
Enabling Access Through Real-Time Sign
Language Communication Over Cell Phones

Jaehong Chon∗, Neva Cherniavsky†, Eve A. Riskin∗ and Richard E. Ladner†
∗Department of Electrical Engineering, University of Washington, Seattle, WA 98195

{jaehong, riskin}@u.washington.edu
†Department of Computer Science and Engineering, University of Washington, Seattle, WA 98195

{nchernia, ladner}@cs.washington.edu

Abstract—The primary challenge to enabling real-time two-
way video conferencing on a cell phone is overcoming the limited
bandwidth, computation and power. The goal of the MobileASL
project is to enable access for people who use American Sign
Language (ASL) to an off-the-shelf mobile phone through the
implementation of real-time mobile video communication. The
enhancement of processor, bandwidth, and power efficiency
is investigated through SIMD optimization; region-of-interest
encoding based on skin detection; video resolution selection
(used to determine the best trade off between frame rate and
spatial resolution); and variable frame rates based on activity
recognition. Our prototype system is able to compress, transmit,
and decode 12-15 frames per second in real-time and produce
intelligible ASL at 30 kbps. Furthermore, we can achieve up to
23 extra minutes of talk time, or a 8% gain over the battery life
of the phone, through our frame dropping technique.

I. INTRODUCTION

Many issues have prevented real-time video communication
on the mobile phone. Mobile video communication is already
available in Japan and Europe, but regardless of the higher
bandwidth 3G network there, the quality is poor, the videos are
jerky, and there is significant delay. With the advent of mobile
phone PDAs equipped with larger screens and photo/video
capture, people who communicate with ASL should be able
to use these new technologies.

Mobile phone service providers operate wireless networks
using many different communication standards. The most
widely used of these technologies is called the Global System
for Mobile Communications, or GSM. On top of a GSM
network, they operate a data network called the General Packet
Radio Service (GPRS) and an upgrade for faster speeds called
Enhanced Data Rates for GSM Evolution (EDGE), which
can carry data speeds from 35.2 kbps up to 236.8 kbps.
Furthermore, they have launched a high-speed network based
on UMTS and High-Speed Downlink Packet Access (HSDPA),
which is commonly known as 3G. Since a video call is bi-
directional, the effective bandwidth is limited by the uplink.
Our project, with its target bit rate of 30 kbps, is well suited
to current U.S. cellular data networks.

The computing capability on mobile phones is very low
because of low clock frequencies, single cores, and only basic
Single Instruction Multiple Data (SIMD). In our work, we
utilize assembly optimization to solve the issue of limited
processing power. Second, we implement dynamic region-
of-interest (ROI) coding based on skin detection to reduce

the required bandwidth while keeping the amount of quality
and intelligibility needed for ASL. Third, we investigate a
variable frame rate to prolong the battery life time by taking
advantage of the fact that ASL speakers usually sign when the
other person isn’t signing. Building on previous work[1], [2],
we optimize a variable frame rate. Finally, we design ASL
encoders that use x264[3] at a high enough frame rate in real
time on the mobile phone.

II. BACKGROUND

MobileASL[4] is a video compression project at the Uni-
versity of Washington and Cornell University[5] with the goal
of making cell phone communication for people who use
sign language a reality in the U.S. Our software runs on the
Windows Mobile operating system. MobileASL is compatible
with the H.264/AVC compression standard and can be decoded
by any H.264 decoder. The x264 Open Source H.264 encoder
was selected because of its fast speed[3], [6], [7], making it
a good choice for compression on low-power devices such
as mobile phones. In [6], x264 showed better quality than
several commercial H.264/AVC encoders. When compared
with the JM reference encoder (version 10.2)[8], x264 (version
0.47.534) was shown to be 50 times faster, while providing bit
rates within 5%, for the same PSNR.

A. MobileASL System

Since the Internet Protocol Suite (commonly known as
TCP/IP) is used for the Internet and other similar networks,
we designed a lightweight TCP/IP networking system to use
the MobileASL codec on two different networks: the Wi-
Fi network and a current cellular data network in the U.S.
(AT&T).

In our system, we use a light and simple protocol over
TCP for the call signaling, e.g., connection establishment,
connection release, and connection control such as for packet
loss indication. We use UDP for video transmission. Fig. 1
shows the TCP/IP layered architecture, which is assisted by
an HTTP protocol for MobileASL.

The HTTP protocol is used to register user information
(such as the IP address) at the server, which is located outside
the network. Whenever the user calls another person, our
system retrieves its IP address from the server and uses it
to make a connection.



Fig. 1. Network Architecture for MobileASL.

B. Hardware Platform

We use the HTC TyTN-II mobile phone which has a Qual-
comm MSM7200 (400MHz ARM ARM1136EJ-S processor).
We chose this phone because it has a front camera on the same
side as the screen and runs Windows Mobile 6.1. Its processor
adopts the ARMv6 core having a new SIMD instruction set[9].
This phone has a 320x240 pixel screen, a VGA video call front
camera, a QWERTY keyboard, a H.264 hardware decoder, etc.
Also, the HTC TyTN-II provides wireless capabilities such as
Wi-Fi 802.11b/g, 2G (GPRS and EDGE) and 3G (HSDPA).
Fig. 2 shows a MobileASL screenshot.

Fig. 2. A screenshot of our MobileASL codec on the HTC TyTN-II. Two
UW graduate students are talking each other.

III. SPEEDING UP THE ENCODER

Frame rates as low as 6 frames per second can be in-
telligible for signing though it would require the user to
sign very slowly. A more comfortable frame rate would
be 12 frames/second[10], and higher frame rates would be
needed for fingerspelling[11], [12], [13]. To approach our
desired frame rate of 12-15 frames/second, it was necessary
to optimize the steps of the H.264 compression algorithm

for motion estimation, mode decision, transforms, quantization
and motion compensation using SIMD instruction sets. Then
we determined the H.264 parameter settings and the video
resolution needed to achieve our target frame rate.

A. Assembly Optimization

The ARM1136J-S processor used in the HTC TyTN-II
is built around the ARM11 core in an integer unit that
implements the ARM architecture v6. It supports a range of
SIMD DSP instructions that operate on pairs of 16-bit values
held in a single register, or on quadruplets of 8-bit values
held in a single register[9]. The main operations supplied
are addition, subtraction, multiplication, selection, pack and
saturation. Operations are performed in parallel.

1) Motion Estimation: Motion estimation is the most time-
consuming module in video coding. The sum of absolute
difference (SAD) is used as the distortion measure. In the
ARMv6, the instruction USADA8 performs the sum of abso-
lute differences of four 8-bit data and accumulates the results.

In H.264, there are 7 different block size types (from 16×16
to 4×4). In the 16×16, 16×8, 8×16, 8×8 and 4×8 modes,
there are 8 pixels in one line which are stored consecutively
in memory. Using doubleword loading and USADA8, only
4 cycles are needed (2 loads and 2 SAD operations). Fig. 3
shows this process.

R3 R2
063

R1 R0
063

Current MacroBlocks

Reference MacroBlocks

R2

R0
R5

LDRD

LDRD

USADA8

R4

R3

R1
R4

USADA8

R5

031

31 0

Fig. 3. SAD calculation using the USADA8 instruction.

In the 8 × 4 and 4 × 4 modes, one line has 4 consecutive
pixels (32 bits), so we can load two lines of data to the
register with load instruction and then they are calculated
with USADA8. This costs 3 cycles. For the best optimization
results, we use one of two methods depending on what mode
is selected.

2) Mode Decision: The H.264 encoder uses rate-distortion
optimization to select the mode. Because of its complexity,
mode selection is clearly an important candidate for speed up.

The distortion is computed as the sum of squared differences
(SSD) between the original block and the reconstructed block.
The SSD for 4 pixels between two macroblocks can be
optimized using three SIMD instructions. There are two con-
secutive steps which are 8-bit absolute difference (UQSUB8
and ORR) and then multiplication (SMLAD). It enables us to
get approximately twice the speed otherwise possible.

3) Transforms: H.264 uses three transforms depending on
the type of residual data that are to be coded: a transform for
the 4 × 4 array of luma DC coefficients in intra macroblocks



Fig. 4. MobileASL Framework. The variable frame rate and ROI detector based on skin blocks are concatenated before encoding.

(predicted in 16×16 mode); a transform for the 2×2 array of
chroma DC coefficients (in any macroblock); and a transform
for all other 4× 4 blocks of residual data.

The DC coefficient of each 4 × 4 block in the 16 × 16
Intra prediction mode is transformed using a twice 1-D 4× 4
Hadamard transform, which uses additions and subtractions
(QADDSUBX, QADD16, QSUB16) and shifts (SHADD16)
in 16-bit arithmetic. The other two transforms are also imple-
mented in a similar way.

B. H.264 Parameters Optimization

After we optimized the encoder in assembly, we determined
H.264 parameter settings that have low complexity but still
offer high video quality at 30 kbps by training on 6 videos
recorded with a cell phone at QCIF resolution. We found that
setting some x264 encoding parameters, such as the number
of reference frames and motion search method, to their lowest
complexity settings gave us almost the same quality as that
of the highest complexity settings. Since the sub-pixel motion
estimation parameter is highly complex, we chose its lowest
complexity setting. We also chose I4x4,P8x8 for the partition
size because it provides the best tradeoff of speed and quality.

C. Video Resolution

Even though we sped up the processing time through
assembly and parameter optimization, we did not reach our
target frame rate. Since H.264/AVC uses block-based motion
compensation, the encoding time is highly related to the
spatial resolution of the video. We investigate tradeoffs in spa-
tial resolution versus speed for QCIF (176×144), 160×128,
144×112, 128×96, 112×80, 96×80, 80×64, 64×48, 48×32,
and 32×16. In future work, we will conduct a controlled user
study with ASL speakers to determine preferences for tradeoffs
between spatial and temporal resolution.

IV. BANDWIDTH AND POWER ENHANCEMENT

Fig. 4 shows the MobileASL framework.

A. Bandwidth Enhancement with ROI Encoder

In [14], we used a fixed ROI by varying the level of
distortion in a fixed region surrounding the face of the signer.
We found that a tradeoff of 6 decreased quantization steps near
the face of the signer (doubling the quality in that region) was
preferred over a typical (no region-of-interest) encoding. We
then extended this enhancement by finding face and hands
regions using skin detection.

We first divide 16x16 blocks in each frames and then detect
skin in real-time via a simple and well-known RGB-based
algorithm[15] that works for many different skin tones. We
designate macroblocks that have more pixels than a threshold
as skin blocks. These blocks are encoded with lower quanti-
zation parameters to increase the quality. Fig. 5 shows which
areas are considered to be skin blocks and how the quality of
those blocks is enhanced.

B. Power Enhancements

Minimizing power consumption in mobile devices is an
important challenge. We decrease frame rate during listening,
which is equivalent to a voice codec that changes its own code
rates based on the loudness or rhythm of speech in cellular
system. Since turns are taken while speaking sign language, we
can reduce the frame rate during the time of listening so that
the usage of the encoder and wireless link will be decreased.
This, in turn, decreases the amount of battery consumption.

In [1], we performed a user study to determine if variable
frame rates sacrifice intelligibility and if automatic activity
analysis is feasible. We used simple pixel differencing for
speed.

1) Pixel Differences: For each frame k in the video, we
calculate the sum of absolute differences, d(k), for each
between the current and previous frames pixel. If it is greater
than the threshold, τ , we classify the frame as signing. We
used ARMv6 SIMD instruction USADA8 to calculate the
differences on the phone.

2) Signing vs. Not-Signing: We reduce the frame rate to 1
fps when the user is not-signing. To reduce false negatives, that
is, signing frames being misclassified as not-signing, we only
change to not-signing mode when three consecutive frames



Fig. 5. A snap shot of ROI-based Encoder (a) original frame with skin blocks (red lines) (b) 0 ROI (c) 12 ROI. The quality in skin blocks is enhanced and
quality in the rest of blocks is degraded.

TABLE I
FRAME PER SECOND COMPARISON WITH MPEG AND ASL SET

(ENCODER ONLY).

Type QCIF test sequence without SIMD (fps) with SIMD (fps)
accident 13.6 15.2

day in the life 13.1 14.7
education 14.6 16.1

ASL favorite restaurant 12.2 13.8
food at home 12.6 14.3

graduation 14.6 16.2
segment8 14.3 15.9
foreman 9.7 11.2
carphone 9.8 11.3
container 11.8 13.2

MPEG grandma 12.9 14.4
missam 10.2 11.5

salesman 14.7 16.3
akiyo 14.6 16.1

are detected as not-signing. In contrast, whenever we detect
signing, we return immediately back to signing mode.

V. EXPERIMENTAL RESULTS

We present experimental results. First, we show the increase
in speed achieved with SIMD optimization. Next, we describe
how we not only reduced bandwidth but also achieved speed
enhancement through ROI, followed by a description of battery
life extension by frame dropping.

A. SIMD Performance Comparison

Experiments were conducted with fourteen QCIF (176 ×
144) test sequences, each representing a different class of
spatial detail and motion from the standard MPEG data
set and an ASL data set developed at the University of
Washington[16]. The MPEG set videos are foreman, carphone,
container, grandma, missam, salesman and Akiyo and the
ASL videos are accident, day in the life, education, favorite
restaurant, food at home, graduation and segment8.

Table I shows a frames/second comparison for the encoder
only for our data sets for two scenarios. Our instruction
optimization for H.264 increased encoding frame rate up to
15.3% for the MPEG data set and 13.4% for the ASL data
set.

TABLE II
PSNR COMPARISON OF DIFFERENT ROI.

30kbps 30kbps 44kbps
0 ROI (dB) 12 ROI (dB) 0 ROI (dB)

ROI PSNR 27.5 29.8 29.8
Non-ROI PSNR 29.3 24.3 31.4

TABLE III
MACROBLOCK DISTRIBUTION IN P FRAMES FOR DIFFERENT ROI.

Macroblock Size 0 ROI (%) 12 ROI (%)
SKIP 45.6 57.7
Others 54.4 42.3

B. ROI Encoding

We compared the quality of the video recorded by the phone
for three different ROIs (0, 6 and 12). Table II shows the PSNR
for two different ROIs. The ROI PSNR for 12 ROI at 30 kbps
corresponds to ROI PSNR for 0 ROI at 44 kbps. Therefore,
we achieved a 32% bandwidth enhancement. As expected, 12
ROI increased quality in the ROI at the expense of quality in
the background.

Another advantage of ROI-based encoding is its speed.
Table III explains how macroblocks are selected for different
ROIs during the mode decision stage of encoding. More bits
are allocated to skin blocks and fewer bits are used for other
blocks, more meaning blocks are chosen as skip blocks. The
increased number of skip blocks also speed up macroblock
encoding, entropy coding and slice coding (see Table IV). We
speed up encoding by an additional 9.7%.

Finally, the encoder is not the only module that consumes
resources in real-time video communication. The decoder,
the camera interface capturing the video, the screen interface
displaying the video, and the transmission module all operate

TABLE IV
ENCODING TIME BREAKDOWN AND COMPARISON FOR DIFFERENT ROI.

Encoder Function 0 ROI (ms) 12 ROI (ms)
Mode Decision 37.3 32.5

Transform and Encoding 12.2 10.0
Entropy Coding (CAVLC) 2.0 1.7

NAL and Slice Coding 2.7 2.6
Others 27.6 27.1
Total 81.9 74.0



simultaneously with the encoder. With our optimizations, our
encoder occupies about 50% of the CPU time. As a result, we
are able to achieve a frame rate of 12-15 fps at 30 kbps in
real-time on the HTC TyTN-II. We demonstrated the success
of our system over Wi-Fi and the AT&T cellular network. A
sample encoded ASL video can be viewed on YouTube[17].

C. Picking The Resolution

We performed the encoding of different video resolutions
for the test sequences foreman and salesman from the MPEG
data set and accident and graduation from our ASL data set.
Based on these data, we chose the 96×80 resolution and can
achieve up to 15 fps.

D. Power Enhancement

We simulated sign language communication and measured
the instantaneous power usage every 5 seconds for an hour
on the phones with the variable frame rate on and off. The
power draw drops when the frame rate is lowered due to the
lower processing power required to encode and transmit at 1
fps. Power saving is significant by utilizing frame dropping.
This corresponds to 23 extra minutes of talk time, or a 8%
power gain over the battery life of the phone (see Fig. 6).

0 50 100 150 200 250 300 350
0

10

20

30

40

50

60

70

80

90

100

Time in Minutes

B
at

te
ry

 L
ife

 in
 P

er
ce

nt
ag

e

 

 
variable frame rate on
variable frame rate off

Fig. 6. Comparison of battery drain when encoding the video with the
variable frame rate turned on.

VI. CONCLUSION

In this paper, assembly optimization and parameter selection
for an H.264 encoder are presented to enable real time video
communication over a mobile phone. Experimental results
demonstrate that we can provide 12-15 frames/second at
a 96×80 resolution with our optimized ASL encoder. Our
MobileASL framework with variable frame rate and ROI
encoder is suitable for video communication in very low bit
rate wireless network environments.

ACKNOWLEDGMENT

We would like to thank Louis Hsu and Fish Weng of HTC
for helping us to get access to the front camera on the HTC
TyTN-II cell phone. We also thank Jessica Tran for helping
us measure battery drain on the cell phone. This work was
supported by NSF grants CCF-0514353 and IIS-0811884.

REFERENCES

[1] N. Cherniavsky, A. Cavender, E. Riskin, and R. Ladner, “Variable
Frame Rate for Low Power Mobile Sign Language Communication,”
in Proceedings of ASSETS 2007. Tempe, AZ, October 2007, pp. 163–
170.

[2] N. Cherniavsky, R. Ladner, and E. Riskin, “Activity Detection in
Conversational Sign Language Video for Mobile Telecommunication,” in
Proceedings of 8th IEEE International Conference on Automatic Face
and Gesture Recognition. Amsterdam, The Netherlands, September
2008.

[3] “x264 - a free H.264/AVC encoder,” http://www.videolan.org/
developers/x264.html.

[4] “MobileASL,” http://mobileasl.cs.washington.edu/.
[5] “Visual Communications Lab,” http://foulard.ece.cornell.edu/.
[6] L. Merritt and R. Vanam, “Improved rate control and motion estimation

for H.264 encoder,” in Proceedings of ICIP, vol. 5, 2007, pp. 309–312.
[7] “4th Annual MSU MPEG-4 AVC/H.264 Video Codec Com-

parison,” 2007, http://www.compression.ru/video/codec comparison/
mpeg-4 avc h264 2007 en.html.

[8] “H.264/AVC JM Reference Software,” http://iphome.hhi.de/suehring/
tml/.

[9] “ARMv6-M Architecture Reference Manual,” http://infocenter.arm.com/
help/index.jsp.

[10] I. T. S. Sector, “Draft application profile: Sign language and lip reading
real time conversation usage of low bit rate video communication,” 1998.

[11] R. A. Foulds, “Biomechanical and perceptual constraints on the band-
width requirements of sign language,” in IEEE Trans. On Neural Systems
and Rehabilitation Engineering, vol. 12, March 2004, pp. Vol I: 65–72.

[12] G. Sperling, M. Landy, Y. Cohen, and M. Pavel, “Intelligible encoding
of ASL image sequences at extremely low information rates,” Computer
vision, graphics, and image processing, vol. 31, no. 3, pp. 335–391,
September 1985.

[13] B. F. Johnson and J. K. Caird, “The effect of frame rate and video
information redundancy on the perceptual learning of American Sign
Language gestures,” in CHI ’96: Conference companion on Human
factors in computing systems. New York, NY, USA: ACM Press, 1996,
pp. 121–122.

[14] A. Cavender, R. Vanam, D. Barney, R. Ladner, and E. Riskin, “Mo-
bileASL: Intelligibility of sign language video over mobile phones,” in
Disability and Rehabilitation: Assistive Technology. London: Taylor
and Francis, June 2007.

[15] S. L. Phung, A. Bouzerdoum, and D. Chai, “Skin Segmentation Using
Color Pixel Classification: Analysis and Comparison,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 27, pp. 148–
154, January 2005.

[16] “MobileASL Study Videos,” http://mobileasl.cs.washington.edu/
downloads/studyVideos/.

[17] “mobileasl-researchmovie,” http://www.youtube.com/watch?v=
FaE1PvJwI8E.


