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ABSTRACT those regions. This is supported by both the linguisticcstru

. . . ture of sign language [3] (e.g. how information is conveyed)
This paper presents an H.264 standard-compliant video ®hd by eye-tracking experiments [4]. Because of this unique

coder optimized for region-of-interest (ROI) based COdingstructure, several specialized algorithms have been pgzho
tuned to American Sign Language (ASL) videos. Encodinq:Or encoding sign language video [4, 5, 6]

modes are developed which allow the encoder to allocate
both rate and computational resources differently aciises t encoder was developed using an objective measure of intelli

.ROlS' An objective measure O.f |n_teII|g|b|I|ty IS |.ncluded ibility incorporated into an H.264 rate-distortion (R-oyti-

In an er}codgr parameter opnn_nzguo_n by mo_dn‘ylng a faSﬁﬂza‘tion algorithm [6]. A performance bound for the system
."ﬁ'”?e dlstornon-comple_xny optimization algorithm, selt- is obtained using the Viterbi algorithm to search over afipo
Ing In P"?‘Tameter sel_ect|ons that demonsirate excelleat ratsible gquantization parameters and encoding modes. For fixed
intelligibility-complexity performance. These parantstean levels of intelligibility, bitrate can be reduced by as muzh

be stored in a look-up table for use by an online algonthnh?% over an R-D optimization algorithm which measures dis-

which selects parameters based on available computatioq%rtion as MSE. The goal of this work is to achieve as much
resources. The resulting parameter selections improve t)‘i

In the author’s previous work, an ASL optimized video

. ove M this gain as possible while maintaining a computational
encoder speed by up to 21.2% with a small decrease in inte omplexity appropriate for low mobile devices with low pro-
cessing power.
Traditionally, ROIl-optimized encoders achieve bitrate
1. INTRODUCTION savings by allocating rate only to the most relevant regions
In this work, we extend this concept and also allocate more
Cell phone technology has become ubiquitous due to itsomputational resources to these important regions. Two
convenience and mobility. Current video cell phones aredditional encoding options are presented which allowavari
equipped with a camera and codecs, and have the potenti#ns in encoding complexity based on the relative impargan
for use in real-time mobile videoconferencing. Howeveg, th of each macroblock. A fast offline algorithm is then used to
availability of high bandwidth 3G networks is limited to few search the space of possible encoding parameters available
cities in the United States, ultimately requiring such aesys  in H.264, including the proposed ROI-tuned options, to find
to operate at very low bandwidths. Furthermore, real-timgarameters that give us improvement in encoding speed with
capture, encoding, and transmission of digital video ifi-dif only small decreases in intelligibility. The results dersate
cult on devices with limited computational resources, sach that appropriate parameter selections improve the encoder
mobile phones. This motivates the need for low complexityspeed by up to 21.2% with a small decrease in intelligibility
video compression algorithms which can provide video thawhen compared to the x264 default parameter settings.
is useful to the end user. In the past, the perceptual quality
videoconferencing has been improved by reducing distastio
in the user’s face ?1 2]. Region-%f—intere);t (ROI) b%seﬂaoi 2. SIGN LANGUAGE
. ' . : INTELLIGIBILITY-OPTIMIZED VIDEO ENCODER
compression can be extended to American Sign Language
(ASL) video. For ASL video, an observer is tracking the.The ASL optimized encoder is implemented within x264 [7],

signer’s face and hands and evaluating distortions only in open-source H.264 encoder. The rate-distortion opimiz

This work is supported by the National Science Foundatiatetigrant t?on usesan Obje_CtiV? intelligib_ility measure, Whi_Ch isiad-
numbers CCF-0514353, CCF-0514357 and 11S-0811884. tion of the distortion in linguistically relevant regionsdac-

ligibility over the x264 default parameter settings.
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curately predicts an observer’s subjective intelligtigitiating Two additional encoding parameters are added to the
[3]. Each frame of the input sequence is segmented into the264 encoder that allow the encoding complexity to vary on
signer’s face, hands, torso, and background, using calseddb  a per-block basis, depending on the type of region being en-
skin detection and morphological processing. This segasentcoded (e.g. face, hand, or background). The first parameter
tion operates in real-time on a mobile device [8]. Given thgbackgr d- part) restricts the partition search performed
region segmentation for a particular frame, the distogiafi by the encoder in background blocks. In H.264, as many
fecting intelligibility are computed as the weighted comdi  as 12-15 different modes need to be analyzed for a given
tion of the mean squared error (MSE) in the face, hands, anghacroblock. Since distortions in background macrobloeks d
torso of the signer: not contribute to the overall distortion measure in Equatio
(1), background macroblocks can be encoded with very little
D=WrMSEr +WygMSEy +WrMSEr, (1) rate (and consequently, very high distortion). Motivatgd b
this, the encoder is modified to have two sets of available
whereWr = 1.6, Wy = 0.5, andWy = 0.1. Because partition types, one for face and hand blocks and one for
of the varying weights, a particular MSE in the signer’s facebackground blocks. When using both thackgr d- par t
will result in a higher total distortion than the same MSE ingnd part parameters, the encoder udesckgr d- part
the signer’s torso. option for background macroblocks apdr t option for the

The ASL-tuned distortion measure in (1) is incorporatedface and hands macroblocks. For ease of integration into the
into a rate-distortion (R-D) optimization procedure samito  pre-existing encoder structures, theckgr d- par t has the
that of [9] and applied to a collection of ASL videos. For same 10 options gsart. This allows the search for par-

a given Lagrangian\, the parametep that includes motion titions in background macroblocks to be limited to only the
vector, mode and quantization step size (QP) is chosen suearsest partitions while still enabling the finer partisdor

that it minimizes the joint R-D cosf(X,p) = D(X,p) + the relevant blocks.

AR(X,p), where X is a particular macroblock. A conse-  In motion-compensated video coding, searching for op-
quence of using the distortion measure in 1 is that moresate timal motion vectors comprises a significant portion of the
inherently allocated to the important regions (i.e., fd@mds, total encoding time. To speed up the motion search, a pa-
and torso). The work presented in [6] identified a functionakameter ROl - ME) is included that specifies a potentially dif-
relationship between and the resulting optimal QPs. Ulti- ferent motion search method for the face, hands, torso and
mately, this allows for fast encoding by using a single pa&am background macroblocks. This approach was demonstrated
ter A to quickly select a QP value for each of the region typesto improve the encoding speed of the x264 encoder by up to
The motion vector and mode for each macroblock are still set29% for ASL videos [11]. The space of possible x264 motion
lected according to the minimum R-D cost. Rate control issearch methods are listed in increasing order of complexity
performed at the frame-level by adjusting the Lagrangian padiamond (DIA), hexagon (HEX) and uneven multihexagon
rameter), according to\(n + 1) = A(n) — Rtarget/ Ractual, ~ (UMH) search. The background macroblocks use only the
where Ryqrger and Ryctuq @re the target bits and actual bits DIA search, while the torso region uses equal or lower com-
for framen. plexity search compared to the face and hand regions. The
RA - ME includes the following 8 optionsi(.. ., 8) corre-
sponding to the motion search in (face, torso, backgrowed) r
gions: (HEX, UMH, DIA), (UMH, HEX, DIA), (HEX, HEX,
DIA), (UMH, DIA, DIA), (HEX, DIA, DIA), (DIA, DIA,

PIA), (UMH, UMH, DIA) and (UMH, UMH, UMH).

For each of the encoding parameters, the options are in-
dexed in order of increasing complexity. For example, a&alu
of part =10 is the most complex and enables the encoder to
fsearch over of all possible macroblock partitions. Corelgrs

iterations for half-pel and quarter-pel motion estimatioh a value ofpart =1 restricts the search to only the coarsest
maximum of 16 reference frames can be specified uséfg partitions but offers the lowest complexity. The lower com-
Ten differentpar t options specify the partition size from plexity options can increase the speed of the encoder but can

4 x 4 and above for intra (1), predictive (P) and bi-predictive reduce the overall rate-distortion performance.

(B) macroblocks [10]. Theér el | i s parameter has four op-

tions that include uniform quantization with and withouheo 4. JOINT RATE-INTELLIGIBILITY-COMPLEXITY

text adaptive arithmetic coding (CABAC) (options 1 and 0); OPTIMIZATION

and two schemes that use CABAC and Djikstra’s algorithm

for finding the quantization for a block of DCT coefficient The set of encoding options discussed in Section 3 made
such that the overall R-D cost is reduced (options 3 and 4). available to the encoder determine the achievable bitrate,

3. ROI-BASED COMPLEXITY ALLOCATION
ENCODER OPTIONS

Four variable encoding parameters are varied to achieve di

ferent points in rate-distortion-complexity: sub-pixebtion
estimation §ubne); reference frameg €f ); partition size
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distortion, and complexity. A vector of parameter option 34X 10

is referred to agparameter settings. The x264 default pa- o * Default parameter setti_rtg
rameter setting is the vectosfbme = 5,part =8, ref = 33 ¢ DPSPA parameter settifg
1,trellis=1, backgrd-part=0,RO - ME=0). These o

values are also listed in Table 2. This parameter vector ¢ _ 32
. . . . . . 72}
responds to high complexity sub-pixel motion estimatiol 8 o

> 90
£

all possible macroblock partitions; one reference frannet a :
the use of the context adaptive arithmetic coder (CABAC;
with uniform quantization. The default settings do not us g
any of the region-based complexity optimization options. A & 29 7
ideal video encoder will select the parameter setting whi
results in a compressed video that meets the target rate
complexity constraints in an optimal way. An exhaustiv 27 8
search over all possible parameter settings requires 868
encodings per videdr(x 16 x 10 x 4 x 10 x 8). Because 29 &%
it is impossible to perform an exhaustive search of this-ral  _ _ ‘ N ‘ ‘
distortion-complexity space in real-time on a mobile deyic 25 3 35 4 4.5 5 5.5
. . time(s)
fast and accurate methods for choosing the appropriatd sev v
encoding parameters must be employed.

The dominant parameter setting pruning algorithm (DPS
[10] is applied to determine optimal parameter settingswit
out performing a full search. DPSPA is a fast offline algarith
that uses significantly fewer encodings compared to an ex-

haustive search to estimate the distortion-complexity€®n  Taple 1. Relative performance of DPSPA parameter setting
hull. For a fixed bitrate, DPSPA provides a collection of pa-gyer the default parameter setting for ASL test videos. A neg
rameter settings which correspond to operating pointglyin ative bitrate gain implies lower bitrate for DPSPA. Testsave

approximately on the distortion-complexity (D-C) convex performed on a Windows XP PC with 2.01 GHz AMD pro-
hull, as illustrated in Figure 1. These points are nearly-opt cagsor.

3k * il

elligib

Joint ra
N
®
|

IJZAX 1. Joint R-D cost vs. encoding time for an ASL training
video. DPSPA provides an approximation of the convex hull
of the R-D-C space.

mal in terms of their D-C performance; for a fixed complexity | )\ | Avg. rate | Max speed| Avg. speed| Avg.
constraint, the resulting distortion is minimized. Appigithe gain gain gain Intell.
algorithm over a range of target bitrates effectively pdes a loss (dB)
look-up table that specifies the parameter settingsto e su o | -2.4% 15.7% 14.4% 0.08
that distortion is minimized given both a rate and compiexit 11 1 _ga7% 19.2% 16.8% 0
constraint. 5 | 26.8% | 21.2% 13.7% 0.16
46 | 0.49% 20.1% 15% 0.67
5. EXPERIMENTAL RESULTS: APPLYING DPSPA 150 | -0.66% 18% 13.7% 0.22

TO ASL VIDEO SET

The DPSPA algorithm is applied to a set of nine training ASL

videos and six test ASL videos each haviiag x 240 frame  the maximum and average encoding speed improvement,
resolution, 200 frames and a frame rate of 15 fps. The resultie relative gain in bitrate and the loss in intelligibiliof

are reported for fixed values af Fixing ) for a collection of DPSPA parameter setting over the default parameter setting
sequences effectively fixes the QP value in each frame. Thids demonstrated in Table 1, the DPSPA parameter settings
results in slight variations in rate and is an approximatiba  provide average speed improvements of approximately 15%
constant rate scenario. Results are currently being gesnkera with little decrease in intelligibility. A difference of qpoxi-

at fixed values of bitrate using the rate control algorithm demately 1.5 dB corresponds to a statistical change in subgect
scribed in Section 2 and will be presented at the workshopntelligibility score [6]. Therefore, the average decesn
These experiments are conducted on a Windows XP PC haintelligibility shown in Table 1 will not significantly recte

ing a 2.01 GHz AMD processor. the perceived intelligibility.

The DPSPA algorithm is executed for values Jof= The reductions in complexity result from choosing an op-
{0.5,1, 5,40, 150} corresponding to average bitrate{@15.5, timal combination of encoding parameters, including the us
155.8, 74.2, 28.8, 16}1kb/s for the default parameter setting of the additional coding modes tuned for region-based coder
on test videos. The optimal parameter settings computed Biable 2 lists the encoder parameter settings which have been
DPSPA are applied to the test set of ASL videos to obtairapplied to the test videos. While the default parameteinggtt
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B fline training results from DPSPA can be stored in a look-up
'Atable on the mobile device, allowing extremely fast setacti
of optimal encoding parameters based on the current network

Table 2. The default parameter setting (fixed) and DPS
parameter settings for different valuesof

Parameter Default 5T 1\DP5SP‘16 B and processing resources. The ASL optimized encoder is cur-
nelljme £ 3 3 R 5 rently being ported to an HTC TyTN Il cell phone, being in-
sube tegrated into the MobileASL application in order to valielat
ref 1 S| 117111 the results computed by DPSPA in the offline training. [12].
part 8 6 8 | 8| 3 3
trellis 1 0 0|2 2 2 7 REFERENCES
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RA - ME - 6 5 |6| 6 6 [1] D. Chai and K N. Ngan, “Face segmentation using skin color

map in videophone applications,” IEEE Trans. Circuits and
Systems for Video Technology, 1999, vol. 9, pp. 551-564.

) [2] S. Daly, K. Matthews, and J. Ribas-Corbera, “Face-based
uses HEX search for the entire frame, the DPSPA parame- visually-optimized image sequence coding, Firoc. |EEE In-

ter setting exploits th&Q - VE option, using either (HEX,
DIA, DIA) or (DIA, DIA, DIA) for (face, torso, background),

each of which have lower search complexity than the default[s]

setting. DPSPA often chooses lower complesitybne and
backgr nd- part compared to the defautubne=5 and

ternational Conference on Image Processing (ICIP’98), 1998,
pp. 443-447 vol.3.

F. M. Ciaramello and S.S. Hemami, “Quantifying the effec
of disruptions to temporal coherence on the intelligifpilitf
compressed american sign language video,”Piac. SPIE,

P8 x 8, I8 x 8, 14 x 4 for background macroblocks. Since Human Vision and Electronic Imaging ' 09, 2009, vol. 7240.
DPSPA generates parameter settings that trade-off jdiert ra [4] D. Agrafiotis, N. Canagarajah, D. R. Bull, J. Kyle, H. Seer
intelligibility cost with encoding time, it does not alwapick
parameters having lower complexity than the default sgttin
For example in Table 2, fokppspa = 0.6, DPSPA picks
three reference frames instead of one reference frame. Th
additional computation cost is mediated by the correspandi
reduction in distortion.

and M. Dye, “A perceptually optimised video coding system
for sign language communication at low bit rates,” Signal
Processing: Image Commun., 2006, number 21, pp. 531-549.

K. Nakazono, Y. Nagashima, and A. Ichikawa, “Digital ede
ing applied to sign language video,” |&EICE Trans. Inf. &
Sys., June 2006, vol. E89-D.

[6] F. M. Ciaramello and S. S. Hemami, “Complexity consteain
rate-distortion optimization of sign language video usargy
objective intelligibility metric,” inProc. SPIE, Visual Com-
munication and Image Processing ' 08, Jan. 2008, vol. 6822.

6. CONCLUSION AND FUTURE WORK

This paper presents an ASL encoder based on the H.264 stan-_ ., ,

dard in which both rate and complexity can be allocated tol7] *264." http://developers.videolan.org/x264. html.

the region-of-interest. The proposed encoder includes twol8] F. M. Ciaramello and S.S. Hemami, “Real-time face andchan

new parameters that specify the partition size for the back- ~ detection for videoconferencing on a mobile device,Work-

ground macroblocks and ROI-based motion search complex- S0P on Mideo Processing and Quality Metrics for Consumer

ity. DPSPA, a fast offline algorithm, is used to choose param- Electronics, Scottsdale, AZ, January 2009.

eter settings that have excellent rate-intelligibilityaeplexity ~ [9] A. Ortega and K. Ramchandran, “Forward-adaptive quanti

performance. These parameter settings can be stored in a 2&tion with optimal overhead cost for image and video cod-

look-up table that can be used by an online algorithm which "9 With applications to mpeg video coders,” Rroc. of

chooses parameter settings based on the available computa- IS& T/SPIE Digital Video Compression 95, February 1995.

tional resources and bandwidth. When compared to the dél0] R. Vanam, E. A. Riskin, and R. E. Ladner, “H.264/MPEG-

fault parameter settings, the DPSPA parameter settings giv 4.AVC.encoder pargmeter selection algorithms for compjexit

up to 21.2% improvement in encoding speed with a small de-  distortion tradeoff,” inProc. of DCC, Mar. 2009.

crease in intelligibility. [11] R. Vanam, E. A. Riskin, R. E. Ladner, and S. S. Hemami,
DPSPA quickly provides a collection of parameter set- ~ ‘Fast parameter setting selection algorithms for distorti

tings which are nearly optimal in terms of rate, distortian complexity optimization of h.264 encoder/EEE TCSVT (in

complexity. Real-time video encoding on a mobile device im- preparation).

poses constraints on both bitrate and encoding speedieBitrd12] Eve  Riskin, ~ Sheila ~ Hemami,  and  Richard

is a function of the available network bandwidth, which will Ladner, ~The  MobileASL ~  Project,

vary depending on network load and geographical location. http://www.cs.washington.edu/research/MobileASLéxdhtml.

The encoding complexity depends on the maximum process-

ing power of a given device and on the remaining battery life.

Given these constraints on bitrate and encoding speedf-the o

Western NY Image Processing Workshop, Rochester, NY, September 2009



