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1 Introduction and Related Work

Asynchronous conversations are conversations where participants collaborate with each other at different times (e.g., email, blog,
forum). The huge amount of textual data generated everyday in these conversations calls for automated methods of conversational
text analysis. Topic segmentation and labeling is often considered a prerequisite for higher-level conversation analysis and has
been shown to be useful in many NLP applications including summarization, information extraction and conversation visualization.
Topic segmentation in asynchronous conversation refers to the task of clustering the sentences into a set of coherent topical clusters.
In [6, 7], we presented unsupervised and supervised topic segmentation models for asynchronous conversations, which to our
knowledge are the state-of-the-art. This study concerns fopic labeling, that is, given a set of topical clusters in a conversation,
the task is to assign appropriate topic labels to the clusters. For example, five topic labels in a Slashdot [2] blog conversation
about releasing a new game called Daggerfall are game contents and size, game design, bugs/faults, other gaming options and
performance/speed issues. Such topic labels can serve as a concise summary of the conversation and can also be used for indexing.

Ideally, topic labels should be meaningful, semantically similar to the underlying topic, general (i.e., broad coverage of the
topic) and discriminative (or exclusive) when there are multiple topics [10]. Traditionally, the top K terms in a multinomial topic
model (e.g., LDA [3]) are used to represent a topic. However, as pointed out by [10], at the word-level, topic labels may become
too general that it can impose cognitive difficulties on a user to interpret the meaning of the topic by associating the words together.
On the other hand, if the labels are expressed at the sentence-level, they may become too specific to cover the whole theme of the
topic. Based on these observations, [10] and other recent studies (e.g., [9]) advocate for phrase-level topic labels. This is also
consistent with the monologue corpora built as part of the Topic Detection and Tracking (TDT) project [1] as well as with our own
email and blog conversational corpora in which human annotators without specific instructions spontaneously generated labels at
the phrase-level. Considering all these factors, we also treat phrase-level as the right level of granularity for a label in this work.

Few prior studies have addressed the topic labeling problem in different settings [10, 9]. Common to their approaches is that
they first mine topics in the form of topic-word distributions from the whole corpus using topic models like LDA. Then, they try
to label the topics (i.e., topic-word distributions) with an appropriate label using the statistical association metrics (e.g., point-wise
mutual information, t-test) computed from either the source corpus or an external knowledge base (e.g., Wikipedia). In contrast,
our task is to label the topical clusters in a given conversation, where topics are closely related and distributional variations are
subtle (e.g., game contents and size, game design). Therefore, corpus-based statistical association metrics are not reliable in our
case. Also at the conversation-level, the topics are too specific to find their labels in an external source. To our knowledge, none
has studied this problem before. Therefore, there is no standard corpus and no agreed-upon evaluation metrics available.

Our contributions aim to remedy these problems. First, we present a blog and an email corpora annotated with topics. Second,
we propose to generate topic labels using an extractive approach, that finds the most representative phrases from the text without
relying on an external source. Since, graph-based key phrase ranking has proved to be the state-of-the-art (unsupervised) method
[11], we adopt the same framework. We propose a novel biased random walk model that exploits the fact that the leading sentences
in a topic often carry the most informative clues for its label. However, the phrases extracted only by considering the sentences
in a topic may ignore the global aspect of the conversation. As another contribution, we propose to re-rank the phrases extracted
from the whole conversation with respect to the individual topics and include the relevant ones. Experimental results show that
our approach outperforms other ranking models including a general random walk model (i.e., TextRank) proposed by [11], a lead-
oriented model and a frequency-based model, and including the relevant conversation-level phrases improves the performance.

2 Corpora and Evaluation Metric

In [6], we presented our email corpus annotated with topics by three annotators. This contains 40 email threads (conversations)
from the W3C corpus at an average of 5 emails per thread. Recently, we have built a new blog corpus containing 20 conversations
from Slashdot, each annotated with topics by three annotators. The number of comments per blog conversation varies from 30 to
101 with an average of 60.3. The annotators first read the conversation and listed the topics discussed in a conversation by a short
description which provides a high-level overview of the topic. Then, they assigned the most appropriate topic to each sentence in
the conversation. The short high-level descriptions of the topics serve as reference (or gold) topic labels in our experiments. Note
that, the annotators can disagree on the number of topics (specific vs. generic), on the topic assignment of the sentences and on the
topic labels. In total, the annotators found 269 and 562 topics (or clusters) in email and blog corpora, respectively.

The traditional approach to evaluate key phrase extraction methods is to compute the precision, recall and F-measure for each
cluster based on exact matches. However, as claimed by [8], this approach is not flexible enough, as it ignores the near-misses.
Besides, in our case, there is only one reference (or gold) topic label per cluster, therefore, the per cluster precision, recall and
F-measure metrics are not applicable. Rather, the n-gram-based evaluation metrics used in summarization and machine translation
(e.g., ROUGE, BLUE) that account for partial matches, are more appropriate in our scenario. Recently, [8] evaluated the utility of
different n-gram-based metrics for key phrase extraction and showed that the metric R-precision correlates most with the human

judgments. Formally, R—precision=m, where n,. and n. are the number of words in the reference and candidate phrases,
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respectively, and n, is the number of overlapping (stemmed) words between the candidate and the reference phrases. Note that,
this metric evaluates a single candidate phrase against a reference phrase. But, we may choose to produce the top K phrases as
output of our system. In that case, we want to evaluate K candidates against one reference phrase. Therefore, we have adapted the
metric as: weighted R-precision:Zszl m x P(cy), where, P(cy) is the normalized score of the k-th candidate phrase cy,.

3  Our Approach

In the preprocessing step, we tokenize the text and apply a syntactic filter to select the terms (e.g., nouns, verbs) we want to rank.
One simple approach to term ranking would be to use the frequency, but as shown later (see Freq-BL in Section 4), this approach
leads to poor results. Our approach is based on the intuition that the leading sentences in a cluster carry the most informative clues
for the topic labels, since this is where the speaker most likely will try to signal a topic shift and describe the new topic. Therefore,
we may wish to rank the terms based on their relevance to the leading sentences. Let L; denotes the set of leading sentences in
topic t. We consider the first and second sentences as the leading sentences in our experiments. We can measure the relevance of
aterm w to L by: p(w|Ly) = log(t fuw,r, + 1)log(tfuw+ + 1), where tf,, 1, and tf,, ; are the number of times word w appears in
L, and t, respectively. But, this model (see Lead-BL in Section 4) does not consider the inter-word relation. Our intuition is that
a term that is related to other high scoring terms in the cluster should also have a high score. Since, the labels for different topics
should be discriminative, a high scoring term in one cluster should not have high scores in other clusters. This idea is captured by
the following combined model, where P(w]|L;), the score of a word w given a set of leading sentences L, in topic ¢, is expressed as
the convex combination of its relatedness with other words in the topic and its relevance to the leading sentences Ly, i.e., p(w|L;).

P(w|Ly) = A3, e, Ze(yi’w)P(gALt) +(1- )\)Zp(% where the value of A (0 < A < 1), which we call “bias”,
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is a trade-off between the two€ ctomponents and should be seteer;lpirically. C; is the set of words in topic ¢t. We define the edge
weights as: e(y,w) = tfl , x log(T/(0.5 + t;vy)) where T denotes the total number of topics, and #f;, , and t;uyy are the
number of times terms w and y co-occur in a window of size s in topic ¢ and in topics except ¢, respectively. This metric for
computing edge weights is intended to give discriminative labels. The equation for ranking words above can be written in matrix
notation as: ™ = [AQ + (1 — A\)R]Tr = AT, where @ and R are square matrices such that Q; ; = e(i, )/ X jec, €(4,J)
and R; ; = p(j|Lt)/ D .cc, P(2| L) for all 7, respectively. Here A is a stochastic matrix, and therefore, it can be treated as the
transition matrix of a Markov chain. Imagine performing a random walk on the graph, where at every time step, with probability A
a transition is made to the related words in the topic and with probability 1 — X a transition is made to the words that are relevant
to the leading sentences. The vector ™ we are looking for is the stationary distribution of this Markov chain and is the (normalized)
eigenvector for the eigenvalue 1. For larger matrices 7 can be efficiently computed by an iterative method called power method.

Once we have the ranked list of words in a topic, we select the top M key-words for post-processing. In the post-processing,
we mark the M key-words in the text, and collapse the sequences of adjacent key-words into a key-phrase. The score of a key
phrase is determined by taking the maximum score of its constituents (i.e., words). Notice that, the above method extracts phrases
only from the cluster and does not consider the full conversation. It fails to find a label if it appears outside the cluster. Therefore,
we propose to include the relevant conversation-level phrases with the topic-level ones. To do that, we apply a general random
walk model [11] to the whole conversation and extract conversation-level phrases using the same way as described above. Then,
we re-rank the conversation-level phrases (i.e., taking maximum score of its constituents) with respect to a topic by using the score
of the words (given by biased random walk model) in that cluster. Finally, we use Maximum Marginal Relevance (MMR) [4] to
produce the final list of K key phrases as topic labels that are relevant but not redundant to achieve the broad coverage of the topic.

4 Preliminary Results

Table (a) shows the weighted R-precision results (in percentage) of different models for different values of K on the two corpora.
All the models follow the same preprocessing and post-processing steps. We experimented with five different syntactic filters in
the preprocessing, and the best performance we achieved was with the filter that selects nouns and adjectives. The results presented
here are based on this filter. The bias A and the window size s in our proposed model and the value of M in the post-processing were
empirically set to 0.15, 2 and 25% of the total number of words, respectively, based on a development set. On Blog, the frequency-
based baseline Freg-BL performs better than the lead-oriented baseline Lead-BL, but on email, Lead-BL beats Freq-BL. The General
TextRank Gen-TR fails to beat either one or both of the baselines. Our biased TextRank model Bias-TR appears to improve the
performance consistently. We get further improvement in this model (Bias-TR+), when we include the relevant conversation-level
phrases. In general, given that the results are expressed in percentage, all these methods perform rather unsatisfactory. This is due
to the fact that most of the human-authored labels in our corpora are abstractive in nature. Only 9.81% of the labels in blog and
12.74% of the labels in email appear verbabtim in the conversation. Also recall that, annotators can disagree on number of topics,
topic assignments and topic labels. Table (b) shows the performance of our proposed models and annotator agreement with respect
to different annotators. To compute agreement on topic labels between two annotations, we first map the clusters of one annotation
to the clusters of another in a way that maximizes the total overlap (see [5]), then we measure the R-precision between the labels
of the paired clusters. The goal of this preliminary work was to verify to what extent an extractive approach could contribute to the
labeling task. We are currently working on exploiting the output of the extractive method within more abstractive approaches.

K=1 K=2 K=3 K=4 K=5

Models Blog | Email | Blog | Email | Blog | Email | Blog | Email | Blog | Email Annotator 1. Annotator 2. Annotator 3.

FreqBL | 13.87 | 1207 | 11.81 | 1096 | 10.63 | 9.73 | 9.96 | 896 | 9.63 | 8.28 Models Blog | Email | Blog | Email | Blog | Email
Lead-BL | 1279 | 1559 | 10.84 | 1240 | 9.69 | 1096 | 8.98 | 10.14 | 856 | 9.76 Bias-TR | 1629 | 1631 | 12.40 | 17.62 | 13.35 | 19.34
Gen-TR | 1283 | 9.95 | 10.88 | 843 | 944 | 8.15 | 855 | 722 | 802 | 6.63 Bias-TR+ | 1648 | 16.67 | 11.80 | 17.52 | 13.99 | 18.00
Bias-TR | 14.15 | 17.72 | 12.67 | 14.95 | 11.67 | 13.15 | 10.99 | 1231 | 10.72 | 11.94 .

Bias TR+ | 1438 | 1737 | 1361 | 1522 | 12.89 | 13.62 | 1210 | 1239 | 1162 | 1190 | L 1uman | 20.93 | 30.98 | 1925 | 34.30 | 20.38 | 37.32

(b) Performance of proposed models (K=1) with respect to dif-
ferent annotators. Human agreement with annotator ¢ means
how much other two annotators on average agree with <.

(a) Performance of different models for different values of K on the two corpora.
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