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ABSTRACT

For members of the Deaf Community in the United States,
current communication tools include TTY/TTD services, video
relay services, and text-based communication. With the growth
of cellular technology, mobile sign language conversations
are becoming a possibility. Proper coding techniques must be
employed to compress American Sign Language (ASL) video
for low-rate transmission while maintaining the quality of the
conversation. In order to evaluate these techniques, an ap-
propriate quality metric is needed. This paper demonstrates
that traditional video quality metrics, such as PSNR, fail to
predict subjective intelligibility scores. By considering the
unique structure of ASL video, an appropriate objective met-
ric is developed. Face and hand segmentation is performed
using skin-color detection techniques. The distortions in the
face and hand regions are optimally weighted to create an ob-
jective intelligibility score for a distorted sequence. The ob-
jective intelligibility metric performs significantly better than
PSNR in terms of correlation with subjective responses.

1. INTRODUCTION

Transmission of compressed American Sign Language (ASL)
video over the cellular telephone network can provide a tremen-
dous freedom currently only available to the hearing. For any
type of cellular communication to be useful, service must be
available in all geographical areas, not just in those with the
most advanced technology. This implies that current cellular
phone networks must provide intelligible ASL conversations
even at the lowest available data rates. Modern GPRS net-
works offer download speeds as low as 30 kbps and uploads
as low as 15 kbps. Preliminary work has shown that sign lan-
guage video coded at such low bitrates using traditional video
coders is completely unintelligible.

Compression of sign language video at very low bitrates
introduces new and unique challenges, including the develop-
ment of an appropriate quality measure. Sign language video
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compression schemes are designed either to transform the in-
put into a type of binary image [1], [2], [3] or compress the
natural video by exploiting ASL structure [4], [5], [6]. This
body of work has achieved significant compression gains for
ASL video, but each algorithm required subjective testing to
verify that intelligibility was maintained following compres-
sion. There currently is no objective function designed to
evaluate the performance of these schemes.

MSE and PSNR are the most widely used objective mea-
sures for evaluating video. This paper demonstrates that PSNR
is not a good measure of intelligibility. Efforts in recent years
to develop quality metrics for video that correlate with sub-
jective opinions of observers have focused on traditional qual-
ity as described in terms of aesthetics. These techniques are
based on bottom-up processing, which models the decompo-
sitions performed by the human visual system [7], [8] or top-
down processing, which models the high-level functional as-
pect of the human visual system [9]. These algorithms show
substantial improvements over MSE and PSNR in predicting
aesthetic quality. However, sign language video is a commu-
nication tool, and quality must be judged in terms of intelligi-
bility. The metrics listed above are designed to predict how an
observer will perceive visual distortion in a sequence. A flu-
ent ASL user will ignore many of the visual distortions when
watching a compressed sign language sequence; his ultimate
goal is understanding. This paper proposes an objective met-
ric designed to predict intelligibility of coded ASL video.

The proposed metric uses skin-color detection and mor-
phological filtering to locate the face and hands of a signer.
Given these maps, the distortions in the face region and the
hand region are weighted and combined to create a measure of
the distortions that affect intelligibility. The optimal weights
reflect the relative importance of facial expressions over detail
in the hands.

A study was performed in which participants watched coded
ASL videos being displayed on a cellular phone [10]. The
videos were coded with varying parameters using an H.264/AVC
compliant encoder. The participants rated how well they un-
derstood each video on a 5-point subjective scale. These sub-



Fig. 1. A frame taken from a typical American Sign Language
video sequence. The sign box is highlighted.

jective ratings are used for evaluating the performance of the
proposed metric. The performance of the proposed metric is
compared with PSNR, a standard predictor of aesthetic qual-
ity.

Section 2 provides a basic introduction to the structure
of ASL. Section 3 outlines the parameters of the subjective
intelligibility study. Finally, Section 4 presents the proposed
metric and illustrates its performance.

2. STRUCTURE IN AMERICAN SIGN LANGUAGE

American Sign Language, like any other language, has a well-
defined structure. An ASL conversation has unique elements
that can be exploited in video compression. Spatially, all signs
occur within the sign box, a rectangular region spanning from
a signer’s navel to the top of her head, and from shoulder to
shoulder, illustrated in figure 1.

ASL has two types of hand motion, regular signs and fin-
ger spelling. Signs are complete words or phrases while finger
spelling is used to spell names and words with no associated
signs. The information-containing motion in an ASL con-
versation is limited to the movements in the face, hands, and
torso. R. Foulds [11] has shown that because of the biome-
chanical restriction in movement, frame rates as low as 6 fps
sufficiently capture the motion in a sign language sequence.
Furthermore, a substantial amount of contextual information
is gained from observing a signer’s eyes, mouth, and facial
expressions. The work of Muir, et. al. [12] concludes that
a fluent sign language user will gaze primarily at a signer’s
face, with brief excursions to the hands during signing.

In addition to this spatial structure, ASL has specific tem-
poral qualities. Generally, an individual sign follows a hold-
movement-hold pattern, in which a sign has an initial posi-
tion, some motion, and a final position [13]. The transitional

Fig. 2. A frame taken from an ASL video encoded with -12
QP offset. Note the relative clarity in the region around the
face, but the hands are extremely distorted.

movements between two signs contain no semantic informa-
tion, it is simply required to position the hands for the next
sign.

3. SUBJECTIVE INTELLIGIBILITY STUDY

A study was conducted at the University of Washington to de-
termine the subjective intelligibility of sign language videos
coded using several different parameters [10]. The sign lan-
guage videos were all recorded at a resolution of 320×240
pixels and a frame rate of 30 fps. The video coding was done
using x264, an open-source, standards-compliant implemen-
tation of the H.264/AVC codec. Three different coding pa-
rameters were adjusted to create the compressed video: bi-
trate, frame rate, and region-of-interest rate allocation. Three
bitrates were chosen for the study: 15 kbps, 20 kbps, and
25 kbps. Current GPRS technology nominally provides 30
kbps for data download and only 15 kbps for upload. Since
a sign language conversation is bidirectional, it is limited by
the lower upload rate. Videos were also coded at two different
frame rates: 10 fps and 15 fps. A preliminary study showed
that while 6 fps captured the sign motion, it was insufficient
for capturing finger-spelling segments. Because of this, 10
fps was selected as a lower frame rate bound.

Finally, a region-of-interest (ROI) coding technique was
used. Taking into account the importance of a signer’s face,
the ROI coding scheme allows for an increase of quality in
that region. A fixed region is defined for an entire video se-
quence around the signer’s face, and that region is coded us-
ing a lower quantization parameter (QP). This also allows for
the hands to be encoded with higher quality when they are
brought into the fixed facial region. Because the sequences
were encoded at a fixed bitrate, there is a trade-off between



Table 1. Average MSE and visual change using different QP offsets. MSE is averaged over all videos at 20 kbps and 15 fps.

0 Offset -6 Offset -12 Offset

Face MSE (dB) 18.3 dB 15.7 dB 14.2 dB

Hand MSE (dB) 18.0 dB 18.9 dB 20.9 dB

Visual Change Hands are generally clear but
the mouth becomes blocky and
completely loses structure of-
ten.

Hands still clear and the ex-
pressions in the eyes and
mouth can be seen on most
frames.

The entire face is visible at a
high quality, but the hands are
completely blocky and the fin-
gers are lost on many frames.

the bits allocated to the face region and the bits allocated to
the rest of the frame. Three different QP offsets, 0, -6, -12,
were selected for the study. Table 1 illustrates the changes in
MSE by using the different ROI parameters while Figure 2
provides an example.

The different encoding parameters resulted in a total of
18 combinations. By design, each combination of encoding
parameters for a given video was rated by exactly three peo-
ple, and no person saw the same video twice. All videos were
displayed on an HTC Apache pocket PC with a screen size
of 2.8” diagonally and resolution of 240×320 pixels. Partic-
ipants were asked “How easy or how difficult was it to un-
derstand the video?” and responded on a 5-point scale. The
results of the study show that observers preferred videos en-
coded at 10 fps and -6 QP offset. The videos were coded with
constant bitrates so the individual frames at 10 fps looked bet-
ter than those at 15 fps. The participants also preferred -6 QP
offset. Table 1 shows that with no offset, the face was not
clear enough and at -12 QP offset, the distortion in the hands
was too much relative to the improvement of the face. Figure
3 summarizes these results.

The results of the subjective intelligibility experiment demon-
strate that distortion in the face have a larger impact on intelli-
gibility. An observer can tolerate more distortion in the hands
than in the face because of his fixed gaze on the facial region.
Also, the subjective data confirms that beyond a certain level
of visual quality, intelligibility can no longer increase; once
someone understands a conversation, there is nothing more to
be gained. The objective metric exploits these facts to predict
intelligibility.

4. OBJECTIVE INTELLIGIBILITY METRIC

This section presents an objective intelligibility metric that
is developed using the structure of ASL and insights gained
from the described experiment. A fluent ASL observer is
extracting information from the face and hands of a signer
to understand content. An appropriate intelligibility measure
must consider the distortions in these important regions. The
face and hand regions are segmented using skin-color identi-
fication and morphological filtering. Using the face and hand
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Fig. 3. Results of sign language intelligibility study. The y-
axis is the average participant response. Each group on the x-
axis is a particular set of encoding parameters. Values within
each set are averaged across the other two parameters.

maps, a weighted MSE value is computed for each frame and
used to quantify intelligibility. Properly weighting the dis-
tortions yields substantial improvements over both full-frame
MSE and MSE in only the skin pixels.

4.1. Face and Hand Segmentation

In order to quantify intelligibility in coded video, the face and
hands of the signer must be isolated from the background
objects. This often is performed using skin-color detection
techniques [14], [15]. Skin pixels have a color distribution
that is distinct from non-skin pixels [16]. Using the YCbCr
color space, the chrominance values of skin pixels are mod-
eled as a bivariate Gaussian distribution. The mean µm and
covariance matrix Σm of the distribution are generated from
a sample set of skin pixels. Skin-color segmentation is imple-
mented by thresholding the Mahalanobis distance between a
given pixel’s chrominance values x and the skin pixel distri-
bution.

D2
M (x) = (x − µm)T Σm(x − µm) < α (1)



A threshold of α = 2.1 was found heuristically to give the
best performance. This operation creates a binary map that
labels each pixel as skin or non-skin. The videos used in the
study were YUV 4:2:0, so the chrominance planes are a quar-
ter of the resolution of the luminance. To account for this,
the binary skin map is created from the chrominance values
at the lower resolution. The map is then upsampled to match
the luminance resolution. Performing the upsampling opera-
tion on the binary data is computationally more efficient than
upsampling both chrominance planes then creating the skin
map.

To further refine the segmentation process, the face must
be isolated from the hands. Face segmentation was performed
using morphological techniques. Since the human head can
be roughly modeled with an ellipse, the frame is eroded using
a vertical elliptical structuring element. The face is identi-
fied as the largest connected component remaining after the
erosion [15]. By performing the erosion using the vertical el-
lipse, the face is eroded much less than the hands and arms.
This also has the additional benefit of removing small regions
of pixels that are incorrectly identified as skin. The face seg-
mentation is improved by constraining the maximum move-
ment of the face between any two frames. After the face is
identified, all other skin pixels are labeled as hands. On aver-
age, the face region was 2% of the image, and the hands were
6.33% of the image. The larger hand region is because the
signer is not wearing a full-sleeve shirt, so her arms are also
labeled as part of the hand.

4.2. Quantifying Intelligibility

Given the face and hand regions, an MSE distortion map of
each region is created for the luminance of each frame in the
video sequence. The per-frame objective intelligibility metric
is given by

I = 10 log
2552

WF MSEF + WHMSEH
(2)

The subscripts F and H refer to the face and hands, respec-
tively. Intuitively, I is the weighted average of MSE in the
face and MSE in the hands, which is then converted into a
PSNR-type value. The weights found to maximize correlation
with the subjective responses are WF = 0.6 and WH = 0.4.
The higher weighting of the distortions in the face is a result
of the observer’s fixation on the face region. This result is
supported by foveated compression schemes that have been
applied to sign language video. During fixation, the face is
in the foveal region of the visual field and is seen with more
clarity. Agrafiotis et. al. [4] were able to achieve bitrate sav-
ings of approximately 40% without decreasing the subjective
intelligibility ratings by using foveated compression.

The metric is improved by considering that above a cer-
tain level of quality, an observer can fully understand the con-
versation. Beyond this point, improvement in MSE does not
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Fig. 4. Plot of PSNR(dB) versus subjective intelligibility
scores. Notice the large spread in the data. PSNR is very
poorly correlated with observers’ Z-scores, R2 = 0.45 at 10
fps and 0.41 at 15 fps.

correspond to improvement in intelligibility. To take this into
account, if MSEF or MSEH is less than a fixed threshold,
then MSEF or MSEH are set equal to the thresholds. Cor-
relation is maximized when these thresholds are 20 (13.0 dB)
and 35 (15.4 dB) for the face and hands, respectively. The
hand threshold is set higher because beyond a certain level of
quality, resolution in the hands is limited by the parafoveal vi-
sion and intelligibility only improves with greater facial qual-
ity.

The per-frame intelligibility values are averaged across all
frames to obtain a single value for each distorted ASL se-
quence and correlated with the subjective intelligibility rat-
ings taken from the study. For analysis, the participants’ rat-
ings were converted to Z-scores. The Z-scores were plotted
against several different objective ratings for comparison.

Figure 4 illustrates that PSNR is very poorly correlated
with the subjective intelligibility scores. The performance is
substantially improved by the proposed intelligibility metric.
Figure 5 shows that the proposed metric is well correlated
with subjective responses at both 10 fps and 15 fps. It is es-
pecially interesting to note that the linear fit for the 10 fps
sequences is parallel to the fit for the 15 fps sequences.

This implies that for the same subjective rating, observers
required almost 1 dB higher measure of intelligibility in the
lower framerate sequence. This is likely a result of the fact
that sign language is a communication tool. With a higher
framerate, each frame carries less of the signed content. For
example, if a compression artifact distorts the handshape of
the signer, the subsequent frame is more likely to still contain
that particular handshape. The observer has more information
about each individual sign at her disposal. As the framerate is
reduced, each frame carries more information and must have



Table 2. Comparison of correlation values between the subjective response and different objective functions.

Objective Function Percent of Frame R2 at 10 FPS R2 at 15 FPS

Frame PSNR (dB) 100% 0.45 0.41

Hand PSNR (dB) 4.28% 0.41 0.37

Face PSNR (dB) 2.05% 0.27 0.30

Skin PSNR (dB) 6.33% 0.60 0.58

Proposed Metric I (dB) 6.33% 0.77 0.75
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Fig. 5. Plot of Intelligibility (dB) versus subjective intelligi-
bility scores. The data is close to the linear fit. The Z-scores
are well correlated with the objective metric, R2 = 0.77 at 10
fps and 0.75 at 15 fps.

fewer distortions to achieve the same level of intelligibility.
Table 2 summarizes the results. The proposed intelligibil-

ity metric I performs significantly better than the other ob-
jective functions. The metric achieves R2 values of 0.77 and
0.75 at 10 fps and 15 fps respectively. It is especially inter-
esting that PSNR in the hands or face alone are almost uncor-
related with subjective intelligibility. Furthermore, even skin
PSNR is not as good as the proper weighted combination of
the face and hand distortions. Note that the ratio of face pix-
els to hand pixels is not proportional to the weights, WF and
WH . The higher weight required for the face is a result of
the large amount of information in the facial expressions of
an ASL conversation.

4.3. Temporal ASL Structure

ASL has significant temporal structure that has not yet been
exploited by this metric. As described in section 2, the tem-
poral nature of ASL requires some transitional movements
between each sign so that the hands are properly positioned.

A preliminary study was performed to understand the impor-
tance of the transitional movement with respect to intelligibil-
ity.

Videos were obtained from the National Center for Sign
Language and Gesture Resources (NCSLGR) ASL database
[17]. These videos were also extensively annotated using
SignStream [18] such that the beginning and end of each sign
was known. Using this data, the frames containing only tran-
sitional movement were removed. The last frame of a sign
was held on screen for the duration of the transitional move-
ment. On average, the transitional frames accounted for ap-
proximately 30% of the entire video.

Fluent sign language participants watched these videos
and remarked that there were no problems in understanding
the content. Each participant felt that they were completely
able to understand the stories. This implies that 30% of the
frames should not be included in the intelligibility metric.

5. SUMMARY

An objective metric for predicting the intelligibility of coded
American Sign Language(ASL) video was developed. The
metric is based on the spatial structure of ASL and is a func-
tion of MSE in both the hands and the face. Traditional qual-
ity metrics, such as PSNR, were not well correlated with sub-
jective intelligibility scores. However, the proposed metric
demonstrated relatively high correlation coefficients of 0.77
and 0.75 (for 10 FPS and 15 FPS), which is a substantial im-
provement over PSNR. Surprisingly, PSNR in the hands and
PSNR in the face did not have high correlation individually,
but the proper weighting of each results in an appropriate met-
ric. The proposed metric only considers the spatial elements
of ASL. Current work is being done to exploit the temporal
nature of ASL, in order to segment each individual sign from
the sentence. Preliminary results suggest that approximately
30% of the frames contain only transitional movement and
are not necessary for comprehension. By calculating only the
distortions in the sign itself and not in the transitional move-
ment, the proposed metric can be improved.
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