
Verifying Determinism in Sequential Programs
(Extended Version)

Rashmi Mudduluru
University of Washington

rashmi4@cs.washington.edu

Jason Waataja
University of Washington
jwaataja@cs.washinton.edu

Suzanne Millstein
University of Washington
smillst@cs.washinton.edu

Michael D. Ernst
University of Washington
mernst@cs.washinton.edu

Abstract—When a program is nondeterministic, it is difficult
to test and debug. Nondeterminism occurs even in sequential
programs: for example, as a result of iterating over the elements
of a hash table.

We have created a type system that expresses determinism
specifications in a program. The key ideas in the type system
are type qualifiers for nondeterminism, order-nondeterminism,
and determinism; type well-formedness rules to restrict collec-
tion types; and enhancements to polymorphism that improve
precision when analyzing collection operations. While state-of-
the-art nondeterminism detection tools rely on observing output
from specific runs, our approach soundly verifies determinism at
compile time.

We implemented our type system for Java. Our type checker,
the Determinism Checker, warns if a program is nondeterministic
or verifies that the program is deterministic. In case studies
of 90097 lines of code, the Determinism Checker found 87
previously-unknown nondeterminism errors, even in programs
that had been heavily vetted by developers who were greatly
concerned about nondeterminism errors. In experiments, the
Determinism Checker found all of the non-concurrency-related
nondeterminism that was found by state-of-the-art dynamic
approaches for detecting flaky tests.

Index Terms—nondeterminism, type system, verification, spec-
ification, hash table, flaky tests

I. INTRODUCTION

A nondeterministic program may produce different output
on different runs when provided with the same input. Non-
determinism is a serious problem for software developers and
users.
• Nondeterminism makes a program difficult to test, be-

cause test oracles must account for all possible behaviors
while still enforcing correct behaviors. Test oracles that
are too strict lead to flaky tests, which sometimes pass
and sometimes fail [1], [2], [3], [4], [5]. Flaky tests must
be re-run, or developers ignore them; in either case, their
utility to detect defects is limited.

• Nondeterminism makes it difficult to compare two runs
of a program on different data, or to compare a run of
a slightly modified program to an original program. This
hinders debugging and maintenance, and prevents use of
techniques such as Delta Debugging [6], [7].

• Nondeterminism reduces users’ and developers’ trust in
a program’s output [8], [9].

These problems motivate the field of deterministic replay [10].
Nondeterminism is common even where it is not expected.

For example, a program that relies on the iteration order of a

hash table, or on any other property of hash codes, may pro-
duce different output on different runs. So may any program
that uses default formatting, such as Java’s Object.toString(),
which includes a memory address. Other nondeterministic
APIs include random, date-and-time functions, and accessing
system properties such as the file system or environment
variables. Another source of nondeterminism is concurrency,
but our work focuses on sequential programs.

The high-level goal of our work is to provide programmers
with a tool for specifying determinism properties in a program
and verifying them statically. Other researchers have also
recognized the importance of the problem of nondeterminism.
Previous work in program analysis for nondeterminism has fo-
cused on unsound dynamic approaches that identify flaky test
cases. NonDex [2] uses a modified JVM that returns different
results on different executions, for a few key JDK methods
with loose specifications. Running a test suite multiple times
might reveal unwarranted dependence on those methods. De-
Flaker [3] looks at a range of version control commits and
marks a test as flaky if the test does not execute any modified
code but fails in the newer version. These techniques have been
able to identify issues in real-world programs, some of which
have been fixed by the developers. Identifying and resolving
nondeterminism earlier in the software development lifecycle
is beneficial to developers and reduces costs [11].

We have created an analysis that detects nondeterminism
or verifies its absence in sequential programs. Our analysis
permits a programmer to specify which parts of their program
are intentionally nondeterministic, and it verifies that the re-
mainder is deterministic. The programmer specifies whether a
particular part of the program is allowed to be nondeterministic
or not. The tool reports when the program deviates from
that behavior. Any deviation is a bug either in the (possibly
defaulted) specification or in the program. The tool identifies
nondeterminism where the specification does not permit it.
Then, the programmer can fix the inconsistency.

Our approach is based on type systems that analyzes de-
terminism at compile time. It does not rely on examining
output from specific runs. Type systems are as expressive as
any other static analysis [12]. A type-based approach divides
the responsibility between the user and the tool. Ours is
a specification-and-verification approach. The user writes a
specification of the intended behavior of the program, and the
tool reports whether the program violates the specification.

If our analysis issues no warnings, then the program pro-
duces the same output when executed twice on the same
inputs, modulo the limits of the analysis (see section VIII).
Our analysis works at compile time, giving a guarantee over
every possible execution of the program, unlike unsound
dynamic tools that attempt to discover when a program has
exhibited nondeterministic behavior on a specific run. There is
no need for a custom runtime system nor rerunning a program
multiple times—nor even running it once. Our analysis handles
collections that will contain the same values, but possibly in
a different order, on different runs. Our analysis permits calls
to nondeterministic APIs, and only issues a warning if they
are used in ways that may lead to nondeterministic output
observed by a user. Like any sound analysis, it can issue false
positive warnings.

Our analysis uses three main abstractions:
• NonDet represents values that might differ from run to run.
• OrderNonDet represents collections that are guaranteed to

contain the same elements but whose iteration order is
nondeterministic.

• Det represents values that will be the same across execu-
tions.

Programmers can write these abstractions to specify their
program’s behavior. Our full analysis also contains other
features that increase expressiveness. The notion of “the same”
and “different” are parameterizable (e.g., reference equality or
value equality), subject to certain conditions such as that it
must be an equivalence relation.

Our main contributions are a type system for expressing
determinism properties (section II) and an implementation for
Java, in a tool called the Determinism Checker (section III).
While the approach is applicable to any statically typed object-
oriented programming language, our implementation works
only for Java. To validate our work, we performed case
studies and experiments. In the case studies, we ran our
analysis on 90097 LoC (13 projects), including ones whose
developers had already spent weeks of testing and inspection
effort to make deterministic (section IV). The Determinism
Checker discovered 87 instances of nondeterminism that the
developers had overlooked. The developers fixed most of these
issues when we reported them. Figures 21 and 22 show two
examples. In the experiments, we compared our tool against
state-of-the-art flaky test detectors, on their benchmarks (sec-
tions V and VI). The Determinism Checker found all the non-
concurrency nondeterminism found by the other tools.

II. A TYPE SYSTEM FOR DETERMINISM

This section presents the key aspects of our type system in
the context of a core calculus for an object-oriented language.
We formalize our type system by extending Featherweight
Generic Java [13]. Section II-A reviews the notion of type
qualifiers and how they help type-checking. Section II-B
introduces determinism type qualifiers informally. Section II-C
formalizes the type system, gives examples, and proves sound-
ness. Section II-D discusses how polymorphism enables more
precise specification of (non)deterministic behavior.

NonDet

Det

OrderNonDet

Fig. 1: Determinism type qualifier hierarchy.

A. Preliminaries and notation

One way to view a type is as a set of values. A type
abstracts or restricts (1) the set of possible run-time values
that an expression may evaluate to and (2) the operations
that may be performed. A programming language provides
basetypes, such as Int. A type qualifier [14] on a basetype adds
additional constraints; that is, it reduces the set of values that
the type represents. An example type qualifier is Positive, and
an example type is Positive Int, which combines a qualifier
and a basetype. A polymorphic type abstraction such as List

can be instantiated by a type argument, as in List〈Positive
Int〉.

A type qualifier constrains the set of possible run-time
values, that is, Positive Int <: Int. As a result, a qualifier type
system does not allow any values that the original type system
does not, in the same program without qualifiers. However,
the qualifier type system may reject more programs, and thus
affords stronger guarantees.

Type qualifier systems are sometimes defined independently
of the underlying type system: any qualifier (such as Secret

or Public) can be applied to any basetype. In our type system,
there are interactions between the basetypes and the type
qualifiers. Defining them together improves precision, which
is important in practice.

B. Determinism types

The core of the determinism type system is the following
type qualifiers:
• NonDet indicates that the expression might evaluate to

different values in two different executions.
• OrderNonDet indicates that the expression is a collection,

iterator, or map that contains the same elements in every
execution, but possibly in a different order OR that the
expression evaluates to equal values in all executions.

• Det indicates that the expression evaluates to equal values
in all executions; for a collection or a map, iteration also
yields the values in the same order.

Figure 1 shows the subtyping relationship among the quali-
fiers.

OrderNonDet may only be written on collections and maps.
A map is a dictionary or an associative array, such as a hash
table. Our type system largely treats a map as a collection
of key–value pairs. Both collections and maps may be Det,
OrderNonDet, or NonDet. The basetypes of their elements can be
specified independently of the collection basetypes. However,

an element type qualifier must be a subtype of the collection
type qualifier (see fig. 5).

Our approach is applicable to any object-oriented pro-
gramming language. For concreteness, our formalism and
implementation build upon Java.

C. Formalizing our type system

Figure 2 gives the syntax of FDJ (Featherweight Determin-
istic Java), which extends that of Featherweight Generic Java
(FGJ) (Figure 4 in [13]). FDJ adds the following language
features to FGJ: 1) determinism type qualifiers, 2) aliasing, 3)
mutation, 4) collection classes from the JDK, and 5) arrays.

Our core language adds aliasing and mutation to FGJ via
expressions e.f = e and e = e.f . Additionally, basetypes in
our language include arrays and consequently array accesses
e = e[i] and array mutations e[i] = e. Collection classes are
invariant with respect to κ (the determinism qualifier). That is,
a NonDet Collection is unrelated by subtyping to an OrderNonDet

Collection which is unrelated to a Det Collection (for details,
see section II-C6). Arrays are treated as covariant with respect
to determinism type qualifiers. This is sound because we forbid
mutating arrays of type NonDet e[OrderNonDet i] or NonDet

e[Det i]. These core language features express the essential
features of our type system.

Figure 3 presents FDJ’s subtyping rules. Rules S-QUAL1
and S-QUAL2 formalize fig. 1’s subtyping relationship among
the determinism qualifiers. Rule S-DET1 establishes the fol-
lowing property for non-collection types: a type κ U is a
subtype of another type τ V if κ is a subtype of τ and U
is a subtype of V . Rule S-DET2 states the invariant subtyping
property of collections.

1) Type well-formedness and Collection types: Figure 4
shows the type well-formedness, or type validity, rules of
our type system. Rule WF-NC states that OrderNonDet may not
be written on types other than Collection, Iterator, and Map.
Figure 5 gives examples.

Our design uses types to distinguish between expressions
that evaluate to the same values on each execution, and those
that may not. To achieve this goal, determinism is a “deep”
rather than a “shallow” property: if an expression of collection
or array type is nondeterministic, then so are its elements, and
if an expression of reference type is nondeterministic, then so
are its fields.

2) Behavior of order-nondeterministic collections: A col-
lection whose type qualifier is OrderNonDet has the following
properties, which are expressed in fig. 7.

1) Elements retrieved from it (via access, iteration, search-
ing, etc.) have type NonDet.

2) Size-related operations, and queries of whether an iter-
ator has more elements, return a deterministic result.

To restate the first point, the typical type for a list access
operation, such as get, is

∀E. List〈E〉 × Int→ E

but this type is correct only when both arguments are Det.
Figure 6 shows the correct partial type for get, handling only
the case where the index is deterministic.
No type introduced so far in this paper can express this
polymorphism. The actual type is even more complex, because
if either argument to get is OrderNonDet or NonDet, then the
result is NonDet. Section II-D discusses polymorphism.

3) Typing rules and field accesses: Figure 8 shows the
typing rule introduced by our type system in addition to those
already defined in [13]. The rule states that whenever a field
is accessed on the RHS of an expression, the type qualifier
of that expression is the least upper bound (denoted by lub in
fig. 8) of the type qualifier of the field type and that of the
field’s class type. To illustrate the need for this rule, consider
the example below:
class MyClass {

Det Integer dField;
NonDet Integer getFieldOfFirst(
OrderNonDet List<Det MyClass> list) {

NonDet MyClass element = list.get(0);
return element.dField;

}
}

The iteration order of the formal parameter list, of type Order-

NonDet List, is arbitrary. Therefore, the type of list.get(0)

has the type qualifier NonDet (fig. 7). In other words, element

could have different values across executions. As a result,
the expression element.dField is NonDet even though dField is
declared as Det.

Figure 10 shows an additional type validity rule for lvalue
field accesses. An assignment statement x.f = y is valid iff
the type qualifier on the type of x is a subtype of the type
qualifier on the declaration type of f . The following example
justifies this rule:
class MyClass {

Det Integer dField;
void bad(OrderNonDet List<Det MyClass> list) {

NonDet MyClass element = list.get(0);
element.dField = ...; // This is invalid

}
}

Since element could have different values across executions, it
is NonDet. Suppose list had two elements elem1 and elem2.
In one execution, list.get(0) could return elem1 and the
statement element.dField = ..; would set a field of elem1.
In another execution, list.get(0) could return elem2 and the
assignment statement would set a field of elem2. In other
words, the method bad creates a NonDet alias to a Det instance
which allows the instance to be mutated non-deterministically.
To prevent this unsoundness, fig. 10 forbids the assignment to
element.dField.

4) Arrays: Similar to collection classes, fig. 11 defines
well-formedness rules for arrays. Figure 12 gives the typing
rule for array accesses on the RHS of an expression. The rule
states that the determinism type of an array access on the RHS
is the least upper bound of the determinism type of the array
and that of the element type. For example, if a has type Det int

NonDet[] (a non-deterministic array of deterministic integers)
and i has type Det int, the type of a[i] is NonDet int. Similar
to fig. 10, fig. 14 defines well-formedness for array accesses
on the LHS.

T ::= κ U type
κ ::= NonDet | OrderNonDet | Det type qualifier
U ::= X | N basetype
X type variable
N ::= C〈T 〉 | Collection〈T 〉 | Iterator〈T 〉 | Map〈Tk, Tv〉 | C κ[] nonvariable type
L ::= class κ C〈κ X / κ N〉 / κ N {T f ; K M} class definition
K ::= κ C (T f) { super(f); this.f = f ; } constructor
M ::= 〈κ X / κ N〉 T m(T x) { return e; } method
e ::= x | e.m〈T 〉(e) | new κ N (e) | (κ N) e expression

| e1.f = e2 | e1 = e2.f | e1[e2] = e3 | e1 = e2[e3]

Fig. 2: The syntax of FDJ (Featherweight Deterministic Java), which extends that of FGJ (Figure 4 in [13]).

∆ ` Det <: OrderNonDet
S-QUAL1

∆ ` OrderNonDet <: NonDet
S-QUAL2

∆ ` κ <: τ ∆ ` U <: V ∆ ` U ≮: Collection/Iterator/Map

∆ ` κ U <: τ V
S-DET1

∆ ` U <: V ∆ ` U <: Collection/Iterator/Map

∆ ` κ U <: κ V
S-DET2

Fig. 3: Subtyping rules in our type system, in addition to those defined in Figure 6 of [13].

∆ ` κ ∈ {NonDet, Det} ∆ ` U ≮: Collection/Iterator/Map

∆ ` κ U ok
WF-NC

∆ ` C <: Collection/Iterator ∆ ` κe U ok ∆ ` κe <: κ

∆ ` κ C〈κe U〉 ok
WF-COLL-ITER

∆ ` C <: Map ∆ ` κk U ok ∆ ` κv V ok ∆ ` κe <: κ ∆ ` κv <: κ

∆ ` κ C〈κk U, κv V 〉 ok
WF-MAP

Fig. 4: Well-formedness rules in FDJ, in addition to those defined in Figure 6 of [13]

NonDet List〈NonDet Int〉 NonDet List〈OrderNonDet Set〉 NonDet List〈Det Int〉
OrderNonDet List〈NonDet Int〉 OrderNonDet List〈OrderNonDet Set〉 OrderNonDet List〈Det Int〉

Det List〈NonDet Int〉 Det List〈OrderNonDet Set〉 Det List〈Det Int〉

Fig. 5: Examples of the well-formedness rules of fig. 4. A collection’s type qualifier must be a supertype or equal to the
element type qualifier. The struck-out types are invalid.

∀κ E. NonDet List〈κ E〉 × Det Int→ NonDet E where κ ∈ {NonDet, OrderNonDet, Det}
∀κ E. OrderNonDet List〈κ E〉 × Det Int→ NonDet E where κ ∈ {OrderNonDet, Det}

∀κ E. Det List〈κ E〉 × Det Int→ Det E where κ = Det

Fig. 6: Partial type for get

get: ∀κ, τ, E. OrderNonDet C〈κ E〉 × τ Int→ NonDet E
iterator: ∀κ, E. OrderNonDet C〈κ E〉 → OrderNonDet Iterator〈κ E〉

next: ∀κ, E. OrderNonDet Iterator〈κ E〉 → NonDet E
hasNext: ∀κ, E. OrderNonDet Iterator〈κ E〉 → Det boolean

size: ∀κ, E. OrderNonDet C〈κ E〉 → Det int

Fig. 7: Types of collection methods. C is a collection class. These are partial types indicating the methods’ behavior on
OrderNonDet arguments.

∆; Γ ` x = e.f ∆; Γ ` e : κ U ok ∆; Γ ` f : τ V ok ∆; Γ ` class κc C〈. . .〉{. . . T f . . .}
∆; Γ ` x : lub(κ, τ) V

GT-FLD

Fig. 8: Typing rule for field access on the RHS (in addition to those in figure 7 of [13]).

e0 → e′0
e1 = e0.f → e1 = e′0.f

RC-ASSIGN

Fig. 9: Reduction rule for assignment from field access on the
RHS (in addition to those in figure 8 of [13]).

5) Theorems and proofs: The following theorems imply
that our type system is sound: it suffers no false negatives. If
our type system issues no warnings, then no expression with
deterministic type evaluates to a different value on different
runs over the same inputs.

Theorem 1 (Type preservation). When an expression e re-
duces to another expression e′, e′’s type is a subtype of e’s
type. More formally, if ∆; Γ ` e : T and e → e′ then
∆; Γ ` e′ : T ′ for some T ′ such that ∆ ` T ′ <: T

Theorem 1 states that when an expression e reduces to
another expression e′, e′ is a subtype of e.

Proof. By induction on the derivation of e → e′, similar to
the proof of Theorem 3.4.1 in [13]. We show the cases for our
new reduction and type validity rules.

• Case 1: e1 = e2.f . Using GT-FLD in fig. 8 and RC-
ASSIGN in fig. 9, e2.f → e′ implies e′ : lub(λ, κ) V
where e2 : κ U , f : λ V . Upon execution of the statement
e1 = e2.f , e1 reduces to e2.f . So the type of e1 is exactly
the type of e′ which satisfies e′ <: e1.

• Case 2: e1.f = e2. The assignment is either invalid (WF-
FLD IN FIG. 10) or trivially preserves types (e1.f has the
same type as that of e2).

• Case 3: e1 = e2[i]. Using GT-ARR in fig. 12 and RC-ARR-
ASSIGN in fig. 13, e2[i] → e′ implies e′ : lub(κ, τ) V
where e2 : δ Uκ [] , i : τ int. Upon execution of the
statement e1 = e2[i], e1 reduces to e2[i]. So the type of
e1 is exactly the type of e′ which satisfies e′ <: e1.

• Case 4: e1[i] = e2. The assignment is either invalid (WF-
ARR-LHS IN FIG. 14) or trivially preserves types (e1[i]
has the same type as that of e2).

The determinism type qualifiers do not change reduction rules
— they only affect subtyping and type validity. Invariant
collections only add constraints to subtyping, which does not
affect the reduction e→ e′.

Theorem 2 (Progress). If e is well-typed, then one of the
following applies: 1. e contains a failed downcast, 2. e
contains a failed assignment due to the violation of field
assignment rule (WF-FLD in fig. 10), 3. e contains a failed
assignment due to the violation of array assignment rule (WF-
ARR-LHS in fig. 14), or 4. there is a valid reduction rule.

Proof. This theorem is proved by a case analysis of all expres-
sion types. The only difference from the proof of Theorem 3.2
in [13] is due the type validity of field accesses on the LHS
(WF-FLD in fig. 10) and the type validity of array accesses
on the LHS (WF-ARR-LHS in fig. 14). In the case of field
assignment e1.f = e2, either the expression e1.f is invalid or
it reduces to the same type as that of e2. Similarly, in the case
of array assignment e1[i] = e2, either the expression e1[i] is
invalid or it reduces to the same type as that of e2, thereby
proving progress.

6) Collection aliasing, mutation, and invariance: This sec-
tion discusses why FDJ treats collection classes as invariant
with respect to determinism type qualifiers (rule S-DET2 in
fig. 3). Assume for the sake of contradiction that collections
are not invariant w.r.t. type qualifiers. That would make the
following code valid:
void test(Det List<Det String> dList,

NonDet List<Det String> nList) {
NonDet List<Det String> ndList = dList;
ndList.addAll(nList);

}

The above code is unsafe because nList and dList are aliases to
the same List object and nList.addAll(nList) mutates the Det

reference dList non-deterministically. That is, it would violate
case 2 of the proof of theorem 1. To avoid such unsoundness,
our type system disallows collection instances to have two
aliases that differ in their determinism types. It achieves this
by declaring all collection classes to be invariant with respect
to determinism type qualifiers.

An alternate design to avoid the unsoundness described
above would be to allow aliasing of collection types with dif-
ferent determinism type qualifiers but to disallow any mutation
operation that is not deterministic. However, this design would
be too restrictive as it would not allow any mutation operation
on NonDet or OrderNonDet collections.

D. Polymorphism

As described so far, our type system is sound, but it suffers
from poor expressiveness. An implementation would issue
many false positive warnings, because programmers could
write only coarse specifications of methods. Adding polymor-
phism to our type system increases its expressiveness without
compromising soundness [15], [16]. This section focuses on
precise specifications (method signatures), rather than on the
type-checking that ensures that the method body conforms to
the specification.

Section II-D1 first describes basic polymorphism over type
qualifiers and over basetypes. The subsequent sections de-
scribe polymorphic extensions.

∆; Γ ` x : κx N ok ∆; Γ ` class κ C{. . . T f . . .} ∆; Γ ` f : κf N ok ∆ ` κx <: κf

∆; Γ ` x.f = e ok
WF-FLD

Fig. 10: Additional validity rule for field access on the LHS (Figure 6 of [13].

∆ ` κ U ok ∆ ` κ <: τ
∆ ` κ U τ [] ok

WF-ARR

Fig. 11: Additional well-formedness rule for arrays

1) Qualifier and basetype polymorphism: Our type system
supports parametric polymorphism [17], [18]. A polymorphic
abstraction (a class or method) is written and type-checked
once. Informally, it acts as if it has multiple different types, and
each use site is typechecked using the most specific applicable
instantiated non-polymorphic type.

Our type system supports both basetype polymorphism and
qualifier polymorphism.
• To achieve typical type polymorphism, use both basetype

polymorphism and qualifier polymorphism. For example,
the type of the identity function is ∀T. T → T , which
can be equivalently written as ∀κ, U. κ U → κ U .

• Basetype polymorphism lets the basetype vary indepen-
dently of the qualifier, which might be fixed or might be
polymorphic. An example is the unmodifiableCollection

function on a Det Collection: unmodifiableCollection :
∀U. Det Collection〈?/ Det U〉 → Det Collection〈Det U〉.
In our case studies, basetype polymorphism was used
on its own only once. Full type polymorphism is more
common (thousands of uses), even if the function type
decomposes the type parameter and uses the parts in-
dependently, as in the next function: next : ∀κ, E.
OrderNonDet Iterator〈κ E〉 → NonDet E .

• Qualifier polymorphism is commonly needed. For exam-
ple, the length method on strings has type length : ∀κ.
κ String → κ Int .

This paper adopts the convention that polymorphism is
not instantiated in ways that would create invalid types. For
example, the length polymorphic function would not be in-
stantiated at κ = OrderNonDet. (This makes no difference for
the length function, because such an instantiation would never
be the most specific applicable one.) Without this convention
about instantiations and type validity, every typing rule would
add a precondition stating that each type used in it is well-
formed. This would be semantically identical to what the paper
presents, but would be more verbose.

2) Polymorphism rules for collections: As described so
far, polymorphism cannot express the collection behaviors
of section II-C2. Consider this potential typing for the size

method in class κ Collection〈τ E〉:
size : ∀κ. κ Collection〈τ E〉 → κ Int

It cannot be instantiated at κ = OrderNonDet as
size : OrderNonDet Collection〈τ E〉 → OrderNonDet Int

because such an instantiation would include the invalid return
type OrderNonDet Int.

Our type system resolves this problem by introducing two
operators over polymorphic type variables, ↑ and ↓. The
↑ operator converts OrderNonDet to NonDet and leaves the
other qualifiers unchanged. The upward-pointing arrow is a
mnemonic for replacing OrderNonDet by something higher in
the type hierarchy. The ↓ operator is analogous, but it converts
OrderNonDet to Det, which is lower in the type hierarchy.
Figure 15 formalizes their behavior.

The precise type for size is
size : ∀κ. κ Collection〈τ E〉 → κ↓ Int

This can be instantiated at all three type qualifiers without
creating any invalid types:

size : NonDet Collection〈τ E〉 → NonDet Int

size : OrderNonDet Collection〈τ E〉 → Det Int

size : Det Collection〈τ E〉 → Det Int

These instantiations implement the semantics of section II-C2.
An example use of ↑ is in a method that returns the first

element of a list. Its type is first : ∀κ. κ List〈τ E〉 → κ↑ E
which can be instantiated as

first : NonDet List〈τ E〉 → NonDet E
first : OrderNonDet List〈τ E〉 → NonDet E
first : Det List〈τ E〉 → Det E
In addition to the ↑ and ↓ operators, Figure 15 also defines

the shuffle() operator which converts Det to OrderNonDet and
leaves the other qualifiers unchanged. This enables precise
specification of certain collection operations. For instance, the
type of the HashSet constructor is:

HashSet() : ∀κ. κ E → shuffle(κ) HashSet〈κ E〉
That is, invoking the HashSet constructor with an argument of
type Det E will construct an OrderNonDet HashSet.

3) Differentiating binding and use: Precisely specifying
mutation operations on collections requires another extension
to polymorphism. We discuss our approach to annotating
mutation methods in three parts: (1) determinism types on
non-receiver parameters, (2) excluding OrderNonDet, and (3)
aliasing.

a) Determinism types on non-receiver parameters: Con-
sider a mutator method add. Its type without determinism
qualifiers is:

add : List〈String〉 × String→ ()
(For simplicity, this discussion treats the return type of add as
void even though in the JDK it is String. This is simpler and
is sufficient for illustration.)

Table I shows all possible invocations of add for a well-
formed List type. The specification for add must reject the
calls that are struck out, or else the body will not type-check
(and unsafe client code would type-check). The specification
should permit all the calls that are not struck out, or else
some safe client code will not type-check. It achieves these
goals via another variant of qualifier variables, use(κ), which
represents a use of κ that does not affect the instantiation of κ.

∆; Γ ` x = e[i] ∆; Γ ` e : δ U κ [] ok ∆; Γ ` i : τ int

∆; Γ ` y : lub(κ, τ) V
GT-ARR

Fig. 12: RHS array access typing rule in our type system

ns : NonDet String ds : Det String

nnList : NonDet List〈NonDet String〉 nnList.add(ns) nnList.add(ds)
ndList : NonDet List〈Det String〉 ndList.add(ns) ndList.add(ds)
odList : OrderNonDet List〈Det String〉 odList.add(ns) odList.add(ds)
ddList : Det List〈Det String〉 ddList.add(ns) ddList.add(ds)

TABLE I: add invocations for a well-formed list.

e0 → e′0
e1 = e0[i]→ e1 = e′0[i]

RC-ARR-ASSIGN

Fig. 13: RHS array access reduction rule in our type system

Ordinarily, a polymorphic function is instantiated at the least
upper bound of the types of all the arguments that correspond
to uses of the type parameter. For example, function
f : ∀κ. κ Int× Det Int× κ Int× κ Int

is instantiated at the least upper bound of the types of its
first, third, and fourth arguments at a given call. (If no such
instantiation exists with valid types, or if any other argument
does not conform to its corresponding formal parameter type,
the call does not type-check.) By contrast, function
f : ∀κ. κ Int× Det Int× use(κ) Int× κ Int

is instantiated at the least upper bound of the types of its first
and fourth arguments, and the third argument must conform
to that instantiation. That is, the type qualifier of the third
argument must be a subtype of the least upper bound of the
type qualifiers of the first and fourth arguments. Given this
type system feature, the type of List’s add method can be
precisely specified:

add : ∀κ, β. κ List〈β E〉 × use(κ) E → ()

At a call site, if β is not a subtype of κ, the List type is invalid
and the call does not type-check. As another example for the
use() operation, the precise type of addAll is:

addAll : ∀κ, β. κ List〈β E〉 × use(κ) Collection〈...〉 →
κ↓ boolean

b) Excluding OrderNonDet: The specification of the JDK
must prohibit certain mutation operations on collections. For
example, the annotations in the JDK must prohibit removing
from OrderNonDet collections at deterministic indices. The
following client code must not type-check:
void mustBeProhibited(OrderNonDet List<Det String> lst,

Det int index) {
lst.remove(index);

}

Since the iteration order on OrderNonDet collections is not
guaranteed, the element at index could differ across executions.
As a result, lst.remove(index) could remove different elements
on different executions, leaving lst with different contents
on different executions, which violates the contract of the
OrderNonDet type qualifier.

However, the specification of remove should permit removal
from Det and NonDet collections. A precise type for List remove

is
remove : ∀κ ∈ {NonDet, Det}, τ. κ List〈τ E〉×use(κ) int→
()
Section III-C gives the Java syntax of this qualifier poly-
morphism that excludes OrderNonDet. Alternatively, we could
soundly annotate remove to only be applicable to Det collec-
tions. This would be imprecise. Having a polymorphic qualifier
that excludes OrderNonDet increases the expressiveness of our
type system.

c) Aliasing: It is possible to create NonDet aliases to
OrderNonDet or Det collections. (For instance, by calling next

or get. See the types of next and get in fig. 7. A trivial way
to create aliases is via subtyping, but that is prevented by the
fact that collection types are invariant in determinism qualifier
types.) Consider the example below:
void aliasTest(OrderNonDet Set<Det List<Det String>> set,

NonDet int index, Det String str) {
NonDet List<Det String> lst = set.iterator().next();
lst.add(index, str);

}

Variable lst has type NonDet List〈Det String〉 (as a result of
set iteration) but an alias has type Det List〈Det String〉 (as a
member of set).

The call list.add() is unsafe and must not typecheck. It
mutates lst non-deterministically thereby violating the deter-
minism guarantees provided by the Det reference. We could
prevent this unsoundness by allowing mutations on only Det

collections but this would make our type system imprecise.
Our type system prevents the unsafe behavior (while still

being precise) by prohibiting any mutation of collections
having types NonDet Collection〈OrderNonDet E〉 or NonDet

Collection〈Det E〉. It achieves this via JDK annotations on
collection classes that guarantee that, in the above example,
list.add() does not typecheck.

A few JDK operations (like iteration or access) can create
such unsafe aliases among otherwise invariant Collection

types. These operations can return a NonDet alias to an
OrderNonDet or a Det type. Our approach of preventing
mutations on NonDet Collection〈OrderNonDet E〉 and NonDet

Collection〈Det E〉 is sufficient to prevent unsafe behavior.

E. Maps and sets
A map is a collection of key–value pairs. Like other

collections, a map or set can be nondeterministic, order-

∆ ` x : δ N κ [] ok ∆ ` i : τ int ∆ ` κ <: τ

∆; Γ ` x[i] = e ok
WF-ARR-LHS

Fig. 14: Array assignment

NonDet↑ = NonDet OrderNonDet↑ = NonDet Det↑ = Det
POLYUP

NonDet↓ = NonDet OrderNonDet↓ = Det Det↓ = Det
POLYDOWN

shuffle(NonDet) = NonDet shuffle(OrderNonDet) = OrderNonDet shuffle(Det) = OrderNonDet
POLYSHUFFLE

Fig. 15: The ↑, ↓, and shuffle() operators on type qualifiers.

nondeterministic, or deterministic. It might seem that the
notion of a deterministic set or map is nonsensical, since
Java’s Set and Map specifications make no promises about
iteration order. However, some subtypes do. See examples in
section III-B.

F. Improving precision for equality

List equality is dependent on iteration order, but set equality
is not. Comparing two objects of type OrderNonDet List〈Det
String〉 yields a NonDet result: depending on the execution,
the lists might or might not be in the same order. However,
comparing two objects of type OrderNonDet Set〈Det String〉
yields a Det result: always the same on every execution.

More specifically, rule SET PRECISION of fig. 16 expresses
that the return type of equals() is Det if both arguments have
type OrderNonDet Set and neither argument has @OrderNonDet

List within its type argument. Without this rule, the type would
be NonDet which is sound but imprecise.

III. IMPLEMENTATION OF OUR TYPE SYSTEM

We implemented our type system for Java, in a tool
named the Determinism Checker. The implementation con-
sists of 5047 lines of Java code built atop the Checker
Framework, plus 3322 lines of tests, 1034 annotated li-
brary methods, a 3138-line manual, etc. (All line measure-
ments are non-comment, non-blank lines.) The Determinism
Checker works with Java version 8 and 11. It is publicly
available at https://github.com/t-rasmud/checker-framework/
tree/nondet-checker. Sections III-A to III-C discuss Java type
qualifiers, qualifiers for collections, and polymorphic qual-
ifiers, respectively. Section III-D describes how the Deter-
minism Checker implements invariant types for collections.
To reduce the annotation burden on the programmer, the
Determinism Checker uses defaulting and type refinement as
presented in sections III-E and III-F. Finally, section III-G
discusses rules for improving precision.

A. Determinism type qualifiers

A type qualifier is written in Java source code as a type
annotation. A type annotation has a leading “@” and is written
immediately before a Java basetype, as in @Positive int or
@NonEmpty List<@NonNull String>.

The Determinism Checker supports the type qualifiers
@NonDet, @OrderNonDet, and @Det, plus others described below.
The meaning of @Det is with respect to value equality, not
reference equality; that is, values on different executions are
the same with respect to .equals(), not ==.

For simplicity, section III uses the term “collection” and the
type Collection to represent arrays and any type that imple-
ments the Iterable or Iterator interfaces; this includes all Java
collections including List, Set, and user-defined classes.

B. Java collection types

A Map is deterministic if its entrySet is deterministic. In
other words, iterating over the entrySet produces the same
values in the same order across executions. The determinism
qualifier on the return type of entrySet() is the same as that
on the receiver. That is, its type (ignoring type arguments) is
entrySet : ∀κ. κ Map→ κ Set (also shown in fig. 18)

The most widely used Map implementations have the follow-
ing properties:
• HashMap is implemented in terms of a hash table, which

never guarantees deterministic iteration over its entries.
A @Det HashMap does not exist.

• LinkedHashMap, like List, can have any of the @NonDet,
@OrderNonDet, or @Det type qualifiers. Iterating over a
LinkedHashMap returns its entries in the order of their
insertion. An @OrderNonDet LinkedHashMap can be created
by passing an @OrderNonDet Map to its constructor, as in
new LinkedHashMap(myOndMap).

• TreeMap can be @Det or @NonDet. An @OrderNonDet TreeMap

does not exist because the entries are always sorted.
The Determinism Checker prohibits the creation of a @Det

HashMap or an @OrderNonDet TreeMap.
Figure 17 formalizes the type well-formedness rules for Java

Maps and Sets.

C. Polymorphism

Our type system supports three types of polymorphism:
type polymorphism, basetype polymorphism, and qualifier
polymorphism. These apply to both classes and methods.
• In the Determinism Checker implementation, type poly-

morphism is handled by Java’s generics mechanism,

https://github.com/t-rasmud/checker-framework/tree/nondet-checker
https://github.com/t-rasmud/checker-framework/tree/nondet-checker

∆,Γ ` x : OrderNonDet Set〈κ E〉 ∆,Γ ` y : OrderNonDet Set〈κ E〉
E <: List =⇒ κ : Det

∆,Γ ` x.equals(y) : Det boolean
SET-PRECISION

Fig. 16: Typing rule for set equality.

∆ ` τ U ok ∆ ` λ V ok ∆ ` τ <: κ ∆ ` λ <: κ ∆ ` κ ∈ {OrderNonDet, NonDet}
∆ ` κ HashMap〈τ U, λ V 〉 ok

WF-HASHMAP

∆ ` τ U ok ∆ ` λ V ok ∆ ` τ <: κ ∆ ` λ <: κ ∆ ` κ ∈ {Det, NonDet}
∆ ` κ TreeMap〈τ U, λ V 〉 ok

WF-TREEMAP

∆ ` τ U ok ∆ ` τ <: κ ∆ ` κ ∈ {OrderNonDet, NonDet}
∆ ` κ HashSet〈τ U〉 ok

WF-HASHSET

∆ ` τ U ok ∆ ` τ <: κ ∆ ` κ ∈ {Det, NonDet}
∆ ` κ TreeSet〈τ U〉 ok

WF-TREESET

Fig. 17: Type well-formedness rules for Java Maps and Sets.

which the Determinism Checker fully supports, including
class and method generics, inference, etc.
Given the Java declaration <T> T identity(T param) {

return param; }, the type of identity is ∀τ. τ → τ , and
the type of identity(x) is the same as the type of x.

• Basetype polymorphism is enabled by writing a type
qualifier on a use of a type variable, which overrides the
type qualifier at the instantiation site. For example, the
asList operation on arrays could be defined in Java as
public static <T> @Det List<@Det T> asList(@Det T... a)

• Java does not provide a syntax that can be used for
qualifier polymorphism, so the Determinism Checker
follows the Checker Framework convention [19] and
uses a special type qualifier name, @PolyDet. (@PolyDet
stands for “polymorphic determinism qualifier”.) A
qualifier-polymorphic method m with type ∀κ. κ int ×
Det boolean→ κ String is declared as @PolyDet String

m(@PolyDet int, @Det boolean). Each use of @PolyDet

stands for a use of the qualifier variable κ, and there
is no need to declare the qualifier variable κ.

Qualifier polymorphism is common on methods that a pro-
grammer might think of as deterministic. For example, an
addition method should be defined as

@PolyDet int plus(@PolyDet int a, @PolyDet int b) {...}

This can be used in more contexts than
@Det int plus(@Det int a, @Det int b) {...}

Just as a qualifier variable κ is written as @PolyDet in
Java source code, κ↑ is written as @PolyDet("up"), κ↓ as
@PolyDet("down"), and shuffle(κ) as @PolyDet("shuffle"). An
occurrence of a qualifier variable that does not affect the
binding of that variable (use(κ) in section II-D3) is written
@PolyDet("use"). A qualifier variable that excludes OrderNonDet

(as in II-D3b) is written as @PolyDet("noOrderNonDet").
An occurrence of a qualifier variable that does not af-
fect the binding of @PolyDet("noOrderNonDet") is written

@PolyDet("use,noOrderNonDet"). All of this syntax is legal Java
code that can be compiled with any Java 8 or later compiler.

Figure 18 specifies some JDK methods and shows real-
world buggy client code.

D. Determinism invariant types

A class or interface annotated with @HasQualifierParameter is
treated as invariant with respect to determinism type qualifiers.
For example, the Collection class is annotated as

@HasQualifierParameter(NonDet.class)
public interface Collection<E> extends Iterable<E> {..}

Every subtype (e.g., List) of a type annotated with
@HasQualifierParameter inherits this annotation and is therefore
invariant w.r.t. determinism qualifiers. At a use site, suppose a
List type is annotated as @NonDet List<@Det String> lst. Any
polymorphic field (that is, a field whose type qualifier is
@PolyDet) in List accessed via lst will resolve to @NonDet.

We have now explained all the syntax needed to understand
the specification of the List interface in fig. 19.

Figure 20 shows the type qualifier hierarchy among all
the type qualifiers in the Determinism Checker. Notice
that @PolyDet and @PolyDet("use") are considered to be the
same in this hierarchy. At method call sites, @PolyDet("use")

gets replaced by the type qualifier that @PolyDet re-
solves to. Similarly for @PolyDet("use,noOrderNonDet") and
@PolyDet("noOrderNonDet").

E. Defaulting

The Determinism Checker applies a default qualifier at each
unqualified Java basetype (except uses of type parameters,
which already stand for a type that was defaulted at the instan-
tiation site where a type argument was supplied). This does not
change the expressivity of the type system; it merely makes the
system more convenient to use by reducing programmer effort
and code clutter. Defaulted type qualifiers are not trusted:
they are type-checked just as explicitly-written ones are. In
other words, defaulting is a syntactic convenience that does

// Annotated JDK methods
public interface Map<K,V> {

@PolyDet Set<Map.Entry<K, V>> entrySet(@PolyDet Map<K,V> this);
}
public interface Iterator<E> {

@PolyDet("up") E next(@PolyDet Iterator<E> this);
}

// Client code
public class MapUtils {

public static
<K extends @PolyDet Object, V extends @PolyDet Object>
@Det String toString(@PolyDet Map<K,V> map) {

...
for (@Det Entry<K,V> entry : map.entrySet()) { ... }

}
}

[ERROR] MapUtils.java:[20,50] [enhancedfor.type.incompatible]
incompatible types in enhanced for loop.
found : @PolyDet Entry<K extends @PolyDet Object,V extends @PolyDet Object>
required: @Det Entry<K extends @PolyDet Object,V extends @PolyDet Object>

Fig. 18: Error detected by the Determinism Checker in scribe-java [2]. The Determinism Checker prohibits iterating over an
order-nondeterministic collection.

not change the semantics or expressiveness of the type system.
As a result, defaults never lead to false alarms. The tool might
issue an alarm that indicates that the default specification is not
consistent with the code. This is not a false alarm. Rather, it
indicates that the programmer needs to write the specification
for that part of the program.

Formal parameter and return types default to @PolyDet. That
is, a programmer-written method

int plus(int a, int b) { ... }

is treated as if the programmer had written
@PolyDet int plus(@PolyDet int a, @PolyDet int b) { ... }

and its function type is ∀κ. κ int × κ int → κ int . This
choice type-checks if the method body does not make calls to
any interfaces that require @Det arguments or produce @NonDet

results. Otherwise, the programmer must write explicit @Det or
@NonDet type qualifiers in the method signature.

The programmer can change the default for formal parame-
ters and return types to @Det. The @Det default makes it easier to
annotate a codebase and requires less use of the Determinism
Checker’s polymorphism features, but it makes the code usable
by fewer clients; it is appropriate for programs but not for
libraries.

As an exception to the above rules about return types, if
a method’s formal parameters (including the receiver) are all
@Det then an unannotated return type defaults to @Det. This is
particularly useful for methods that take no formal parameters.
A type like ∀κ. ()→ κ int does not make sense, because there
is no basis on which to choose an instantiation for the type
argument κ. Treating the type as () → Det int permits just
as many uses.

Fields of a class annotated with @HasQualifierParameter

default to @PolyDet. Types are inferred for unannotated local
variables; see section III-F. The default annotation for other
unannotated types is @Det, because programmers generally
expect their programs to behave the same when re-run on the
same inputs.

F. Type refinement via dataflow analysis

Our type system is flow-sensitive [20], [21], [22]. That
is, an expression may have a different type qualifier on
every line of the program, based on assignments and side
effects. Type preservation (theorem 1) is not violated, be-
cause the refined type is always consistent with (that is, a
subtype of) the declared or defaulted type. Type refinement
does not apply to types that are invariant (annotated with
@HasQualifierParameter), because they have no subtypes.

Consider the example below:
// After this line, the type of x is @NonDet int
@NonDet int x = ...;
// After this line, the type of x is @Det int
x = 42;
@Det int y;
// OK
y = x;
// After this line, the type of x is @NonDet int
x = random();
// Error: y is declared as @Det int
y = x;

Flow-sensitive type refinement applies to arbitrary expres-
sions, including fields and pure method calls. A type refine-
ment is lost whenever a side effect might affect the value.
For example, type refinements to all fields are lost whenever
a non-pure method is called. Note that in-place sorting does
not refine an OrderNonDet collection to Det, because doing so
could create aliasing that could be used to violate determinism
guarantees through mutation.

This flow-sensitive type refinement achieves local variable
inference, freeing programmers from writing many local vari-
able types.

Although the Determinism Checker performs local type
inference within method bodies, it does not perform whole-
program type inference. This makes separate compilation
possible. It forces programmers to write specifications (type
qualifiers) on methods, which is good style and valuable
documentation.

@HasQualifierParameter(NonDet.class)
public interface List<E> extends Collection<E> {
// Query Operations
@PolyDet("down") int size(@PolyDet List<E> this);
@PolyDet("down") boolean isEmpty(@PolyDet List<E> this);
@PolyDet("down") boolean contains(@PolyDet List<E> this, @PolyDet Object o);
@PolyDet Iterator<E> iterator(@PolyDet List<E> this);
@PolyDet("down") Object @PolyDet[] toArray(@PolyDet List<@PolyDet("down") E> this);
<T extends @PolyDet("down") Object> @PolyDet("down") T @PolyDet[] toArray(

@PolyDet List<@PolyDet("down") E> this, T @PolyDet("use") [] a);

// Modification Operations
@PolyDet("down") boolean add(@PolyDet List<@PolyDet("use") E>this, @PolyDet("use") E e);
@PolyDet("down") boolean remove(@PolyDet List<@PolyDet("use") E> this, @PolyDet("use") Object o);

// Bulk Modification Operations
@PolyDet("down") boolean containsAll(@PolyDet List<E> this, @PolyDet Collection<?> c);
@PolyDet("down") boolean addAll(@PolyDet List<@PolyDet("use") E> this,

@PolyDet("use") Collection<? extends E> c);
@PolyDet("down") boolean addAll(@PolyDet List<@PolyDet("use") E> this,

@PolyDet("use") int index, @PolyDet("use") Collection<? extends E> c);
@PolyDet("down") boolean removeAll(@PolyDet List<@PolyDet("use") E> this,

@PolyDet("use") Collection<?> c);
@PolyDet("down") boolean retainAll(@PolyDet List<@PolyDet("use") E> this,

@PolyDet("use") Collection<?> c);
default void replaceAll(@PolyDet List<@PolyDet("use") E> this,

@PolyDet("use") UnaryOperator<E> operator);
default void sort(@PolyDet List<@PolyDet("use") E> this, @PolyDet("use") Comparator<? super E> c);
void clear(@PolyDet List<E> this);

// Comparison and Hashing
@PolyDet("up") boolean equals(@PolyDet List<E> this, @PolyDet Object o);
@NonDet int hashCode(@PolyDet List<E> this);

// Positional Access Operations
@PolyDet("up") E get(@PolyDet List<E> this, @PolyDet int index);
@PolyDet("up") E set(@PolyDet("noOrderNonDet") List<@PolyDet("noOrderNonDet") E> this,

@PolyDet("use,noOrderNonDet") int index, @PolyDet("use,noOrderNonDet") E element);
void add(@PolyDet List<@PolyDet("use") E> this,

@PolyDet("use") int index, @PolyDet("use") E element);
@PolyDet("up") E remove(@PolyDet("noOrderNonDet") List<@PolyDet("noOrderNonDet") E> this,

@PolyDet("use,noOrderNonDet") int index);

// Search Operations
@PolyDet("up") int indexOf(@PolyDet List<E> this, @PolyDet Object o);
@PolyDet("up") int lastIndexOf(@PolyDet List<E> this, @PolyDet Object o);

// List Iterators
@PolyDet ListIterator<E> listIterator(@PolyDet List<E> this);
@PolyDet ListIterator<E> listIterator(@PolyDet List<E> this, @PolyDet int index);

// View
@PolyDet("up") List<E> subList(@PolyDet List<E> this,

@PolyDet("down") int fromIndex, @PolyDet("down") int toIndex);
default @PolyDet Spliterator<E> spliterator(@PolyDet List<E> this);

}

Fig. 19: The specification of java.util.List.

G. The environment

The inputs to a program are treated as deterministic. That
is, the type of the formal parameter to main is @Det String @Det

[], a deterministic array of deterministic strings.

By default, the return type of System.getProperty is @NonDet,
unless the argument is "line.separator", "path.separator", or
"file.separator". A user of the Determinism Checker can
specify Java properties that must be passed on the java

command line and thus act like inputs to the program; the
Determinism Checker treats these as deterministic.

The return type of System.getenv, which reads an operating
system environment variable, is @NonDet.

IV. CASE STUDIES

To evaluate the usability of the Determinism Checker, we
applied it to several projects: Randoop (a test generator),
Checkstyle (a linter), the Checker Framework’s dataflow anal-
ysis, and the plume-lib utilities. All the materials are publicly
available at [23] for reproducibility.

We chose Randoop [24] because it is frequently used in
software engineering experiments, and its developers have
struggled with nondeterminism [25], [26].

We chose Checkstyle [27] because it was the only buildable
project with a confirmed non-concurrency determinism bug in
DeFlaker’s experiments.

We chose the dataflow analysis [28] because, while building
the Determinism Checker on top to the Checker Framework,

@PolyDet("down")

@PolyDet,

@PolyDet("use")

@PolyDet("noOrderNonDet"),
@PolyDet("use,noOrderNonDet")

@PolyDet("up")

@OrderNonDet

@PolyDet("shuffle")

@NonDet

@Det

Fig. 20: Determinism type qualifier hierarchy

we discovered a determinism bug in this component. We began
our case study after that bug was fixed.

We chose the plume-lib utilities [29] because they are used
by Randoop (and thus were subject to the same extensive
vetting process) and have the same maintainers, who were
responsive to us. Some of the projects are libraries, and some
are programs.

Table II shows the results of the Determinism Checker case
studies.

A. Case Study 1: Randoop

Randoop is intended to be deterministic, when invoked on a
deterministic program [30].1 However, Randoop was not deter-
ministic. This caused the developers problems in reproducing
bugs reported by users, in reproducing test failures during de-
velopment, and in understanding the effect of changes to Ran-
doop by comparing executions of two versions of Randoop.

The developers took extensive action to detect and mitigate
nondeterminism. They used Docker images to run tests, to
avoid system dependencies such as a different JDK having
a different number of classes or methods. They wrote tests
with relaxed oracles (assertions) that permit multiple possible
answers — for example, in code coverage of generated tests.
They used linters such as Error Prone to warn if toString

is used on objects, such as arrays, that do not override
Object.toString and therefore print a hash code which may
vary from run to run. They used a library that makes hash
codes deterministic, by giving each object of a type a unique
ID that counts up from 1 rather than using a memory address
as Object.hashCode does. They wrote specialized tools to pre-
process output and logs to make them easier to compare, such
as by removing or canonicalizing hash codes, dates, and other
nondeterministic output. These efforts were insufficient.

1Users of Randoop can pass in a different seed in order to obtain a different
deterministic output. Randoop has command-line options that enable concur-
rency and timeouts, both of which can lead to nondeterministic behavior.

In July 2017, the Randoop developers spent two weeks
of full-time work to eliminate unintentional nondeterministic
behavior in Randoop (commits e15f9155–32f72234). Their
methodology was to repeatedly run Randoop with verbose
logging enabled, look for differences in logging output, find
the root cause of nondeterminism, and eliminate it (personal
communication, 2019). Some of the nondeterminism was in
libraries, such as the JDK. The most common causes were
toString routines and iteration order of sets and maps. The
most common fixes were to change the implementations of
toString and to use LinkedHashSet and LinkedHashMap or to
sort collections before iterating over them. The developers did
not make every Set and Map a LinkedHashSet or LinkedHashMap,
because that was unnecessary and would have increased mem-
ory and CPU costs. They chose not to make every order-
nondeterministic List a Set, for similar reasons: deduplication
was not always desired, and even where it was acceptable, it
would have increased costs.

That coding sprint did not find all the problems. The de-
velopers debugged and fixed 5 additional determinism defects
over the next 12 months, using a similar methodology (com-
mits c15ccbf2, 44bdeebd, 5ff5b4c4, 22eda87f, and b473fd14).
We analyzed Randoop after all these fixes.

1) Methodology: We wrote type qualifiers in the Randoop
source code to express its determinism specification, then
we ran the Determinism Checker. Each warning indicated a
mismatch between the specification and the implementation.
We addressed each warning by changing our specification,
reporting a bug in Randoop, or suppressing a false positive
warning.

We annotated the core of Randoop (the src/main/java direc-
tory), which contains 25K non-comment, non-blank lines of
code. We did not annotate Randoop’s test suite.

We annotated one package at a time, starting with the
packages that are most depended upon. Within a package,
we followed a similar strategy, annotating supertypes first.
We reverse-engineered each specification, largely from the
methods it calls. (If the determinism of classes and methods
had been documented, then our annotation effort would have
been easy, just converting English into type qualifiers.) When
the number of @Det annotations in a file was overwhelming,
we changed the default qualifier for that class to @Det. (Users
of the Determinism Checker can control defaulting on a file-
by-file and method-by-method basis.) The effort would have
been much easier for someone familiar with Randoop, and yet
easier if done while code is being written and is malleable.

Running ./gradlew clean compileJava takes 18 seconds to
compile all files of Randoop. While also running the Deter-
minism Checker as a compiler plugin, the command takes 32
seconds. These numbers are the median of 5 trials on an 8-
core Intel i7-3770 CPU running at 3.40GHz with 32GB of
memory.

2) Results: The Determinism Checker found 15 previously-
unknown nondeterminism bugs in Randoop. The Randoop
developers accepted our bug reports and committed fixes to

Bugs #Warning #Anno-
Project LoC found suppressions tations
Randoop 25176 15 84 3385
Checkstyle 36182 13 96 511
CF dataflow analysis 13519 43 92 0
plume-lib/bcel-util 2472 2 96 170
plume-lib/bibtex-clean 53 0 0 1
plume-lib/html-pretty-print 51 0 0 0
plume-lib/icalavailable 388 1 0 6
plume-lib/lookup 283 0 0 2
plume-lib/multi-version-control 1220 3 100 16
plume-lib/options 1818 5 99 22
plume-lib/plume-util 7688 2 68 1037
plume-lib/reflection-util 802 2 100 28
plume-lib/require-javadoc 445 1 0 3

TABLE II: Results of the Determinism Checker case studies

In TypeVariable.java:
160: public List<TypeVariable> getTypeParameters() {
161:- Set<TypeVariable> parameters = new HashSet<>(super.getTypeParameters());
161:+ Set<TypeVariable> parameters = new LinkedHashSet<>(super.getTypeParameters());
162: parameters.add(this);
163: return new ArrayList<>(parameters);
164: }

Fig. 21: The fix made by the Randoop developers in response to our bug report about improper use of a HashSet. Lines starting
with “-” were removed and those starting with “+” were added. The “before” version of getTypeParameters returns a list that
might be in different orders on different executions, because the list is constructed from a hash table’s contents, which can be
in different orders on different executions. The “after” version always returns the elements in the order they were inserted into
the table. Our tool, the Determinism Checker, confirmed that 24 other uses of new HashSet were acceptable, as were 18 uses
of new HashMap.

the repository. A summary of these bugs follows, according
to the Randoop developers’ categorization:

Severe issues: Nondeterminism in Randoop output.
• HashSet bug: The “code under test” is the code

Randoop is testing (contrast to Randoop’s source code,
which the Determinism Checker is verifying). Suppose
that, in the code under test, a type variable’s bound has
a type parameter that the type variable itself does not
have. (By analogy, the code class IntegerList extends

List<Integer>, “List<Integer>” has a type parameter that
IntegerList does not. The actual example is similar but
uses type variables. This situation does occur, even in
Randoop’s test suite.) Then Randoop’s output depends on
the iteration order of a HashSet. The developers fixed this
by changing HashSet to LinkedHashSet (commit c975a9f7,
shown in fig. 21). The Determinism Checker confirmed
that 24 other uses of new HashSet were acceptable, as
were 18 uses of new HashMap.

• Classpath bug: Randoop used the CLASSPATH environment
variable in preference to the classpath passed on the
command line. This can cause incorrect behavior, both
in Randoop’s test suite and in the field, if a user sets the
environment variable. The developers fixed both the prob-
lems by changing Randoop to not read the environment
variable (commit 330e3c56, shown in fig. 22). The Deter-
minism Checker verified that all other uses of system and
Java properties did not lead to nondeterministic behavior.

Moderate issues: Nondeterministic diagnostic output

(Comparator bug is user-visible on stdout in the default
configuration).

• HashMap bug: Randoop iterated over a HashMap in
arbitrary order, making the diagnostic output difficult
to compare across different executions. The class al-
ready implemented Comparable, so the developers changed
methodWeights.keySet() to new TreeSet<>(methodWeights-

.keySet()) in a for loop (commit f212cc7e).
• Comparator bug: Randoop prints a list of methods

in code under test that might be flaky, sorted by a
flakiness metric. This list was itself nondeterministic,
when Randoop considered two methods to be equally
likely to be flaky. The developers added a secondary sort
key to a comparator (commit 3d6cfb33).

• Library bug: The Jacoco library uses a HashMap internally
and returns a collection built from it. This led to nonde-
terministic diagnostic output when Randoop iterated over
the collection. The Randoop developers sorted before
iterating (commit 97828027).

Minor issues: Hash codes and timestamps. The Randoop
developers may have overlooked these issues because their
log-postprocessing tools remove timestamps and some hash
codes from the log.

• Hash code bug: Diagnostic output printed a hash code for
brevity. The developers changed it to have deterministic
output (commit 661a4970). This is similar to problems
the Randoop developers fixed in the past.

• Timestamp bug: Diagnostic output printed a timestamp.
The Randoop developers fixed it by making the diagnostic
code obey an existing option about whether to print
timestamps (commit a460df97).

• toString bugs: Four classes inherited the Object-

.toString() implementation, so they printed nondeter-
ministically. The developers defined toString methods
(commit f8bdf992).

• Formatting bug: Diagnostic output used ObjectContract-

.toString(), which is inherited from Object. The de-
velopers changed the call to toCodeString(), which is
deterministic and is more informative (commit dff32159).

Unfixable issues: The Determinism Checker issued 2 other
true positive warnings because Randoop processes Java code
as part of its input. The Determinism Checker identified that
the code under test might behave nondeterministically. The
Randoop developers could do nothing about these problems.
Randoop is documented to behave nondeterministically only
if the code under test is also nondeterministic.

We reported another suspicious case of order-
nondeterminism, in the SpecificationCollection-
.findOverridden method. The Randoop developers explained
it was acceptable, after tracing the flow through the program.
The fact depended on subtle, undocumented invariants about
Randoop that we had not been able to reverse-engineer on
our own. There were several other similar cases of sound
code that failed type checking and that we found difficult to
manually verify.

B. Case Study 2: Checkstyle

The Checkstyle bugs were due to dependence on sys-
tem properties (6 instances), nondeterministic logging (5
instances), and nondeterministic exception messages (2 in-
stances). Of the 5 nondeterministic logging instances, one was
due to iteration over an OrderNonDet collection. We suggested
a fix for this bug which was accepted by the developers of
Checkstyle (commit 5d2df145).

C. Case Study 3: Checker Framework dataflow analysis

The Determinism Checker revealed 12 instances in which
the control flow graph data structure is nondeterministic. These
are similar to the problem that we encountered when building
the Determinism Checker: we had difficulty debugging be-
cause small changes in one part of the graph changed other
parts. It also significantly changed logging output and error
messages by affecting iteration order. We did not discover a
case in which an algorithm’s output was semantically different
due to this nondeterminism. The maintainers fixed all of
these (commits 601b6b58, 3057728a, 8e7287b0, 18f22f83,
67702a13, 0a0ea102).

The Determinism Checker revealed 31 instances in which
debug output was nondeterministic because it included hash
codes. The maintainers fixed these by assigning each object
a unique ID that is printed instead of a hash code (commits
bcba3cb7, 24148f91, 0ffe4902). The ID is based on order of
creation, so it is deterministic across runs.

D. Case Study 4: plume-lib utilities
The Determinism Checker found 16 determinism bugs

across the plume-lib utilities. One of the true positives
is because of nondeterminism in logging output (commit
1a9ad3bd). The remainder are in normal user-visible output,
and their causes are use of nondeterministic toString (5), the
file system (3), system properties (2), mutating polymorphic
collections (3), and collection ordering (2). The file system
nondeterminism is dependence on files in the user’s home
directory; we did not count merely reading files passed on the
command line as nondeterminism. In a program, we counted a
warning about outputting a potentially-nondeterministic value
as a true positive only if we could find a nondeterministic
value that flowed to the site of the warning. In a library,
clients are arbitrary, and we counted the warning as a true
positive if some client can trigger it. Stronger specifications,
such as a type system that tracks whether an object is of a
type that has overridden toString, would enable eliminating a
few of these warnings by pushing the verification obligation
into client code.

E. False positive warnings
The Determinism Checker issued a total of 735 false posi-

tive warnings across all benchmarks, or about 1 for every 122
lines of code. The most common reasons (responsible for 57%
of false positive warnings) were:

1) (24%) An algorithm is used that does not depend on
the ordering of its input, but the Determinism Checker
cannot verify this. For instance, the elements of an
@OrderNonDet list during iteration are @NonDet, but some
computations (sum, max, searching, etc.) are @Det. Other
instances of order insensitive operations include merging
collections and mutating all elements of an @OrderNonDet

collection deterministically.
2) (12%) All classes that implement an interface define

toString to return @Det String, but the toString method
of the interface is not so annotated. This is the case
for the java.lang.reflect.Type interface. Some of the
false positives in this category were due to calling
Object.toString in contexts where we could not establish
whether the invoked toString method was deterministic.
We counted these as false positives, but the code is
error-prone: changes anywhere in the code could change
which values flow to the invocations, making them
nondeterministic. As part of future work, we could en-
hance the Determinism Checker with an analysis to track
which expressions have a run-time class that overrides
toString deterministically. This will eliminate these false
positives, or it will show them to be true positives.

3) (6%) The Determinism Checker should relax conserva-
tive rules when it is safe to do so. For example, it should
be legal to pass a @Det List to a method that expects an
@OrderNonDet List, if the method never mutates its input.

4) (3%) Uses of caches. Even if a cache is populated with
nondeterministic keys, so long as the key–value mapping
is deterministic, looking up a Det key yields a Det value.

In Minimize.java:
151:- private static final String SYSTEM_CLASS_PATH = System.getProperty("java.class.path");

913:- String command = "javac -classpath " + SYSTEM_CLASS_PATH + PATH_SEPARATOR + ".";
913:+ String command = "javac -classpath .";
914: if (classpath != null) {
915: // Add specified classpath to command.
916: command += PATH_SEPARATOR + classpath;
917: }

948:- String classpath = SYSTEM_CLASS_PATH + PATH_SEPARATOR + dirPath;
948:+ String classpath = dirPath;
949: if (userClassPath != null) {
950: classpath += PATH_SEPARATOR + userClassPath;
951: }

In MinimizerTests.java:
55:- String classPath = "";
55:+ String classPath = JUNIT_JAR;
56: if (dependencies != null) {
57: for (String s : dependencies) {
58: Path file = Paths.get(s);
59: classPath += (pathSeparator + file.toAbsolutePath().toString());
60: }
61: }

Fig. 22: Fixes made by the Randoop developers in response to our bug report about use of environment variables. Lines starting
with “-” were removed and those starting with “+” were added. The “before” version may read a class from the developer’s
CLASSPATH. This may differ from run to run if the developer sets the CLASSPATH, and may differ for different developers.
The “after” version is deterministic. The Determinism Checker verified all other uses of system and Java properties.

5) (2%) The Determinism Checker cannot verify a method
that iterates over all the elements of an @OrderNonDet

collection to create another @OrderNonDet collection.
6) (2%) Array sorting can type-refine an array from

@OrderNonDet to @Det, but only if there are no aliases
whose type is not refined. Our type system does not
incorporate an alias analysis, so it forbids the type
refinement to avoid a type loophole. We verified that
there were no aliases before marking the warning as a
false positive.

7) (1%) Iterating over a @PolyDet collection to create or
modify another @PolyDet collection. For example, the
following code is safe, but the call to add does not type
check because variable elt has type @PolyDet("up").

void m(@PolyDet List<@PolyDet String> input) {
@PolyDet List<@PolyDet String> output =
new @PolyDet ArrayList<>();
for (String elt : input) {

output.add(elt);
}

}

8) (1%) A class type parameter has upper bound @PolyDet,
but the Determinism Checker does not always instantiate
it with the most precise type. For example, if a method
has a @Det receiver, inside that method the upper bound
can be treated as @Det.

9) (1%) The Determinism Checker should treat
@PolyDet("up") as equivalent to @PolyDet for non-
collection types.

10) (1%) If a class is declared as @Det, then any instance
with @PolyDet type should also be treated as @Det rather
than as @PolyDet.

11) (1%) An object has a toString method that returns @Det

or @PolyDet, but the Determinism Checker’s analysis

loses track of this fact before the call to toString, so
the Determinism Checker issues a warning.

12) (1%) A method iterates over an @OrderNonDet collection
and calls a log method that uses a SortedSet in its
implementation.

13) (1%) the Determinism Checker flagged a code pattern
that is illegal in general — assigning a Det value to
an OrderNonDet variable — but is safe in these specific
instances because the value is immutable or there is no
aliasing.

2% of the false positives are caused by a bug
in our implementation (https://github.com/t-rasmud/
checker-framework/issues/219.)

Item 3 can be built atop an immutability analysis. The
Determinism Checker could handle items 1 and 7 in specific
cases by pattern-matching the structure of the code in
addition to local type-checking. Item 7 and some instances
of item 1 could also be fixed by refactoring Randoop to use
higher-order functions such as map(). Item 2 could be handled
by annotating the JDK, but is blocked by a known Checker
Framework bug (#3094). Items 8 to 10 require fixes to the
Determinism Checker’s handling of polymorphism. Item 11
can be fixed by enhancing the dataflow analysis with transfer
functions for facts about objects’ toString methods.

F. Annotation effort

The number of annotations — one per 17 lines of code
— is much higher than we would prefer. Nonetheless, it
compares favorably to the extensive effort by the Randoop de-
velopers (section IV-A). Moreover, the Determinism Checker
found issues in large software (Randoop, Checkstyle, and CF
Dataflow) that the developers did not. As another point of

https://github.com/t-rasmud/checker-framework/issues/219
https://github.com/t-rasmud/checker-framework/issues/219

comparison, the code contains fewer total determinism type
qualifiers than Java generic type arguments. In other words,
Java generics cause more clutter than determinism types do.

@PolyDet was most commonly used on type arguments.
Currently, the default for type arguments is @Det so they
must be manually annotated as @PolyDet when needed.
Also, no local type inference is performed for classes with
@HasQualifierParameter, including all collection classes. Per-
haps the Determinism Checker’s defaulting rules should be
changed, and certainly the Checker Framework’s local type
inference should be improved to handle type arguments.

In some of our other (non-Randoop) case studies, the largest
single cause for type annotations was a limitation in the
Checker Framework’s local type inference III-F: when a local
variable is an array, its element type is not inferred. We
reported this to the Checker Framework developers and they
agreed it is a bug.

G. Case Study 5: JDK

We wrote 3300 determinism annotations on 1100 methods
in the JDK. The challenge of specifying this large, complex
library informed the design of our specification language (the
annotations). Most of the annotations in the JDK are trusted
rather than checked. This is a pragmatic decision: determinism
bugs in the JDK are unlikely, and previous work has shown
that the JDK is much more challenging to verify than other
libraries and programs [31].

We ran the Determinism Checker on six representative
classes in the JDK. Our goal was to determine the limits of
our prototype implementation.

The biggest lesson learned from annotating the JDK was
the need for rich polymorphism. We added several of the
polymorphism mechanisms because the JDK needed them. We
used them in Randoop, but more rarely than in the JDK. We
found that a highly-generic library has different characteristics
than an application program. It is harder to type-check because
it must accommodate all possible clients, whereas in a program
most types can be deterministic, which is easier to reason
about. When type-checking a library, making the default type
polymorphic led to the smallest number of annotations. When
type-checking a program, making the default type determinis-
tic led to the smallest number of annotations.

The two most common reasons for the Determinism
Checker to issue a warning are:

a) Operations over an entire collection: An operation
that iterates over an entire collection can be deterministic
even if the collection is order-nondeterministic. An example
is IntStream.of(a).sum(), where a is of type int[].

Well-written code avoids use of loops, preferring abstrac-
tions such as collection comprehensions. It is a strength of our
type system that setAll and many other operations in the JDK
can be specified once, manually verified, and then all client
code can be automatically verified.

b) Exceptions: Exceptions provide control flow from a
throw statement to an arbitrary catch statement. (This is by
contrast to method calls, where the Determinism Checker

knows which implementations a call site might invoke.) To
prevent control flow of nondeterministic values, the Deter-
minism Checker requires that all arguments to an exception
have @Det type. However, often the exception arguments had
the @PolyDet qualifier, since that is the default for formal
parameters. Such warnings are not false positives, because
client code might print the exception that it catches. To
eliminate all such warnings, the Determinism Checker could
treat all exceptions as @NonDet. This would require careful
reasoning, and warning suppressions, in client code that uses
exceptions for control flow.

V. COMPARISON TO NONDEX

The state of the art in flaky test detection is NonDex [2].
Section IX explains how NonDex works. This section com-
pares the errors reported by NonDex and the Determinism
Checker.

A. Case study with NonDex

We ran NonDex on versions of the projects that contain all
87 nondeterminism bugs that the Determinism Checker found.
NonDex found none of those bugs. It did find two flaky tests,
both in Checkstyle. In each case the nondeterministic code
was in the test, not in Checkstyle proper. Our case study did
not detect them because we ran the Determinism Checker on
each project’s source code but not its tests.

The first flaky test detected by NonDex is FileContentsTest-

#testHasIntersectionEarlyOut. As its name suggests, it ensures
that a method terminates as early as possible, after processing
only part of a map. NonDex randomizes the order of the map,
so an invalid object (which is ordinarily guaranteed to be later
in the map due to the fact that an earlier-inserted object with
hash code 1 appears earlier in the iteration order than a later-
inserted object with hash code 2, which is true for all HashMap
implementations in the JDK) is encountered early and causes
an exception to be thrown.

The second flaky test detected by NonDex is AllChecksTest-

#testAllCheckTokensAreReferencedInGoogleConfigFile. It throws
exceptions when it discovers a problem. It iterates over mul-
tiple collections in nondeterministic order, so it may fail in
different ways (by throwing different exceptions) on different
executions; we believe NonDex has observed these differ-
ences.

We had to modify Randoop by deleting tests that were
skipped by its buildfile, because the NonDex Gradle plugin
does not respect those Gradle settings. After that, NonDex ran
without problems on Randoop and on the other projects in our
case study.

Many of the bugs are not detectable by NonDex. For
example, in Randoop, only HashSet bug and Classpath bug
are covered by test cases; apparently the Randoop developers
had already found most of the nondeterminism problems that
are covered by a test case. The reason for nondeterminism in
Classpath bug was a call to the System.getProperty() method,
which is not modeled by NonDex.

Class : getDeclaredFields, getDeclaredMethods, getFields

DateFormatSymbols : getZoneStrings

HashMap : entrySet, keySet, values

Fig. 23: Sources of flakiness in bugs found by NonDex [2].

static public FieldAccess get(Class type) {
...
while (nextClass != Object.class) {
Field[] declaredFields

= nextClass.getDeclaredFields();
...

(a) Nondeterministic code from reflectasm. getDeclaredFields re-
turns its result in arbitrary order.
protected SimpleDataEvent createNextEvent() {
for (Entry<String, FieldType> entry

: fields.entrySet()) {
...

}
...

(b) Nondeterministic code from ActionGenerator. entrySet

yields entries in arbitrary order.

Fig. 24: Errors detected by The Determinism Checker in
NonDex benchmarks.

B. The Determinism Checker on NonDex benchmarks

Section V-A shows that the Determinism Checker finds
errors that NonDex does not. This section determines whether
NonDex finds errors that the Determinism Checker does not.
Its authors ran NonDex on 195 open-source projects, and
NonDex found flaky tests in 21 of them [2]. The authors also
reported the sources of flakiness after manually inspecting
these tests. The flakiness that NonDex found was due to
7 methods (getDeclaredFields, getDeclaredMethods, getFields,
getZoneStrings, entrySet, keySet, values) in 3 classes (Class,
DateFormatSymbols, HashMap).

We tried to run the Determinism Checker on all these
benchmarks, at the commit given in the NonDex paper. Some
of the projects had moved, or did not build because their
dependencies had moved or were no longer available. We
repaired all these issues and were able to compile all but two
projects, handlebars and oryx. Some of the remaining projects
did not pass their tests, but that did not hinder us since the
Determinism Checker works at compile time.

For three of the projects, we could not find the flakiness
reported in the NonDex paper. The reported root cause of
flakiness in easy-batch and vraptor was a call to Class-

.getDeclaredFields. We could not find a call to this method in
any of the source files of these two repositories. Similarly, the
flakiness in visualee was attributed to an invocation of Class-

.getDeclaredMethods which we did not find in the source code.
This left 16 projects. We ran the Determinism Checker on

the part of the project that the NonDex authors determined
as flaky. In every case, the Determinism Checker issued a
warning on the nondeterministic code. In other words, the
Determinism Checker’s recall was 100%.

Figure 24 shows samples of nondeterministic code from
these benchmarks. We annotated the benchmarks based on

assumptions made downstream of the shown code. To detect
nondeterminism in test cases, as some of the NonDex exam-
ples are, we specified JUnit assert* methods to require @Det

formal parameters.
In reflectasm (fig. 24a), we annotated the type of field

declaredFields as @Det Field @Det []. That type means a
deterministic array of deterministic Fields, analogously to
@Det List<@Det Field>. Then, the Determinism Checker is-
sued a warning at the assignment, because getDeclaredMethods

returns @Det Field @OrderNonDet [], which is an order-
nondeterministic array of deterministic Fields.

The ActionGenerator code (fig. 24b) is similar. Other code
assumes that entry is deterministic, but annotating it as @Det

leads to a warning from the Determinism Checker that iterating
over fields.entrySet() (which is itself @OrderNonDet) yields
@NonDet Entry values.

NonDex found 14 flaky tests in Apache Commons Lang
due to calls to Class.getDeclaredFields. There are only 5
invocations of Class.getDeclaredFields, so annotating 5 lines
of source code would have been sufficient to identify all
that nondeterminism. Having said that, we admit that there
could be significant programmer effort involved in annotating
the whole program. On the other hand, the NonDex authors
state “we found that manually inspecting these failures was
rather challenging, and we leave it as future work to automate
debugging test failures.” The Determinism Checker reports
source locations which makes it easier for the programmer
to fix issues, and the annotation effort serves as valuable
documentation and prevents regressions.

VI. COMPARISON TO DEFLAKER

DeFlaker [3], like NonDex, reports tests that could be flaky.
We were unable to run DeFlaker on any of our case studies
(other than Checkstyle which we chose from DeFlaker’s
experiments), because DeFlaker works with projects built with
Maven, but the projects other than Checkstyle use Gradle as
their build system. The Determinism Checker found 13 bugs
in Checkstyle (section IV-B) whereas DeFlaker found 1 [3].

A. The Determinism Checker on DeFlaker benchmarks

DeFlaker found 87 previously unknown flaky tests in 93
projects that were being actively developed at the time the
paper was written. The authors reported 19 of these tests,
out of which 7 were addressed by the maintainers of those
projects [3]. We ran the Determinism Checker on the part of
each of these codebases where the reported bug was fixed,
as in section V-B. The Determinism Checker reports errors at
the source of nondeterminism whereas DeFlaker reports the
test case where this nondeterminism manifests. The rationale
for choosing these 7 tests is that we could perform a fair

comparison between the output of the Determinism Checker
and the root cause reported by the developers in the respective
issue trackers. The DeFlaker authors graciously fixed problems
we discovered while using their tool.

Four of the seven flaky tests (two in achilles, one each in
jackrabbit-oak and togglz) were caused by a race condition,
which the Determinism Checker cannot detect. (This is a
strength of DeFlaker over the Determinism Checker.) The
Determinism Checker also found the source of flakiness in
checkstyle. This bug was in a test case that treated an array
returned by Class.getDeclaredConstructors() as deterministic.
This is erroneous because getDeclaredConstructors returns an
order-nondeterministic array. We were unable to build togglz

and nutz which had one flakiness issue each. However, we
extracted the source code causing the flakiness in these repos-
itories into test cases after looking at the corresponding issues
on GitHub. The bug in togglz was caused by a copy method
that iterated over an OrderNonDet Set and expected it to be
deterministic. The Determinism Checker correctly flagged an
error in the loop that iterated over the Set. The flakiness in
nutz was a result of printing a response received over HTTP.
Since network operations are nondeterministic, we annotated
the method in nutz that returns this response as NonDet, which
led the Determinism Checker to report an error at the print
statement.

VII. DISCUSSION

While the overhead of annotation for our approach is
high, the benefits are also high. Ours is the only approach
that discovers all determinism errors and guarantees that no
more remain. The trade-off may not be worthwhile for every
programmer and for every program. When determinism is
important, our approach is easier and more effective than
testing-based approaches.

Future work, such as type inference, can further improve
our approach, making it more attractive to programmers. Type
inference can reveal what the program’s behavior is, but
not whether that behavior is desired. To find bugs requires
comparing the program’s behavior to a specification. In our
specification-and-verification approach, the programmer pro-
vides the specification, and the tool does the verification. The
programmer’s specification may permit nondeterminism in
some parts of the program. An alternative would be for a tool
to guess a specification and report wherever the program devi-
ates from the guessed specification. Such an approach would
be easier for programmers to use. However, this approach
is inherently unsound and incomplete, so it does not meet
our design goal of soundness. In addition, such an approach
requires access to the whole program (including any libraries
or clients it might be linked against), and it often has poor
scalability. Future work could compare such an approach to
ours. We also see great value in specifying some parts of the
program and using inference on the rest, and future work could
explore such a combination.

As an alternate design strategy, one could imagine providing
a different deterministic implementation of the collection

library methods. However, determinism is not necessary or
desirable in all parts of a program. For example, a map that
is not iterated over has no need for deterministic order. A
deterministic version of map iteration would be less perfor-
mant and would be incompatible with the assumptions of
existing programs. This approach does not address other types
of nondeterminism, such as coin-flipping, dates and times,
system properties, etc. This approach also does not address
nondeterminism in the user program.

VIII. THREATS TO VALIDITY

Our type system does not capture nondeterminism from
concurrency. It could be combined with a type system for
concurrency (see section IX).

In our case study, we disabled two checks in the
Determinism Checker because they led to many false positives.
One check gives all caught exceptions NonDet type, to account
for the fact that unchecked libraries might use nondeterministic
values in thrown exceptions. The other check requires condi-
tional expressions to be Det, to prevent “implicit flows”. Im-
plicit flows are a well-known challenge for dataflow analysis,
and standard approaches [32], [33] lead to imprecise abstract
values (e.g., in a taint analysis, most of the program state
becomes tainted). A programmer can work around the problem
by declaring more types to be Det rather than PolyDet, but that
reduces the contexts in which a library can be used. Future
work should find more precise solutions to these problems.

The Determinism Checker only examines the code it is run
on. Unchecked libraries with incorrect specifications might
introduce nondeterminism even if the Determinism Checker
issues no warnings. The Determinism Checker is sound with
respect to reflection.

The case studies found important previously unknown er-
rors, but their results might not generalize to other programs.
We mitigated this problem by showing that the Determinism
Checker finds a superset of the non-concurrency nondetermin-
ism identified by other tools.

IX. RELATED WORK

The state of the art for detecting nondeterministic tests is
NonDex [2]. NonDex uses a hand-crafted list of 47 methods
(25 unique method names) in 13 classes as potential sources of
flakiness. For each of the identified methods, the authors built
models that return different results when called consecutively.
A modified JVM then runs a given test multiple times and
reports the test as being flaky if it observes diverging test out-
put. While this approach produces precise results, it requires
manual inspection and considerable debugging effort to locate
and fix the source of flakiness. The Determinism Checker, in
contrast, reports the cause of nondeterminism (a line of code)
at compile time requiring little debugging effort. However,
the Determinism Checker requires much more upfront effort,
and it produces false positive warnings. NonDex’s approach
of identifying and modeling methods with nondeterministic
specifications is analogous to our library specifications. So far,

we have annotated 1034 methods across 59 classes in the JDK
and JUnit.

DeFlaker [3] is another approach for flaky test detection. It
relies on a version control history. It computes a diff of the
code covered in the current version and the previous one. If
there exists a test case whose code coverage does not include
this diff but still produces different results on the two versions
being compared, the test case is flagged as being flaky. This
approach does not require JVM modifications and integrates
easily with production software. DeFlaker reported 19 pre-
viously unknown bugs in open source projects, 7 of which
were addressed by the developers of these projects. DeFlaker
is agnostic to the code under test and can therefore report
flakiness arising out of concurrency, which the Determinism
Checker cannot.

Nondeterminism in tests is of interest to both researchers
and software developers alike [34], [5]. Empirical analysis [1]
suggests that most of the flakiness in tests is caused by async
await, concurrency, or test order dependency. Our approach
is complementary to such techniques and aims to prevent
nondeterminism from causing harmful effects.

Eilers et al. [35] propose constructing product programs to
help verify hyperproperties (i.e properties that reason about
multiple program executions). This dynamic approach checks
hyperproperties over k execution traces by comparing the
program state after executing the product program with that
of the original program. Specifying properties over collections
would require quantification over every element in the array.
In [36], the authors study the effect of nondeterminism in
MapReduce programs with a specific focus on nondeterminism
caused by non-commutative reducers. While they found bugs
that violated correctness due to this bug pattern, the authors
reported that several of these were harmless as they relied on
an implicit assumption on data which ensured correctness.

Several techniques have been proposed to test whether a
deterministic implementation conforms to its nondeterministic
finite state machine [37], [38], [39], [40]. [41] presents an
approach that can automatically verify properties in branching
time temporal logic systems that are inherently nondeterminis-
tic. Bocchino et al. [42], [43] present a type-and-effect system
that provides compile-time determinism guarantees for parallel
programs, with a focus on barrier removal and reasoning
about interference and thread interleavings. They ignore other
sources of nondeterminism. Our work is complementary and
addresses a previously overlooked problem.

Failing tests that are unrelated to code changes can be
expensive in monetary costs and in developer effort. [44]
proposes techniques to classify tests as false alarms if they
are known to be caused by testing infrastructure or other
environment issues. [45] presents an approach that detects
brittle assertions in tests by performing a taint analysis on
inputs classified as controlled and uncontrolled. [46] inves-
tigates the effects of the test independence assumption on
other techniques such as test prioritization, selection, etc. Other
approaches [47], [48] analyze test dependencies and either
prevent them or use this information for other optimizations.

The approaches in [49], [50] focus on differentiating bugs due
to tests from those caused by source code.

X. CONCLUSION

We designed a type system that expresses determinism
specifications for sequential programs. To the best of our
knowledge, ours is the first compile-time verification approach
addressing the problem of nondeterminism in sequential pro-
grams. We implemented our type system in Java and applied
it to real world software. Our tool, the Determinism Checker,
found errors that the developers had missed, despite spend-
ing extensive effort on the problem of nondeterminism. In
experiments, The Determinism Checker found a superset of the
nondeterminism bugs in sequential programs that were found
by the state of the art flaky test detectors, NonDex [2] and
DeFlaker [3].

REFERENCES

[1] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An empirical analysis
of flaky tests,” in FSE 2014: Proceedings of the ACM SIGSOFT 22nd
Symposium on the Foundations of Software Engineering, Hong Kong,
November 2014, pp. 643–653.

[2] A. Shi, A. Gyori, O. Legunsen, and D. Marinov, “Detecting assumptions
on deterministic implementations of non-deterministic specifications,” in
ICST 2016: 9th International Conference on Software Testing, Verifica-
tion and Validation (ICST), Chicago, IL, USA, April 2016, pp. 80–90.

[3] J. Bell, O. Legunsen, M. Hilton, L. Eloussi, T. Yung, and D. Marinov,
“DeFlaker: Automatically detecting flaky tests,” in ICSE 2018, Pro-
ceedings of the 40th International Conference on Software Engineering,
Gothenburg, Sweden, May 2018, pp. 433–444.

[4] M. T. Rahman and P. C. Rigby, “The impact of failing, flaky, and high
failure tests on the number of crash reports associated with Firefox
builds,” in ESEC/FSE 2018: The ACM 26th joint European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE), Lake Buena Vista, FL, USA, November 2018,
pp. 857–862.

[5] P. Sudarshan, https://www.thoughtworks.com/insights/blog/
no-more-flaky-tests-go-team, 2012.

[6] A. Zeller, “Yesterday, my program worked. Today, it does not. Why?” in
ESEC/FSE ’99: Proceedings of the 7th European Software Engineering
Conference and the 7th ACM SIGSOFT Symposium on the Foundations
of Software Engineering, Toulouse, France, September 1999, pp. 253–
267.

[7] K. Yu, M. Lin, J. Chen, and X. Zhang, “Towards automated debugging in
software evolution: Evaluating delta debugging on real regression bugs
from the developers’ perspectives,” J. Syst. Softw., vol. 85, no. 10, pp.
2305–2317, October 2012.

[8] R. Tene, https://blogs.dropbox.com/tech/2018/05/
how-were-winning-the-battle-against-flaky-tests/, 2018.

[9] M. Shah, https://docs.microsoft.com/en-us/azure/devops/learn/
devops-at-microsoft/eliminating-flaky-tests, 2017.

[10] Y. Chen, S. Zhang, Q. Guo, L. Li, R. Wu, and T. Chen, “Deterministic
replay: A survey,” ACM Comput. Surv., vol. 48, no. 2, Sep. 2015.
[Online]. Available: https://doi.org/10.1145/2790077

[11] K. Briski, P. Chitale, V. Hamilton, A. Pratt, B. Starr, J. Veroulis, and
B. Villard, “Minimizing code defects to improve software quality and
lower development costs,” Development Solutions. IBM. Crawford, B.,
Soto, R., de la Barra, CL, 2008.

[12] P. Cousot, “Types as abstract interpretations,” in POPL ’97: Proceedings
of the 24th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, Paris, France, January 1997, pp. 316–331.

[13] A. Igarashi, B. C. Pierce, and P. Wadler, “Featherweight Java: a minimal
core calculus for Java and GJ,” ACM Transactions on Programming
Languages and Systems, vol. 23, no. 3, pp. 396–450, May 2001.

[14] J. S. Foster, R. Johnson, J. Kodumal, and A. Aiken, “Flow-insensitive
type qualifiers,” ACM Transactions on Programming Languages and
Systems, vol. 28, no. 6, pp. 1035–1087, November 2006.

https://www.thoughtworks.com/insights/blog/no-more-flaky-tests-go-team
https://www.thoughtworks.com/insights/blog/no-more-flaky-tests-go-team
https://blogs.dropbox.com/tech/2018/05/how-were-winning-the-battle-against-flaky-tests/
https://blogs.dropbox.com/tech/2018/05/how-were-winning-the-battle-against-flaky-tests/
https://docs.microsoft.com/en-us/azure/devops/learn/devops-at-microsoft/eliminating-flaky-tests
https://docs.microsoft.com/en-us/azure/devops/learn/devops-at-microsoft/eliminating-flaky-tests
https://doi.org/10.1145/2790077

[15] D. Ancona, G. Lagorio, and E. Zucca, “Type inference for polymorphic
methods in Java-like languages,” in Theoretical Computer Science:
Proceedings of the 10th Italian Conference on ICTCS ’07, Rome, Italy,
October 2007, pp. 118–129.

[16] N. Cameron, S. Drossopoulou, and E. Ernst, “A model for Java with
wildcards,” in ECOOP 2008 — Object-Oriented Programming, 22nd
European Conference, Paphos, Cyprus, July 2008, pp. 2–26.

[17] M. Abadi, B. Pierce, and G. Plotkin, “Faithful ideal models for recursive
polymorphic types,” in LICS ’89: Proceedings of the Fourth Annual
IEEE Symposium on Logic in Computer Science, Pacific Grove, CA,
USA, June 1989, pp. 216–225.

[18] G. D. Plotkin and M. Abadi, “A logic for parametric polymorphism,”
in TLCA 2003: International Conference on Typed Lambda Calculi and
Applications, Utrecht, The Netherlands, March 1993, pp. 361–375.

[19] The Checker Framework Manual: Custom pluggable types for Java, http:
//CheckerFramework.org/.

[20] S. Hunt and D. Sands, “On flow-sensitive security types,” in
Conference Record of the 33rd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, ser. POPL ’06. New
York, NY, USA: ACM, 2006, pp. 79–90. [Online]. Available:
http://doi.acm.org/10.1145/1111037.1111045

[21] M. D. Adams, A. W. Keep, J. Midtgaard, M. Might, A. Chauhan,
and R. K. Dybvig, “Flow-sensitive type recovery in linear-log time,”
in Proceedings of the 2011 ACM International Conference on Object
Oriented Programming Systems Languages and Applications, ser.
OOPSLA ’11. New York, NY, USA: ACM, 2011, pp. 483–498.
[Online]. Available: http://doi.acm.org/10.1145/2048066.2048105

[22] Y. Sui and J. Xue, “On-demand strong update analysis via value-
flow refinement,” in Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, ser.
FSE 2016. New York, NY, USA: ACM, 2016, pp. 460–473. [Online].
Available: http://doi.acm.org/10.1145/2950290.2950296

[23] R. Mudduluru, J. Waataja, S. Millstein, and M. D. Ernst, “subject
programs and tool for the paper: Verifying Determinism in Sequential
Programs,” Feb. 2021. [Online]. Available: https://doi.org/10.5281/
zenodo.4536285

[24] https://github.com/randoop/randoop.
[25] https://github.com/randoop/randoop/issues, 2010–2020.
[26] https://groups.google.com/forum/#!forum/randoop-developers and https:

//groups.google.com/forum/#!forum/randoop-discuss, 2010–2020.
[27] https://github.com/checkstyle/checkstyle.
[28] https://github.com/typetools/checker-framework/tree/master/dataflow.
[29] https://github.com/plume-lib.
[30] https://randoop.github.io/randoop/manual/index.html, March 2020, ver-

sion 4.2.3.
[31] G. Tan and J. Croft, “An empirical security study of the native code in

the jdk,” in Proceedings of the 17th Conference on Security Symposium,
ser. SS08. USA: USENIX Association, 2008, p. 365377.

[32] M. G. Kang, S. McCamant, P. Poosankam, and D. X. Song, “Dta++:
Dynamic taint analysis with targeted control-flow propagation,” in
NDSS, 2011.

[33] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “FlowDroid: Precise con-
text, flow, field, object-sensitive and lifecycle-aware taint analysis for
Android apps,” in PLDI 2014: Proceedings of the ACM SIGPLAN 2014
Conference on Programming Language Design and Implementation,
Edinburgh, UK, June 2014, pp. 259–269.

[34] M. Fowler, https://martinfowler.com/articles/nonDeterminism.html,
2011.

[35] M. Eilers, P. Müller, and S. Hitz, “Modular product programs,” ACM
Trans. Program. Lang. Syst., vol. 42, no. 1, Nov. 2019. [Online].
Available: https://doi.org/10.1145/3324783

[36] T. Xiao, J. Zhang, H. Zhou, Z. Guo, S. McDirmid, W. Lin, W. Chen,
and L. Zhou, “Nondeterminism in mapreduce considered harmful?
an empirical study on non-commutative aggregators in mapreduce
programs,” in Companion Proceedings of the 36th International
Conference on Software Engineering, ser. ICSE Companion 2014.
New York, NY, USA: ACM, 2014, pp. 44–53. [Online]. Available:
http://doi.acm.org/10.1145/2591062.2591177

[37] A. Petrenko, N. Yevtushenko, and G. v. Bochmann, “Testing deter-
ministic implementations from nondeterministic fsm specifications,”
in Testing of Communicating Systems: IFIP TC6 9th International
Workshop on Testing of Communicating Systems Darmstadt, Germany
9–11 September 1996. Boston, MA: Springer US, 1996, pp. 125–140.
[Online]. Available: https://doi.org/10.1007/978-0-387-35062-2 10

[38] A. Petrenko, N. Yevtushenko, A. Lebedev, and A. Das,
“Nondeterministic state machines in protocol conformance testing,”
in Proceedings of the IFIP TC6/WG6.1 Sixth International Workshop
on Protocol Test Systems VI. Amsterdam, The Netherlands, The
Netherlands: North-Holland Publishing Co., 1994, pp. 363–378.
[Online]. Available: http://dl.acm.org/citation.cfm?id=648128.761244

[39] T. Savor and R. E. Seviora, “Supervisors for testing non-deterministically
specified systems,” in Proceedings International Test Conference 1997,
Nov 1997, pp. 948–953.

[40] R. M. Hierons and M. Harman, “Testing conformance of a deterministic
implementation against a non-deterministic stream x-machine,” Theor.
Comput. Sci., vol. 323, no. 1-3, pp. 191–233, Sep. 2004. [Online].
Available: http://dx.doi.org/10.1016/j.tcs.2004.04.002

[41] B. Cook and E. Koskinen, “Reasoning about nondeterminism in
programs,” in Proceedings of the 34th ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI ’13.
New York, NY, USA: ACM, 2013, pp. 219–230. [Online]. Available:
http://doi.acm.org/10.1145/2491956.2491969

[42] R. L. Bocchino, Jr., V. S. Adve, D. Dig, S. V. Adve, S. Heumann,
R. Komuravelli, J. Overbey, P. Simmons, H. Sung, and M. Vakilian, “A
type and effect system for deterministic parallel java,” in Proceedings of
the 24th ACM SIGPLAN Conference on Object Oriented Programming
Systems Languages and Applications, ser. OOPSLA ’09. New
York, NY, USA: ACM, 2009, pp. 97–116. [Online]. Available:
http://doi.acm.org/10.1145/1640089.1640097

[43] R. L. Bocchino, Jr., S. Heumann, N. Honarmand, S. V. Adve, V. S. Adve,
A. Welc, and T. Shpeisman, “Safe nondeterminism in a deterministic-
by-default parallel language,” in Proceedings of the 38th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, ser. POPL ’11. New York, NY, USA: ACM, 2011, pp. 535–
548. [Online]. Available: http://doi.acm.org/10.1145/1926385.1926447

[44] K. Herzig and N. Nagappan, “Empirically detecting false test alarms
using association rules,” in Proceedings of the 37th International
Conference on Software Engineering - Volume 2, ser. ICSE ’15.
Piscataway, NJ, USA: IEEE Press, 2015, pp. 39–48. [Online].
Available: http://dl.acm.org/citation.cfm?id=2819009.2819018

[45] C. Huo and J. Clause, “Improving oracle quality by detecting brittle
assertions and unused inputs in tests,” in Proceedings of the 22Nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, ser. FSE 2014. New York, NY, USA: ACM, 2014,
pp. 621–631. [Online]. Available: http://doi.acm.org/10.1145/2635868.
2635917

[46] S. Zhang, D. Jalali, J. Wuttke, K. Muşlu, W. Lam, M. D. Ernst, and
D. Notkin, “Empirically revisiting the test independence assumption,”
in ISSTA 2014, Proceedings of the 2014 International Symposium on
Software Testing and Analysis, San Jose, CA, USA, July 2014, pp. 385–
396.

[47] J. Bell, G. Kaiser, E. Melski, and M. Dattatreya, “Efficient dependency
detection for safe Java test acceleration,” in ESEC/FSE 2015: The 10th
joint meeting of the European Software Engineering Conference (ESEC)
and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering (FSE), Bergamo, Italy, September 2015, pp. 770–781.

[48] A. Gyori, A. Shi, F. Hariri, and D. Marinov, “Reliable testing: Detect-
ing state-polluting tests to prevent test dependency,” in ISSTA 2015,
Proceedings of the 2015 International Symposium on Software Testing
and Analysis, Baltimore, MD, USA, July 2015, pp. 223–233.

[49] D. Hao, T. Lan, H. Zhang, C. Guo, and L. Zhang, “Is this a bug or
an obsolete test?” in ECOOP 2013 – Object-Oriented Programming.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 602–628.

[50] A. Vahabzadeh, A. M. Fard, and A. Mesbah, “An empirical study of
bugs in test code,” in 2015 IEEE International Conference on Software
Maintenance and Evolution (ICSME), Sep. 2015, pp. 101–110.

http://CheckerFramework.org/
http://CheckerFramework.org/
http://doi.acm.org/10.1145/1111037.1111045
http://doi.acm.org/10.1145/2048066.2048105
http://doi.acm.org/10.1145/2950290.2950296
https://doi.org/10.5281/zenodo.4536285
https://doi.org/10.5281/zenodo.4536285
https://github.com/randoop/randoop
https://github.com/randoop/randoop/issues
https://groups.google.com/forum/#!forum/randoop-developers
https://groups.google.com/forum/#!forum/randoop-discuss
https://groups.google.com/forum/#!forum/randoop-discuss
https://github.com/checkstyle/checkstyle
https://github.com/typetools/checker-framework/tree/master/dataflow
https://github.com/plume-lib
https://randoop.github.io/randoop/manual/index.html
https://martinfowler.com/articles/nonDeterminism.html
https://doi.org/10.1145/3324783
http://doi.acm.org/10.1145/2591062.2591177
https://doi.org/10.1007/978-0-387-35062-2_10
http://dl.acm.org/citation.cfm?id=648128.761244
http://dx.doi.org/10.1016/j.tcs.2004.04.002
http://doi.acm.org/10.1145/2491956.2491969
http://doi.acm.org/10.1145/1640089.1640097
http://doi.acm.org/10.1145/1926385.1926447
http://dl.acm.org/citation.cfm?id=2819009.2819018
http://doi.acm.org/10.1145/2635868.2635917
http://doi.acm.org/10.1145/2635868.2635917

	Introduction
	A type system for determinism
	Preliminaries and notation
	Determinism types
	Formalizing our type system
	Type well-formedness and Collection types
	Behavior of order-nondeterministic collections
	Typing rules and field accesses
	Arrays
	Theorems and proofs
	Collection aliasing, mutation, and invariance

	Polymorphism
	Qualifier and basetype polymorphism
	Polymorphism rules for collections
	Differentiating binding and use

	Maps and sets
	Improving precision for equality

	Implementation of our type system
	Determinism type qualifiers
	Java collection types
	Polymorphism
	Determinism invariant types
	Defaulting
	Type refinement via dataflow analysis
	The environment

	Case studies
	Case Study 1: Randoop
	Methodology
	Results

	Case Study 2: Checkstyle
	Case Study 3: Checker Framework dataflow analysis
	Case Study 4: plume-lib utilities
	False positive warnings
	Annotation effort
	Case Study 5: JDK

	Comparison to NonDex
	Case study with NonDex
	The Determinism Checker on NonDex benchmarks

	Comparison to DeFlaker
	The Determinism Checker on DeFlaker benchmarks

	Discussion
	Threats to validity
	Related work
	Conclusion
	References

