
ADARES: Adaptive Resource Management for Virtual Machines

Ignacio Canow Tianqi Chenw Pedro Foncesap Chern Cheahn

Karan Guptan Ramesh Chandran Arvind Krishnamurthyw

wPaul G. Allen School of Computer Science & Engineering, University of Washington
{icano,tqchen,arvind}@cs.washington.edu

pDepartment of Computer Science, Purdue University
pfonseca@purdue.edu

nNutanix Inc.
{chern,karan.gupta,ramesh.chandra}@nutanix.com

Abstract
Virtual execution environments allow for consolidation of

multiple applications onto the same physical server, thereby
enabling more efficient use of server resources. However,
users often statically configure the resources of virtual ma-
chines through guesswork, resulting in either insufficient re-
source allocations that hinder VM performance, or exces-
sive allocations that waste precious data center resources. In
this paper, we first characterize real-world resource alloca-
tion and utilization of VMs through the analysis of an exten-
sive dataset, consisting of more than 250K VMs from over
3.6K private enterprise clusters. Our large-scale analysis
confirms that VMs are often misconfigured, either overpro-
visioned or underprovisioned, and that this problem is perva-
sive across a wide range of private clusters. We then propose
ADARES, an adaptive system that dynamically adjusts VM
resources using machine learning techniques. In particular,
ADARES leverages the contextual bandits framework to ef-
fectively manage the adaptations. Our system exploits eas-
ily collectible data, at the cluster, node, and VM levels, to
make more sensible allocation decisions, and uses transfer
learning to safely explore the configurations space and speed
up training. Our empirical evaluation shows that ADARES
can significantly improve system utilization without sacrific-
ing performance. For instance, when compared to threshold
and prediction-based baselines, it achieves more predictable
VM-level performance and also reduces the amount of vir-
tual CPUs and memory provisioned by up to 35% and 60%
respectively for synthetic workloads on real clusters.

1 Introduction
Virtual execution environments are widely used in industry
as they provide a high degree of flexibility and allow efficient
use of cluster resources. An application that might otherwise
require a dedicated server to run, can be deployed as a virtual
machine (VM) and executed together with other VMs on the
same physical hardware, thus enabling more efficient use of
resources [51].

There are however many hurdles in achieving both high
system efficiency and optimal VM performance. For ex-
ample, users typically allocate resources to VMs based on

guesswork, which hardly matches the actual resource needs
of the applications. Even more, the application workload for
a VM typically changes over time [12, 24, 21, 28], rendering
static resource allocation settings inappropriate.

Incorrect resource allocations can result in a variety of
problems. VMs that are not provided enough resources could
experience significant application level penalties, such as
trashing or swapping. Further, VMs that underutilize their
resources could affect the overall system efficiency, whereas
VMs that starve resources could potentially damage other
VMs, which could have otherwise benefited from those ex-
tra resources [55, 53, 11, 54]. This motivates the need for
a system that adaptively changes the amount of system re-
sources allocated to each VM in a cluster.

In this paper, we first perform a large-scale measurement
study of clusters to characterize the resource needs for VMs
in the real-world. We gather an extensive dataset by in-
strumenting more than 3.6K enterprise clusters running a
commercial computation and storage virtualization product.
Our analysis allows us to quantify the extent to which user-
configured resource allocations are incorrect and the overall
impact on cluster efficiency. Among our main findings, we
observe VM instances with significant amounts of overprovi-
sioning as well as some underprovisioning. Further, we find
significant variation across time and VMs within a cluster,
which renders static resource allocations ineffective.

Unlike most existing traces [17, 40, 56, 34], our data refers
to privately managed, enterprise clusters that are provisioned
and operated independently by 2K+ different companies.
Such environments have received little attention despite rep-
resenting an important virtualization environment that is ex-
tensively used by companies [42]. Furthermore, the traces
we collect contain a richer set of metrics (e.g., VM memory
usage, effective I/O operations, etc.) than most other traces,
enabling a more thorough analysis of the resource allocation
problem.1

Based on our findings, we design and build ADARES,
an adaptive system that automatically optimizes VM re-

1We will make publicly available the complete traces that we collected
for this study to enable others to build on our work.

1

source allocations in real clusters. ADARES uses the multi-
armed bandit framework with context information [32], also
known as contextual bandits, to dynamically tune the VMs
resource settings, namely virtual CPUs (vCPUs) and mem-
ory. By design, the contextual bandits framework allows a
cluster manager to adapt to the VM workload characteristics
through online learning, and represents a natural half-way
point between supervised learning and reinforcement learn-
ing [7, 33, 13, 32].

A key challenge in leveraging contextual bandits in our
setting is the “unsafe” exploration that is required for learn-
ing something useful. In other words, we need to be careful
of the changes we perform to the VMs as we do not want
to (permanently) impair them. To address this challenge, we
build a cluster simulator from data collected by running dif-
ferent benchmarks in experimental clusters. We then pre-
train (or warm-up) our model(s) offline using the simulator,
and transfer the knowledge gained in the simulated environ-
ment to the real clusters in order to conduct safer configura-
tion changes as well as speeding up training [38, 25], which
translates into up to 2x resource savings when compared to
models learned from scratch. We also leverage the cluster’s
instrumentation by providing our model a full picture of the
cluster, node and VM states, so that it can make more in-
formed decisions.

Summarizing, our main contributions are:

• We present a large-scale study of VM resource allocations
and usage within thousands of enterprise clusters, which
enables us to characterize the overprovisioning, underpro-
visioning, and variation in resource utilization over time
that occurs in this context.

• We propose, design, and build ADARES, an adaptive sys-
tem capable of tuning VM resources to increase overall
system efficiency that is compatible with existing cluster
schedulers.

• We propose a contextual bandit-based approach to drive
the resource adjustments, and we instantiate our model
with an appropriate formulation that results in better re-
source allocations in real clusters, with resource savings
up to 35% (CPU) and 60% (memory) in synthetic work-
loads executed on real clusters, when compared to thresh-
old and other ML-based baselines.

2 Resource Utilization Measurements of En-
terprise Clusters

This section presents our measurement study on resource al-
location and utilization of enterprise clusters with virtual ex-
ecution environments. Our study characterizes the VM re-
source allocation problem in the context of enterprise clus-
ters and motivates the need for ADARES.

2.1 Measurement Methodology

We perform our measurements on enterprise clusters running
a commercial virtual execution platform.2 Its cluster man-
ager transparently allocates and migrates VMs based on user
configured resource settings and cluster-level utilization met-
rics. In addition, the platform provides transparent access to
highly available virtual storage (virtual disks) located within
each cluster node.

Our dataset was collected from sensors deployed on the
cluster nodes that record data regarding a broad class of met-
rics, such as the resources utilized by a VM (e.g., CPU and
memory) and cost of various operations (e.g., average I/O
latency). Our dataset consists of a subset of the clusters that
push diagnostic information to a centralized data collection
service and refers to the period from April 23rd to May 20th,
2018. Table 1 shows an overview of the virtual execution
environments that we study, containing more than 250K VM
traces.

Statistic Value

of Companies 2,003
of Clusters 3,669
of Nodes 17,633
of VMs 252,941

Table 1: Dataset Overview

2.2 Private Cluster Configurations

To better understand the configuration patterns of enterprise
clusters, we perform an analysis of configurations at cluster,
node, and VM levels.

Cluster-level Configuration Figure 1 shows the distribu-
tion of nodes per cluster (1a) and the consolidation factor,
i.e., the average number of VMs per node, (1b). From Fig-
ure 1a, we observe that 60% of the clusters have 4 nodes or
less, and 30% have between 5 and 10 nodes. In general, the
clusters have a modest number of nodes. We find that un-
der these environments, when users need additional nodes,
companies tend to expand their computational resources by
adding clusters, as opposed to adding nodes to existing clus-
ters. There are three main reasons for this: (1) smaller clus-
ters provide better fault isolation, (2) most of the analyzed
clusters are deployed on premise, in remote office/branch of-
fice (RoBo) configurations, and (3) some companies prefer
to create clusters for each line of business. Figure 1b shows
that 50% of the clusters have, on average, at most 16 VMs
per node, and that 20% have more than 35 VMs per node, up
to ∼200 VMs per node.

Node-level Configuration Enterprise clusters often have
powerful nodes, as shown in Figure 2. We observe that 50%

2We omit the platform identity in this submission to preserve the author
anonymity.

2

0 5 10 15 20 25 30
Nodes

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(a) Nodes per Cluster

0 25 50 75 100 125 150 175 200
Avg. VMs per Node

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(b) Consolidation Factor

Figure 1: Cluster-level Configuration
of the nodes have more than 24 physical cores and 384 GiB
of RAM, and 10% have at least 36 cores and more than 512
GiB of RAM.

8 16 32 64
Cores

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(a) CPU

64 128 256 512 1024
Memory Size (GiB)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(b) Memory

Figure 2: Node-level Configuration

VM-level Configuration Figure 3 provides an analysis of
the VM sizes in terms of virtual CPUs (vCPUs) and allo-
cated memory. Our dataset shows that approximately half
of the VMs are configured with 2 vCPUs, whereas 20% are
configured with 4 vCPUs. Regarding memory, around 35%
of the VMs are deployed with 4 GiB of RAM, and 20% with
8 GiB. In both resources, we note a “human” sizing pattern
of using powers of 2.

1 2 4 8 16 32
vCPUs

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(a) CPU

0.25 0.5 1 2 4 8 16 32 64
Memory Size (GiB)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(b) Memory

Figure 3: VM-level Configuration

We also observe a correlation between the size of the clus-
ters and the number of VMs per node: small clusters have
on average the lowest VM density because such clusters typ-
ically run a small number of applications supporting limited
workloads. In contrast, larger clusters typically support a
broad mix of workloads, with some supporting applications
such as Virtual Desktop Infrastructure (VDI), which typi-
cally deploy a large number of VMs for each connected user.
Further, we note that many medium-sized VMs (i.e., VMs
with 2-4 vCPUs) are typically used to deploy server applica-
tions such as SQLServer, MS Exchange, etc.

Summary: Enterprise clusters are often small-sized
single-tenant clusters, with powerful nodes, that support
the workload requirements of small and medium-sized
businesses.

2.3 Problem Characterization

This section provides an analysis on the utilization of the
clusters. Our analysis relies on several key metrics that we
collect and are representative of the VMs resource usage. For
each metric, we record, on each cluster node, the average
measurement over a 5-minute interval at the VM-level. This
data enable us to calculate the mean, maximum, and the 95th

percentile (P95) of a series of 5-minute measurements for
any given metric.

0 20 40 60 80 100
CPU Usage (%)

20%

40%

60%

80%

100%

CD
F

Mean
P95
Max

(a) CPU

0 20 40 60 80 100
Memory Usage (%)

20%

40%

60%

80%

100%

CD
F

Mean
P95
Max

(b) Memory

Figure 4: VM Resource Usage

Figures 4a and 4b present the cumulative distribution
function (CDF) of the mean, P95 and maximum VM re-
source usage for CPU and memory. These results show that
many of the VMs are overprovisioned with respect to both
CPU and memory. In particular, 90% of the VMs have P95
CPU and memory usages lower than 40%. Further, 80% of
the VMs have a maximum resource usage that is lower than
60% (CPU) and 80% (memory) throughout their lifetime; in
other words, 40% and 20% of the allocated resources are
never used by 80% of the VMs. By analyzing the dataset we
calculate that the global resources allocated but never used
correspond to 26% (CPU) and 27% (memory) of the total al-
located resources by all VMs.3 Such allocated but sparsely
used resources are the result of two main factors: (a) manual
VM resource allocation, and (b) users inability to accurately
predict the resource demands of their workloads.

We observe a similar trend at the node level, i.e., many
nodes have low average utilization but experience high peak
resource usage. We show the complementary cumulative dis-
tribution functions (CCDF or 1-CDF) of node-level usage
in Figure 5. Note that CCDFs are useful for highlighting
the tails of distributions. Besides CPU and memory usage,
we also analyze the compute processing load of the storage
controller on each node and use it as a proxy of the node’s
I/O load. In general, we see that node usage is higher than

3Intuitively, the areas to the right of the maximum line in Figure 4a and
4b represent the global wasted resources that are never used, but our num-
bers additionally take into consideration the different absolute sizes of the
VMs.

3

0 20 40 60 80 100
CPU Usage (%)

1%

10%

100%
1

- C
DF

Mean
P95
Max

(a) CPU

0 20 40 60 80 100
Memory Usage (%)

1%

10%

100%

1
- C

DF

Mean
P95
Max

(b) Memory

0 20 40 60 80 100
I/O Load (%)

1%

10%

100%

1
- C

DF

Mean
P95
Max

(c) I/O

Figure 5: Node Resource Usage
VM-level usage, especially memory utilization, due to over-
subscription, where around 10% of nodes have, on average,
more than 80% memory usage, but still, many nodes are un-
derutilized.

Although average utilization is generally low, our data
still reveals that many VMs are underprovisioned. Figure 6a
shows the distribution of hotspot VMs per cluster. We con-
sider a VM to be a hotspot if its 95th percentile metric uti-
lization is greater than 75%. We observe that 40% of the
clusters with hotspot VMs have at most 2 underprovisioned
VMs, whereas 10% of the clusters with underprovisioned
VMs contain at least 10 hotspot VMs. From the total clus-
ters in the dataset, 45% contain either CPU-hotspot VMs,
memory-hotspot VMs, or both. Thus, our data suggests that
underprovisioning is not limited to few, possibly incorrectly
managed, clusters; instead, our data reveals that the hotspot
problem impairs a large fraction of clusters.

1 10 100
Hotspot VMs

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(a) Distribution of Hotspot VMs
per Cluster

0 20 40 60 80 100 120
Overprovisioned/Underprovisioned VMs

1%

10%

100%

1
- C

DF

(b) Ratio of Over/Underprovi-
sioned VMs per Cluster

Figure 6: Hotspots and Over/Underprovisioned VMs Ratio

Summary: Most VMs in today’s enterprise clusters are not
sized appropriately, with many VMs either overprovisioned
or underprovisioned. This motivates the need for developing
an automated system to determine VM resource allocations
as opposed to relying on user-provided configurations.

2.4 Opportunities and Challenges for Adaptive Re-
source Allocation

Figure 6b shows the distribution of the ratio of overprovi-
sioned divided by underprovisioned VMs (when such under-
provisioned VMs exist) per cluster, at a given point in time.
We consider a VM to be overprovisioned if its 95th percentile

metric utilization is less than 25%. Recall that underpro-
visioned (or hotspot) VMs are those with a P95 utilization
greater than 75%. In general, when there are hotspots, there
are also VMs with overprovisioned resources at the same
time. For example, we observe that 50% of the clusters
with underprovisioned VMs have at least a 7:1 overprovi-
sioned/underprovisioned VMs ratio.

We also correlate the VM/node provisioning and utiliza-
tion metrics using Spearman’s correlation [46], which as-
sesses monotonic relationships between variables (linear or
not). We use P95 values of each VM for this analysis. We
show the results in Figure 7 as a heat map, which intuitively
can be interpreted as follows. If metric x tends to increase
when y increases, the correlation coefficient is positive. If x
tends to decrease when y increases, the correlation is nega-
tive. A zero correlation indicates that there is no tendency
for x to either increase or decrease when y increases. A per-
fect correlation of ±1 occurs when each of the variables is
a perfect monotone function of the other. We observe that
CPU and memory usage have a strong positive (but not per-
fect) correlation, which seems to indicate that the compute-
heavy workloads in our dataset are also memory-intensive,
but VM-specific tuning is still necessary to determine how
much memory should be provided to a VM to go with the
amount of CPU resources allocated to it. Further, the node-
level I/O usage is not that strongly correlated with memory
and CPU usage, indicating that there is an opportunity to
co-locate VMs that are just I/O intensive with VMs that are
memory or CPU-intensive.

CPU Usage Memory Usage vCPUs Memory

CPU Usage

Memory Usage

vCPUs

Memory

1.000

0.765 1.000

0.286 0.367 1.000

0.282 0.483 0.649 1.000

(a) VM-level

CPU Usage

Memory Usage
I/O Load

Cores
Memory

CPU Usage

Memory Usage

I/O Load

Cores

Memory

1.000

0.777 1.000

0.645 0.295 1.000

0.416 0.474 0.585 1.000

0.466 0.648 0.547 0.623 1.000

(b) Node-level

Figure 7: Provisioning and Utilization Metrics Correlations

Next we examine the variation in resource utilization

4

across time. The purpose of this analysis is to quantify the
need for reallocating resources across VMs within a cluster
and to examine the implications of static thresholds.

Figure 8 shows the CCDF of the 95th percentile divided by
the mean of CPU (8a) and memory (8b) usages for both VMs
and clusters. We notice that∼45% of the VMs have a P95 at
least 2x bigger than the mean, for both metrics, which indi-
cates that there is significant variation across time for many
VMs. However, at a cluster-level, the variation of CPU and
memory usage over time is insignificant, indicating that us-
age spikes are not highly correlated across VMs.

0 1 2 3 4 5 6 7 8
P95/Mean CPU Usage

1%

10%

100%

1
- C

DF

VM
Cluster

(a) CPU Usage

0 1 2 3 4 5 6 7
P95/Mean Memory Usage

1%

10%

100%

1
- C

DF

VM
Cluster

(b) Memory Usage

Figure 8: P95/Mean Usage Ratios

Summary: Many clusters have both underprovisioned and
overprovisioned VMs. In fact, there is significant disparity
between the utilization levels of VMs in a cluster, regard-
less of the resource type. This disparity, in turn, provides an
opportunity to reallocate resources from VMs that are over-
provisioned onto VMs that are underprovisioned, potentially
solving both problems. However, such a mechanism would
have to address two important challenges: (1) it can only
reallocate resources between VMs running at a given time,
and (2) it has to continuously adapt to the current load given
the large temporal variations in VM resource usage.

3 Design
This section describes the design of ADARES, a system that
changes the physical resources allocated to VMs based on
current workload and other attributes of the virtual execu-
tion environment. Our system crucially relies on the con-
textual bandits framework and other techniques to guide the
resource adjustment. This section starts with a high-level de-
scription of the goals that determined the design of ADARES,
an overview of the system, and a description of its core
components. This section complements the system descrip-
tion with background information to assist readers unfamiliar
with the contextual bandits framework.

3.1 ADARES Goals

ADARES is designed to identify the appropriate resource al-
location settings for VMs in enterprise clusters. The goal
is to improve cluster execution efficiency by allocating the
optimal amount of resources to each VM but without com-
promising VM performance; that is, the resource allocated to
a VM should be just adequate for it to operate without expe-

Hypervisor

CVM

CPU
Memory

S
S
D

S
S
D

H
D
D

H
D
D

SCSI Controller

Sensing

I/O Hypervisor

CVM

CPU
Memory

S
S
D

S
S
D

H
D
D

H
D
D

SCSI Controller

Sensing

I/O Hypervisor

CVM

CPU
Memory

S
S
D

S
S
D

H
D
D

H
D
D

SCSI Controller

Sensing

I/O

VM Management Software

Cluster Manager

Execution

Decision

Predictive

Filtering

Figure 9: ADARES Architecture
riencing a slowdown. Thus, ADARES reduces the resources
allocated to overprovisioned VMs and increases resources
allocated to underprovisioned ones.

Note that the VM assignment problem is orthogonal and is
out of the scope of this paper, i.e., ADARES does not deter-
mine the optimal node to which a VM is assigned or migrated
to; instead, it relies on existing tools, such as VMware’s vSh-
pere/vMotion [45], to address this challenge. Nevertheless,
by optimally setting the resource allocation, ADARES allows
such tools to both pack more VMs into clusters as well as
migrate VMs to the appropriate nodes that have sufficient
resources to host them [43].

We design our system with the goal of achieving the fol-
lowing properties:

• Highly adaptive: The system should work in a diverse
set of operating conditions and identify optimal operating
points for a diverse set of cluster, node, and VM config-
urations. It should continuously adapt VM configurations
in response to changes in workloads. Our choice of con-
textual bandits is primarily driven by its ability to learn
and adapt to such settings.

• Safe allocations: A key challenge with using bandits in
our setting is that the adaptive controller might require a
significant amount of unsafe exploration to distill a decent
model of cluster behavior. We seek to build a system that
can transfer the knowledge gained from simulations and
thereby safely streamline the model distillation process in
real clusters.

• Modular and configurable: Our system should provide
a configurable framework that can integrate a variety of
measurement sensors and operate using configurable pre-
diction models. Further, we desire a framework that can
integrate system management policies defined by the clus-
ter operator (e.g., ensuring that VMs never exceed a cer-
tain amount of utilization for a given resource). Moreover,
the approach should be general enough to be able to work
with many hypervisors and virtualization environments.

3.2 ADARES Components

This section provides an overview of our system and in-
troduce its core components. Figure 9 shows a high level
overview its architecture. ADARES is composed of five core

5

components to optimize VM configurations: the Sensing
Service component is deployed on each node in the cluster,
whereas the remaining components are executed within the
cluster manager node.

3.2.1 Sensing Service (SS)

The Sensing Service is in charge of collecting telemetry data.
The current version collections data at cluster, node, and
VM-level. It utilizes sensors on each of the nodes in the
cluster to continuously collect information regarding the uti-
lization levels of resources as well as some key performance
metrics of the VMs. For instance, it collects information on
the CPU and memory utilization of VMs and the number of
IOPS performed by each VM, as well as performance met-
rics such as CPU ready times, virtual memory swap rates,
and the latency of I/O operations. These sensors are typi-
cally deployed on the controller VMs (CVMs) running on
each node, which not only have access to VM-level metrics
(e.g., CPU or memory utilization), but also interpose on I/O
operations performed by the VMs on the virtual disks ex-
ported by the cluster software.

3.2.2 Filtering Service (FS)

The Filtering Service component serves as a pre-processing
step running on the cluster manager node and is designed to
limit the number of VM configuration changes made by the
system at a given time. It enables the operator to filter the
collected telemetry data based on different strategies. For in-
stance, the FS can filter VMs with CPU usage greater than
a certain threshold, randomly select a percentage of the total
VMs in the cluster, etc. The output of this service is typi-
cally a subset of VMs that will be tuned in a given round of
the contextual bandit algorithm. As such, the FS component
functions as a throttling mechanism, as it can control the rate
at which changes are made. This is especially important for
highly loaded systems, where changing a large number of
VMs at the same time could be counterproductive.

3.2.3 Predictive Service (PS)

The Predictive Service along with the Decision Service en-
compass the core contextual bandit logic in ADARES. At a
high-level, a machine learning (ML) model identifies the ap-
propriate arms or actions (e.g., scale up/down a VM’s mem-
ory allocation), given the current context or state of the VMs
in the cluster (e.g., utilization level and other metrics). The
actions are chosen based on some expected reward, i.e., the
effect of taking the actions on the VM performance metrics.
We discuss these concepts in greater detail in §3.3.

PS exports two methods as part of its interface: (a) pre-
dict, which outputs the recommended actions for the selected
VMs based on the ML model trained to maximize the ex-
pected reward, and (b) learn, which supports updating the
ML model in an online-fashion, in order to fold in the ac-
tual observed rewards as a consequence of pulling arms (or
taking actions).

3.2.4 Decision Service (DS)

The Decision Service component makes the final decision re-
garding changes to resource allocations. PS gives hints to DS
(e.g., with high confidence PS can recommend to scale down
the vCPUs of a particular VM), but it is up to the DS service
to follow PS’s advice. DS can be seen as a component that
leverages the ML-based predictions, but additionally, folds
in two other considerations when determining the actual de-
cisions performed by the cluster manager: (a) exploring the
configuration space to discover the rewards associated with
a diverse set of actions, and (b) leveraging domain knowl-
edge to make more sensible decisions given the application
domain.

For the latter consideration, DS enables users to configure
different rules, such as min-max (hard) bounds of utilization
and resources, as well as update levels of resources per VM
(or group of VMs). For example, a user could set a configu-
ration to ensure that VDI VMs can only have between 1 and
4 vCPUs, and 2-8 GiB of memory, and that the system must
always scale up the vCPUs of those VMs if their CPU us-
age is more than 90%. Further, on every scaling operation
the user can configure, for example, to limit the number of
updates of vCPUs to ± 1 and memory to ± 40%. This fea-
ture allows ADARES to be more cautious or aggressive in
accordance with the workload resource tolerance.

3.2.5 Execution Service (ES)

The decisions made by DS are handed to this service, which
triggers the operations. Our current prototype supports inte-
gration with VMware vSphere,4 which acts as the VM Man-
agement Software layer. Therefore, we also use VMware
ESXi as the nodes’ hypervisor. In order to perform provi-
sioning changes on-the-fly, the underlying guest OS kernel
needs support for hot addition/removal of CPUs and mem-
ory. However, VMware vSphere only provides native sup-
port for hot addition of both resources but not removal. We
therefore use other vSphere APIs, in particular, the ability to
execute programs directly on guests using the VMware tools
installed on the VMs, to perform the adaptations. Finally,
this component also keeps track of the execution progress
and notifies the main controller of any failures during the
process.

3.3 Contextual Multi-armed Bandit-based Approach

We now describe how ADARES uses contextual bandits for
the VM resource allocation problem. We begin by describ-
ing the abstract contextual bandits framework and the ratio-
nale behind this choice. We then outline how we apply it
to our problem setting. Importantly, this section identifies
the challenges in using contextual bandits and how ADARES
addresses them.

4https://www.vmware.com/products/vsphere.html

6

https://www.vmware.com/products/vsphere.html

3.3.1 Background

In the multi-armed bandit (MAB) problem with contextual
information, an agent collects rewards for actions taken over
a sequence of rounds. In each round, the agent chooses the
action to take based on: (a) context (or features) of the cur-
rent round, and (b) feedback (or rewards) obtained in the pre-
vious rounds. In any given round, the agent observes only the
reward for the chosen action, thus the feedback is said to be
incomplete [7].

More formally, the learning agent proceeds in a sequence
of discrete trials, t = 1,2,3... At each trial t, the agent ob-
serves the context xt , and selects an action, at ∈ At , where
At is the set of all actions available at time t. The agent
then receives a reward, rt,at ∈ [0,1], and improves its action-
selection strategy with the tuple (xt ,at ,rt,at) [33].

The total reward for the agent after T trials is defined as
∑

T
t=1 rt,at . Similarly, the optimal expected T -trial reward is

defined as E[∑T
t=1 rt,a∗t], where a∗t is the action with the max-

imum expected reward at trial t. The goal of the agent is
to maximize the expected reward, or, equivalently, minimize
the regret with respect to the optimal action-selection strat-
egy. The regret of the agent after T trials is formally defined
as follows:

R(T) = E[
T

∑
t=1

rt,a∗t]−E[
T

∑
t=1

rt,at] (1)

A fundamental challenge in bandit problems is the need
for balancing exploration and exploitation. In order to mini-
mize the regret in Equation 1, the agent exploits its past ex-
perience and chooses the action that appears to be the best.
However, that action might be suboptimal due to the agent’s
insufficient knowledge. Instead, the agent may need to ex-
plore by selecting seemingly suboptimal actions in order to
gather more knowledge about them [33]. Common appli-
cations of contextual bandits include, but are not limited to,
personalized news recommendations, clinical trials, and mo-
bile health interventions [50, 13].

3.3.2 Why Contextual Bandits?

Contextual bandits can be considered a hybrid between su-
pervised learning and reinforcement learning. The construc-
tion of context using features comes from supervised learn-
ing, while exploration, necessary for good performance, is
inherited from reinforcement learning [13].

Training a model offline using any supervised learning
algorithm would not work in our case because VM work-
loads change frequently and many incoming VMs do not
have historical records at all. Such approach would require
re-training the model with a high frequency to try to keep up
with workload changes and its unclear how often this process
would be required to attain acceptable results. Instead, using
an online learning algorithm is more suitable because it au-
tomatically and dynamically adapts to new patterns as new

data becomes available. One can think of an online model
trained to predict workload characteristics of VMs. For ex-
ample, given a new VM context, a model would predict its
maximum CPU usage in the next hour, and if it is above cer-
tain target threshold, then the system would scale its vCPUs
up. However, even if we had a perfectly accurate predictive
model, we would not have an easy way to properly fold the
result of taking the action into the model, as the prediction
task is decoupled from the result of the action. Furthermore,
the action taken would have affected the actual max CPU us-
age of the VM during the hour, complicating the process of
learning.

We therefore need an online formulation where the learn-
ing task itself could estimate the result (i.e., reward) of taking
an action, given side information (i.e., VM context). As we
do not know what would have happened had we taken a dif-
ferent action, our model should take different actions so as to
refine its estimates. The two main models that encompass the
above characteristics are contextual bandits and reinforce-
ment learning. Reinforcement learning (RL) [49, 47, 48] is
oftentimes seen as an extension of the contextual bandit set-
ting. One difference is that the reinforcement learning agent
can take many actions until it observes a reward. For exam-
ple, in a chess game, the player makes many moves but the
reward is only revealed at the end of the game (win, loss,
draw). This sparsity makes the problem harder to learn and
gives rise to the so-called credit assignment problem, i.e.,
which actions along the way actually helped the player win?
In our setting, however, we do not have to deal with sparse
rewards; after we scale a VM, we can sense its performance
metrics with our Sensing Service and get an idea of how
much the scaling action affected the VM. Further, although
recent successes in deep reinforcement learning [36, 35]
have made it quite popular among practitioners, most RL al-
gorithms lack theoretical guarantees. On the contrary, there
are many contextual bandit algorithms with strong theoret-
ical guarantees that ensure convergence to an optimal solu-
tion [33, 7, 13], and they typically have a faster ramp up than
their RL counterparts.

3.3.3 Contextual MAB Formulation for VM Resource
Management

In order to apply contextual bandits to manage VM re-
sources, we need to define the set of features that represent
the contexts x, the set of possible actions A , and the reward
function. Crucially, all this setup depends on how the rest of
the system is structured, as in what can be measured and how
the performance of an application VM can be quantified.

Context We represent the context of VMs by cluster, node
and VM-level features, as well as temporal information.
The context attributes include the various measurements col-
lected by the Sensing Service, e.g., the resource allocations
made to VMs, current and historical resource utilization lev-
els (at VM, node, and cluster granularities), summary statis-

7

tics of those (e.g., max, min, average, and P95 utilization),
performance metrics that characterize VM behavior (e.g., la-
tency, IOPS, swap rates, CPU ready time, etc.), overcommit-
ment factors of the node and cluster where the VM is run-
ning, and others.

We consider is worth noting that the ability to feed side
information into the agent, allows the agent to do context-
dependent adaptations, and makes the whole contextual
MAB framework well-suited for our setting. The intuition
behind including global information, i.e., cluster and node-
level features besides just the VM information, is to aid the
agent in making more “coordinated” scaling decisions across
VMs, by also taking into account availability of resources in
the host(s), oversubscription levels, etc. For instance, when
the side information shows that a node’s resources are highly
overcommitted, the agent might decide not to increase the
resources of its VMs. Or when it detects sinusoidal usage
patters in VMs, it may decide to augment and decrease their
resources depending on the part of the cycle it is in, and so
on.

Actions We use a special case of the general contextual
bandit framework introduced before, in which the action set
At remains unchanged for every round t. In particular, we
define a total of three actions per resource type (scale up,
scale down or noop). For example, the agent can choose to
scale up memory and scale down vCPUs, scale down both,
neither, etc. Actions result in resource allocations updates
to VMs, and in turn, VMs respond to the new allocations
by exhibiting an updated set of utilization and performance
metrics, which the agent then uses to update its model.

Reward The final step in setting up the bandits formula-
tion is to define the reward function. The primary objective
in defining the reward function is to steer the cluster con-
figurations towards states that correspond to minimal VM-
level resource allocations without compromising VM per-
formance. Our framework is agnostic to the way the reward
function is defined; the only constraint it imposes is that the
reward must be a function of the various metrics gathered by
the Sensing Service.

We give a reward of 1 when, irrespective of the action, we
move from a “bad” state to a “good” one, e.g., from a con-
text with swapping and/or CPU overload to a context with-
out. We also give a payoff of 1 if we make “good” actions,
e.g., if we scale down to increase the usage, but the VMs do
not end up incurring in swapping or CPU overload, or if we
scale up to try to escape from a state with swapping or high
CPU load. On the other hand, we penalize (zero reward)
actions that lead to bad states, e.g., if we are not swapping
and after scaling down we start doing so. Finally, we also
penalize scaling up/down recommendations of PS if the do-
main knowledge encoded in DS heuristics (i.e., hard bounds)
don’t allow them.

We note that there are likely many formulations of the re-

ward function that achieve the desired objective of maximiz-
ing system efficiency without hurting VM performance. We
also provide the cluster operator with the ability to configure
the reward function by incorporating additional information
from application-level performance metrics, as that would
allow for more precise reward valuations and faster conver-
gence to optimal configurations.

3.3.4 Safe Allocations and Faster Training: Sim2Real

Another challenge of applying bandit-based approaches in
our setting is that we need to ensure reasonable performance
and respect “safety” constraints during the learning process.
We need to be extra cautious not to mess up with VMs while
exploring different actions but, at the same time, we want to
make the right decisions as soon as possible. Incorporating
“prior knowledge” before the agent is deployed might help
to speed up learning and reduce the amount of interactions
with the real VMs, which may be limited and costly [9, 29].

Inspired by the robotics community, herein, we build a
cluster simulator to pre-train our agent. The idea is to then
transfer the knowledge gained while training on this (cost-
less) simulator to bootstrap our agent before it is deployed
in real clusters. We start the section by stating what we need
from the simulator, the challenges its construction presents,
and how we address those challenges in our work.

Requirements The simulator should provide an easy
mechanism to emulate, to some extent, the dynamics of a
cluster. We are interested in modeling what happens to
VM performance metrics once we perform configuration
changes. In other words, we need (simplistic) analytical
models of the environment that our Sensing Service can
query to obtain the contextual information (or features) and
rewards necessary to train our agent.

Challenges Although we brought robotics into the picture,
building a simulator of a robot is a completely different en-
deavor. Therein, the well-defined rules of physics (e.g., grav-
ity) aid in the otherwise even harder process. Herein, we
don’t have those; the large number of components and con-
nections (e.g., VMs, nodes, storage devices, queues), the
intricate component dependencies (e.g., hypervisors mul-
tiplexing shared resources), and the irregular interactions
and resource needs (e.g., different workloads changing over
time) complicate our ability to create a simulator that faith-
fully represents a real cluster. Nevertheless, from a machine
learning standpoint, we don’t need an entirely “accurate”
simulator, we need a reasonable initialization of what we be-
lieve the dynamics are, and then we can keep updating those
beliefs as we keep on training in the real cluster. By incorpo-
rating (incomplete) initial knowledge, the agent would be ex-
posed to the relevant regions of the context and action spaces
from the earliest steps of the learning process, thereby elimi-
nating the time needed in random exploration for the discov-
ery of these regions, as in safe reinforcement learning [25].

8

Data-driven approach Following the “reasonable”
premise above, we use a data-driven strawman approach
to build our cluster simulator. We run a set of controlled
experiments on synthetic workloads that aim to mimic the
ones we observe in real clusters, and we perform different
changes to VM configurations and record their impact. For
example, we change the amount of vCPUs assigned to VMs
and observe how those changes affect their CPU usage.
Further, we run different I/O benchmarks using Vdbench [6]
to profile IOPS and latencies for different representative
workloads (e.g., 8k random reads, 8k random writes, 1M
sequential writes, 8k 50% random reads and 50% random
writes, burst, sequential) at different rates, and with different
outstanding I/O per node. This profile data gives us an idea
of the rates at which our system can (roughly) serve the
different types of I/O. Given that we have an estimate of the
service rates, and as we know the amount of outstanding
I/O in a node, we then resort to queueing theory (single
server model or M/M/1) to compute arrival rates per node,
and then derive approximate latencies (or wait times) in the
system. Finally, we also create multi-queue multiprocessor
schedulers with round robin per node, to roughly estimate
CPU ready times among the VMs running in those nodes.
Although some initial results on the fidelity of our simulator
are in Appendix A, we acknowledge that the addition of
extra features to the simulator can (and probably will) get us
better results on real clusters. We leave that to future work.

3.4 Contextual Bandits meet ADARES

Having introduced the core constructs of ADARES, and
MAB with contextual information , in this section, we show
how we use our system together with the latter framework to
dynamically adjust VM resources.

The core services described in §3.2 are orchestrated by a
controller running in the cluster manager node. Listing 1
shows a (simplified) example of the main controller loop,
the heart of our agent. The agent starts sensing the cluster
state (cluster, node, and VM-level information). Note that
in our setting we define contexts xt ∈ Rd per VM, thus here
Xt ∈ Rnxd , where n is the number of VMs in the cluster, and
d the size of our feature vector. The ith row in matrix Xt
represents the context of the ith VM.

The agent then uses FS to select b VMs eligible for allo-
cation updates in the current round, where b ≤ n, and con-
tacts the Predictive Service to obtain the recommendations
for those filtered VMs (Pt ∈ Rbx|At |, where |At | = 9 is the
number of possible actions) (Line 4). In this and the next step
is where the bandits algorithm comes into play. After ob-
taining the predictions, the Decision Service uses an explo-
ration/exploitation strategy together with its domain knowl-
edge to decide which actions to take (At ∈ Rbx1, i.e., only
one action per VM). The set of actions are passed to ES for
the actual execution (Line 6). After the actions are executed,
the agent uses the Sensing Service to get a sense of the ac-

Listing 1 ADARES Controller
1: Xt ← ss.sense(cluster) (sense context)
2: for t = 1,2... do
3: Xt ← fs.filter(Xt) (filter VMs)
4: Pt ← ps.predict(Xt) (get prediction values)
5: At ← ds.decide(Pt) (explore/exploit + domain knwl)
6: es.execute(At) (execute actions)
7: Xt+1← ss.sense(cluster) (sense new context)
8: Rt,At ← reward(Xt , At , Xt+1) (compute rewards)
9: ps.learn(Xt , At , Rt,At) (online learning)

10: Xt ← Xt+1 (update context)
11: end for

tions’ impact on the VMs performance metrics. Note that
Xt+1 ∈ Rnxd , i.e., we sense the whole cluster, not just the
previous b filtered VMs. We do this because we will use this
new contexts in the next iteration (Line 10), and because the
filtering step (Line 3) may select a different subset of VMs
than in previous iterations. The agent computes the rewards
only for the b filtered VMs of the current round. Finally, the
agent learns the benefits/drawbacks of taking actions At for
contexts Xt in Line 9.

4 Evaluation
We implemented ADARES in about 7.8 KLOC of Python.
Our current prototype is built in the context of the same
commercial virtualization product that we used to collect the
cluster measurements. In this section we present the evalua-
tion of our prototype, with experiments on real clusters.

4.1 Evaluation Setup

Clusters We have access to two experimental clusters. We
have full control over one of the clusters, i.e., the smaller
one, but we have limited access to the larger cluster. The
first cluster is mainly homogeneous and consists of a total
of 48 cores, a CPU capacity of 115.2 GHz and 512 GiB of
RAM, on which we run∼20-36 VMs. The larger cluster has
heterogeneous nodes and contains a total of 540 cores, 1.27
THz of CPU capacity, and 7.75 TiB of RAM. This latter clus-
ter typically mimics real customer setups and is mainly used
for regression tests and benchmarks of new releases. Dur-
ing our experiments, there were around ∼530 VMs running,
which our agents do not control.

Virtualization Software We use VMware ESXi 5.5.0 as
the hypervisor, and our Execution Service talks to vSphere
to change the virtual hardware associated with the different
VMs. We generate VM images with CentOS Linux 7, ker-
nel version 3.10.x, which supports hot add/removal of CPU
and memory. We use VMware vSphere APIs to execute
programs on the guests to perform the adaptations. Only
VMware Tools software needs to be installed in the guest
OS, as the resources addition/removal can be done with na-
tive Linux programs (echo and grep) [2, 4]. Further, we clone
the VMs in our experiments from the three instance types
shown in Table 2. None of the VMs can have less than 1

9

vCPUs and 2 GiB of RAM, but their maximums differ based
on the type. Finally, we set the same tuning aggressiveness
for all VMs, ± 1 for vCPUs and ± 512 MiB for memory.

VM Instances
Resources

Initial Min-Max
vCPUs Mem (GiB) vCPUs Mem (GiB)

large 2 3.75 1-4 2-7.5
xlarge 4 7.5 1-8 2-15

2xlarge 8 15 1-16 2-30

Table 2: VM Instance Types and their Min-Max Ranges

Workloads We simulate different workloads using a mod-
ified version of Flexible I/O Tester (FIO) [10], where we can
configure the VM CPU load, the workload active memory
size, and the I/O operations per second. We attempt to mimic
the real workloads we observe in our traces, some VDI-based
workloads, other Server-like workloads (e.g., SQL server),
etc. We mainly issue 8k block-sized I/O. Depending on the
workload, we do random reads, random writes, and both ran-
dom reads and writes (50% each, 70-30%, or 80-20%).

Methods We use the following methods in our experi-
ments:
• passive, where no configurations adjustments are done to

VMs. This is the baseline currently deployed in our clus-
ters,

• reactive, where we sense information about the VMs and
if their usages are above/below certain threshold(s), we
perform the adaptations,

• proactive, similar to reactive, but uses a machine learning
model to predict maximum usages sometime in the near
future (e.g., 10 minutes). It performs changes if the pre-
dicted utilization levels deviate from the configured target
threshold(s), and

• bandits, our method, where we adjust resources using con-
textual bandits.
We use 75% as the underprovisioned threshold for the re-

active and proactive baselines; that is, if the current or pre-
dicted VM resource usage (either CPU or memory) is above
75%, the system scales the resource(s) up. Similarly, we use
a 25%-threshold to indicate overprovisioning, i.e., if the cur-
rent or predicted VM resource usage is below that threshold,
we scale the resource(s) down. Further, we use two linear
models, one for each resource, to predict the max utiliza-
tion of each resource in the next 10 minutes, in the proactive
baseline. We train the models using stochastic gradient de-
scent [15] with l2 regularization and the squared loss, and we
use the default hyperparameters of scikit-learn [39]. For our
method, bandits, we use LinUCB [33], a popular Upper Con-
fidence Bound (UCB) [5] algorithm. UCB algorithms are
based on the principle of optimism in the face of uncertainty.
On an incoming context, LinUCB computes the estimated

reward and the uncertainty, and chooses the action with the
highest score (estimated reward + uncertainty). We set the
exploration constant to 0.5 (higher means more exploration),
and the regularization parameter of the ridge regression to
0.01. Finally, our system makes decisions every 5 minutes.

4.2 Results

Static We start off by evaluating static workloads, which
are characterized by a somewhat flat utilization profile over
time. To that end, we run different static workload patterns
across a set of 36 VMs, 12 of each of the instance types de-
scribed in Table 2, in our controlled cluster, for a period of
4 hours. Figure 10a shows the vCPUs allocations over time
for the different methods. We see that both proactive and
bandits result in the fewest allocations, although our method
converges to a steady state sooner. Note that we only report
results on the bandits version that uses transfer learning. The
comparison of the bandits versions with and without transfer
learning are in Appendix B.

Further, Figure 10b plots the CDF of CPU usages of VMs,
both at the beginning and at the end of the runs. We observe
that around 30% of the VMs start with 100% CPU usage,
and ∼35% are using less than 20% of their computational
resources. As expected, the initial curves have an almost
perfect overlap, as every method runs the same workload.
More interestingly, at the end of the runs, we can see how
the adaptive methods increase the usages of overprovisioned
VMs (by scaling them down), as well as decrease the usage
of underprovisioned ones (by scaling up). For example, in
the bandits method, 35% of the VMs have at most 55% of
CPU usage, and only less than 10% of the VMs have 100%
CPU usage, as opposed to the initial 30%.

Overall, we see a 35% improvement, in terms of amount
of vCPUs allocated, for the ML-based methods (bandits and
proactive), when compared to static or threshold-based ap-
proaches. Further, at the end of the run, the standard devia-
tion of the VMs CPU usage is 18% and 22% for bandits and
proactive respectively, as opposed to 35% of passive, i.e., a
48%-37% improvement. Although the deviation of reactive
is lower (14%), the average VM CPU utilization also is, 46%
as opposed to 62% of bandits.

0 2000 4000 6000 8000 10000 12000 14000
Time (seconds)

0

50

100

150

200

To
ta

l v
CP

Us
 P

ro
vi

sio
ne

d

passive
reactive
proactive
bandits

(a) Provisioned vCPUs

0 20 40 60 80 100
VM CPU Usage (%)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

End
passive
reactive
proactive
bandits

Start
passive
reactive
proactive
bandits

(b) VM CPU Usage (Start-End)

Figure 10: Static Workload

Increasing Another example of workloads we observe in
practice are those with increasing resource demands. In this

10

case, we simulate a workload with increasing working set
size (WSS). We augment the WSS every 20 minutes for a
group of 20 xlarge VMs running in our controlled cluster.
Figure 11 shows the results of 4-hour runs. From 11a we ob-
serve that both reactive and proactive begin by hot removing
memory from VMs. Around 6K seconds, the sensed mem-
ory usage goes above 75%, thus reactive starts scaling up.
The surprising fact is the proactive allocations do not change.
By looking at the predictions from this method, we observe
that it always predicts a maximum memory utilization less
than 75%, therefore, it does not perform adaptations. We
speculate the reason is that it has not enough information to
start making “accurate” predictions yet. Bootstrapping the
method with our simulator using the same idea of transfer
learning could have helped. On the other hand, we can see
that the bandits method allocates slightly extra memory than
passive during the initial ∼130 minutes of the run. As the
agent starts receiving punishments (or zero rewards) because
of increasing swapping levels in the guest OSes, it starts scal-
ing up (around 9K seconds). This phenomenon can be ob-
served in Figure 11b, where we show the percentage of VMs
that experience swapping over time. As expected, bandits
performs the best, as it is being trained to avoid such states
(or contexts). Further, Figures 11c and 11d compares the av-
erage cluster latency and the total cluster IOPS of passive and
bandits methods. We observe that our method shows lower
I/O latency in general, and it can keep up with the workload
IOPS. Overall, if we consider the number of VMs that are
experiencing swapping at the end of the run, we can see ban-
dits has a 63-65% improvement over the other baselines.

0 2000 4000 6000 8000 10000 12000 14000
Time (seconds)

0

50

100

150

200

250

To
ta

l M
em

or
y

Pr
ov

isi
on

ed
 (G

iB
) passive

reactive
proactive
bandits

(a) Provisioned Memory

0 2000 4000 6000 8000 10000 12000 14000
Time (seconds)

0

20

40

60

80

100

VM
s S

wa
pp

in
g

(%
)

passive
reactive
proactive
bandits

(b) VMs doing Swapping

0 2000 4000 6000 8000 10000 12000 14000
Time (seconds)

0

2

4

6

8

Av
g.

 C
lu

st
er

 L
at

en
cy

 (m
s) passive

bandits

(c) Cluster Latency

0 2000 4000 6000 8000 100001200014000
Time (seconds)

0

2000

4000

6000

8000

To
ta

l C
lu

st
er

 IO
PS

passive
bandits

(d) Cluster IOPS

Figure 11: Increasing Memory Workload

Periodic and Static Finally, we focus on periodic and
static workloads. In particular, we vary CPU utilization lev-
els of VMs (Figure 12a), but keep constant the memory us-
age (Figure 12b). We expect the adaptive methods to decom-
mission CPU resources during non-peak times, and restore

them back during high demand, and also, reduce the amount
of provisioned memory but without incurring in swapping.

In this experiment, we deploy four ADARES agents and
execute them in parallel, one for each method, in the larger
cluster. Each agent manages 10 xlarge VMs during the run.
We select 5 nodes at random, and place 2 VMs of each agent
in each one of the nodes in order not to benefit methods with
VMs running on lightly loaded nodes. Recall that there are
more than 500 VMs running in the cluster.

0 2000 4000 6000 8000 10000
Time (seconds)

20

40

60

80

100

Av
g.

 V
M

 C
PU

 U
sa

ge
 (%

)

(a) CPU Pattern

0 2000 4000 6000 8000 10000
Time (seconds)

0

20

40

60

80

100

Av
g.

 V
M

 M
em

or
y

Us
ag

e
(%

)

(b) Memory Pattern

0 2000 4000 6000 8000 10000
Time (seconds)

30

40

50

60

70

To
ta

l v
CP

Us
 P

ro
vi

sio
ne

d
passive
reactive
proactive
bandits

(c) Provisioned vCPUs

0 2000 4000 6000 8000 10000
Time (seconds)

0

20

40

60

80

100

To
ta

l M
em

or
y

Pr
ov

isi
on

ed
 (G

iB
)

passive
reactive
proactive
bandits

(d) Provisioned Memory

0 2000 4000 6000 8000 10000
Time (seconds)

0

20

40

60

80

100

CP
U-

ov
er

lo
ad

ed
 V

M
s (

%
) passive

reactive
proactive
bandits

(e) VMs with CPU Overload

0 2000 4000 6000 8000 10000
Time (seconds)

0

20

40

60

80

100

VM
s S

wa
pp

in
g

(%
)

passive
reactive
proactive
bandits

(f) VMs with Swapping

0 2000 4000 6000 8000 10000
Time (seconds)

0.5
1.0
1.5
2.0
2.5
3.0
3.5

Av
g.
 V
M
 L
at
en

cy
 (m

s)

passive
reactive
proactive
bandits

(g) VM Latency

0 2000 4000 6000 8000 10000
Time (seconds)

0
100
200
300
400
500
600
700

To
ta

l V
M

 IO
PS

passive
reactive
proactive
bandits

(h) VM IOPS

Figure 12: Periodic and Static Workload

From Figure 12c we observe that proactive tends to provi-
sion less vCPUs than reactive, but with a similar pattern. On
the other hand, bandits has a hard time at the beginning, but
seems to be learning it should scale up during peak times.
Or in other words, from Figure 12e we observe that the per-
centage of VMs with CPU overload during periods of high
load decreases over time for the bandits method. Regarding
memory, we observe that bandits is the only one that mainly
scales down (12d), and it doesn’t cause VMs to swap (12f).
Last but not least, we see that VM latencies (12g) and IOPS

11

(12h) are comparable across methods.
Overall, bandits saves a total of 45 GiB of RAM, a 60%

improvement over the other baselines, while at the same time
keeps reducing the CPU overload during peak times. We
speculate that longer runs would derail in more benefits to
bandits (or any of the adaptive methods), as opposed to the
passive one. Further, we acknowledge that different thresh-
old settings can cause completely different behavior for the
reactive and proactive approaches. Even for bandits, hyper-
parameter tuning of exploration constants, more advanced
feature engineering, or non-linear models (both for bandits
and proactive), could boost these numbers up. We leave that
to future work.

5 Related Work
We discuss work relevant to ADARES in the areas of mea-
surements, resource management and ML for systems.

Measurements: Google traces [41, 56] have enabled re-
search on a broad set of topics, from workload characteriza-
tions [34] to new algorithms for machine assignment [40].
However, they characterized a month-long trace of non-
VM workloads. In this work, on the other hand, we fo-
cus on VM workloads running in enterprise clusters. There
has been some recent work on VM workloads characteriza-
tion [18, 30], but mainly in the public cloud setting. Prior
work on measurements of enterprise clusters [16] do not
quantify issues related to VM resource allocations.

Resource Management: Auto-scaling systems, such as
the ones offered in Google Cloud Platform [3] or Amazon
Web Services [1], allow users to maintain application avail-
ability by dynamically scaling their resources according to
conditions they define. For example, users can set target
utilization metrics (e.g., average CPU utilization, requests
per second) and the system will then automatically adjust
the number of instances as needed to maintain those targets
(similar to reactive). Such systems mainly focus on horizon-
tal scaling, whereas our work targets vertical one. In general,
these threshold-based systems (either horizontal/vertical) are
simple to implement and use, however their performance de-
pends on the quality of the thresholds [8].

Gmach et al. [26] propose a resource allocation system for
datacenter applications that depends on predicting their be-
havior a priori based on the repetitive nature of their work-
loads. On a similar note, DejaVu [51] identifies a few work-
load categories and leverages them to reuse previous re-
source allocations so as to minimize re-allocation overheads.
In contrast, we assume our workload patterns can change
over time, thus we propose an contextual bandits model to
dynamically adapt to changes.

Ernest [52] is a system to efficiently run applications on
shared infrastructure by choosing the right hardware config-
uration. One key difference with our approach is that they
do not adjust VM resources on-the-fly, rather, their work as-

sumes fix-sized instance types (as is the case of the public
cloud), and they aim to choose the optimal instance type (and
optimal number of instances) to run a particular job.

A great deal of previous research into resource man-
agement has focused on VM/task scheduling and migra-
tion [37, 14, 58, 19, 43]. They are somewhat orthogonal to
our work, as we focus on the problem of maximizing the re-
source usage efficiency of VMs, which should result in easier
scheduling, i.e., packing of smaller VMs [27].

ML for Systems: There is a significant body of work in
the space of applying ML in order to optimize systems.
With respect to the VM resource allocation problem, some
of the most prominent work has been done by Delimitrou
et al. [20, 21]. They mainly use collaborative filtering tech-
niques to classify workloads using four different classifica-
tion tasks (scale up/out, heterogeneity, and interference), and
they rely on (small) online workload profiling as well as
monitoring tasks for allocation re-adjustment. Instead, in our
work we use contextual bandits, which in some sense, en-
codes the notion of online profiling and re-adjustment using
the exploration/exploitation trade-off.

PARIS [57] leverages an offline profiling framework and
established machine learning techniques, such as random
forests, to identify the best VM across multiple cloud
providers. Some prior work also investigate horizontal auto-
scaling using threshold-based and RL techniques [23, 22].
They mainly focus on minimizing the cost of acquiring VMs
in a public cloud setting and they assume all VMs are of
equal size. Instead, we focus on vertical scaling of VMs
of different sizes within enterprise clusters, using bandits,
where we are concerned about resource efficiency in order to
be able to cope with more (incoming) VM workloads.

6 Discussion and Future Work
Although we have proposed an initial framework for adjust-
ing vCPUs and memory of VMs on-the-fly using ML tech-
niques, some natural extensions of this work come to mind,
both from a systems as well as an ML perspective. On the
systems front, besides improving our simulator and adding
support for more application-level metrics (e.g., SQL trans-
actions per second), we are also planning on being able to
tune other type of resources, such as networking and stor-
age, as well as managing other entities, such as containers.
Regarding ML, apart from experimenting with more com-
plex models, an interesting step to take would be to enable
smarter filtering policies in FS. By borrowing ideas from ac-
tive learning literature [44], we could potentially filter the
VMs that would provide the most useful information to our
agent. For example, we could pick the instances in a greedy
fashion, according to some informativeness measure used to
evaluate all the instances in the cluster, or select the most
“diverse” instances using submodularity [31], which would
allow the agent to have a better coverage of the state space,
thus improving generalization and speeding up training.

12

7 Conclusions
Virtual execution environments enable a more efficient use
of server’s resources by consolidating multiple applications
onto the same physical hardware. However, provisioning a
VM with more (or less) resources than it requires can dras-
tically impact its performance as well as that of other VMs
in the cluster. As part of this work, we first provided a char-
acterization of resource allocation and utilization of virtual
machines from thousands of enterprise clusters running pro-
duction workloads. Given that we observed a high degree
of overprovisioning and underprovisioning, mainly due to
inaccurate user guesses, as well as significant variability in
load demands over time, we proposed ADARES, an adaptive
system that dynamically tunes resources of VMs. ADARES
uses the contextual bandits framework together with transfer
learning to optimize configurations of VMs in a cluster, and
exploits cluster, node and VM-level information to promote
efficient resource utilization across VMs.

Acknowledgments
Special thanks to Kevin Jamieson and Lalit Jain for their valuable
feedback on the contextual bandits formulation. We are also grate-
ful to Robert Marver for helping with the experiments. One of
the authors was supported by the Argentinean government program
BEC.AR.

References
[1] Amazon Web Services Auto Scaling. https://aws.amazon.

com/autoscaling/. Accessed: 2018-08-27.

[2] CPU hotplug in the Kernel. https://www.kernel.org/doc/
html/v4.14/core-api/cpu_hotplug.html. Accessed:
2018-09-19.

[3] Google Cloud Platform AutoScaler. https://cloud.google.
com/compute/docs/autoscaler/. Accessed: 2018-08-27.

[4] Memory Hotplug. https://github.com/torvalds/linux/
blob/master/Documentation/memory-hotplug.txt.
Accessed: 2018-09-19.

[5] The Upper Confidence Bound Algorithm.
http://banditalgs.com/2016/09/18/
the-upper-confidence-bound-algorithm/. Accessed:
2018-09-15.

[6] Vdbench. https://www.oracle.com/technetwork/
server-storage/vdbench-downloads-1901681.html.
Accessed: 2018-08-28.

[7] AGARWAL, A., HSU, D., KALE, S., LANGFORD, J., LI, L., AND
SCHAPIRE, R. E. Taming the monster: A fast and simple algorithm
for contextual bandits. In In Proceedings of the 31st International
Conference on Machine Learning (ICML-14 (2014), pp. 1638–1646.

[8] ARABNEJAD, H., PAHL, C., JAMSHIDI, P., AND ESTRADA, G.
A comparison of reinforcement learning techniques for fuzzy cloud
auto-scaling. In Proceedings of the 17th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (Piscataway, NJ,
USA, 2017), CCGrid ’17, IEEE Press, pp. 64–73.

[9] ARULKUMARAN, K., DEISENROTH, M. P., BRUNDAGE, M., AND
BHARATH, A. A. A Brief Survey of Deep Reinforcement Learning.
CoRR abs/1708.05866 (2017).

[10] AXBOE, J. Flexible I/O Tester. https://github.com/axboe/
fio, 2011.

[11] BANERJEE, I., GUO, F., TATI, K., AND VENKATASUBRAMANIAN,
R. Memory Overcommitment in the ESX Server, 2011.

[12] BARKER, S. K., AND SHENOY, P. Empirical Evaluation of Latency-
sensitive Application Performance in the Cloud. In Proceedings of
the First Annual ACM SIGMM Conference on Multimedia Systems
(2010), MMSys ’10, ACM, pp. 35–46.

[13] BEYGELZIMER, A., LANGFORD, J., LI, L., REYZIN, L., AND
SCHAPIRE, R. Contextual bandit algorithms with supervised learn-
ing guarantees. In Proceedings of the Fourteenth International Con-
ference on Artificial Intelligence and Statistics (Fort Lauderdale, FL,
USA, 11–13 Apr 2011), G. Gordon, D. Dunson, and M. Dudk, Eds.,
vol. 15 of Proceedings of Machine Learning Research, PMLR, pp. 19–
26.

[14] BOBROFF, N., KOCHUT, A., AND BEATY, K. A. Dynamic Place-
ment of Virtual Machines for Managing SLA Violations. In Integrated
Network Management (2007), IEEE, pp. 119–128.

[15] BOTTOU, L. Large-scale machine learning with stochastic gradient
descent. In in COMPSTAT (2010).

[16] CANO, I., AIYAR, S., AND KRISHNAMURHTY, A. Characterizing
Private Clouds: A Large-Scale Empirical Analysis of Enterprise Clus-
ters. In Proceedings of the Seventh ACM Symposium on Cloud Com-
puting (2016), SoCC ’16, ACM, pp. 29–41.

[17] CORTEZ, E., BONDE, A., MUZIO, A., RUSSINOVICH, M., FON-
TOURA, M., AND BIANCHINI, R. Resource central: Understanding
and predicting workloads for improved resource management in large
cloud platforms. In Proceedings of the 26th Symposium on Operating
Systems Principles (New York, NY, USA, 2017), SOSP ’17, ACM,
pp. 153–167.

[18] CORTEZ, E., BONDE, A., MUZIO, A., RUSSINOVICH, M., FON-
TOURA, M., AND BIANCHINI, R. Resource Central: Understand-
ing and Predicting Workloads for Improved Resource Management in
Large Cloud Platforms. In Proceedings of the 26th ACM Symposium
on Operating Systems Principles (2017).

[19] DELIMITROU, C., AND KOZYRAKIS, C. Paragon: Qos-aware
scheduling for heterogeneous datacenters. In Proceedings of the Eigh-
teenth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (New York, NY, USA,
2013), ASPLOS ’13, ACM, pp. 77–88.

[20] DELIMITROU, C., AND KOZYRAKIS, C. Quasar: Resource-efficient
and QoS-aware Cluster Management. In Proceedings of the 19th In-
ternational Conference on Architectural Support for Programming
Languages and Operating Systems (2014), ASPLOS ’14, ACM,
pp. 127–144.

[21] DELIMITROU, C., AND KOZYRAKIS, C. HCloud: Resource-Efficient
Provisioning in Shared Cloud Systems. In Proceedings of the Twenty-
First International Conference on Architectural Support for Program-
ming Languages and Operating Systems (2016), ASPLOS ’16, ACM,
pp. 473–488.

[22] DUTREILH, X., KIRGIZOV, S., MELEKHOVA, O., MALENFANT, J.,
RIVIERRE, N., AND TRUCK, I. Using Reinforcement Learning for
Autonomic Resource Allocation in Clouds: towards a fully automated
workflow. In 7th International Conference on Autonomic and Au-
tonomous Systems (ICAS’2011) (Venice, Italy, May 2011), pp. 67–74.

[23] DUTREILH, X., MOREAU, A., MALENFANT, J., RIVIERRE, N.,
AND TRUCK, I. From Data Center Resource Allocation to Control
Theory and Back. In Proceedings of the 2010 IEEE 3rd International
Conference on Cloud Computing (2010), CLOUD ’10, IEEE Com-
puter Society, pp. 410–417.

[24] FARLEY, B., JUELS, A., VARADARAJAN, V., RISTENPART, T.,
BOWERS, K. D., AND SWIFT, M. M. More for Your Money: Ex-
ploiting Performance Heterogeneity in Public Clouds. In Proceedings
of the Third ACM Symposium on Cloud Computing (2012), SoCC ’12,
ACM, pp. 20:1–20:14.

13

https://aws.amazon.com/autoscaling/
https://aws.amazon.com/autoscaling/
https://www.kernel.org/doc/html/v4.14/core-api/cpu_hotplug.html
https://www.kernel.org/doc/html/v4.14/core-api/cpu_hotplug.html
https://cloud.google.com/compute/docs/autoscaler/
https://cloud.google.com/compute/docs/autoscaler/
https://github.com/torvalds/linux/blob/master/Documentation/memory-hotplug.txt
https://github.com/torvalds/linux/blob/master/Documentation/memory-hotplug.txt
http://banditalgs.com/2016/09/18/the-upper-confidence-bound-algorithm/
http://banditalgs.com/2016/09/18/the-upper-confidence-bound-algorithm/
https://www.oracle.com/technetwork/server-storage/vdbench-downloads-1901681.html
https://www.oracle.com/technetwork/server-storage/vdbench-downloads-1901681.html
https://github.com/axboe/fio
https://github.com/axboe/fio

[25] GARCÍA, J., AND FERNÁNDEZ, F. A comprehensive survey on safe
reinforcement learning. J. Mach. Learn. Res. (2015), 1437–1480.

[26] GMACH, D., ROLIA, J., CHERKASOVA, L., AND KEMPER, A.
Workload Analysis and Demand Prediction of Enterprise Data Cen-
ter Applications. In Proceedings of the 2007 IEEE 10th International
Symposium on Workload Characterization (Washington, DC, USA,
2007), IISWC ’07, IEEE Computer Society, pp. 171–180.

[27] HERMENIER, F., LAWALL, J., AND MULLER, G. BtrPlace: A Flex-
ible Consolidation Manager for Highly Available Applications. IEEE
Trans. Dependable Secur. Comput. 10, 5 (Sept. 2013), 273–286.

[28] IOSUP, A., YIGITBASI, N., AND EPEMA, D. On the Performance
Variability of Production Cloud Services. In Proceedings of the 2011
11th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (2011), CCGRID ’11, IEEE Computer Society, pp. 104–
113.

[29] KANSKY, K., SILVER, T., MÉLY, D. A., ELDAWY, M., LÁZARO-
GREDILLA, M., LOU, X., DORFMAN, N., SIDOR, S., PHOENIX,
D. S., AND GEORGE, D. Schema Networks: Zero-shot Transfer with
a Generative Causal Model of Intuitive Physics. In Proceedings of
the 34th International Conference on Machine Learning, ICML 2017,
Sydney, NSW, Australia, 6-11 August 2017 (2017), pp. 1809–1818.

[30] KILCIOGLU, C., RAO, J. M., KANNAN, A., AND MCAFEE, R. P.
Usage Patterns and the Economics of the Public Cloud. In Proceed-
ings of the Twenty-Sixth International World Wide Web Conference
(2017).

[31] KRAUSE, A., AND GOLOVIN, D. Submodular Function Maximiza-
tion. In Tractability, L. Bordeaux, Y. Hamadi, and P. Kohli, Eds. Cam-
bridge University Press, 2014, pp. 71–104.

[32] LANGFORD, J., AND ZHANG, T. The epoch-greedy algorithm for
multi-armed bandits with side information. In Advances in Neural
Information Processing Systems 20, J. C. Platt, D. Koller, Y. Singer,
and S. T. Roweis, Eds. Curran Associates, Inc., 2008, pp. 817–824.

[33] LI, L., CHU, W., LANGFORD, J., AND SCHAPIRE, R. E. A
contextual-bandit approach to personalized news article recommen-
dation. In Proceedings of the 19th International Conference on World
Wide Web (New York, NY, USA, 2010), WWW ’10, ACM, pp. 661–
670.

[34] MISHRA, A. K., HELLERSTEIN, J. L., CIRNE, W., AND DAS, C. R.
Towards Characterizing Cloud Backend Workloads: Insights from
Google Compute Clusters. SIGMETRICS Perform. Eval. Rev. 37, 4
(Mar. 2010), 34–41.

[35] MNIH, V., KAVUKCUOGLU, K., SILVER, D., GRAVES, A.,
ANTONOGLOU, I., WIERSTRA, D., AND RIEDMILLER, M. Playing
Atari With Deep Reinforcement Learning. In NIPS Deep Learning
Workshop. 2013.

[36] MNIH, V., KAVUKCUOGLU, K., SILVER, D., RUSU, A. A., VE-
NESS, J., BELLEMARE, M. G., GRAVES, A., RIEDMILLER, M.,
FIDJELAND, A. K., OSTROVSKI, G., PETERSEN, S., BEATTIE, C.,
SADIK, A., ANTONOGLOU, I., KING, H., KUMARAN, D., WIER-
STRA, D., LEGG, S., AND HASSABIS, D. Human-level Control
through Deep Reinforcement Learning. Nature 518, 7540 (02 2015),
529–533.

[37] NOVAKOVIĆ, D., VASIĆ, N., NOVAKOVIĆ, S., KOSTIĆ, D., AND
BIANCHINI, R. DeepDive: Transparently Identifying and Managing
Performance Interference in Virtualized Environments. In Proceed-
ings of the 2013 USENIX Conference on Annual Technical Conference
(Berkeley, CA, USA, 2013), USENIX ATC’13, USENIX Association,
pp. 219–230.

[38] PAN, S. J., AND YANG, Q. A survey on transfer learning. IEEE
Trans. on Knowl. and Data Eng. 22, 10 (Oct. 2010), 1345–1359.

[39] PEDREGOSA, F., VAROQUAUX, G., GRAMFORT, A., MICHEL, V.,
THIRION, B., GRISEL, O., BLONDEL, M., PRETTENHOFER, P.,

WEISS, R., DUBOURG, V., VANDERPLAS, J., PASSOS, A., COUR-
NAPEAU, D., BRUCHER, M., PERROT, M., AND DUCHESNAY, E.
Scikit-learn: Machine learning in Python. Journal of Machine Learn-
ing Research 12 (2011), 2825–2830.

[40] REISS, C., TUMANOV, A., GANGER, G. R., KATZ, R. H., AND
KOZUCH, M. A. Heterogeneity and Dynamicity of Clouds at Scale:
Google Trace Analysis. In Proceedings of the Third ACM Symposium
on Cloud Computing (New York, NY, USA, 2012), SoCC ’12, ACM,
pp. 7:1–7:13.

[41] REISS, C., WILKES, J., AND HELLERSTEIN, J. L. Google cluster-
usage traces: format + schema. Technical report, Google Inc., Moun-
tain View, CA, USA, Nov. 2011.

[42] RIGHTSCALE. State of the Cloud Report. https://www.
rightscale.com/lp/state-of-the-cloud, 2018.

[43] RUPRECHT, A., JONES, D., SHIRAEV, D., HARMON, G., SPI-
VAK, M., KREBS, M., BAKER-HARVEY, M., AND SANDERSON,
T. Vm live migration at scale. In Proceedings of the 14th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Envi-
ronments (2018), VEE ’18, ACM.

[44] SETTLES, B. Active Learning Literature Survey. Computer sciences
technical report, University of Wisconsin–Madison, 2009.

[45] SETTY, S. VMware vSphere 5.1 vMotion Architecture, Performance
and Best Practices, 2012.

[46] SPEARMAN, C. The proof and measurement of association between
two things. The American Journal of Psychology 15, 1 (1904), 72–
101.

[47] SUTTON, R. S. Temporal Credit Assignment in Reinforcement Learn-
ing. PhD thesis, 1984. AAI8410337.

[48] SUTTON, R. S. Learning to Predict by the Methods of Temporal Dif-
ferences. In MACHINE LEARNING (1988), Kluwer Academic Pub-
lishers, pp. 9–44.

[49] SUTTON, R. S., AND BARTO, A. G. Introduction to Reinforcement
Learning, 1st ed. MIT Press, 1998.

[50] TEWARI, A., , AND MURPHY, S. A. From Ads to Interventions:
Contextual Bandits in Mobile Health, 2017.

[51] VASIĆ, N., NOVAKOVIĆ, D., MIUČIN, S., KOSTIĆ, D., AND BIAN-
CHINI, R. DejaVu: Accelerating Resource Allocation in Virtualized
Environments. In Proceedings of the Seventeenth International Con-
ference on Architectural Support for Programming Languages and
Operating Systems (2012), ASPLOS XVII, ACM, pp. 423–436.

[52] VENKATARAMAN, S., YANG, Z., FRANKLIN, M., RECHT, B., AND
STOICA, I. Ernest: Efficient Performance Prediction for Large-Scale
Advanced Analytics. In 13th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 16) (Santa Clara, CA, 2016),
USENIX Association, pp. 363–378.

[53] VMWARE. Understanding Memory Resource Management in
VMware ESX Server, 2011.

[54] VMWARE. Performance Best Practices for VMware vSphere 5.5,
2014.

[55] VMWARE. Performance Best Practices for VMware vSphere 6.0,
2015.

[56] WILKES, J. More Google cluster data. Google research blog, Nov.
2011.

[57] YADWADKAR, N. J., HARIHARAN, B., GONZALEZ, J. E., SMITH,
B., AND KATZ, R. H. Selecting the best vm across multiple public
clouds: A data-driven performance modeling approach. In Proceed-
ings of the 2017 Symposium on Cloud Computing (2017), SoCC ’17,
ACM.

[58] YANG, H., BRESLOW, A., MARS, J., AND TANG, L. Bubble-flux:
Precise Online QoS Management for Increased Utilization in Ware-
house Scale Computers. In Proceedings of the 40th Annual Interna-
tional Symposium on Computer Architecture (New York, NY, USA,
2013), ISCA ’13, ACM, pp. 607–618.

14

https://www.rightscale.com/lp/state-of-the-cloud
https://www.rightscale.com/lp/state-of-the-cloud

A Cluster Simulator Fidelity
Herein, we evaluate the fidelity of our cluster simulator. We
instantiate 26 xlarge VMs in our smaller cluster. We group
them in four distinct groups, each with a different workload
pattern and I/O intensity. We perform random configuration
changes during a 8-hour period. We record all the actions
done along the way, and we then replay those exact same ac-
tions in our simulator. Figures 13a and 13b show the total
vCPUs and memory provisioned across the VMs over time.
Both the simulator (Sim) and the real cluster (Real) lines
overlap, as we are replaying the same actions in the simu-
lator. More interestingly, Figure 13c shows the average VM
CPU usage across the four different VM groups. We observe
that the simulator is doing a pretty good job in estimating the
CPU usage of all the groups when we perform adaptations.
Similarly, Figure 13d, illustrates the memory usage across
groups. Herein, we note that our simulator mostly underesti-
mates the usage, which is most notoriously for groups 2 and
3. However, it seems to follow the line trend (e.g., groups 0
and 1) but is off by some constant factor.

0 5000 10000 15000 20000 25000 30000
Time (seconds)

100

110

120

130

140

150

160

To
ta

l v
CP

Us
 P

ro
vi

sio
ne

d

Sim
Real

(a) Provisioned vCPUs

0 5000 10000 15000 20000 25000 30000
Time (seconds)

188

190

192

194

196

198

200

202

To
ta
l M

em
or
y
Pr
ov

isi
on

ed
 (G

iB
) Sim

Real

(b) Provisioned Memory

0 5000 10000 15000 20000 25000 30000
Time (seconds)

10

20

30

40

50

60

70

80

90

Av
g.
 V
M
 C
PU

 U
sa
ge
 (%

)

Sim
group0
group1
group2
group3

Real
group0
group1
group2
group3

(c) CPU Usage

0 5000 10000 15000 20000 25000 30000
Time (seconds)

0

20

40

60

80

100

Av
g.
 V
M
 M

em
or
y
Us

ag
e
(%

) Sim
group0
group1
group2
group3

Real
group0
group1
group2
group3

(d) Memory Usage

Figure 13: VM Resource Provisioning and Utilization

Finally, Figure 14 shows the average VM latency decom-
posed in groups doing random reads (RR) and random writes
(RW). We see that our simulator does a better job at esti-
mating RWs operations, though it also does a decent job for
random read I/O.

0 5000 10000 15000 20000 25000 30000
Time (seconds)

0.5

1.0

1.5

2.0

2.5

3.0

Av
g.

 V
M

 L
at

en
cy

 (m
s)

Sim
RR
RW

Real
RR
RW

Figure 14: Latency

B Transfer Learning: Sim2Real
In this section we evaluate how transfer learning helps to
speed up training in real clusters. We use the same setting
as in 4.2, where we run different static workloads across a
set of 36 VMs, 12 of each instance type, in our controlled
cluster, for a period of 4 hours. Herein, we compare the two
flavors of our bandit-based approach, with and without trans-
fer learning. Note that we pre-train in our simulator using
VMs that run other workloads in order to avoid overfitting.
Still, if we were running the same workloads and overfitting,
it would be an extra evidence of the reasonable performance
of our simulator.

Figure 15a shows the total vCPUs provisioned over time
for both bandit-based approaches, with and without transfer
learning. We observe that the allocations are much more sta-
ble when we pre-train. Transfer learning lead us to a 2x sav-
ing of vCPUs allocations for this workload (109 vCPUs as
opposed to 216). Even more, without pre-training, the agent
ends up allocating more vCPUs than the ones it started with.
This latter statement highlights the importance of safe ex-
ploration while applying these type of methods. Figure 15b
shows the average I/O operations per second of the VMs in
this workload. We observe that, even though we saved 2x
vCPUs, we are still able to perform very close to the vanilla
bandit version in terms of IOPS.

0 2500 5000 7500 10000 12500 15000
Time (seconds)

0

50

100

150

200

250

To
ta

l v
CP

Us
 P

ro
vi

sio
ne

d

w/o transfer
with transfer

(a) Provisioned vCPUs

0 2500 5000 7500 100001250015000
Time (seconds)

0

200

400

600

800

1000

Av
g.

 V
M

 IO
PS

w/o transfer
with transfer

(b) VM IOPS

Figure 15: vCPUS Allocations and VM IOPS

We now illustrate how transfer learning helps LinUCB
to accelerate training. Figure 16 shows the estimated re-
ward and uncertainty of the different actions for a random
VM context that has memory underprovisioning. We ob-
serve that the estimated rewards start at zero (solid dots)
and uniform uncertainty (long lines with caps), when we
start training from scratch (top of Figure 16a). As the agent
learns, the confidence bounds shrink for that same con-
text. However, the agent still recommends to do nothing
CPU NOOP MEM NOOP, the action with highest score.
On the other hand, Figure 16b shows the benefits of “boot-
strapping” our model. At the top, we see non-uniform confi-
dence bounds. Note that the agent is able to recommend the
right action for this context (CPU NOOP MEM UP), from
the beginning, due to the knowledge transfer. Few iterations
later, the upper confidence bounds are close to the expected
reward, and the leading actions are still the ones that involve
scaling up memory.

15

0.0

0.5

1.0

1.5

2.0

Iteration 0

CP
U_

UP
_M

EM
_U

P
CP

U_
UP

_M
EM

_D
OW

N
CP

U_
UP

_M
EM

_N
OO

P
CP

U_
DO

W
N_

ME
M_

UP
CP

U_
DO

W
N_

ME
M_

DO
W

N
CP

U_
DO

W
N_

ME
M_

NO
OP

CP
U_

NO
OP

_M
EM

_U
P

CP
U_

NO
OP

_M
EM

_D
OW

N
CP

U_
NO

OP
_M

EM
_N

OO
P

Actions

0

2

4

6
Iteration 10

Es
tim

at
ed

 R
ew

ar
d

+
Un

ce
rta

in
ty

(a) Without Transfer Learning

−2

−1

0

1

2

Iteration 0

CP
U_
UP
_M
EM
_U
P

CP
U_
UP
_M
EM
_D
OW
N

CP
U_
UP
_M
EM
_N
OO
P

CP
U_
DO
W
N_
ME
M_
UP

CP
U_
DO
W
N_
ME
M_
DO
W
N

CP
U_
DO
W
N_
ME
M_
NO
OP

CP
U_
NO
OP
_M
EM
_U
P

CP
U_
NO
OP
_M
EM
_D
OW
N

CP
U_
NO
OP
_M
EM
_N
OO
P

Actions

−5

−4

−3

−2

−1

0

1
Iteration 10

Es
tim

at
ed
 R
e
ar
d
+
Un
ce
rta
in
ty

(b) With Transfer Learning

Figure 16: LinUCB and Transfer Learning

C LinUCB in Practice
Finally, we illustrate few more examples of how LinUCB op-
erates in practice. We use our cluster simulator to replicate
the smaller cluster environment, and we run heterogeneous
workloads across 36 VMs during 1K iterations. We check-
point our model every 500 iterations to be able to track the
progress. We randomly select a VM with CPU underpro-
visioning and one with both CPU and memory underprovi-
sioning. We show the estimated reward and uncertainty of
the examples in Figures 17 and 18 respectively.

In both cases, we observe that the estimated rewards start
at zero and there is high uncertainty in every action. As the
algorithm performs exploration, those intervals shrink and
the estimated rewards get closer to the expected rewards for
each action (Iteration 500). The algorithm then starts exploit-
ing and choosing the actions with the highest expected re-
ward. From Figure 17, we see that the “best” actions are the
ones that involve scaling up vCPUs, as the VM experiences
high CPU overload. Although the noop action seems to be
the most explored one, as its confidence interval shrinked the
most, its estimated reward is still below the aforementioned
actions. On a similar note, Figure 18 illustrates that scal-
ing up both vCPUs and memory is the clear winner for VM
contexts with underprovisioning of both resources.

0

20

40

60
Iteration 0

−1

0

1

Es
 im

a
ed

 R
ew

ar
d

+
Un

ce
r a

in
 y

I era ion 500

CP
U_

UP
_M

EM
_U

P
CP

U_
UP

_M
EM

_D
OW

N
CP

U_
UP

_M
EM

_N
OO

P
CP

U_
DO

W
N_

ME
M_

UP
CP

U_
DO

W
N_

ME
M_

DO
W

N
CP

U_
DO

W
N_

ME
M_

NO
OP

CP
U_

NO
OP

_M
EM

_U
P

CP
U_

NO
OP

_M
EM

_D
OW

N
CP

U_
NO

OP
_M

EM
_N

OO
P

Ac ions

−1

0

1

I era ion 1K

Figure 17: CPU Overload Context

0

10

20

30

Iteration 0

−0.5

0.0

0.5

1.0

1.5

Es
 im

a
ed

 R
ew

ar
d

+
Un

ce
r a

in
 y

I era ion 500

CP
U_

UP
_M

EM
_U

P
CP

U_
UP

_M
EM

_D
OW

N
CP

U_
UP

_M
EM

_N
OO

P
CP

U_
DO

W
N_

ME
M_

UP
CP

U_
DO

W
N_

ME
M_

DO
W

N
CP

U_
DO

W
N_

ME
M_

NO
OP

CP
U_

NO
OP

_M
EM

_U
P

CP
U_

NO
OP

_M
EM

_D
OW

N
CP

U_
NO

OP
_M

EM
_N

OO
P

Ac ions

−1

0

1

I era ion 1K

Figure 18: CPU Overload and Memory Swapping Context

16

	Introduction
	Resource Utilization Measurements of Enterprise Clusters
	Measurement Methodology
	Private Cluster Configurations
	Problem Characterization
	Opportunities and Challenges for Adaptive Resource Allocation

	Design
	AdaRes Goals
	AdaRes Components
	Sensing Service (SS)
	Filtering Service (FS)
	Predictive Service (PS)
	Decision Service (DS)
	Execution Service (ES)

	Contextual Multi-armed Bandit-based Approach
	Background
	Why Contextual Bandits?
	Contextual MAB Formulation for VM Resource Management
	Safe Allocations and Faster Training: Sim2Real

	Contextual Bandits meet AdaRes

	Evaluation
	Evaluation Setup
	Results

	Related Work
	Discussion and Future Work
	Conclusions
	Cluster Simulator Fidelity
	Transfer Learning: Sim2Real
	LinUCB in Practice

