes for different groups of
students. Throughout this analysis we use non-parametric Mann-
WhitneyU tests withα = .05 confidence, as our data is not normally

distributed. For each test, we report the test statistic U , the two-
tailed significance p, and the rank-biserial correlation measure of
effect size r .

5.1 Experimental
To address our research question “Does the scaffolded and more in-
teractive practice available in Practicum lead to better performance
compared to the existing lab materials?”, we compared the quiz
scores of students in the experimental condition to those of the
control condition for each problem type. The quiz questions were
the same type of problems students practiced during the lab (ei-
ther in Practicum or in the slide deck). Overall, this analysis shows
Practicum had little impact on quiz scores relative to the existing
lab materials. In the labs covering expression and array problems,
we did not find a statistically significant difference in quiz scores
between the two conditions. In the lab covering if/else problems, we
found a small, but statistically significant difference in quiz scores
in favor of the control condition.The relevant data and statistical
quantities are given in Table 2.

We also found significant differences in the quiz scores between
different labs. We found the expression problem quiz had signif-
icantly lower scores than the if/else problem quiz (U = 53862.5,
p < .0001, r = −.19), a mean score of 83% and median score of 100%
(n = 367) compared to a mean score of 93% and median score of
100% (n = 361). We also found the expression problem quiz had sig-
nificantly higher scores than the array problem quiz (U = 51614.5,
p = .0010, r = .13), a mean score of 83% and median score of 100%
(n = 367) compared to a mean score of 71% and median score of
100% (n = 324). We believe this indicates the relative difficulty of
these problem types for students in our study, with if/else being
the easiest and array being the most difficult.

5.2 Observational
We investigated how different groups of students used Practicum
and how that use related to performance on exam questions demon-
strating transfer (i.e., questions of the same type as those available
in Practicum). An important preliminary result was that students
enrolled in the lab sections outperformed their peers on exams.
Students enrolled in lab had significantly higher midterm exam
scores than those not enrolled in lab (U = 114046.5, p < .0001,
r = .17), a mean score of 82% and median score of 84% (n = 391)
compared to a mean score of 78% and median score of 81% (n = 701).
Similarly, on the final exam students enrolled in lab had signifi-
cantly higher scores than those not enrolled in lab (U = 102525.5,
p = .0094, r = .099), a mean score of 74% and median score of 78%
(n = 359) compared to a mean score of 70% and median score of
75.5% (n = 634). Since this effect is strong enough to potentially
hide any impact of Practicum, we excluded students enrolled in a
lab from our analysis of Practicum’s effect on exam performance.

5.2.1 Impact on Exam Performance. To assess Practicum’s effect on
a specific problem type, we compared the exam scores of students
who had completed a full faded progression (at least seven problems)
for that problem type to those of students who did not complete any
problems of that type in Practicum. Focusing on those students who
completed a full progression is intended to capture the potential of
Practicum.
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Lab’s problem type U p r Condition Mean score Median score n

Expression 15820 .27 .06 Experimental 85% 100% 179
Control 82% 100% 188

If/else 14340.5 .02 −.11 Experimental 91% 100% 166
Control 95% 100% 195

Array 12855 .78 −.02 Experimental 70% 100% 152
Control 72% 100% 172

Table 2: The results of comparing quiz scores of the experimental and control conditions in each of the three labs. The mean
quiz score, median quiz score, and number of students attending that lab are given for both conditions.

The impact of Practicum on exam question scores varied with
problem difficulty. For if/else, the easiest problem type, we found
no significant difference in scores on the midterm exam if/else
question between students completing a full faded progression
and students who completed no if/else problems (U = 11361.5,
p = .91, r = .0069), a mean score of 98% and median score of
100% (n = 44) compared to a mean score of 97% and median score
of 100% (n = 520). For the problem type of medium difficulty,
expression, we found no significant difference in scores on the
midterm exam expression question between students completing a
full faded progression and students who completed no expression
problems, although the effect size was considerably larger than
for if/else (U = 15726, p = .10, r = .12), a mean score of 85% and
median score of 90% (n = 66) compared to a mean score of 81%
and median score of 80% (n = 541). The increased effect size and
significance of Practicum’s impact on expression scores compared
to if/else scores fits a trend of greater impact on more difficult
problems.

Coming to the most difficult problem type, we found a significant
difference in scores on the final exam array question. Students
completing a full faded progression scored higher than those who
completed no array problems (U = 7795.5, p = .041, r = .18), a
mean score of 92% and median score of 100% (n = 38) compared
to a mean score of 80% and median score of 100% (n = 499). This
variation with problem difficulty suggests a scaffolded progression
like Practicum’s may be most effective for more complex or difficult
CS1 concepts. While further study is needed before this can be
concluded with certainty, it is a valuable insight for the future
design of Practicum and similar systems.

One concern about the result for array problems was that it
captured a difference in overall exam performance, rather than
Practicum’s impact on learning for that specific concept. To assess
this, we compared the scores on the remaining final exam ques-
tions (i.e., those not involved in the above comparison) for the same
populations. If no significant difference were found in overall exam
performance, we could feel confident that the difference in perfor-
mance on the array question could not be entirely explained by a
difference in the amount of preparation for the exam, but instead
indicated a difference in the effectiveness of that preparation (i.e.,
the use of Practicum). Indeed, we found no significant difference in
the scores on the other final exam questions between students who
completed a full faded progression of array problems and those
who completed no array problems (U = 8420, p = .25, r = .11), a
mean score of 73% and a median score of 81% (n = 38) compared to
a mean score of 70% and a median score of 75% (n = 499).

We were very interested in the potential of Practicum to help
is those students who are struggling and who might benefit from
additional scaffolded practice. Unfortunately, no formative assess-
ment was conducted that would have enabled us to identify such
students. Instead, we used overall exam score as proxy. Specifically,
we looked at the population of students whose total score on the
remaining exam questions (i.e., those not corresponding to a prob-
lem type in Practicum) fell in the bottom third among all students
in the course. We found that repeating the above comparisons on
this population showed larger positive effect sizes across all three
problem types, but failed to reach statistical significance. This is
likely because a smaller number of students fell into these groups,
reducing the power of our statistical analysis. While we need to con-
firm with future studies, the increased effect sizes seem to indicate
struggling students benefit more strongly from using Practicum.
The statistical results are given in the Table 3.

5.2.2 Demographics. We were also interested in who was using
Practicum. In particular, if the students using and potentially ben-
efiting from Practicum were disproportionately male, computer
science majors, or those with previous formal programming experi-
ence, then there would be reason for concern that Practicum would
fail to be accessible to a diverse student population. To investigate
this we integrated the results of a survey sent to all students at the
beginning of the course with our usage data for Practicum. This
survey was designed by the course staff and is used in every offer-
ing of the course. The survey included questions about intended
major and previous programming experience.

Overall, the students who used Practicum were more likely to be
female, have fewer years of formal programming experience, and
intend to major in something other than computer science. In term
of gender, 34% of the students enrolled in the course were female,
compared to 36% of the students who completed at least one prob-
lem of any type on Practicum. Of the 820 students who responded
to the survey, 56% reported having no formal programming experi-
ence and 47% said they had decided on or were considering majors
other than computer science or computer engineering. For survey
respondents who completed at least one problem of any type on
Practicum, a higher percentage reported no formal programming
experience (60%) and planned on majors outside computer science
(56.0%). These data indicate that Practicum was accessible to a pop-
ulation at least as diverse as course overall along the measures we
collected.
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users non-users
Problem U p r Mean score Median score n Mean score Median score n

Expression 1964 .12 .19 78% 80% 24 71% 80% 203
If/else 1324.5 .23 .14 98% 100% 16 94% 100% 192
Array 689.5 .055 .32 93% 100% 12 71% 90% 168

Table 3: The comparison of exam scores of low-scoring students who completed a full progression for a problem type (users
column) to those of low-scoring students who completed no problems of that type (non-users column).

6 DISCUSSION
The results from our observational study demonstrate the exciting
potential for Practicum to provide effective, scalable support for
CS1 concepts in settings where one-on-one human tutoring is not
available. The increased learning gains made by Practicum users for
more difficult problems are of particular interest, as they suggest
a potentially fruitful focus for the application and future develop-
ment of our system. It will likely continue to be difficult to have
any impact for concepts like if/else, where the mean exam question
scores were above 90%, even for lower-performing students. Our
study also took place in the wild, fully integrated into an existing
CS1 course. While this perhaps led to noisier and less comprehen-
sive data, we believe it lends Practicum credibility as a practical
and immediately applicable system and presents a more complete
picture of how Practicum might function in hands of real students.

The increased effect sizes for lower-performing students are
encouraging. Along with the user demographics, this gives us confi-
dence that Practicum is able to serve a broad range of students rather
than potentially reinforcing existing inequality in CS1 courses.

While the results of our observational study were promising in
terms of Practicum’s effect on learning outcomes, the results of our
experimental study were not. Though we do not have any data that
would allow us to establish this with any certainty, the presence
of human tutors (i.e., TAs) may have overwhelmed any benefit
resulting from using Practicum instead of the existing materials.
This would not be surprising as one-on-one tutoring has been
shown to be among the most effective educational interventions [3].
Lab students’ higher scores on exams are suggestive of this. We
also have some anecdotal evidence to support this explanation. Lab
TAs reported that when a student would get stuck on a problem,
instead of relying on the explanations provided by Practicum, the
student would raise their hand and have a TA walk them through
the problem. In this way, the experimental condition may have
resembled the control condition more closely than intended. We are
not attempting to compare Practicum to human tutoring, but rather
we are asking what impact Practicum has in the absence of human
tutoring (i.e., students using the tool voluntarily outside a structured
environment like a lab section). This is especially relevant as rapidly
increasing CS1 enrollments mean a resource intensive intervention
like one-on-one tutoring may not always be feasible.

Human tutors would not explain, however, the statistically sig-
nificant deficit of the experimental condition for if/else problems. It
possible that a lack of time on task contributed to this. In the if/else
lab, students spent significantly less time completing problems
in Practicum than in the expression lab (U = 7854, p < .0001,
r = −.47), a mean of 429 seconds and median of 215 seconds
(n = 166) compared to a mean of 590 seconds and a median of 548

seconds (n = 179). A comparison between the if/else lab and the
array found a similar difference (U = 6598.5, p < .0001, r = −.48),
with students in the array spending a mean of 779 seconds and
median of 677 seconds completing problems (n = 152). Perhaps
students found the problems too easy and quickly moved on, as the
experimental condition mean quiz score was above 90%. Another
possibility is the deficit of the experimental condition reveals a flaw
in our design of the thought process algorithm for if/else problems.
In either case, both of our studies indicate that for systems like
Practicum, targeting concepts that students already tend to mas-
ter is counterproductive or at least a poor investment in terms of
impact.

The fading progression used by all three problem types may
have limited the impact of Practicum in both the experimental
and observational study. In general, different types of problems
took different amounts of time to work through. This meant that
completing the full faded progression might take a student much
longer to do for the array problem type than the expression problem
type, and may have resulted in fewer students completing this
progression for longer problems. Indeed, while 152 students in the
expression lab completed a full progression, only 16 students and
10 students completed a full progression in the if/else and array
labs, respectively. Different progressions for each problem type
may have been more suitable, or an adaptive progression like those
in intelligent tutoring systems that responds to student progress.
Furthermore, Practicum did not give students explicit feedback on
their current fading level, nor given them direct control over it. The
effect of fading progressions and related mechanisms is among the
many remaining questions about the optimal design of instructional
systems like Practicum.

The mechanism of transfer within Practicum also merits rigorous
investigation. Our design of the system and our analysis in this work
both posit the completion of a full fading progression as the primary
mechanism, but controlled experimentation is needed to empirically
verify this. We also know very little about the motivation or attitude
of students using Practicum and their behavior outside the system.
Surveys and interviews could fill this gap, and perhaps enable us to
better address flaws in Practicum’s design and adapt it to suit how
students want to use it.

We have identified the following limitations of our studies that
may impair their generalizability. First, our positive results stem
from an observational rather than experimental study. This in-
evitably makes the results vulnerable to selection bias since using
Practicumwas optional. We have no way of knowing if the students
who appeared to benefit from using Practicumwould have achieved
similar scores without it, but the relatively large population and
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lack of significant difference on exam questions not targeted by
Practicum suggest we found a real impact attributable to our system.

A second limitation is that our data comes from a single CS1
course. Replicating these studies in future offerings of the course, as
well as at other institutions is needed to ensure the validity of this
work. Furthermore, we had very limited opportunities to observe
learning transfer. With only a single exam question for each con-
cept, our results are potentially highly susceptible to variations in
the properties of that question and related factors. Furthermore, the
exam questions, as well as the lab quiz questions, were relatively
easy for the average student as shown by the high median scores. In-
corporating some kind of formative assessment into Practicum may
provide more robust measurement without disrupting the course.
Despite these limitations, we believe this work makes a valuable
contribution to the empirical computing education literature, and
will help facilitate future research on the design of CS1 educational
technology.

Finally, we lack data on the use of alternative methods of prac-
ticing the concepts targeted by Practicum. It is possible there is
some other activity highly correlated with using Practicum that
is responsible for the results we found. While this seems unlikely,
detailed surveys or interviews would be necessary to definitively
discount it.

7 CONCLUSIONS & FUTUREWORK
We make several important contributions in this work. We present
Practicum, a new suite of online tools for faded worked examples in
CS1. This system can automatically synthesize explanations from
example problems, and automatically fade these explanations away
over a series of problems. In developing Practicum, we extended the
procedural knowledge framework of O’Rourke et al. to a new, more
complex domain. Finally, we conducted a large-scale evaluation of
Practicum’s impact on learning in a CS1 course.

This evaluation is promising, and indicates Practicum has the
potential to improve learning in CS1 in situations where one-on-
one tutoring is not available, particularly for lower-performing
students and on more difficult concepts. The demographics of the
users of Practicum suggest it can support a diverse population of
CS1 students. Practicum will be available online for anyone to use.

Practicum represents a unique combination of pedagogical ap-
proach and technical infrastructure. Its fully parameterized auto-
mated generation of faded progressions of worked examples offers
an opportunity to explore a little-understood design space, and in-
vestigate optimal ways to deliver this kinds of educational content
at scale.

There are many avenues for future work. Empirical studies are
needed to investigate how systems like Practicum can optimally
structure faded progressions of worked examples. This includes
questions of how this structure should adapt in response to student
behavior or problem domain. More broadly, there are many parts
of the design of systems like Practicum that merit further study,
including choice of explanations and feedback to student mistakes.

It would also be valuable to gather data on the effects of Practicum
on student motivation as well as other data about students’ response
to using the system. A more complete picture of how tools like
Practicum fit into students’ practice in CS1 courses is needed to

better tailor its design and understand its impact. Finally, extending
Practicum to other types of problems in CS1 would broaden its
applicability as well as help refine the findings presented in this
work about its interaction with problem difficulty.
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