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ABSTRACT

Sign language users are eager for the freedom and convenience of video communication over cellular devices.
Compression of sign language video in this setting offers unique challenges. The low bitrates available make
encoding decisions extremely important, while the power constraints of the device limit the encoder complexity.
The ultimate goal is to maximize the intelligibility of the conversation given the rate-constrained cellular channel
and power constrained encoding device. This paper uses an objective measure of intelligibility, based on subjective
testing with members of the Deaf community, for rate-distortion optimization of sign language video within the
H.264 framework. Performance bounds are established by using the intelligibility metric in a Lagrangian cost
function along with a trellis search to make optimal mode and quantizer decisions for each macroblock. The
optimal QP values are analyzed and the unique structure of sign language is exploited in order to reduce
complexity by three orders of magnitude relative to the trellis search technique with no loss in rate-distortion
performance. Further reductions in complexity are made by eliminating rarely occuring modes in the encoding
process. The low complexity SL optimization technique increases the measured intelligibility up to 3.5 dB, at
fixed rates, and reduces rate by as much as 60% at fixed levels of intelligibility with respect to a rate control
algorithm designed for aesthetic distortion as measured by MSE.

Keywords: Sign language video coding, H.264, complexity constrained video coding, rate-distortion optimiza-
tion

1. INTRODUCTION AND PREVIOUS WORK

Wireless and cellular video communication can offer the Deaf community the freedom of long distance communi-
cation in their native sign language (SL).1 One key challenge is that the bandwidth available on cellular networks
is very limited. Most traditional encoding techniques are optimized in terms of some measure of aesthetic distor-
tion, typically MSE. As a communication tool, SL video must be judged in terms of its intelligibility; the desired
outcome is that a viewer comprehends the linguistic information. Therefore, encoding algorithms are necessary
that can maintain the intelligibility of SL communication while maximally compressing the video sequence to
meet the stringent rate constraints. In addition to bandwidth constraints, the processing power is very limited for
the majority of cellular devices. If the compression algorithm is too complex, the encoding process cannot occur
in real-time. The overall goal of the MobileASL project is to provide real-time intelligible SL communication
over cellular telephones.2 The encoding algorithms developed generate H.264 compliant bitstreams, to allow for
the use of existing hardware decoders.

Sign language contains a significant amount of structure that can be exploited in a video compression setting.
All of the information in SL is conveyed through facial expressions and hand gestures.3, 4 Furthermore, several
eye tracking studies have revealed that when observing a signer, a fluent SL user will primarily gaze at the
signer’s face.5–7 This phenomenon occurs because subtle changes in facial expression can substantially change
the meaning of a hand gesture.8, 9 A gaze in a particular direction can indicate a pronoun and raising one’s
eyebrows indicates a question. Because of this structure, SL video should be coded with high visual fidelity
around the face, sufficiently high temporal resolution for capturing signs, and without many bits being spent on
non-face, non-hand regions.1, 7

Many specialized algorithms have been proposed for encoding SL video. Several methods involve transforming
the sequence into a binary representation or line drawing. Both the Telesign Project10 and Sperling et al.11
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converted sign language into cartoon-style line drawings. The Telesign Project captured single signs at two
different video parameters: 256×256 at 12.5 fps and 128×128 at 25 fps. The signs were encoded at 75.2 kbps and
38.6 kbps (corresponding to the two sets of video parameters) and subjective observers correctly identified over
90% of the signs. Sperling et al. encoded 15 fps sequences at rates between 3 and 15 kbps. Subjective observers
identified 70-80% of the individual signs. More recently, Manoranjan and Robinson used binary sketches at four
resolutions (320×240, 120×160, 160×120, and 80×60) to transmit sign language conversations at a fixed rate of
33.6 kbps.12 Subjective evaluation found that users preferred the smallest resolution, primarily because these
were encoded at the highest framerate (7-8 fps). While these algorithms maintain intelligibility at low bitrates,
they result in very unnatural videos. Furthermore, they require encoding and decoding techniques that are
specialized for binary video sequences, making implementation on complexity-constrained devices difficult.

More recent SL compression algorithms (including this work) use specialized processing while still conforming
to pre-existing encoding standards such as H.26x and MPEG. These algorithms exploit the inherent structure
of SL for compression gains on natural video sequences and also allow the data streams to be decoded on widely
available, standards-compliant decoders. One common approach to SL encoding is to apply region-of-interest
based compression. Both Schumeyer et al.13 and Saxe et al.14 use automatic skin segmentation techniques
to identify the region-of-interest. These algorithms assign more bits to the face and hand blocks by adjusting
quantizer values and severely compressing all non-skin blocks. Schumeyer et al. encoded QCIF (176×144) sized
images at fixed bitrates of 64 kbps and 128 kbps using H.261. Reductions of 10-15% in the number of bits per
picture led to slight increases in the effective framerate, relative to an encoding technique that assigns a uniform
quantizer to the entire frame. The effective framerates for the sequences were 16.3 fps at 64 kbps and 17.7 fps
at 128 kbps. Saxe et al. add an additional preprocessing step to blur all the non-skin regions, with the intention
of reducing blockiness in the background regions. MPEG-1, motion JPEG, and the Windows Media Encoder
were applied to video sequences recorded at 30 fps with a resolution of 160×120. By reducing the quality in the
background region, bitrates were reduced by 25% over the cases in which no region-of-interest coding was used.
In both cases, no formal study was performed to verify intelligibility.

Nakazono et al. proposed three techniques for improving SL compression in H.263: weighted bit allocation,
modified macroblock processing order, and forced SKIP mode in background blocks.15 The weighted bit allo-
cation decreases the rate allocated to each macroblock as a function of increasing distance from the face. The
modified processing order adjusts the analysis of blocks, such that blocks near the face are analysed first. The
encoder will obtain information about the face blocks earlier in the encoding process. Finally, a set of back-
ground macroblocks at the edges of the frame are identified and are always encoded in the SKIP mode. These
techniques allowed more bits to be assigned to the face and regions near the face, but requires that the weights
and block labeling are manually tuned prior to encoding. The source content used was 15 fps sequences at both
CIF (352×288) and QCIF resolutions. They demonstrated that at fixed bitrates of 256 kbps, 128 kbps, and 64
kbps, their proposed algorithm had higher mean opinion scores (as rated by fluent SL users) than the H.263 test
model.

Agrafiotis et al. use foveated processing to generate a map of priority regions.6 The face is identified
automatically using skin segmentation and facial feature detection. Given the location of the face, a foveation
model is used to assign macroblocks to each priority region. A different quantization parameter is assigned to
each priority region, allowing blocks nearest to the face to be coded with more bits than blocks farther away.
These modifications conform to the H.264 standard and were applied to four CIF size sequences recorded at 25
fps. At average rates of 132 kbps, they achieved an average bitrate reduction of 40% over the H.264 reference
encoder (JM) without affecting the intelligibility of the sequence. This technique appropriately considers how
sign language is viewed and heuristically determines how much rate should be given to each of the priority
regions.

While all of these approaches exploit the inherent structure in SL videos, none are optimized with a cost
function that measures intelligibility. The additional rate allocated to the face and hand regions is selected
heuristically. Furthermore, a non-trivial amount of rate is allocated to the background region, which is not
required for intelligible sign language. The goal of this work is to implement an objective measure of intelligibility
in a rate-distortion optimization setting, which provides a performance upper bound that inherently exploits the
structure of SL. A low complexity algorithm, developed from the analysis of the resulting coding parameters,
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achieves the same rate-distortion performance. Section 2 describes how a trellis-based model is used with a
Lagrangian cost function for rate-distortion optimization. The cost function formulation includes a distortion
measure that correlates well with subjective evaluation of intelligibility. Section 3 discusses the gains achieved
by the optimized algorithm and how heuristics are applied to significantly reduce the complexity. Finally, the
low complexity implementation is compared with the foveation-based SL optimization.6

2. ESTABLISHING PERFORMANCE BOUNDS AND OPTIMAL CODING
PARAMETERS USING AN INTELLIGIBILITY METRIC

In H.264, the rate spent on a macroblock is determined by the selection of motion vector, mode, and quantizer.16

The problem of rate control becomes choosing a parameter combination pi ∈ P ≡ {MV × M × QP} for each
macroblock Xi over all N blocks. These coding decisions will affect total rate, R(X, p), and total distortion,
D(X, p). Given a rate constraint, Rmax, the optimization finds p such that:

min
p∈P N

D(X, p) subj. to R(X, p) ≤ Rmax (1)

This rate-constrained optimization problem is made into an unconstrained problem by using the Lagrangian
relaxation technique. This reduces the optimization in Equation (1) to:

min
p∈P N

J(X, p) = D(X, p) + λR(X, p) (2)

The distortion metric used here is based on a measure of intelligibility. In an earlier paper,17 the au-
thors developed a spatial distortion metric that correlates well with subjective intelligibility evaluation: I =
WF MSEF + WHMSEH . This intelligibility metric is a weighted sum of MSE in the face pixels and MSE in
the hand pixels. The values for the weights that maximize correlation with subjective intelligibility ratings are
WF = 0.6 and WH = 0.4. These values are supported by the linguistic analyses of sign language8, 9 and by
the eye tracking studies.5–7 Subtle details in the face are essential for accurate intelligibility of a sign language
conversation.

Face and hand pixels are found on each frame using skin-color detection and morphological processing. In
order to use this metric in an encoding setting, each macroblock in a frame is classified as either face, hand,
or background according the pixel-level map. As measured, intelligibility is not affected by distortion in the
background. However, ignoring background block distortion would reduce the optimization of those blocks to
finding the parameters which result in the smallest rate. This would effectively encode all background blocks
as SKIP type blocks and would result in very distracting artifacts. To appropriately handle this, the authors
verified that weighting background distortions by 10−2 sufficiently reduced the rate allocated to those regions
while preventing extremely distorted compression artifacts.

As in the works of Wiegand et al.,18 the selection of the parameters p is further simplified. First, for INTER
mode macroblocks, the motion vectors are optimized, in the rate-distortion sense, before mode and QP decisions
are made. Second, the mode decision can be optimized in the rate-distortion sense, for a given QP.

The goal then becomes to find the optimal QP values for each macroblock in the frame, according to the
Lagrangian cost. In H.264, the QP for the current block is coded as a delta offset from the QP for the previous
block. Because of this, the additional rate required to encode large changes in QP can add significant overhead
to the bitstream, especially at very low rates. In order to model this dependency, a trellis is built in which each
stage corresponds to a macroblock in a row and each node in a stage corresponds to a QP value.19, 20 The Viterbi
algorithm is used to search for the path through the trellis that minimizes the Lagrangian cost for a particular
row. The algorithm then iterates over all rows in the frame. In terms of number of required Lagrangian cost
calculations, this algorithm has a complexity of O(522 × M × N), where there are M possible encoding modes,
52 possible QP values, and N macroblocks in a frame.

In addition to the dependencies within a row, many of the prediction modes in H.264 lead to depencies across
rows. However, the computational complexity required to fully model these dependencies is O(524 × M × N),
making it impossible to evaluate in any practical amount of time. The results of the trellis search algorithm will
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Table 1. Summary of resolution, framerate, and region details for each sign language sequence, with resolutions reported
in terms of macroblocks. The face, hand, and background sizes are all per frame averages and the numbers in parenthesis
correspond to the percentage of the frame corresponding to that region. There are more face blocks in the sequence
‘Outdoor’ because the signer is closer to the camera in this case. The sequences ‘Siblings’ and ‘Outdoor’ have fewer hand
blocks than face blocks because only the upper body of the signer was filmed.

Sequence Macroblocks Framerate Face Size Hand Size BG Size BG Activity
Sakura 20x15 (320×240) 15 fps 13.5 (4%) 18.6 (6%) 267.8 (90%) Static

Graduation 20x15 (320×240) 15 fps 13.6 (4%) 18.9 (6%) 267.5 (90%) Static
Siblings 20x15 (320×240) 30 fps 17.2 (6%) 6.7 (2%) 276.0 (92%) Static
Outdoor 22x18 (352×288) 25 fps 38.9 (10%) 16.9 (4%) 340.2 (86%) High

be considered the computable upper bound for rate-distortion performance. Distortion in this case is measured by
I, as described above. This algorithm was implemented as a modified version of the x264 open source codec. This
particular implementation of H.264 was selected because it consistently outperforms many other codecs.∗ The
relevant portions of the rate control employed by x264 are highlighted in the Appendix. A detailed description
can be found in the work by Merritt and Vanam.23

3. OPTIMAL CODING DECISIONS AND COMPLEXITY REDUCTION

The optimization algorithm described in Section 2 was applied to four different videos, three indoor scenes with a
plain background and one outdoor scene with a very active background. The sequences ‘Sakura’ and ‘Graduation’
were recorded at University of Washington as part of the MobileASL project.2 Both of these sequences were
recorded at 15 fps and 320x240 pixels. ‘Siblings’ was taken from the American Sign Language Linguistic Research
Project (ASLLRP) at Boston University24 and is 320x240 pixels at 30 fps. ‘Outdoor’ was recorded at University
of Bristol6 and is 352x288 pixels at 25 fps. Table 1 contains a summary of these properties.

The trellis-based optimization algorithm sets a computable upper bound on rate-distortion performance for
the sign language sequences. The results for intelligibility are reported as 10 log 2552

I , which is the intelligibility
distortion, I, converted to quality score on a log scale.17 In all four sequences, there is some gain in measured
intelligibility over the x264 rate control algorithm. Table 1 illustrates several interesting differences in the content
of each sequence that have a direct impact on the compression gains achieved. In the three indoor sequences,
the signer is further from the camera than in the outdoor sequence, which is evident in the higher percentage of
face macroblocks in ‘Outdoor.’ As a result, the sequence ‘Outdoor’ requires a higher rate for the same level of
intelligibility, as seen in Figure 1.

Also note that both ‘Sakura’ and ‘Graduation’ have more hand blocks than face blocks. The signer in these
sequences is wearing a short sleeve shirt. The face and hand detection algorithm classifies the entire arm as part
of the hand and which results in more hand blocks. Furthermore, in both sequences the signers’ hands were
always in the frame. In ‘Siblings’ and ‘Outdoor,’ only the signers’ upper body was filmed, resulting in many
frames where only a single hand was visible. Many signs in sign language only require the use of one hand; the
secondary hand is often at rest and, in these cases, off camera.

In all of the sequences, the trellis-based optimization technique achieves a 2-3 dB increase in intelligibility
at a fixed rate. The largest differences between the sequences are in the reduction of rate at a fixed level of
intelligibility with respect to the x264 rate control method. The level of activity in the background has the
most prominent effect on these compression gains. The indoor sequences all had similar compression gains of
20-50% over the x264 rate control; the amount of compression varied with intelligibility. The outdoor sequence
had gains of 40-60%. Figure 1 illustrates the compression results for sequences ‘Outdoor’ and ‘Sakura’ with the
trellis-based SL optimization, the low complexity SL optimization, and the standard x264 rate control algorithm.

∗A study performed at Moscow State University compared several H.264 codecs when applied to various natural video
scenes.21 The codecs were analyzed in terms of both computation time and rate-distortion performance, where distortion
in this case was measured as both PSNR and SSIM.22
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(a) Rate (kbps) versus Intelligibility (dB) for sequence
‘Outdoor’. Gains are between 2dB and 3.5dB.
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(b) Rate (kbps) versus Intelligibility (dB) for sequence
‘Sakura’. Gains are between 2dB and 3dB

Figure 1. Plots of Intelligibility (dB) versus bitrate (kbps and bpp). The secondary y-axis maps the measured intelli-
gibility to the five-point subjective scale used in a previous work.17 The five-point scale is in response to the question
“How easy or how difficult was it to understand the video?” The gains in (a) are much larger because the background is
very active. The x264 rate control algorithm assigns a single QP to the entire frame, effectively adding unnecessary rate
to background blocks.

The dashed lines in the figure map the objective intelligibility measure I to the subjective scale used in the
author’s previous work.† When intelligibility becomes “easy”, the proposed SL optimization method reduces the
rate by over 50% versus the x264 rate control, as seen in Figure 1. Furthermore, any increase in rate beyond
the point when intelligibility is easy does not increase an observer’s ability to understand the SL content. For a
rate-constrained communication channel (i.e., cellular networks), this implies that only enough rate needs to be
allocated to each user such that their conversation is easy to understand. This can relieve the overall system of
unnecessary encoding and transmission.

The most significant compression gains are obtained in the sequence ‘Outdoor’. Because of the higher
background activity, a large amount of residual energy remains in the background macroblocks after motion
compensation. Since the x264 rate control algorithm chooses a single QP for the entire frame, it is forced
to allocate bits to the background blocks, as well as the face and hand blocks. The SL optimized techniques
(trellis-based and low complexity) only assign low QP values (and therefore more bits) to the face and hand
macroblocks. The residual coefficients in the background blocks are severely quantized. The gains for the indoor
sequences are slightly smaller. Because of the low levels of background activity, motion compensantion results in
mostly very small transform coefficients in background macroblocks. Because there is very little residual energy,
it takes very little rate to encode, even at low QP values. As a result, the default encoder is already allocating
almost all of the rate to the face and hand blocks. Sample bit allocation results are demonstrated in Figure 2.

3.1. Low Complexity Heuristics

Ultimately, the sign language encoding algorithm will run in real-time on a complexity constrained device (e.g.,
a cellular phone). As mentioned in Section 2, using the trellis search to find the optimal QP values results in
a time complexity of O(522 × M × N). Because of this large computational requirement, it is not feasible to
use the trellis-based algorithm in a real-time scenario. However, the optimal QP selections can be analyzed to
identify a relationship between λ and QP. Figure 3 illustrates the optimal QPs selected for a fixed value of λ

†Participants viewed compressed sign language sequences and were asked the question “How easy or how difficult was
it to understand the video?” They responded on a 5-point Likert scale between “Difficult” and “Easy.”17
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(a) Original frame from sequence ‘Out-
door’.

(b) Bit allocation for x264 rate control
method.

(c) Bit allocation for intelligibility op-
timized rate control method.

(d) Original frame from sequence
‘Sakura’.

(e) Bit allocation for x264 rate control
method.

(f) Bit allocation for intelligibility op-
timized rate control method.

Figure 2. Bit allocation for each rate control method. The brightness of a block corresponds to the amount of rate
allocated to a macroblock relative to the entire frame. Notice that for the intelligibility optimized sequences (c and f),
nearly all the rate is allocated to the face and hands. In the ‘Outdoor’ scene with an active background, the x264 rate
control is allocating significant rate to regions that are unimportant to intelligibility, e.g. the trees and the person walking
in the background.

in the face and hand blocks. Ninety percent of the non-SKIP mode macroblocks have QPs among the plotted
points. Only non-SKIP mode blocks are considered because QP has no meaning in the SKIP mode.

As seen in the figure, the range of optimal QPs selected is virtually identical in each sequence for a fixed λ,
despite differences in framerate, resolution, and number of face and hand blocks. The outliers in both 3(a) and
3(b) are a result of motion compensation. In the face blocks, because of the relatively low activity, very little
residual information is left after motion compensation. On the other hand, a significant amount of residual energy
remains in the hand blocks. Because of this, QP are adjusted higher and lower, respectively. By exploiting this
relationship, the complexity-reduced encoding process simply uses a lookup table to select the QP for a given λ
and macroblock type (e.g. face, hand, or background). The QP lookup table is generated from the average QP
selected at each λ. The QP for background blocks was nearly always set to 51, the highest supported by H.264.
This is similar to the technique used by Wiegand and Girod25 in which a functional relationship was developed
so that λ could be calculated given a quantizer for the frame. Using a lookup table to select QP reduces the
encoding complexity from O((522 × M × N) to O(M × N), since only the lowest cost mode needs to be found
at each macroblock.

The modified, low-complexity algorithm was implemented in x264 using the results from Figure 3 by gener-
ating a QP lookup table. Given a specified value of λ, a QP is assigned to each macroblock type (face, hand,
background) and that QP is applied to all blocks of that particular type. The results for the sequences ‘Outdoor’
and ‘Sakura’ are illustrated in Figure 1. In all the sequences, the low complexity algorithm performs as well as
the trellis-based optimization method.
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(a) QP occurrence versus λ in non-SKIP mode face blocks.
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(b) QP occurrence versus λ in non-SKIP mode hand blocks.

Figure 3. A plot of optimal QP values selected versus lambda. Ninety percent (90%) of the blocks had QPs among
these clouds of points. The outliers in both (a) and (b) are a result of motion compensation. Background blocks are not
included in the plot, as the trellis search chose a QP of 51 for nearly all background macroblocks. The average QP is used
in the low complexity lookup table.

By using a lookup table for selecting the quantization parameter, the encoding complexity for the intelligibility
optimized algorithm and the x264 default rate control method is equivalent. In H.264, as many as 12-15 different
modes need to be analyzed for any given macroblock, which can add a significant amount of encoding time. The
complexity of the encoding process is further reduced by analyzing the histogram of selected modes for each
sequence and restricting the mode search to only those modes that are selected frequently. The restricted modes
are established prior to encoding and, as a consequence, must be independent of a particular rate. The face and
hand histograms revealed that each of the modes were selected at least 10% of the time for a subset of rates. For
example, in the sequence ‘Sakura,’ the Intra 4x4 mode was selected on over 20% of hand blocks at rates above 18
kbps but only on 2% of the blocks at rates below 10 kbps. Because the number of face and hand blocks is only
between 10% and 15% of the total number of macroblocks, it is acceptable to evaluate all the possible modes.
Complexity reductions on the background blocks have a more significant effect on overall encoding complexity.

In both the high and low background activity cases, the finest Inter prediction modes were selected on fewer
than 1% of the background blocks, regardless of rate. Removing these modes (Inter 4x4, 4x8, and 8x4) from the
encoding process results in no change in rate-distortion performance. Of the remaining mode types, 90% of the
background macroblocks were limited to Inter 16x16, Intra 16x16 partitions, and the SKIP mode. This implies
that only the coarsest mode types need to be evaluated for many of the background blocks. Figure 4 illustrates
the resulting rate-distortion performance for the mode restrictions for the sequences ‘Sakura’ and ‘Outdoor’.
The rates required for intelligibility levels of “easy” are summarized in Table 2

For the low framerate indoor sequences, restricting the mode search to only these three types led to a 6% rate
increase for “easy to understand” sequences. The mode restricted algorithm requires a 14-16% increase in rate
for the outdoor sequence and the 30 fps indoor sequence to be “easy to understand”. The rate increase occurs
because in many cases, allowing the use of Intra 4x4 and of the Sub-16x16 Inter prediction modes (16x8, 8x16,
8x8) resulted in a block with all zero-valued transform coefficients. H.264 has syntax specified for these cases
and can encode them with very little rate. At higher framerates, the increased correlation between frames allows
the motion compensation to find better block matches, which increases the occurrence of the zero-valued blocks.
Thus, the higher framerate sequences are more affected by the mode restriction. While this mode restriction
leads to the slight rate-distortion performance decrease, it also provides a significant reduction in complexity.
By allowing only 16x16 partitions and the SKIP prediction mode in the background blocks, the complexity is
reduced from O(M ×NBG) to O(3×NBG), where M is typically around 12 and NBG, the number of background
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Table 2. Summary of the rate at which intelligibility is “easy” for the low complexity SL optimization with and without
mode restrictions, the foveation-based SL optimization, and the x264 rate control. The number in parenthesis is the
relative reduction in rate from the x264 rate control. Note that for the sequence ‘Siblings,’ the foveation-based algorithm
performs as well as the proposed low complexity algorithm. Because ‘Siblings’ has a small percentage of hand macroblocks
and a very static background (Table 1), both the foveated technique and the proposed low complexity technique allocate
most of the rate to the face region.

Sequence Low Complexity Mode Restricted Foveation-based x264 Rate Control
Sakura 27.5 kbps (46.5%) 29 kbps (43.6%) 48.2 kbps (6.2%) 51.4 kbps (0%)

Graduation 26.5 kbps (57.9%) 28.3 kbps (55.1%) 51.0 kbps (19.0%) 63.0 kbps (0%)
Siblings 41.5 kbps (46.1%) 48.8 kbps (36.6%) 42.0 kbps (45.5%) 77.0 kbps (0%)
Outdoor 118.0 kbps (57.9%) 134.0 kbps (52.1%) 252.0 kbps (10.0%) 280.0 kbps (0%)

blocks, is 90% of the frame.

3.2. Comparison with Foveation-based SL Optimization Algorithm

The x264 rate control algorithm is designed to minimize aesthetic distortion, measured in terms of MSE. To be
fair, the proposed low complexity SL optimization technique is also compared against the foveation-based SL
optimization proposed by Agrafiotis et al.6 The foveation-based algorithm identifies the face and defines this as
priority region 0. Seven more priority regions are defined based on a foveation model with a fixation point in the
center of the face. A fixed QP is assigned to region 0 and this QP is incremented by two in each of the successive
regions.

Figure 4 compares the performance of the foveation-based algorithm with the proposed low complexity
algorithm. Because the foveation-based algorithm is allocating more rate to regions near the face, intelligibility
is increased by about 1 dB (or about 0.67 points on the Likert scale) over the x264 rate control at a fixed rate.
However, a large amount of rate is still allocated to background macroblocks, even though the information in
these blocks adds nothing to the intelligibility of the sign language content. The proposed algorithm spends
very little rate on background blocks, making more bits available for the face and hand regions. As a result, the
proposed algorithm reduces the rate at which intelligibility is “easy” by an average of 38% with respect to the
foveated-based approach. The results for each sequence are summarized in Table 2.

4. SUMMARY

A specialized encoding algorithm for sign language (SL) video was developed. The algorithm exploits the
structure of SL by identifying the face and hand macroblocks and using an objective measure of intelligibility
in a rate-distortion setting. A trellis search was used to identify optimal quantization parameters for each of
the block types (face, hand, background). This computable upper bound leads to a method for selecting QP
from a lookup table based on a given value of λ. Further complexity gains were achieved by limiting the mode
selection process for background blocks. In terms of measured objective intelligibility, this algorithm achieves as
high as 3.5 dB improvement over the x264 rate control technique used by x264 and 2 dB over a foveation-based
SL optimization technique. Compression gains of over 50% versus the x264 rate control are achieved when the
videos are easily intelligible.
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(a) Rate (kbps) versus Intelligibility (dB) for sequence
‘Outdoor’.
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(b) Rate (kbps) versus Intelligibility (dB) for sequence
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Figure 4. Plots of Intelligibility (dB) versus bitrate (kbps and bpp). The secondary y-axis maps the measured intelligi-
bility to the five-point subjective scale used in a previous work.17 The five-point scale is in response to the question “How
easy or how difficult was it to understand the video?” Restricting the background blocks to only three modes resulted in
almost no loss in performance for the indoor sequence in (b). The foveated based SL optimization6 gains about 1dB in
intelligibility over the x264 rate control.

6. APPENDIX

The goal of the one-pass x264 rate control algorithm is to produce videos with consistent MSE across frames
at a specified average bitrate. This method is mostly empirical. The relative amount of rate to be allocated
to each frame (independent of the target bitrate) is proportional to a heuristic measure of complexity. Frames
with high complexity will receive a higher percentage of rate while frames with low complexity receive less.
Fast motion estimation is performed on a half-resolution copy of the frame and the complexity for the frame is
calculated as the sum of absolute differences in the transformed residuals. The relative bits between the frames
is empirically selected as rbits = complexity0.6. This relative number of bits is then scaled to produce the total
bits to be allocated to the frame. The scaling factor is calculated to be the value that would have resulted in the
target bitrate, if it had been applied on all the previous frames. This effectively averages the complexity over
all the previously encoded frames and chooses a scaling factor accordingly. Compensation for prediction errors
is achieved by multiplying the bit allocation by target filesize

real filesize . Given this bit allocation, a single quantization
parameter (QP) is then selected for the entire frame. Mode selection is performed using a Lagrangian cost
function where distortion is measured as sum of squared differences (SSD).
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