Extended Memory Semantics on Hybrid FPGA-x86 Architectures

Jace A. Mogill

Pacific Northwest National Laboratory
Richland, WA, USA
jace.mogill@pnl.gov

ABSTRACT:

The principal bottleneck in conventional High Performance Computing (HPC) clusters
derives from data movement, not inefficient use of computational cores. Multi-Threaded
Architectures (MTAs) such as the Tera MTA and Cray XMT attempt to overcome this
weakness using parallelism to mask latency and maximize bandwidth utilization. We pro-
pose the use of hybrid (FPGA) Field Programmable Gate Array/x86 systems to implement
on commodity hardware the key architectural features of those two systems. When inte-
grated through a CPU socket, the FPGA becomes part of the CPU load/store memory
model making it possible to alter the performance and semantics of ordinary x86 mem-
ory operations. Extended memory semantics such as full/empty bits can be managed by
the FPGA and enforced through manipulation of the existing cache coherency protocol,
latency hiding CPU context switches can by forced by the FPGA issuing CPU interrupts,
and distributed shared memory can be implemented by extending the inter-processor pro-
tocol over Scalable Coherent Interface (SCI).

KEYWORDS: FPGA, Hybrid Architecture, Programming Models, Cray XMT, Paral-

lelism

1 Introduction

Data intensive computing requires systems
which make possible programming and execu-
tion models that are efficient on irregular data
structures and workloads. These characteristics
are captured in graph problems, such as traver-
sal of power law graphs like those found in social
networks, which do not yield to traditional data
or work decomposition techniques. Decomposi-
tion by graph vertex is not possible when the
number of out bound edges exceeds the size of
single compute node, communication and com-
putation bottlenecks form on nodes with high
degree vertexes, and any vertex may connect to
any other vertex, defeating decomposition tech-
niques which exploit data locality [1]. For appli-

cations with these traits, extended memory se-
mantics (EMS) multi-threaded architectures like
the Tera MTA and Cray XMT are demonstrated
to outperform high performance computer clus-
ters, are programmed using a simpler program-
ming model, and dissipate about 1/6* the power
of an x86 processor [2-5].

The advantages of the Tera MTA and Cray
XMT systems stem from three architectural fea-
tures: Globally shared memory, fast context
switches, and extended memory semantics. In
figure 1 these three key architectural features de-
fine a design space for multi-node systems with
a data-centric, not thread-centric, programming
and execution model. The custom hardware
Tera MTA and Cray XMT are in the center of
this design space, components of hybrid hard-

Latency Tolerance
Concurrency

Figure 1: Key architectural features of the Tera MTA and
Cray XMT.

ware implementations fall into the corners of the
triangle, and software constructs tie discrete the
hardware features together.

The Cray XMT is the successor system to the
Tera MTA, implementing the same instruction
set and extended memory semantics in different
technology and packaging. Both systems share
a data-centric programming model which more
closely resembles a Dennis data flow execution
model than the multiple vonNeumann sequen-
tial processors of a multicore x86 [6]. Tera MTA
and Cray XMT processors both feature a single-
issue fully pipelined execution core shared by 128
thread contexts called streams, which the proces-
sor automatically context switches between, ev-
ery clock period, without OS participation. Each
stream may issue up to & instructions out of
order for a total of 1024 outstanding memory
operations per processor. With hundreds of in-
flight instructions the processor is able to main-
tain high utilization because most clock cycles it
is able to find an instruction whose dependen-
cies have all been satisfied and may be retired.
The need for a cache hierarchy meant to mini-
mize latency is eliminated by the latency hiding
capability, and all memory operations effectively
have no time cost.

The Tera MTA is an example of early efforts in
hardware-software co-design [7], wherein hard-

ware capabilities were designed specifically to
support the programming and execution mod-
els being concurrently designed to be efficient
on the selfsame hardware. In the spirit of co-
design, this paper is organized to cover not only
the hardware architecture of the hybrid system,
but the operating system, runtime libraries, com-
pilers, applications, and integration into existing
compute facilities.

1.1 XMT Architectural Features

The individual architectural features of the XMT
are each useful in their own right, but when
combined emergent properties present alterna-
tive programming and execution models. When
considered as a single feature, full/empty mem-
ory tag bits and shared memory provide equiv-
alent functionality to message passing on clus-
ters, serving as a place for communication be-
tween threads, task synchronization, and enforc-
ing atomicity of composed operations. Load
balancing is a prerequisite for scalability and
full utilization of distributed resources like pro-
cessors, memory bandwidth, and interconnect
bandwidth. Shared memory and fast con-
text switches taken together provide freedom in
scheduling tasks and continuations which afford
load balancing almost impossible to achieve in
message passing programs. Extended memory
semantics and fast on-demand context switches
combine to provide latency tolerance and in-
creased system utilization by forcing CPU cores
to abort the stalled memory operations and con-
text switch to another task which can make
progress.

1.2 x86 Architectural Features

Modern x86 processor architectures use a link
based interprocessor communication protocol
such as HyperTransport (HT) or QuickPath In-
terconnect (QPI) instead of bus architectures to
implement a cache coherent single system im-
age from multiple processors [8,9]. Link based
interconnects improve upon busses by eliminat-
ing electrical and snooping protocol limitations
which prevent scaling in performance and system

size. The interprocessor communication network
carries all signals between processors and the [/O
subsystem, including memory loads and stores,
peripheral device commands and data, interrupt
and low-level system control messages, and side-
band traffic.

Both HT and QPI implement design decisions
which trade higher performance for lower power
and cost implementations by limiting the sys-
tem size to 8 or fewer sockets. To scale to larger
systems, data traffic inside HT or QPI networks
can bridge to a Scalable Coherent Interface (SCI)
network which does efficiently implement large
scale systems [10]. SCI is a functional super-
set of HT and QPI, defining a processor mem-
ory bus, I/O bus, high performance network and
switch, and a distributed directory based cache
coherency for a global shared memory model.

Ordinary commodity x86 mother boards wire
standard DDR3 memory modules directly to a
processor where an embedded memory controller
services loads and stores from any device on the
interprocessor fabric. When a system is booted
from a cold start, the devices on the interproces-
sor fabric negotiate for unique physical address
ranges to assign to local resources. The physical
address ranges of memory and I/O devices does
not change once the system is booted, making
it possible for software to reason about and en-
force data locality in the non-uniform memory
architecture (NUMA). An example showing the
physical address ranges for different devices on
the interprocessor fabric is shown in figure 2.

Not all devices implement all layers of func-
tionality of the interprocessor protocol. For ex-
ample, the HyperTransport protocol has both
cache-coherent and non-coherent levels of imple-
mentations, cache-coherency being necessary for
devices which make copies of data that are also
held in other memory or caches. Cache-coherent
devices are more complicated to design, imple-
ment, and test than their non-coherent coun-
terparts, and have additional costs in licensing
fees. Memory address ranges managed by non-
coherent devices have the uncachable bit set in
the memory’s Page Attribute Table, meaning
loads and stores to the addresses are never satis-
fied by a copy in cache, and probes are responded

Physical Adaress
Range

FFFFT FFF¥ FYFF
0000 0000 0000

FFYF
0010

L]

ooor
0000

FFFF
0005

F¥YF

0000 0000

0000
0000

0004
0002

FFFF -

0000 0000

| oooo
| 0000

0001
0001

FFFFP

00060 0000

1 0000
0000

0000
0000

FYFF -

0000 0000

Figure 2: A simplified logical view of the physical address
ranges associated with devices on the interprocessor fab-
ric.

to only by the device managing the address.

2 FPGA-x86 Hybrid Architec-
tures

Several commercially available FPGA /x86 hy-
brid systems are based on designs in which one or
more of the CPU sockets of a standard x86 server
are populated with a small board containing one
or more FPGAs and a small amount of SRAM
memory [11,12]. A logical block diagram of such
a system is shown in figure 3. The reconfigurable
device is programmed to use the processor inter-
connect protocol, and can participate as a non-
cache-coherent I/O device, or participate fully
in the cache coherent virtual memory domain
as a specialized processor. Research using this
kind of hybrid reconfigurable systems has been
limited to application acceleration by encoding a
specific algorithm directly in the FPGA’s logic,
or by implementing a domain specific soft-core
processor [13]. In contrast to these models, we
introduce the novel use of the FPGA to mod-
ify memory performance and semantics indepen-
dently of the software running on the system.

—— CPU Fabric to ==

o]

Switch/Node
Interconnect

SCI Bridge

Figure 3: Block diagram of a hybrid multi-threaded architecture. Green blocks represent ordinary commodity devices,
blue blocks are custom or reconfigurable devices, red blocks are commercially available Virtual SMP devices, and

gray boxes are the part of the motherboard chipset.

2.1 Custom Memory Devices

Processor interconnect protocols do not specify
how memory operations are performed, nor do
they require any particular implementation of
physical memory, meaning devices are free to
support many different types of memory mod-
ules. The memory controllers built into conven-
tional x86 processors typically support several
kinds of memory modules in various densities op-
erating at different speeds, however only the ad-
dress range is known to other devices. When a
FPGA populates a CPU socket, the FPGA must
have a memory controller to access any directly
connected memory modules, but unlike a x86
processor, a FPGA may be programmed with
memory controllers for any kind of commodity
or custom memory devices used in any combi-
nation. Memory devices must conform to the
physical form factor of the board’s original mem-
ory modules, otherwise they may be customized
for random access, low latency, non-volatility,
or any other need. To provision dedicated fast
bit-level atomic random access memory for tag
bits (i.e.: full/empty), custom SRAM or GDDR5
parts might be used in the system’s DDR3 mem-
ory slots.

The memory provided by modules in the

FPGA managed sockets may be exposed to the
system as ordinary memory or can be private
to the FPGA. Configured as ordinary system
memory, unmodified operating systems and soft-
ware running on the system will transparently
enjoy the capabilities of the custom memory (i.e.:
cache-like latencies) because loads and stores to
the FPGA-managed address range are hidden at
the lowest levels of the system behind the in-
terprocessor protocol. Modifications to the soft-
ware’s memory allocator can force specific data
such as register spills or context switch states
into the modified memory, targeting maximum
benefit to performance sensitive data.

2.2 Extended Memory Semantics

The interprocessor fabric implements a shared
address space across all devices on the fabric,
meaning memory operations originate in any de-
vice but may be serviced by another device where
the physical address is. Because the remote
device is responsible for fulfilling the memory
request, the semantics enforced remotely ulti-
mately govern the memory operation, allowing
any semantics to be imposed on ordinary x86
memory operations. This property makes it rea-
sonable to think of address bits indicating the

address is physically managed by the FPGA to
also be thought of as an access control instruc-
tion field for any memory operation.

It is not necessary for real memory to be provi-
sioned for all address ranges because it is possible
to separate the concerns of address ranges and
the actual storage space of the data through the
FPGA stripping address bits which indicate the
address is managed by the FPGA and re-issuing
the memory operation from the FPGA. In this
way, the FPGA can enforce extended semantics
on data which is stored in ordinary system mem-
ory and is otherwise accessed conventionally.

The full/empty memory tag bit for each word
of memory is of paramount importance to the
EMS-MTA programming and execution model
because it is largely responsible shifting the
emphasis of parallel programming from thread
management to data synchronization. The
full/empty bit semantics can be enforced by a
FPGA which provides an address range that en-
codes access control instructions in two bits, and
stores the state bits in dedicated fast memory at-
tached directly to the FPGA. The x86 processors
can operate on the data without concern of other
processor cores circumventing the extended se-
mantics by finding a cached copy of the data
because, as discussed in section 1.2, the FPGA
managed address range can be configured as un-
cachable addresses, forcing all CPUs to always
use the FPGA managed copy of the data.

Latency hiding parallelism is exploited by the
XMT’s barrel processor which performs a thread
context switch every clock period without involv-
ing the operating system. A FPGA/x86 hybrid
multithreaded architecture can achieve similar
mechanical advantage by responding to long la-
tency memory operations with an interrupt sig-
nal. The instruction with the long latency event
is invalidated by the CPU and will be retried
by the operating system after an involuntary
context switch to another task which can make
progress. Modified operating systems can store
contexts outside of the operating system in ded-
icated memory managed by the FPGA, making
context switches efficient and fixed cost.

2.3 Large Single System Image

Although x86 implementations are generally lim-
ited to 8-socket systems, it is possible to extend
the processor interconnect fabric over a Scal-
able Coherent Interface bridge which converts
a snoop, probe, or broadcast based cache co-
herency protocol into a scalable directory based
one. As with extended memory semantics, vir-
tual SMPs are implemented at a low level in the
system, beneath the interprocessor fabric, mak-
ing the system extension transparent to the soft-
ware running on the system. This means un-
modified operating systems and applications are
able to use large single system images provided
by virtual SMP adapters.

The reasons software cannot directly detect it
is running on virtual SMP hardware are the same
reasons no other hardware device on the inter-
processor fabric can detect it is part of a larger
SCI fabric. Virtual SMP hardware can therefore
be freely incorporated into a FPGA-x86 hybrid
system, and the resulting multi-node FPGA-x86-
vSMP hybrid system would function like a single
large system. This technique can be used to con-
struct multi-node single system images of nodes
with modified memory performance and seman-
tics.

2.4 Address Hashing

Efficient use of physically distributed resources
such as memory bandwidth, processors, and in-
terconnect bandwidth is predicated on software
distributing data and work across all the sys-
tem’s resources. The XMT strives to evenly
distribute data accesses by hashing physical
addresses so consecutive addresses are spread
across the system. This functionality can be
replicated in a FPGA-x86 hybrid system by the
FPGA managing a scrambled address range, and
hashing physical addresses at cache line granu-
larity across the entire system. Address hashing
can be implicitly applied to all address managed
by the FPGA, or restricted to memory regions
through the use of an explicit scrambling access
control bit. A node topology is implicitly de-
fined as part of address hashing through node

vSMP | Access | Socket | Physical | Storage | EMS

Node | Control ID Address Site Instruction

12 bits 00 00 48 bits Socket 0 | Ordinary load/store
12 bits 00 01 48 bits Socket 1 | Ordinary load/store
12 bits 01 XX 48 bits Any READFE, WRITEEF
12 bits 10 XX 48 bits Any READFF, WRITEXF
12 bits 11 XX 48 bits Any Unused, WRITEXE

Table 1: 64 bit addresses interpreted as virtual SMP node IDs and extended memory semantics access control

instructions.

selection by address range, giving some control
over data routing regardless of the SCI bridge
implementation.

2.5 Other Tag Bits

Other tag bit semantics such as address forward-
ing and user defined tag bits can be implemented
in a similar fashion. The address forwarding bit,
if set, causes the data stored at the target address
to be used as an address to which the operation
is automatically forwarded. The effect is simi-
lar to pointer chasing, but without the issuing
of additional instructions. Address forwarding is
useful for generational garbage collection meth-
ods, debugging, and other atomic data structure
manipulations. User defined tag bits can be im-
plemented to cause arbitrary user code to be
executed whenever marked memory is accessed,
providing powerful debugging and evaluation on
demand capabilities.

2.6 System Resiliency

Single system image computers are susceptible
to catastrophic failure due to failure of any one
component, and large single system image com-
puters are even more vulnerable to spontaneous
failure due to the larger number of parts they
are composed from. FPGA-x86-vSMP hybrid
systems are better able to tolerate component
failure than standard systems because resiliency
can be built into the processor interconnect fab-
ric in several different and complementary ways.

Loads and stores of single cache lines or words
can be bit-sliced and distributed across multi-
ple nodes with error correction codes. When a

node or connection fails, the missing bits can be
reconstructed and the system continues to oper-
ate degraded. Individual memory operations can
also be cloned and directed to backup memories
to serve as a redundant copy of memory. This
backing store does not need to be implemented
using the same kind of memory as the primary
memory, affording the use of non-volatile mem-
ory to provide an additional kind of system re-
siliency.

All I/O devices in conventional x86 systems
are memory mapped, and device drivers in the
operating system control the devices through
loads and stores to command and data mem-
ory addresses which are fixed at boot-time. The
technique of rewriting memory operations in the
FPGA and re-issuing them can be used to proxy
for I/O devices, maintaining a copy of any de-
vice state and redirecting I/O operations to re-
dundant devices upon failure of a primary I/0O
device without participation of the device driver
or any software.

3 Software

In an extended memory semantics hybrid sys-
tem the only processor kind is the x86, and the
memory address space is shared, presenting a
vastly simplified programming model over hy-
brids which use multiple processor kinds con-
nected to different memory address spaces.
Preservation of the legacy x86 programming
model and software stack provides a critical in-
cremental path to port applications to the hy-
brid system - programs which do not use the

extended memory semantics are not affected by
their presence, and software optimized for con-
ventional x86 systems will still perform in an op-
timized way on hybrid systems.

Unlike porting applications to distributed
memory clusters where all data dependencies
must manually be identified and structures must
be decomposed by hand with appropriate data
exchanges inserted throughout the application,
parallelizing applications for shared memory par-
allel processing can be done incrementally, on a
loop-by-loop basis, without completely restruc-
turing data structures throughout the entire ap-
plication. The reduced risk and complexity of
developing for the hybrid relative to a cluster
is augmented by using a programming model
which does not require different implementations
of critical computational routines for each target
platform.

3.1 Operating System

Operating systems which are not modified to
take advantage of extended semantic features
can be used on a FPGA-x86 hybrid system and
the hardware will act as an ordinary unmodified
system. FPGAs configured to be cache coherent
and expose their attached memory as ordinary
system memory will function as if a x86 pro-
cessor with conventional memory modules were
installed, treating the special memory as part
of the normal system memory. Any character-
istics of the modified memory will be enjoyed
by any software accessing that memory, whether
the modification are performance or resiliency re-
lated. Device drivers work as they would in un-
modified systems, permitting the use of commer-
cially available storage and network devices in
the hybrid system, providing a wealth of options
for further customization and integration into
existing compute facility infrastructure. Direct
Memory Access (DMA) operations performed by
unmodified devices drivers, such as transferring
disk blocks to memory, may be performed to
the FPGA managed address range, enabling or-
dinary I/O operations to implicitly use the ex-
tended semantics.

3.2 Applications and Runtime System

Processing occurs only on conventional x86 pro-
cessors, maintaining a single-source program-
ming model and preserving the large existing
catalog of programming, debugging, and perfor-
mance tools available for x86, meaning there is
a mature and rich tool set for the hybrid sys-
tem from the outset. The semantic extensions
are accessible through manipulation of address
bits, giving direct, low overhead, syntactically
economical access to the new features from most
natively executed programming languages. Fig-
ure 4 illustrates using the extended semantics
from ANSI-C.

The two dominant programming models for
shared memory systems are Pthreads and
OpenMP, both of which are suited for a hy-
brid multithreaded architecture. The Cray XMT
extends ANSI-C with intrinsics to manage the
full/empty tag bits, and non-loop parallel con-
structs such as future variables for unstructured
parallelism and data flow algorithms. Several
software tools [14,15] implement a MTA-like pro-
gramming and execution model by emulating in
software full/empty tag bits and fast on-demand
context switches, and compiler tools such as
ROSE [16] provide additional integration of di-
rectives to guide execution of parallel regions
with particular scheduling techniques, or to au-
tomatically restructure non-parallel loops into
parallel regions. It is easy to see how all of these
tools can be modified to exploit hybrid hardware
implementations of functionality they presently
support through software emulation.

Both hardware latency in which data must
travel through several stages of a memory hi-
erarchy and network, and algorithmic latency in
which the producer and consumer of data are
far apart in time can be masked using paral-
lelism to overlap computation and latency. As
noted in section 2.2, the FPGA can force context
switches on demand due to long latency memory
events, providing a means to expose parallelism
greatly exceeding the number of computational
cores, and increasing the number of cutstand-
ing memory operations beyond the x86’s built-
in capabilities. For modest numbers of threads,

int d; // Unannotated variable declaration
d = x + z; // Ordinary store of x+z in d

fprintf(fh, "d = %d", d); // Ordinary load of a value
y = d +y; // Ordinary load of a value stored in d

#define READFE(addr) #*(0x0001000000000000 |addr)
#define READFF(addr) *(0x0002000000000000]|addr)
#define WRITEXF(addr, val) *(0x0001000000000000|addr)
#define WRITEXE(addr, val) *(0x0002000000000000|addr)
#define WRITEEF (addr, val) *(0x0003000000000000|addr)

val
val
val

"

stored in d

WRITEXF(&d, 0); // Unconditionally and atomically set d to 0 and mark full

x = READFE(&d); // When d is full, atomically mark as empty and load the value

WRITEEF(&d, x + y); // When d is empty, atomically mark as full and store x+y

Figure 4: Access to extended memory semantics from ANSI-C using macro address modification.

naive over-subscription and relying on the op-
erating system’s thread scheduling may perform
adequately, but to tolerate long latencies hun-
dreds of threads per CPU core may be required.
Existing operating systems are not optimized to
manage large numbers of lightweight threads and
lack insight into application execution to reason
about scheduling of task continuations, creating
opportunities to optimize applications and run-
time systems.

Memory operation completion notification
from the FPGA provides information required
by the runtime to reason about which thread(s)
should be scheduled to execute next. Direct com-
munication between the FPGA and the OS or
runtime is possible through a combination of in-
terrupts and messages communicated via load
and stores. Modified operating systems can ded-
icate one CPU core per socket to coordinating
thread scheduling according to request comple-
tion notifications. This mechanism can also be
used to marshal data from main system memory
to the appropriate cache, reducing interprocessor
memory bandwidth and latency. Alternatively,
the data marshaling functionality can be hidden
in a virtual machine layer, making it transparent
to operating systems and applications running

on the hybrid.

4 Economics of the EMS Hy-
brid Architecture

Reconfigurable hybrid system designs are unlike
custom hardware system designs in that they do
not require the same high level of planning, mod-
eling, testing, and verification because they are
based on already working implementations and
are incremental manipulations of existing proven
designs. To this end, hybrid reconfigurable sys-
tems present the possibility that for some config-
urations, real prototype systems may be easier to
implement than to model, fundamentally chang-
ing the economics of architectural research and
creating the potential for hardware and archi-
tectural experimentation with software-like de-
velopment time, cost and risk.

5 Summary

An example combination of the components of
a hybrid system is shown in figure 3 and con-
sists of two conventional multicore x86 micropro-
cessors, a FPGA acting as an extended seman-

tics memory controller, and a interprocessor fab-
ric to Scalable Coherent Interface bridge which
extends the single system image over multiple
nodes.

The utility of hybrid systems of this class are
twofold: in addition to being useful for multi-
threaded data intensive algorithm and software
development, they also serve as a vehicle for com-
puter architecture research, allowing researchers
to implement memory with any semantics or per-
formance characteristics they require. The EMS
system described herein may serve as a viable
alternative target platform for applications and
research currently limited to the Cray XMT.
Specifically, data intensive computing requires
systems which offer programming and execution
models that are efficient on irregular data struc-
tures and workloads, however conventional sys-
tems lack fine grained synchronization needed
for these purposes, stifling research in algorithms
and methods.

Extended memory semantics hybrids over-
come many hybrid system limitations and defi-
ciencies, namely: elimination of the performance
penalty for serial execution; elimination of the
mixed processor types with different instruction
sets, byte storage orders, and address spaces;
support for native I/O to external devices; and
access to the entire x86 software stack including
operating systems, compilers, debuggers, perfor-
mance analysis tools, legacy applications, etc.
The lack of multiple inherent weaknesses in EMS
hybrids may be enough to overcome other bene-
fits provided by accelerators and custom system
implementations.

Unlike FPGA hybrid approaches which re-
quire complicated logic design for each applica-
tion, this use of the FPGA modifies the system,
not the software, freeing users to concentrate
on parallelizing software instead of mapping an
algorithm into a circuit. Hybrids need not be
limited to MTA-style extended memory seman-
tics, but could easily be specialized for another
need such as transactional memory or dual-load-
link /store-conditional instructions for updating
doubly linked lists atomically. With costs and
risks much closer to software than custom hard-
ware design and a lower barrier to entry than

logic design approaches, we believe this system
design can increase the user base for FPGA hy-
brid systems.

Acknowledgments

This report was funded under the Center for
Adaptive Supercomputing Software - Multi-
threaded Architectures (CASS-MT) at the Dept.
of Energy’s Pacific Northwest National Labora-
tory. Pacific Northwest National Laboratory is
operated by Battelle Memorial Institute under
Contract DE-ACO6-76 RL01830.

About the Author

Jace A Mogill, Research Scientist, studies
hybrid-microparallel computer architectures and
parallel programming models at the Center for
Adaptive Supercomputer Software and Multi-
Threaded Architectures at Pacific Northwest Na-
tional Laboratory. He was formerly an ap-
plications analyst at Tera Computer Company,
and he eventually took Alan Kay's advice to
learn to build his own hardware. He can be
reached at: Pacific Northwest National Labo-
ratory, 902 Battelle Boulevard, P.O. Box 999,
MSIN J4-30, Richland, WA, 99352, USA, Email:
jace.mogill@pnl.gov.

References

(1] D. Bader, G. Cong, and J. Feo, “On the Ar-
chitectural Requirements for Efficient Exe-
cution of Graph Algorithms,” in The 34th
International Conference on Parallel Pro-
cessing, Jun. 2005, pp. 547-556.

(2] D. Bader and K. Madduri, “Designing Mul-
tithreaded Algorithms for Breadth-First
Search and st-connectivity on the Cray
MTA-2,” in The 35th International Confer-
ence on Parallel Processing, Aug. 2006.

(3] J. Crobak, J. Berry, K. Madduri, and
D. Bader, “Advanced Shortest Path Algo-
rithms on a Massively-Multithreaded Ar-

chitecture,” in First Workshop on Mul-
tithreaded Architectures and Applications,
Mar. 2007.

K. Jiang, D. Ediger, and D. A. Bader,
“Generalizing k-Betweenness Centrality Us-
ing Short Paths and a Parallel Multi-
threaded Implementation,” in The 38th In-
ternational Conference on Parallel Process-
ing, Sep. 2009, pp. 542-549.

S. Kang and D. Bader, “Large scale complex
network analysis using the hybrid combina-
tion of a mapreduce cluster and a highly
multithreaded system,” in 4Jth Workshop
on Multithreaded Architectures and Appli-
cations, Apr. 2010.

J. B. Dennis and G. R. Gao, “An efficient
pipelined dataflow processor architecture,”
in Supercomputing '88: Proceedings of the
1988 ACM/IEEE conference on Supercom-
puting. Los Alamitos, CA, USA: IEEE
Computer Society Press, 1988, pp. 368-373.

B. Smith, “Concurrent Design of a Compiler
and an Architecture,” in Parallel Architec-
tures and Compilation Techniques Keynote
Address, 1997.

HyperTransport Consortium, HyperTrans-
port 1/O Link Specification, 3rd ed. Hy-
perTransport Technology Consortium, Jun.
2009.

Intel Corp., An Introduction to the Intel
QuickPath Interconnect, 320412th ed. Intel
Press, Jan. 2009.

IEEE, “IEEE Standard 1596-1992," Los
Alamitos, CA, USA, 1992, David B. Gus-
tavsson, Comittee Chair.

XtremeData Inc., XD2000-F FPGA In-
Socket Accelerator for AMD Socket F.
XtremeData Inc., Oct. 2009.

DRC Computer, DRC Reconfigurable Pro-
cessor Unit RPU110 Family. DRC Com-
puter, 2007.

10

[13]

[14]

[15]

T. Brewer, “Instruction Set Innovations for
the Convey HC-1 Computer,” in Hot Chips,
2007.

K. Wheeler, R. Murphy, and D. Thain,
“Qthreads: An API for Programming with
Millions of Lightweight Threads,” in 29nd
IEEE International Parallel & Distributed
Processing Symposium. Los Alamitos, CA,
USA: IEEE Computer Society Press, 2008.

A. Porterfield, “Maestro: Program thread
and synchronization interface, version
0.1,” RENCI, North Carolina, Tech. Rep.
TR-08-01, March 2008. [Online|. Available:

http:/ /www.renci.org/publications/techreports /TR0O801.p:

C. Liao, D. J. Quinlan, T. Panas, and
B. de Supinski, “A ROSE-based OpenMP
3.0 Research Compiler Supporting Multi-
ple Runtime Libraries,” in International
Workshop on OpenMP (IWOMP) 2010, no.
LLNL-CONF-422873, 2010.

