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Abstract
We address the problem of serving Deep Neural Networks
(DNNs) efficiently from a cluster of GPUs. In order to realize
the promise of very low-cost processing made by accelerators
such as GPUs, it is essential to run them at sustained high uti-
lization. Doing so requires cluster-scale resource management
that performs detailed scheduling of GPUs, reasoning about
groups of DNN invocations that need to be co-scheduled,
and moving from the conventional whole-DNN execution
model to executing fragments of DNNs. Nexus is a fully im-
plemented system that includes these innovations. On large-
scale case studies on 16 GPUs, Nexus shows 1.8-12.7× better
throughput than state-of-the-art systems while staying within
latency constraints >99% of the time. A long-running multi-
application deployment on an 88-GPU cluster violates latency
SLOs on 1.3% of requests and stays within 32% of an aggres-
sive lower bound on GPU usage.

1 Introduction
Consider a cloud-scale video analysis service that allows thou-
sands of tenants to analyze thousands of streams each concur-
rently. Increasingly, the core computations for this workload
are Deep Neural Networks (DNNs), which are networks of
dense linear algebra computations. Specialized hardware ac-
celerators for DNNs, in the form of Graphic Processing Units
(GPUs, which this paper focuses on) and even more special-
ized Tensor Processing Units (TPUs) have emerged in the
recent past. GPU accelerators process DNNs orders of magni-
tude faster and cheaper than CPUs in many cases. However,
GPUs are expensive and very-high-capacity: modern devices
each provide over 100 TFLOPS. Cost-savings from using
them depends critically on operating them at sustained high
utilization. A fundamental problem therefore is to distribute
the large incoming workload onto a cluster of accelerators

at high accelerator utilization and acceptable latency. We ad-
dress this problem in this paper.

Conceptually, this problem can be thought of as sharding in-
puts via a distributed frontend onto DNNs on backend GPUs.
Several interacting factors complicate this viewpoint. First,
given the size of GPUs, it is often necessary to place different
types of networks on the same GPU. It is then important to
select and schedule them so as to maximize their combined
throughput while satisfying latency bounds. Second, many
applications consists of groups of DNNs that feed into each
other. It is important to be able to specify these groups, and
to schedule the execution of the entire group on the cluster
so as to maximize performance. Third, it is well known that
dense linear algebra computations such as DNNs execute
much more efficiently when their inputs are batched together.
Batching fundamentally complicates scheduling and routing
because (a) it benefits from cross-tenant and cross-request co-
ordination and (b) it forces the underlying bin-packing-based
scheduling algorithms to incorporate batch size. Fourth, the
increasingly common use of transfer learning in today’s work-
loads has led to specialization of networks, where two tasks
that formerly used identical networks now use networks that
are only mostly identical. Since batching only works when
multiple inputs are applied to the same model in conventional
DNN execution systems, the benefits of batching are lost.

Nexus is a GPU cluster for DNN execution that addresses
these problems to attain high execution throughput under la-
tency Service Level Objectives (SLOs). It uses three main
techniques to do so. First, it relies on a novel batching-aware
scheduler (Section 6.1) that performs bin packing when the
balls being packed into bins have variable size, depending on
the size of the batch they are in. This schedule specifies the
GPUs needed, the distribution of DNNs across them and the
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Figure 1: A typical vision processing pipeline. Nexus is designed
to provide DNN-based analysis for tens of thousands of streams.

order of their execution so as to maximize execution through-
put while staying within latency bounds. Second, it allows
groups of related DNN invocations to be written as queries
and provides automated query optimization to assign optimal
batch sizes to the components of the query so as to maxi-
mize overall execution throughput of the query while staying
within its latency bounds (Section 6.2). Finally, Nexus breaks
from orthodoxy and allows batching of parts of networks with
different batch sizes. This enables the batched execution of
specialized networks (Section 6.3).

Nexus is completely implemented as a containerized sys-
tem deployable on a commercial cloud, and comprises of
roughly 10k lines of C++. We have deployed Nexus on a
88-GPU cluster. On focused 16-GPU experiments compared
with existing DNN serving systems (Tensorflow Serving [1]
and Clipper [8]), we show improvements in throughput of
1.8-4.4× on a traffic monitoring case study, and 1.8-12.7× on
a game-stream analysis case study, while satisfying latency
SLOs (i.e., achieving a “good rate” of) >99% of the time. On
a much larger experiment on a 88-GPU cluster, 7 applica-
tions and 11 different models, Nexus achieves a good rate of
>98.7% while maintaining similar high throughputs.

2 Background
A vision-based application aggregates visual information
from one or more video streams using custom “business”
logic. Each stream is processed using a pipeline similar to
that in Figure 1. CPU-based code, either on the edge or in
the cloud, selects frames from the stream for processing, ap-
plies business logic to identify what parts (or windows) of the
image need deeper analysis, applies a DNN query to these
windows, and aggregates the results in an application specific
way, often writing to a database. A query may represent a
single DNN applied to the window, but often it may represent
a sequence of dependent DNN applications, e.g., running an
object detector on the window and running a car make/model
detector on all sub-windows determined to be cars.

Typically, a stream is sampled a few times a second or
minute, and the DNN query should complete execution in
tens to hundreds of milliseconds (for “live” applications) or
within several hours for (“batch” applications). The execution
of DNNs dominates the computation pipeline, and the cost
of executing them dominates the cost of the vision service.
Nexus provides a standalone service that implements the

Model
CPU GPU CPU TPU GPU
lat. lat. cost ($) cost ($) cost ($)

(ms) (ms) (0.1TF (180TF (125TF
peak) peak) peak)

Lenet5 6 <0.1 $0.01 $0.00 $0.00
VGG7 44 <1 0.13 0.01 0.01

Resnet50 1130 6.2 4.22 0.48 0.12
Inception4 2110 7.0 8.09 0.93 0.23
Darknet53 7210 26.3 24.74 2.85 0.70

Table 1: DNN execution latencies and estimated costs per 1000
invocations.1Acceleration may be necessary to meet latency
deadlines, but can also be cheaper, given low cost/TFLOPS.

DNN-based analysis stage for vision pipelines.

2.1 Accelerators and the challenge of utilizing them

As Table 1 shows, a key to minimizing the cost of executing
DNNs is the use of specialized accelerators such as GPUs
and TPUs, which are highly optimized to execute the dense
linear algebra computations that comprise DNN models. The
table shows the execution latency and the dollar cost of 1000
invocations for a few common models on CPUs and GPUs.
Execution times on CPUs can be orders of magnitude slower
than that on GPUs. For many applications, therefore, latency
constraints alone may dictate GPU-accelerated execution.

Perhaps more fundamentally, GPUs and TPUs promise
much lower cost per operation than even highly accelerated
CPUs: Table 1 lower-bounds the cost of executing a model by
assuming that models can be executed at peak speed on each
platform. Even compared to state of the art CPUs, accelerators
can yield a cost advantage of up to 9× (for TPUs) and 34× (for
GPUs). On the other hand, accelerators have extremely high
computational capacity (e.g., 125 TFLOPS for the NVIDIA
V100). To realize their cost savings, it is critical to sustain
high utilization of this capacity. Sustaining high utilization
is hard, however. For instance, the LeNet model of Table 1
consumes 20 MOPs to run, implying that a single V100 would
require 125 TFLOPS ÷ 20 MOPs = 6.25M inputs/second to
run at full utilization!

No single stream, or even most applications, can yield such
rates. By aggregating inputs across streams and applications,
Nexus is designed to funnel adequate work to each accelerator.
However, as we discuss next, having “enough” work is not
sufficient to achieve high utilization: it is important to group
the right type of work in the right place.

1Per-device prices for 1000 invocations assuming peak execution rates on
on-demand instances of AWS c5.large (Intel AVX 512), p2.xlarge (NVIDIA
K80), p3.2xlarge (NVIDIA V100) and GCP Cloud TPU.
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2.2 Placing, packing and batching DNNs

DNNs are networks of dense linear algebra operations (e.g.,
matrix multiplication and convolution), called layers or ker-
nels. Networks are also called models. By default, the GPU
simply executes the kernels presented to it in the order re-
ceived. The kernels themselves are often computationally
intensive, requiring MFLOPs to GFLOPs to execute, and
range in size from one MB to hundreds of MBs. These facts
have important implications for GPU utilization.

First, loading models into memory can cost hundreds of
milliseconds to seconds. When serving DNNs at high volume,
therefore, it is usually essential to place the DNN on a par-
ticular GPU by pre-loading it on to GPU memory and then
re-using it across many subsequent invocations. Placement
brings with it the traditional problems of efficient packing.
Which models should be co-located on each GPU, and how
should they be scheduled to minimize mutual interference?

Second, it is well known that processor utilization achieved
by kernels depends critically upon batching, i.e., grouping
input matrices into higher-dimensional ones before applying
custom “batched” implementations of the kernels. Intuitively,
batching allows kernels to avoid stalling on memory accesses
by operating on each loaded input many more times than with-
out batching. On an NVIDIA GTX1080, batching improves
the throughput of model execution by 4.7-13.3× for batch
sizes of 32 for VGG, ResNet, and Inception models relative
to executing them individually. Further, our measurements
indicate that we can often use a linear model to fit the batched
execution latency as follows:

batch_lat(b) = αb + β , (1)
where β is the fixed cost to invoke a model and α is the cost
of each additional task in the batch. Large batches amortize
the fixed cost β and help achieve higher throughputs.

Although batching is critical for utilization, it complicates
the resource allocation and scheduling decisions made inside
of a cluster. We elaborate on these issues in Section 4. Fur-
ther, batching is conventionally only feasible when the same
model is invoked with different inputs. For instance, we ex-
pect many applications to use the same well-known, generally
applicable, models (e.g., Resnet50 for object recognition).
However, the generality of these models comes at the price of
higher resource use. It has become common practice [12, 22]
to use smaller models specialized (using “transfer learning”)
to the few objects, faces, etc. relevant to an application by
altering (“re-training”) just the output layers of the models.
Since such customization destroys the uniformity required by
conventional batching, making specialized models play well
with batching is often critical to efficiency.

3 Related Work

The projects most closely related to Nexus are Clipper [8]
and Tensorflow Serving [1]. Clipper is a “prediction serving
system” that serves a variety of machine learning models in-
cluding DNNs, on CPUs and GPUs. Given a request to serve
a machine learning task, Clipper selects the type of model to
serve it, batches requests, and forwards the batched requests to
a backend container. By batching requests, and adapting batch
sizes online under a latency SLO, Clipper takes a significant
step toward Nexus’s goal of maximizing serving throughput
under latency constraints. Clipper also provides approxima-
tion and caching services, complementary to Nexus’s focus
on executing all requests exactly but efficiently. Tensorflow
Serving can be viewed as a variant of Clipper that does not
provide approximation and caching, but also has additional
machinery for versioning models.

To the basic batched-execution architecture of Clipper,
Nexus builds along the dimensions of scale, expressivity and
granularity. These techniques address the challenges brought
up earlier in this section, and thus reflect Nexus’s focus on
executing DNNs on GPUs at high efficiency and scale.
Scale: Nexus provides the machinery to scale serving to large,
changing workloads. In particular, it automates the allocation
of GPU resources and the placement and scheduling of mod-
els across allocated resources. It provides a distributed fron-
tend that scales with requests. These functions are performed
on a continuing basis to adapt to workloads.
Expressivity: Nexus provides a query mechanism that (a)
allows related DNN execution tasks to be specified jointly,
and (b) allows the user to specify the latency SLO just at
the whole-query level. Nexus then analyzes the query and
allocates latency bounds and batch sizes to constituent DNN
tasks so as to maximize the throughput of the whole query.
Granularity: Where Clipper limits the granularity of batched
execution to whole models, Nexus automatically identifies
common subgraphs of models and executes them in a batch.
This is critical for batching on specialized models, which
often share all but the output layer, as described previously.

Serving DNNs at scale is similar to other large-scale short-
task serving problems. These systems have distributed front
ends that dispatch low-latency tasks to queues on the backend
servers. Sparrow [24] focuses on dispatch strategies to reduce
the delays associated with queuing in such systems. Slicer
[6] provides a fast, fault-tolerant service for dividing the back
end into shards and load balancing across them. Both systems
assume that the backend server allocation and task placement
is performed at a higher (application) level, using cluster
resource managers such as Mesos [17] or Omega [29]. Nexus
shares the philosophy of these systems of having a fast data
plane that dispatches incoming messages from the frontend to
backend GPUs and a slower control plane that performs more
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Model A Model B Model C
Batch Lat Req/s Batch Lat Req/s Batch Lat Req/s

4 50 80 4 50 80 4 60 66.7
8 75 107 8 90 89 8 95 84
16 100 160 16 125 128 16 125 128

Table 2: Batching profiles for models used in the example. Lat
is the latency (ms) for processing a batch, and Req/s is the
throughput achieved.

heavyweight scheduling tasks, such as resource allocation,
packing and load balancing. Also, the Nexus global scheduler
communicates with cluster resource managers to obtain or
release resources.

Much work has focused on producing faster models often
at small losses in accuracy [5, 27, 34] Further, models of
varying accuracy can be combined to maintain high accuracy
and performance [8, 15, 18, 20, 30]. Nexus views the opti-
mization, selection and combination of models as best done
by the application, and provides no special support for these
functions. Our mechanisms are also orthogonal to the sched-
uling, placement, and time-sharing mechanisms in training
systems [14, 26, 31] since DNN serving has to be performed
within tight latency SLOs while maintaining high utilization.

4 Scheduling Problems in Batched Model Serving
Batched execution of models improve GPU utilization but
also raises many challenges in determining how cluster re-
sources are allocated to different applications and how to
batch model invocations without violating latency constraints.

Fundamentally, the algorithm for packing models on GPUs
needs to take into account the fact that the processing cost of
an input is “squishy”, i.e., it varies with the size of the batch
within which that input is processed. Further, the latency of
execution also depends on the batch size. This new version
of bin packed scheduling, which we dub squishy bin packing,
needs to reason explicitly about batching. Second, batching
complicates query processing. If a certain latency SLO (Ser-
vice Level Objective) is allocated to the query as a whole, the
system needs to partition the latency across the DNN invoca-
tions that comprise the query so that each latency split allows
efficient batched execution of the related DNN invocation.
We call this complex query scheduling. Third, in addition
to batching-aware resource allocation, the runtime dispatch
engine also has to determine what requests are batched and
what requests are dropped during periods of bursty arrival. We
now use examples and measurements to elaborate on these
underlying scheduling and resource allocation challenges.

4.1 Squishy bin packing

Consider a workload that consists of three different types
of tasks that invoke different DNN models. Let the desired
latency SLOs for tasks invoking models A, B, and C be 200ms,

batch 16

prev batch

prev batch

prev batch

batch 16

batch 16

100 ms

Model B

Model A

Model C

200 ms

250 ms125 ms

batch 8prev batch

batch 4

batch 4

duty cycle: 125 ms

200 ms

75 ms

60 ms

Model B

Model A

Model C

(a) Saturate workload (b) Residual workload

Figure 2: Resource allocation example.

250ms, and 250ms, respectively. Table 2 provides the batch
execution latency and throughput at different batch sizes (i.e.,
the “batching profile”) for each model.

We first explore the basic scenario where all three types of
tasks are associated with high request rates so that multiple
GPUs are required to handle each task type. To maximize
GPU efficiency, we need to choose the largest possible batch
size while still meeting the latency SLO. Note that the batch
execution cost for a given task type cannot exceed half of
the task’s latency SLO; a task that missed being scheduled
with a batch would be executed as part of the next batch, and
thus its latency would be twice the batch execution cost. For
example, the latency SLO for Model A tasks is 200 ms, so
the maximum batch size we can use is 16. Therefore, the
maximum throughput that Model A can achieve on a single
GPU is 160 reqs/sec, and the number of GPUs to be allocated
for Model A should rA/160, where rA is the observed request
rate. Similarly, the number of GPUs for models B and C
should be rB/128 and rC/128, where rB and rC are the request
rates for models B and C respectively. Figure 2(a) depicts the
desired schedules for the different models.

We next consider a situation where the request rates for
the models are lower, with each one requiring less than a
GPU. In this case, the scheduler needs to consolidate multiple
types of DNN tasks onto the same GPU to optimize resource
utilization. Consider a workload where Model A receives 64
reqs/sec, and Model B and Model C receive 32 reqs/sec each.
We consider schedules where multiple models are assigned
to a GPU. The GPU then executes batches of different types
of models in a round robin manner, and it cycles through
them over a time period that we refer to as the duty cycle.
The worst case latency for a task is no longer twice the batch
execution cost but rather the sum of the duty cycle and the
batch execution cost for that task type.

Given this setup, Model A tasks can be scheduled in batches
of 8 as part of a duty cycle of 125ms; note that the resulting
throughput is the desired rate of 64 reqs/sec, the batch exe-
cution cost for 8 tasks is 75ms, and the worst case execution
delay of 200ms matches the latency SLO (see Figure 2(b)).
We then check whether the GPU has sufficient slack to ac-
commodate tasks associated with models B or C. Within a
duty cycle of 125ms, we would need to execute 4 tasks of
either B or C to meet the desired rate of 32 reqs/sec. The
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Model X Model Y
Lat Reqs/s Lat Reqs/s

40 200 40 300
50 250 50 400
60 300 60 500

Figure 3: Batch execution latency
(ms) and throughput of models.

Latency budget Avg Throughput (reqs/s)
X Y γ = 0.1 γ = 1 γ = 10

40 60 192.3 142.9 40.0
50 50 235.3 153.8 34.5
60 40 272.7 150.0 27.3

Figure 4: The average throughput with
three latency split plans for varying γ .

1.0 1.2 1.4 1.6 1.8
 (ms)

0%

10%

20%

30%

40%

Ba
d 

ra
te

uniform
Poisson

Figure 5: Performance of lazy dropping.

batch execution cost of 4 model B tasks is 50ms, which can
fit into the residual slack in the duty cycle. On the other hand,
a batch of 4 model C tasks would incur 60ms and cannot
be scheduled inside the duty cycle. Further, the worst case
latency for model B is the sum of the duty cycle and its own
batch execution cost, 175ms(= 125+ 50), which is lower than
its latency SLO 250ms. Thus, it is possible to co-locate Model
B, but not Model C, on the same GPU as Model A.

We now make a few observations regarding the scenario
discussed above and why the associated optimization problem
cannot be addressed directly by known scheduling algorithms.
First, unlike vanilla bin-packing that would pack fixed-size
balls into bins, the tasks here incur lower costs when multiples
tasks of the same type are squished together into a GPU.
Second, in addition to the capacity constraints associated with
the GPU’s compute and/or memory capabilities, there are also
latency constraints in generating a valid schedule. Third, there
are many degrees of freedom in generating a valid schedule.
The batch size associated with a model execution is not only a
function of the request rate but also of the duty cycle in which
the batch is embedded. In Section 6.1, we describe how to
extend traditional algorithms to handle this setting.

4.2 Complex query scheduling

Applications often comprise of dependent computations of
multiple DNN models. For example, a common pattern is a
detection and recognition pipeline that first detects certain
objects from the image and then recognizes each object. The
developer will specify a latency SLO for the entire query, but
since the system would host and execute the constituent mod-
els on different nodes, it would have to automatically derive
latency SLOs for the invoked models and derive schedules
that meet these latency SLOs. We discussed the latter issue in
the previous example, and we now focus on the former issue.

Consider a query that executes Model X and feeds its output
to Model Y. Suppose we have a 100ms latency budget for
processing this query, and suppose that every invocation of X
yields γ outputs (on average). When γ < 1, X operates as a
filter; when γ = 1, X maps an input to an output; when γ > 1,
X yields multiple outputs from an input (e.g., detection of
objects within a frame).

Assume that Figure 3 depicts the batch execution latency
and throughput of models X and Y. The system has to decide
what latency SLOs it has to enforce on each model such that
the overall latency is within 100ms and the GPU utilization
of the query as a whole is maximized. For this example, we
consider a limited set of latency split plans for models X and
Y: (a) 40ms and 60ms, (b) 50ms and 50ms, (c) 60ms and
40ms. It would appear that plan (a) should work best since
the sum of the throughputs is largest among the three plans,
but a closer examination reveals some interesting details.

For workloads involving a large number of requests, let us
assume that p and q GPUs execute X and Y, respectively. We
then have γ · p ·TX = q ·TY , where TX and TY are per-GPU
throughputs of X and Y, such that the pipeline won’t be bot-
tlenecked by any model. We define the average throughput as
the pipeline throughput divided by the total number of GPUs,
which is p ·TX /(p + q). We evaluate the average throughputs
for the three latency split plans with γ = 0.1, 1, 10. Figure 4
shows that each of the plans achieves the best performance
for different γ values. In fact, there is no universal best split:
it depends on γ , which can vary over time.

We note two observations from this example. First latency
split for complex query impacts overall efficiency, and it is
necessary to account both batch performance and workload
statistics to make the best decision. Second, latency split
should not be static but rather adapted over time in accordance
with the current workload. Section 6.2 describes how Nexus
automatically and continually derives latency splits.

4.3 Rate control and adaptive batching

Model serving systems need to perform adaptive batching
based on number of requests received. When there is a burst
of requests, the system needs to drop certain requests in order
to serve the remaining requests within the latency SLO. One
approach is to perform lazy dropping, i.e., drop a request only
when it has already missed its deadline, and determine the
batch size based on the time budget remaining for the earliest
request in the queue (as in Clipper [8]). We use simulation
to evaluate this approach for different batching profiles (as
modeled by Equation 1). We fix latency SLO to 100ms and
optimal model throughput on a single GPU to 500 reqs/s,
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Figure 6: Nexus runtime system overview.

and vary α . Given the fixed throughput, the fixed cost β re-
duces as we increase α . The workload is generated using
uniform and Poisson arrivals with the mean request rate set
to 90% of the optimal throughput. We define the bad rate
to be the percentage of requests that exceed the deadline or
get dropped. Figure 5 shows that the lazy dropping strategy
performs poorly for Poisson distributions when α is small and
β is correspondingly high. Since the system always attempts
to execute the oldest received request, it often has to resort
to a small batch size in order to meet the deadline, but this
causes the dispatcher to further fall behind given the high
fixed cost is not amortized over sufficient requests. This ex-
periment indicates that even the runtime needs to consider
batch efficiency in determining what tasks to dispatch.

5 Nexus Architecture
Nexus works on three planes (as depicted by Figure 6). The
management plane allows developers to ingest and deploy
applications and models, at a timescale of hours to weeks. The
control plane, via the global scheduler, is responsible for re-
source allocation and scheduling at a typical timescale of sec-
onds to minutes. The data plane, comprised of in-application
Nexus library instances and backend modules (together, the
Nexus runtime), dispatches and executes user requests at the
timescale of milliseconds to seconds. The global scheduler
interacts with the underlying cluster resource manager (e.g.,
Mesos [17], Azure Scale Sets [23]) to acquire CPUs/GPUs
for the frontend/backend. A load balancer (not shown) from
the underlying cluster spreads user requests across Nexus’s
distributed frontend. We sketch the three planes.

Management plane: Models are stored in a model database
and may be accompanied by either a sample data set or a
batching profile. Nexus uses the sample dataset, if available,
to derive a batching profile. Otherwise, the profile is updated
at runtime based on user requests. Applications are containers
that integrate with Nexus Client Library. Developers store ap-
plication containers in cluster-provided container repositories

and may instruct Nexus to ingest a container, at which point
it is loaded from the repository onto a frontend CPU.

Control plane: The global scheduler is a cluster-wide re-
source manager that uses load statistics from the runtime. It
uses this profile to add or remove frontend and backend nodes
from the cluster, invokes the epoch scheduler to decide which
models to execute and at what batch size, and which backend
to place the models on so as to balance load and maximize
utilization. Multiple models may be mapped onto a single
backend, albeit with an execution schedule that ensures they
do not interfere as in Section 4.1. The mapping from models
to backends is captured in a routing table that is sent to fron-
tends. The matching execution schedule for each backend is
captured in a schedule that is sent to backends. On receiving
a routing table, frontends update their current routing table.
On receiving a schedule, backends load appropriate models
into GPU memory and set their execution schedule.

Allocation, scheduling and routing updates happen at the
granularity of an epoch, typically 30-60s, although a new
epoch can also be triggered by large changes in workload.
Epoch scheduling involves the following:
• Produce an updated split of the latency SLO for the indi-

vidual models inside a query (see Section 6.2).
• Combine two or more models that share a prefix and latency

SLO into a new prefix-batched model (see Section 6.3).
• Perform profile-guided squishy bin packing to allocate the

GPU resources for each model. (see Section 6.1).

Data plane: When a user request comes into (a replica of)
an application container, the application invokes DNNs via
API provided by the Nexus Library. The library consults the
local routing table to find a suitable backend for that model,
dispatches the request to the backend, and delivers responses
back to the application. The application is responsible for
packaging and delivering the end-result of the query to the
user. A backend module uses multiple threads to queue re-
quests from various frontends, selects and executes models on
these inputs in batched mode according to the current sched-
ule, and sends back the results to frontends. It can utilize one
or more GPUs on a given node, with each GPU managed by
a GPU scheduler that schedules tasks on it.

6 Batch-Aware Scheduling and Dispatch

We now describe the algorithms used by the global scheduler
and the node dispatcher. First, we consider the case of sched-
uling streams of individual DNN task requests, given their
expected arrival rates and latency SLOs. We next consider
how to schedule streams of more complex queries/jobs that
invoke multiple DNN tasks. We then describe how the node
runtime cycles through DNNs and performs batching.
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Notation Description

Si Session i
Mki DNN model ki for session Si
Li Latency constraint for session Si
Ri Request rate for session Si
ℓki (b) Execution cost for Mki and batch size b

Table 3: Notation

6.1 Scheduling streams of individual DNN tasks

We build upon the discussion presented in Section 4.1. The
scheduler identifies for each cluster node the models hosted by
it. As discussed earlier, the scheduling problem has the struc-
ture of bin-packing [3], but we need to address the "squishi-
ness" of tasks and the need to meet latency SLOs.

Inputs: The scheduler is provided the request rate for a model
at a given latency SLO. We refer to the requests for a given
model and latency SLO as a session. Note that a session would
correspond to classification requests from different users and
possibly different applications that invoke the model with
a given latency constraint. Table 3 describes the notation
used below. Formally, a session Si specifies a model Mki
and a latency constraint Li , and there is a request rate Ri
associated with it. The scheduler is also provided with the
batching profiles of different models. The latency of executing
b invocations of Mki is ℓki (b). We assume that throughput is
non-decreasing with batch size b.

Scheduling overview: The scheduler allocates one or more
sessions to each GPU and specifies their target batch sizes.
Each GPU node n is then expected to cycle through the ses-
sions allocated to it, execute invocations of each model in
batched mode, and complete one entire cycle of batched ex-
ecutions within a duty cycle of dn . For sessions that have a
sufficient number of user requests, one or more GPU nodes
are allocated to a single session. The integer programming
formulation and a greedy approximation algorithm described
below computes the residual workload for such sessions (after
allocating an integral number of GPUs) and then attempts to
perform bin packing with the remaining smaller sessions.

Scheduling Large Sessions: For session Si , we first compute
the peak throughput of Mki when executed in isolation on a
GPU. With a batch size b, the worst case latency for any given
request is 2ℓki (b), as we explained in Section 4.1. Denote
batch size Bi as the maximum value for b that meets the
constraint 2ℓki (b) ≤ Li . Therefore, the maximal throughput,
denoted by Ti , for session Si on a single GPU is Bi/ℓki (Bi ).
The number of GPU nodes we allocate to execute just Si
requests is n = ⌊Ri/Ti ⌋. There will be a residual unallocated
load for session Si after taking into account this allocated load.
Note that n = 0 for sessions that don’t have sufficient requests
to utilize an entire GPU. (Function SCHEDULESATURATE in

Algorithm 1 provides the pseudocode.)

Optimization problem for scheduling residual workload:
We next consider the problem of scheduling the residual loads,
i.e., a workload where none of the models have sufficient load
to need an entire GPU. The optimization problem can be
expressed as an integer programming problem.

Decision Variables Definition
дj ∈ {0, 1} Whether GPU j is in use
si j ∈ {0, 1} Whether session i is assigned to GPU j
bi j ∈ R≥0 Batch size of session i on GPU j

Minimize:
∑

j дj
Subject to:

si j = 1→ дj = 1 ∀j (a)∑
j
si j = 1 ∀i (b)

si j = 0→ bi j = 0 ∀i, j (c)
si j = 1→ bi j ≥ 1 ∀i, j (d)

dj =
∑

i :ti j=1
ℓki (bi j ) ∀j (e)

dj + ℓki (bi j ) ≤ Li ∀i, j (si j = 1) (f)

bi j ≥ ridj ∀i, j (si j = 1) (g)
The constraints correspond to the following requirements.

(a) Sessions can only be assigned to GPU that are in use.
(b) Each session can only be assigned to one GPU.
(c) bi j is 0 if i is not assigned to GPU j.
(d) bi j is at least 1 if i is assigned to GPU j.
(e) Length of duty cycle as a function of assigned sessions.
(f) Latency SLO constraint.
(g) Scheduled rate meets the request rate requirement.

Note that some of the constraints are not linear, and we omit
details on how to express them in a strictly linear way. We
used the CPLEX package to solve this formulation on bench-
mark workloads. Even after incorporating optimizations, such
as using a greedy algorithm to provide both an initial feasible
solution and an upper bound for the number of GPUs needed,
solving the integer program is expensive. For example, gen-
erating a schedule for 25 sessions takes hours. We therefore
resort to the following greedy scheduling algorithm.

Greedy scheduling algorithm for residual loads: For the
bin packing process, the scheduler inspects each residual
session in isolation and computes the largest batch size and the
corresponding duty cycle in order to meet the throughput and
SLO needs. The intuition behind choosing the largest batch
size is to have an initial schedule wherein the GPU operates
at the highest efficiency. This initial schedule, however, is
not cost-effective as it assumes that each GPU is running
just one session within its duty cycle, so the algorithm then
attempts to merge multiple sessions within a GPU’s duty
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Algorithm 1 Squishy Bin Packing Algorithm
SQUISHYBINPACKING(Sessions)

1: nodes, residue_loads← SCHEDULESATURATE(Sessions)
2: nodes← nodes ⊕ SCHEDULERESIDULE(residue_loads)
3: return nodes

SCHEDULESATURATE(Sessions)
4: nodes, residue_loads← [], []
5: for Si = ⟨Mki ,Li ,Ri ⟩ in Sessions do
6: Bi ← argmaxb (2ℓki (b) ≤ Li )
7: Ti ← Bi/ℓki (Bi )
8: let Ri = n ·Ti + ri
9: nodes← nodes ⊕ n GPU nodes for Mki with batch Bi

10: residue_loads← residue_loads ⊕⟨Mki ,Li , ri ⟩

11: return nodes, residue_loads

SCHEDULERESIDUE(residue_loads)
12: for ⟨Mki ,Li , ri ⟩ in residue_loads do
13: bi ← argmaxb (ℓki (b) + b/ri ≤ Li )
14: di ← bi/ri
15: occi ← ℓki (bi )/di

16: sort residue_loads by occi in descending order
17: nodes← []
18: for ⟨Mki ,Li , ri ,bi ,di ,occi ⟩ in residue_loads do
19: max_occ← 0
20: max_node← NULL
21: for n = ⟨b,d,occ⟩ in nodes do
22: n′← MERGENODES(n, ⟨bi ,di ,occi ⟩)
23: if n′ , NULL and n′.occ > max_occ then
24: max_occ← n′.occ
25: max_node← n′

26: if max_node , NULL then
27: replace max_node for its original node in nodes
28: else
29: nodes← nodes ⊕⟨bi ,di ,occi ⟩
30: return nodes

cycle. In doing so, it should not violate the latency SLOs, so
we require the merging process to only reduce the duty cycle
of the combined allocation. The algorithm considers sessions
in decreasing order of associated work and merges them into
existing duty cycles that have the highest allocations, thus
following the design principle behind the best-fit decreasing
technique for traditional bin packing.

We now elaborate on this greedy scheduling algorithm
(which is also depicted in function SCHEDULERESIDUE of
Algorithm 1). Denote ri to be the request rate of a residual
load. Suppose we execute the residual load with batch size b,
the duty cycle d for gathering b inputs is b/ri . Then, the worst
case latency is d + ℓki (b). Therefore, we have the constraint:

d + ℓki (b) = b/ri + ℓki (b) ≤ Li (2)
We begin residual load scheduling (Line 12-15) by choos-

ing for session Si the maximum batch size bi that satisfies the

duty cycle d1

Node 2

Node 1

Merged
Node

batch b2

Node 2

Node 1

Figure 7: Merge two nodes into one. Use the smaller duty cy-
cle as new duty cycle for both nodes. Update the batch size ac-
cordingly and re-estimate the batch latency. If sum of latencies
doesn’t exceed new duty cycle, the two nodes can be merged.

above constraint. The corresponding duty cycle di is also at
its maximal value. Denote occupancy (occ) as the fraction of
the duty cycle di occupied by Si ’s residual load invocations:
occi (bi ) = ℓki (bi )/di .

Next, we start to merge these fractional GPU nodes into
fewer nodes (Line 16-30 in Algorithm 1). This part resembles
the classic bin packing algorithm that first sorts sessions by
decreasing occupancy and merges two nodes into a single
node by best fit. The primary difference is how to determine
whether two nodes can be merged such that their sessions
won’t violate the latency SLOs. Figure 7 depicts the process
of merging two nodes. Suppose we have two sessions S1 and
S2 on separate nodes, with request rates r1 and r2, assigned
batch sizes b1 and b2, and duty cycles d1 and d2. We use
d = min(d1,d2) as the new duty cycle of a combined node.
Without loss of generality, we assume d = d2. We then use
b ′1 = d · r1 ≤ b1 as the new batch size for S1. Note that the
worst case latency of requests in S1 now becomes d+ℓk1 (b

′
1) ≤

d1 + ℓk1 (b1) ≤ Li , and we won’t violate the latency constraint
for S1 by this adjustment. If ℓk1 (b

′
1)+ ℓk2 (b2) ≤ d and memory

capacity permits, a single node can handle the computation
of both S1 and S2, and we allocate these two sessions to the
same node. While the above discussion considers merging
two sessions, the underlying principle generalizes to nodes
containing multiple sessions.

Finally, we extend the algorithm to be incremental across
epochs, thus minimizing the movement of models across
nodes. If the overall workload decreases, the scheduler at-
tempts to move sessions from the least utilized backends to
other backends. If a backend no longer executes any session,
the scheduler releases the backend. If workload increases such
that a backend becomes overloaded, we evict the cheapest
sessions on this backend until it is no longer overloaded and
perform bin packing again to relocate these evicted sessions.
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6.2 Scheduling Complex Queries

We now present the query analysis algorithm that operates
on dataflow representations of application queries in order to
determine the latency SLO splits for the constituent models.
The output of this analysis is given as input to the scheduling
algorithm of Section 6.1 that works with individual models.

Query analysis extracts the dataflow dependency graph
between model invocations in application code. For example,
Figure 8 depicts a traffic analysis application that first uses
the SSD model to detect objects and recognizes cars and
faces correspondingly. We formulate the scheduling of queries
as the following optimization problem. Suppose the query
involves a set of models Mi with request rate Ri , and the
end-to-end latency SLO is L. The objective is to find the best
latency SLO split Li for each model Mi to minimize the total
number of GPUs that are required for the query. Because
latency Li is determined by batch size bi , the optimization
problem is equivalent to finding the best batch sizes that
minimizes GPU count, while meeting the latency SLO along
every path from the root model (Mroot) to the leaf models.

minimize
{bv }

∑
v

Rvlv (bv )/bv

subject to
∑

u :Mroot{Mv

lu (bu ) ≤ L ∀v ∈ leaf

We use dynamic programming to solve this optimization
problem for the case of fork-join dependency graphs, but
limit our exposition to the simpler case of tree-like depen-
dency graphs. For example, Figure 8 can be treated as a tree-
structured dependency graph models (we can as the output
does not invoke additional DNN models. Denote f (u, t) as
the minimum number of GPUs required to run models repre-
sented by u and the subtree at u within time budget t . For a
non-leaf node u, the algorithm allocates a time budget k for
node u and at most t −k for the rest of the subtree, and it then
enumerates all k ≤ t to find the optimal split. More formally,

f (u, t) = min
k :k≤t

{
min

b :lu (b)≤k
Ru

lu (b)

b
+ min

t ′:t ′≤t−k

∑
v :Mu→Mv

f (v, t ′)

}
Since the dynamic programming cannot handle continuous

state space, we approximate the state space of time budget
with L/ε pieces of segments, where ε is the length of a seg-
ment. The time complexity is quadratic in L/ε.

6.3 Batch-Aware Dispatch

We now briefly describe the runtime mechanisms that control
the execution of DNN tasks on backend nodes.

GPU Multiplexing: DNN frameworks provide no specific
support for the concurrent execution of multiple models. For
example, if two models that share a GPU execute in two
processes or containers, they will independently issue requests
to execute layers/kernels to the underlying GPU. The GPU

input

face

car

outputSSD

Figure 8: Dataflow graph of traffic analysis application.
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Figure 9: Maximal throughput achieved by lazy drop and early
drop policy under various α .

runtime will typically serve these requests in first-come-first-
served fashion, resulting in an arbitrary interleaving of the
operations for the two models. The interleaving increases the
execution latency of both models and makes it hard to predict
the latency. Instead, the Nexus node runtime manages the
execution of all models on a GPU, so it is able to pick batch
sizes and execution schedules for all models in a round-robin
fashion to make sure models abide by their latency SLOs. In
addition, Nexus overlaps the pre- and post-processing in CPU
with the GPU execution to increase GPU utilization.

Prefix Batching: Another important observation is that trans-
fer learning [10, 33] adapts a model from one dataset to an-
other or from one task to another by re-training only the last
few layers. DNN frameworks assume that if models differ
in any layer, they cannot be executed in a batched fashion
at all. However, in the common setting of model specializa-
tion, several models may differ only by their output layer.
Batching the execution of all but the output layer can yield
substantial batching gains. Nexus automatically recognizes
models that have common prefixes, and splits the models into
“common prefix” and “different suffixes” parts. The backend
executes the common parts in a batched manner followed by
the different suffix parts sequentially to complete execution.

Adaptive Batching: As discussed in Section 4.3, lazy drop-
ping during dispatch could lead to small batch sizes and low
efficiency. In Nexus, we use an early drop policy that skips
over requests that would cause sub-optimal batching. Specifi-
cally, the dispatcher scans through the queue using a sliding
window whose length is the batch size determined by the
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name brief models video Nexus
description used input features used

game analyze streamed
video games

text, object rec. Twitch [2] streams, 1
week, 50 streamers

SS, ED, QA-
1, PB

traffic surveil traffic on
streets

object det., face
rec.

traffic cameras, 1
week, 20 cameras

SS, ED, QA-2

dance rate dance perfor-
mances

person det., pose
rec.

dance videos from
YouTube, 2 hrs

SS, ED, QA-2

bb gauge response to
public billboard

person, face det.,
gaze, age, sex rec.

game show audience
videos, 12 hours

SS, ED, QA-
3, PB

bike find bike-rack oc-
cupancy on buses

object, text det./
rec./ trk.

traffic cameras, 1
week, 10 cameras

SS, ED, QA-
4, PB

amber match vehicle to
"Amber Alert"
description

object det., car
make+model rec.,
text det./rec.

dashcam videos from
YouTube, 12 hours

SS, ED, QA-
4, PB

logo audit corporate
logo placeement

person icon,
pose, text, person
det./rec.

NFL, NBA game
videos, 24 hours

SS, ED, QA-
5, PB

Table 4: Evaluated application and input data. Squishy sched-
uling, early drop, complex query analysis and prefix-batching
are abbreviated as SS, ED, QA and PB. QA-k indicates that the
related complex query has k stages. Models for detection, recog-
nition and tracking are abbreviated ‘det.’, ‘ret.’ and ‘trk.’

global scheduler for a given session. It stops at the first re-
quest that has enough budget for batched execution latency
of the entire window and drops all earlier requests. We use
simulation to compare the lazy drop and early drop policy.
Similar to Figure 5, we fix latency SLO to 100ms and opti-
mal throughput to 500 reqs/s. Figure 9 depicts the throughput
achieved by lazy drop and early drop policy under different
α while 99% of requests are served within latency SLO. The
results show that early drop can achieve up to 25% higher
throughput than lazy drop.

7 Evaluation
We implemented Nexus in roughly 10k lines of C++ code.
Nexus supports the execution of models trained by various
frameworks including Caffe [19], Caffe2 [11], Tensorflow
(TF) [4], and Darknet [28]. Nexus can be deployed in a cluster
using Docker Swarm [9] (used below) or Kubernetes [13].
In our evaluation, we use this implementation to answer the
following questions. (1) Does using Nexus result in better
cluster utilization while meeting SLOs with respect to existing
systems? (2) Does high performance persist when Nexus is
used at very large scale? (3) How do the new techniques in
Nexus contribute to its performance? (4) What determines
how well each of these techniques work?

For a given workload and cluster, we refer to the maximum
rate of queries that Nexus can process such that 99% of them
are served within their latency SLOs as its throughput. We
use throughput as the primary measure of cluster utilization.

7.1 Workload

Our basic approach is to run Nexus (and its various config-
urations and competitors) on either a small (16-GPU) or a
large (100-GPU) cluster on various mixes of the applications

and input videos specified in Table 4. These applications are
modeled closely on widely-known video analysis scenarios,
but we implemented each of them since we are unaware of
freely available, widely used versions. They encompass a rich
variety of characteristics. Some (e.g., game and traffic,
which implements Figure 8) are based on 24/7 live video
streams, whereas others (e.g., dance and logo) apply to
footage of individual performances. Some require simple
queries (e.g., game, designated "QA-1" has 1 stage), and
others more complex ones (e.g., the 5-stage logo, desig-
nated "QA-5", seeks to detect people, find their torsos, look
for logos, and if found, detect and recognize the player’s
number). Most use multiple specialized versions of models
and are therefore amenable to prefix batching, designated
"PA". For each workload, we have collected several hours
and many streams (for live streams) or files (for episodes) of
video, which sample and play in a loop to preserve temporal
characteristics while allowing arbitrarily long simulations.

7.2 Using Clipper and Tensorflow as Baselines

Clipper and TF Serving assume cluster scheduling and latency
SLOs for DNN invocations are handled externally. Careful
scheduling and latency allocation are two of Nexus’s core
contributions. To provide a basis for comparison, we furnish
simple default versions of each. A batch-oblivious scheduler
greedily allocates to each model/SLO a share of the cluster
proportional to its request rate and inversely proportional to
its maximum single-node throughput. Further, we split the
latency for a query evenly across its stages. The oblivious
scheduler may map multiple models onto a Clipper GPU, in
which case we launch one container per model on the GPU.
We rely on Clipper’s load balancer to manage model replicas.
In contrast, TF does not provide a frontend load balancer, nor
does it allow specification of latency SLOs per request. We
therefore provide a dispatcher and pick the maximum batch
size for each model so its SLO is not violated.

7.3 Single-Application Case Studies

To compare our performance with those of Clipper and TF
Serving, we ran the game and traffic applications sepa-
rately on a 16-GPU cluster. In each case, we ran an ablation
study on Nexus features to gauge their impact.

7.3.1 Game Analysis When analyzing game streams, we
seek to recognize 6 numbers (e.g., number of kills, number of
players alive) and one object icon on each frame. We use ver-
sions of LeNet [21] specialized to the game’s font and number
of digits to recognize numbers, and ResNet-50 [16] with its
last layer specialized to recognize the icon. We include 20
games in the case study, and consider a latency SLO of 50ms
(sensitivity to SLOs is analyzed in Section 7.5). The request
rates of frames from the 20 games follow the Zipf-0.9 distri-
bution. We noticed that both Clipper and TF show extremely
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Figure 11: Traffic monitoring case study.

poor throughput on the tiny LeNet model. We conjecture, but
could not confirm, this is because of inadequate parallelism
between CPU and GPU processing. To be maximally fair to
them, we allow the two baselines to invoke just the ResNet
model. Their resulting throughput, which we report, is bet-
ter by over 4× than including LeNet. Finally, we additively
turn off prefix batching (PB), squishy scheduling (SS), early
drop (ED), and overlapped processing in the CPU and GPU
(OL, see Section 6.3). The game query has only 1 stage and
therefore does not exercise query analysis (QA).

Figure 10 shows the results. Nexus increases through-
put significantly, 9.4 and 12.7× relative to Clipper and TF
Serving on this application. Several of Nexus’s techniques
contribute, with OL the most, and ED the least.

7.3.2 Traffic Monitoring traffic uses SSD [7], VGG-
Face [25] and GoogleNet-car [32] for object detection, face
recognition and car make/model analysis on 20 long-running
traffic streams with a latency SLO of 400ms. Figure 11 shows
the results, focusing on additional aspects. First, variation in
the content of the video affects throughput: "Day" hours
tend to have more objects to process in each frame, and there-
fore yield lower throughput than "Night" hours. Secondly,
since traffic is a two-stage application (detect cars and
then recognize their make/model), QA is relevant. Instead of
splitting latency evenly, it allocates 304 of 400ms of SLO
to SSD during the day, and further adapts to 345ms in the
evening. QA has impact, but more so at night, perhaps be-
cause during the day the system is often over-subscribed.
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Figure 12: A 1000 sec window from our large-scale deployment.

Disabling QA reduced throughput by 4/17% in the day/night.
Nexus still exhibits better throughput relative to Clipper/TF,
by 4.4/1.8× in the daytime and 1.8/2.3× at night.

7.4 Large-scale deployment

To check whether Nexus maintains its gains when run at large
scale, especially in the face of significant workload variation,
we deployed Nexus on a cluster of 88 GPUs on a commercial
cloud, running all applications from Table 4 simultaneously
for a period of several hours. During this period, we fixed
the number of sessions per application (e.g., game had 50
sessions, traffic had 20), but varied the request rate per
session by varying the rate at which each submitted frames.

We focused on two metrics. First, how close to optimal is
GPU utilization during this period? Second, how often does
Nexus fail to honor SLOs i.e. what is its "bad rate"? To bound
the optimal (smallest) number of GPUs needed for a session,
we assumed that its model is fully (not just prefix) batchable,
that its SLO allows it to run at optimal batch size, and that it
has enough requests coming in to be scheduled back-to-back
on GPUs. Of course, real sessions often violate one or more
of these assumptions and will have lower throughput.

Figure 12 shows Nexus adapting to a change in workload
during a 1000-sec window of the deployment. The top panel
shows a stacked graph of requests over time, the middle one
the number of GPUs allocated (with a black line indicating the
lower bound number of GPUs needed), and the bottom one
the bad rate, with instantaneous bad rates above 1% marked
in red. Around 340s into the window, the number of requests
increases and starts varying significantly. Nexus, which is
running with 30s epochs, starts dropping requests, detects the
change within 12s (this could have been as long as 30s) and
allocates more GPUs. It deallocates GPUs (this time with a
roughly 10s lag) at the 680s mark when demand subsides.

The figure illustrates that Nexus responds well to variable
workloads at large scale. It is able to allocate close to the
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Figure 13: Impact on throughput of varying numbers of models
served (a) and latency SLOs (b) under GPU multiplexing.

aggressive theoretical lower bound (on average it stays within
32%), while maintaining a low bad rate (1.3% on average).

7.5 Sensitivity analysis of Nexus features

We now present micro-benchmarks to analyze the main com-
ponents of Nexus. Overall, we find that Nexus’s core tech-
niques are quite robust to variations in key design parameters.
GPU Multiplexing. The Nexus runtime (Section 6.3) fo-
cuses on minimizing interference on GPU between execut-
ing models (by avoiding interleaving during their execution),
and idling while switching between models (by overlapping
pre/post processing on CPU with model execution on the
GPU, and not waiting for fixed target batch sizes to fill up
before dispatch to the GPU).

Figure 13 analyzes the importance of these features by
comparing the throughput of Nexus with those of Clipper,
TF Serving, and a version of Nexus ("Nexus-parallel") that
issues models in parallel and does not control interference.
This experiment runs increasing numbers of copies of the
Inception model with a latency SLO of 100ms. Throughput of
all four models suffer, TF Serving less than Clipper because
it runs models in a round-robin fashion whereas Clipper de-
ploys them in independent containers that interfere. Nexus
achieves 1.4–2.1× throughput compared to TF serving, and
1.9–9.8× throughput compared to Clipper on a single GPU.
Nexus-parallel fares better because it avoids idling (but still
suffers from interference), and Nexus fares the best. We see
similar trends across other models. Figure 13(b) compares
the throughput while varying the latency SLO from 50ms
to 200ms, with the number of models fixed at 3. When la-
tency SLO becomes higher, the greater scheduling slack gives
Nexus-parallel higher throughput.
Prefix Batching. Figure 14 examines how the throughput and
memory benefits of prefix batching scale as the number of
variants of Resnet50 that differ only in the last layer increases,
on a single GPU. Figure 14(a), compares prefix batching to
unbatched execution of the variants. Without prefix batching,
the variants have to execute on smaller "sub-batches" to sat-
isfy their SLOs, yielding worse aggregate throughput. With
prefix batching, since many models can execute in one batch,
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Mix SLOs
Inception

Mix SLOs
ResNet

Mix rates
Inception

Mix rates
ResNet

Mix models
& SLOs

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Re
la

tiv
e 

th
ro

ug
hp

ut

67
36

30
40

37
10

12
71

47
36

Baseline Nexus

Figure 15: Impact on throughput of varying model- and SLO-
mixes under squishy scheduling.

the sub-batches can be aggregated into a large batches that
maintain up to 110% higher throughput.

Similarly, when the (unshared) model suffixes are small
("1 FC", indicating one "fully connected" unshared layer, in
Figure 14(b)), additional model variants use negligible extra
GPU memory. As the number of unshared layers increase
("2 FC" and "3 FC" add 2 and 3 fully connected layers to
the shared prefix), the memory benefits fall. Without prefix
batching (black line), however, we quickly run out of GPU
memory even if a model has only one unshared layer.
Squishy Scheduling. We now examine the sensitivity of
squishy scheduling to model types, request rates and SLOs.
We compare the throughput of Nexus with squishy scheduling
to a baseline using batch-oblivious scheduling instead. Both
need to allocate 16 sessions on 8 GPUs under 5 scenarios: (a)
Inception or (b) ResNet models with mixed SLOs ranging
from 50ms to 200ms, (c) Inception or (d) ResNet models
with mixed request rates following Zipf-0.9 distribution, (e) 8
different model architectures, each associated with two SLOs,
50ms and 100ms. Figure 15 depicts the relative throughput of
standard Nexus with regard to baseline. Nexus outperforms
baseline across all mixes, with the highest gains (up to 64%)
coming from handling varying request rates, and the lowest
(11%) coming from handling varying request mixes.
Complex Query Analysis. To evaluate the performance gain
of the query analyzer, we compare the throughput of Nexus
with and without the query analyzer. The baseline simply
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Figure 16: Impact on throughput of varying query latency SLO
and γ (see Section 4.2) under complex query analysis.

splits the latency SLO evenly across the various stages in the
query. The query includes two stages: (a) first stage executes
SSD, and then (b) invokes Inception model for γ times. The
experiment is performed on 8 GPUs. We vary the latency
SLO from 300ms to 500ms, and choose γ to be 0.1, 1, and 10.
Figure 16 shows that Nexus with the query analyzer achieves
13–55% higher throughput than the baseline.

8 Conclusion
We proposed a scalable and efficient system design for serving
Deep Neural Network (DNN) applications. Instead of serving
the entire application in an opaque CPU-based container with
models embedded in it, which leads to sub-optimal GPU
utilization, our system operates directly on models and GPUs.
This design enables several optimizations in batching and
allows more efficient resource allocation. Our system is fully
implemented, in C++ and evaluation shows that Nexus can
achieve 1.8-12.7× more throughput relative to state-of-the-art
baselines while staying within latency constraints (achieving
a “good rate”) >99% of the time.
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