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ABSTRACT

Real-time videoconferencing using cellular devices provides natural communication to the Deaf community. For
this application, compressed American Sign Language (ASL) video must be evaluated in terms of the intelligibility
of the conversation and not in terms of the overall aesthetic quality of the video. This work presents a paired
comparison experiment to determine the subjective preferences of ASL users in terms of the trade-off between
intelligibility and quality when varying the proportion of the bitrate allocated explicitly to the regions of the
video containing the signer. A rate-distortion optimization technique, which jointly optimizes a quality criteria
and an intelligibility criteria according to a user-specified parameter, generates test video pairs for the subjective
experiment. Experimental results suggest that at sufficiently high bitrates, all users prefer videos in which the
non-signer regions in the video are encoded with some nominal rate. As the total encoding bitrate decreases,
users generally prefer video in which a greater proportion of the rate is allocated to the signer. The specific
operating points preferred in the quality-intelligibility trade-off vary with the demographics of the users.

1. INTRODUCTION

Real-time, two-way transmission of American Sign Language (ASL) video over cellular networks provides natural
communication among members of the Deaf community. When compressing and evaluating ASL video, tradi-
tional video quality estimators are inadequate; quality must be measured as the intelligibility of the signer, and
not as the overall aesthetic quality of the video. Information in ASL is communicated through facial expressions
and hand gestures and the intelligibility of compressed ASL video can be objectively computed by measuring
the distortions in the signer’s face, hands, and torso. This objective intelligibility measure, denoted the compu-
tational intelligibility model (CIM), accurately estimates subjective ratings of intelligibility provided by fluent
ASL users.1

An intelligibility optimized encoder allocates rate within a frame according to the CIM and provides bitrate
reductions up to 50%, at fixed levels of intelligibility, when compared to a mean-squared-error (MSE) optimized
encoder.2 The MSE optimized encoder nominally provides consistent levels of distortion across the entire frame,
but is unable to produce intelligible video at low bitrates. The intelligibility optimized encoder achieves bitrate
reductions by heavily distorting the background video region, while maximizing the fidelity of the signer. A
subset of participants in a subjective experiment qualitatively reported distractions due to heavily distorted
backgrounds, even when they considered the videos to be intelligible.3 Allowing the user to adjust the level of
background distortion addresses this problem, but lowering the distortion in the background region necessarily
increases the distortion in the signer and can lead to an unintelligible video.

The goal of this work is to evaluate the preferences of ASL users in terms of this quality versus intelligibility
trade-off, specifically identifying when a user is willing to sacrifice intelligibility (as measured by the CIM) for an
increase in video quality (as measured by PSNR). A paired comparison experiment is conducted to identify user
preferences for videos in which the relative amount of rate allocated between the signer and the background varies
in a systematic way. A rate-distortion algorithm that jointly optimizes the CIM and PSNR is used to generate
the test videos for the experiment and is summarized in Section 2. A detailed description of the subjective
experiment is provided in Section 3. The experimental results, summarized and discussed in Section 4, support
the need for a user-controlled trade-off between intelligibility and quality.
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2. A QUALITY-INTELLIGIBILITY CODING TRADE-OFF

Rate-distortion (R-D) optimization for H.264 video requires the selection of a set of encoding parameters for each
macroblock (16×16 block of pixels) that minimizes the distortion, subject to a target bitrate. Depending on the
distortion measure being used by the encoder, the resulting rate allocated to any particular macroblock can vary
significantly between macroblocks within a frame. The authors have developed a R-D optimization algorithm
that has a single, user-specified parameter that can be adjusted to vary the percentage of rate allocated explicitly
to the signer.2 This coder achieves rate-distortion performance defined by the convex combination of a strictly
quality optimized and a strictly intelligibility optimized encoder, providing a trade-off between the clarity of the
signer and the amount of distortion in the background macroblocks of the video frame. The performance of this
encoder, as well as some illustrative examples, are summarized in this section.

At one extreme, the strictly quality optimized R-D algorithm is designed to maximize the overall quality of
the input video by allocating rate evenly to each macroblock in a frame. In this encoder, quality is measured
in terms of PSNR. Although PSNR is unable to accurately estimate subjective quality across different videos
and different distortion types, it can still be applied as a measure of video quality under certain constraints. In
particular, when encoding a single video, it is fair to assume that increasing PSNR corresponds to an increase in
subjective quality (or, more conservatively, a non-decrease in subjective quality). Given this assumption, PSNR
is used here as an estimate for subjective quality.

At the other encoding extreme for sign language video, it is more appropriate to apply a R-D optimization
algorithm designed to maximize an intelligibility criteria, rather than a quality criteria. This intelligibility
optimized encoder allocates rate within a frame according to an intelligibility distortion measure, which is a
function of the distortion only in linguistically relevant regions, i.e., the signer’s face, hands, and torso.1 The
intelligibility distortion measure can be written as the sum of the weighted MSE in each of the relevant regions,
computed according to

DIntell =
1

N

N∑

n=1

αFDF (n) + αHDH(n)αTDT (n) + αBGDBG(n) +Dtemporal, (1)

where DF , DH , DT , and DBG are the MSE for the face, hands, torso, and background regions in frame n

for a video sequence having N total frames. The region weights of αF = 1.6, αH = 0.5, αH = 0.1, and
αBG = 0 maximize the prediction accuracy of the intelligibility distortion measure with respect to ground-truth
intelligibility ratings. Distortions in background macroblocks do not contribute to DIntell; αBG and DBG are
included in Eq. (1) to explicitly account for all macroblocks. The impact of temporal variations in the distortions
is quantified by Dtemporal.

1

Note that DIntell is a distortion measure and is inversely proportional to intelligibility. The varying weights
control the relative importance of each type of macroblock; a distortion in the signer’s face will result in a lower
intelligibility than the same amount of distortion in the signer’s torso. The intelligibility distortion is mapped
to the CIM according to

CIM = log10
C

DIntell

, (2)

where C = 1102 is a constant chosen empirically to map to an intelligibility scale.

These two encoding extremes alone are incapable of accommodating the preferences of ASL users while
maintaining intelligible video. The user-specified quality-intelligibility encoding trade-off parameter is denoted
αmin and specifies the minimum weight to be applied to all macroblocks in the frame. Specifically, if the weight
αk of any region (including the signer’s face, hands, torso, or background) is less then αmin, then the weight αk

is changed and set equal to αmin. This provides a mechanism to increase the quality in the background, while
guaranteeing that the background distortion weight is never higher than the distortion weights for the signer’s
face, hands, or torso.

Systematically varying αmin yields the convex combination of the quality optimized and intelligibility opti-
mized encoders, as illustrated in Figure 1. As αmin increases, the R-D performance of the encoder sweeps the
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(a) CIM vs PSNR for an ASL video.
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(b) CIM vs PSNR for only the 3 videos and 5 values of
αmin selected for the paired comparison experiment.

Figure 1. PSNR vs CIM plots for the quality-intelligibility optimized coder at several rates and values of αmin. The left
y-axis provides the CIM and the right y-axis provides the subjective rating categories corresponding to the CIM values.
In (a), each solid line corresponds to a fixed bitrate and a varying αmin. The bitrates vary between 25 kbps and 100 kbps
in increments of 5 kbps. PSNR can be increased by several dB without a significant decrease in CIM, when compared to
the strictly intelligibility optimized encoder.

space between the two encoding extremes. When encoding a video for a fixed target bitrate, the value of αmin

determines the operating point in the trade-off between intelligibility and quality, as illustrated in Figure 1(a).

Modifying αmin controls the degree to which the regions of interest (ROIs) are prioritized over the rest of the
frame. A region is considered prioritized if its corresponding distortion weight is larger than αmin. A prioritized
region will have lower distortion, on average, than the rest of the frame. To illustrate, consider a sample
ASL video encoded at 55 kbps with different values of αmin. Five values for αmin are selected to emphasize
different operating points and are evaluated in the paired comparison experiment: αmin = 0 prioritizes the
entire ROI, αmin = 0.02 prioritizes the entire ROI and provides a nominal amount of rate to the background,
αmin = αT = 0.1 prioritizes only the signer’s face and hands, αmin = αH = 0.5 prioritizes the signer’s face, and
αmin = αF = 1.6 prioritizes no regions and corresponds to the quality optimized encoder. Frames from this
video are presented in Figure 2. As αmin increases, the relative priority of the ROI necessarily decreases and
intelligibility decreases, as illustrated in Figures 2(b) through 2(f). As this example demonstrates, varying αmin

can provide a user with control over the level of background distortion while still prioritizing the most important
regions of the signer.

3. PAIRED COMPARISON EXPERIMENT FOR IDENTIFYING USER
PREFERENCES IN THE QUALITY-INTELLIGIBILITY TRADE-OFF

The coder described in Section 2 and the choice of αmin controls the trade-off between optimizing a video
encoder for intelligibility and optimizing for quality. A paired comparison experiment is conducted to determine
subjective preferences in this trade-off. The primary goal is to identify preferred operating points, if they exist,
and to determine under what conditions a user likely to desire a particular operating points.

3.1. Stimuli

Reference sign language stories told by a fluent signer at her natural signing pace were filmed at an outdoor
location on a busy street having a significant amount of background activity. Videos were recorded at a resolution
of 1280×720 pixels and a frame rate of 60 progressive frames per second. For this experiment, the videos are
cropped and downsampled in order to match the expected usage conditions, namely a mobile device having a
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(a) Original video frame (b) Prioritize all of the ROI. αmin = 0, PSNR =
18.44 dB, CIM = 3.47

(c) Prioritize all of the ROI with nominal back-
ground distortion weight. αmin = 0.02, PSNR =
21.74 dB, CIM = 3.44

(d) Prioritize only the face and hands. αmin =
0.1, PSNR = 23.43 dB, CIM = 3.41

(e) Prioritize only the face. αmin = 0.5, PSNR =
25.21 dB, CIM = 3.32

(f) Quality optimized. αmin = 1.6, PSNR =
25.73 dB, CIM = 3.23

Figure 2. Comparison of distortions for different levels of region-of-interest (ROI) priority each at 55 kbps. The encoding
option αmin specifies the minimum distortion weight to be applied to any region. As αmin increases, the torso, hands,
and face are allocated fewer additional bits relative to the rest of the frame, causing a decrease in intelligibility. Figure 1
specifies the relationship between the CIM and the predicted subjective intelligibility ratings.
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display resolution of 320×240 pixels.4 This reduced resolution is also required for the simultaneous presentation
used in the paired comparison methodology.5 The videos are temporally subsampled to 15 frames per second,
which is above the nominal frame rate required for ASL communication.6

Three reference stories are selected for the experiment and encoded at one of three bitrates: 20 kbps, 45 kbps,
and 80kbps. Each story is encoded at a single bitrate using five different values of αmin: 0, 0.02, 0.1, 0.5, and 1.6,
corresponding to the five ROI prioritization scenarios illustrated in Figure 2. This combination of bitrates and
αmin values are selected to yield videos that would be rated as difficult to understand (20 kbps), from neutral
to easy (45 kbps), and from easy to very easy (80 kbps), as illustrated in Figure 1(b).

3.2. Method

The subjective experiment uses a paired comparison methodology with simultaneous presentation, as recom-
mended by ITU-T.5 Each presentation consists of a pair of coded ASL videos displayed synchronously and
side-by-side on a single screen. After watching the video pair, the participant is asked to “please select the video
you would prefer to see on a cell phone video call.” The collection of video pairs consist of videos generated from
the same reference story encoded using two different values of αmin.

At each bitrate, the 5 test levels of αmin yield 10 pair-wise combinations. The 10 pairs are presented to
the participant twice, swapping the left/right display order. None of the test pairs contain videos at different
bitrates, assuming that videos at higher bitrates will always be preferred over videos at lower bitrates. This
results in 20 paired comparisons per bitrate and 60 comparisons per participant. Following 2 practice examples,
the 60 pairs are presented in random order. At the completion of the paired comparisons, participants provide
demographic data regarding their level of experience with ASL, their use of video-based communication tools
such as video relay services and video phones, and their use of text-based communication tools such as Internet
chat and text messaging.

3.3. Implementation

Because of the difficulties in recruiting participants who are fluent in ASL, two versions of the experiment
were made available: an on-site experiment in a controlled environment at Cornell University and a web-based
experiment, in which ASL users in any location could participate. Despite the limitations of web-based percep-
tual experiments, such as uncontrolled display environments, varying display technologies, and other real-world
variability, web-based experiments drastically increase the observer pool and typically provide results that are
consistent with lab-based experiments.7,8

To guarantee synchronous playback of the video pairs, the on-site experiment was implemented in Matlab,
using the Psychophysics Toolbox,9–11 which offers extremely precise control over the video playback timing.
For the web-based experiment, an individual video file was created for each pair by decoding the compressed
videos, horizontally concatenating the decoded frames, and re-encoding the side-by-side video at a sufficiently
high bitrate such that no new compression artifacts were introduced. The video pairs in both the on-site and
web-based experiments were identical, though the web-based version offered a shortened experiment, wherein
participants only viewed each pair once, without evaluating the left/right swapped pair. Pairs used in the
shortened experiment were selected such that every 2 participants evaluated exactly the same set of pairs as
a single participant in the full-length experiment. A demonstration of the web-based experiment is available
online.∗

3.4. Data Processing

The paired comparison methodology acquires data to estimate the probability that stimulus i is preferred over
stimulus j. The Bradley-Terry model provides a framework for mapping the pair-wise probability estimates of
preference to scale values for each stimulus.12 The scale values rank the collection of stimuli, determining the
relative preference of each value of αmin. Because the stimulus pairs in the experiment never contain videos at
two different bitrates, scale values are generated independently at each of the three tested bitrates.

∗http://foulard.ece.cornell.edu/ASLweb/demo/
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(a) 20 kbps.
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(b) 45 kbps.
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(c) 80 kbps.

Figure 3. Scale values generated from the complete set of paired comparison data using the Bradley-Terry model. Error
bars indicate the 95% confidence intervals.

Table 1. Table of p-values for χ2

4 hypothesis test on the uniformity of the scale values,13 for different groups of participants.
The null hypothesis indicates that the scale values are not statistically different from a uniform distribution, i.e., each
αmin is equally preferable. Entries in bold indicate that the null is rejected at 95% confidence (p < 0.05). The “ASL FL”
and “ASL SL” groups correspond to participants for whom ASL is their first language (FL) or second language (SL). The
“Heavy Video Use” and “Light Video Use” groups are divided according to their level of experience with video-based
communication technologies.

Bitrate Complete Set ASL FL ASL SL Heavy Video Use Light Video Use

20 kbps 0.370 0.097 0.084 1.7e-4 0.003

45 kbps 0.017 0.261 0.022 0.003 3.9e-4

80 kbps 0 8.9e-14 4.0e-8 0 0.003

4. RESULTS AND DISCUSSION

A total of 12 ASL users participated in this experiment: 3 on-site participants and 9 web-based participants. Of
the 9 web-based participants, 4 opted for the shortened version, yielding a total of 600 comparisons (200 at each
bitrate).

Applying the Bradley-Terry model,12 scale values for each tested αmin are computed at each bitrate. Following
the methodology discussed in Ref.13, a χ2

t−1 hypothesis test with t− 1 degrees of freedom (t = 5 levels of αmin)
determines whether the scale values are statistically different from a uniform distribution. If the null hypothesis
holds, all values of αmin are equally preferable. If the null hypothesis is rejected, at least one αmin is preferred
over the others. The computed scale values, with 95% confidence intervals, are provided in Figure 3. Table 1
provides the results of the hypothesis tests for uniformity.

At 80 kbps, the scale values demonstrate a preference when αmin ≥ 0.1, as plotted in Figure 3(c). Each of the
scale values for αmin ≥ 0.1 have overlapping confidence intervals and can be considered equally preferable. At
αmin = 0.1, because of the relatively high encoding bitrate, the quality-intelligibility optimized coder produces
video predicted to be very easy to understand, as seen in Figure 1(b). In this case, the smaller values of αmin = 0
and αmin = 0.02 significantly reduce the overall quality (PSNR) while providing only negligible improvements in
intelligibility (CIM). This saturation effect implies that when coding an ASL video, when the bitrate is sufficiently
high for producing video considered very easy to understand, any additional rate must be allocated to maximize
a quality constraint.

At 45 kbps, αmin = 0.1 and αmin = 0.5 are preferred over αmin = 1.6. Referring to Figure 1(b), these two
values of αmin correspond to the points on the PSNR-CIM curve having the largest slope. These points are
preferred because they provide the largest increase in the CIM for the corresponding decrease in PSNR.

At 20 kbps, the scale values are not statistically different from a uniform distribution, indicated by the
hypothesis test results in Table 1. As illustrated in Figure 1(b), the PSNR-CIM curve at this bitrate is relatively
flat; the relative change in the CIM is small compared to the relative change in PSNR, for varying αmin. One

Proc. SPIE Vol. 7865, Human Vision and Electronic Imaging (HVEI), January 2011



0 0.02 0.1 0.5 1.6
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

Test α
min

 Values

S
ca

le

 

 

Heavy Video Use
Light Video Use

(a) 20 kbps.
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(b) 45 kbps.
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(c) 80 kbps.

Figure 4. Scale values generated from paired comparison data of groups of participants who use both video relay services
and video phone technology (denoted “heavy video use”) and those who do not (denoted “light video use”). Scale values
are generated according to the Bradley-Terry model. Error bars indicate the 95% confidence intervals.

Table 2. Table of p-values for χ
2

4 hypothesis test on differences between groups.13 The null hypothesis indicates that
the scale values from each group are statistically equivalent. Entries in bold indicate that the null is rejected at 95%
confidence (p < 0.05), i.e., the groups are statistically different from each other. The “ASL FL” vs “ASL SL” column
compares groups that correspond to participants for whom ASL is their first language (FL) or second language (SL). The
“Heavy Video Use” vs “Light Video Use” column compares groups that are divided according to their level of experience
with video-based communication technologies.

Bitrate ASL FL vs ASL SL Heavy Video Use vs Light Video Use

20 kbps 0.019 7.1e-7

45 kbps 0.321 5.4e-5

80 kbps 0.186 2.9e-7

might expect a preference for the highest quality video, when the change in CIM is small. However, the lowest
quality video (αmin = 0) is still equally preferable to the highest quality video (αmin = 1.6).

A uniform distribution of scale values can be attributed to one of two statistical models. In the first model,
each individual observer has no preference and is arbitrarily selecting one of the two videos in a pair. This case
implies that every value of αmin yields the same perceptual response and no value is preferred over another. In
this case, the selection of an operating point in the quality-intelligibility trade-off is arbitrary, since all points
are truly equal. In the second model, a single observer (or group of observers) demonstrates a preference for a
particular αmin, while a sampling of the entire population of observers exhibits no preference. In this case, each
value of αmin is preferred by a specific individual (or group) and that preference varies across individuals (or
groups), supporting the need for a user-specified operating point in the quality-intelligibility trade-off.

An analysis of the scale values for different groups of participants provides evidence for the second model. In
particular, groups divided according to their use of video-based communication technologies have opposite (and
non-uniform) preference rankings. Because the collection of data is sufficiently small, the relevant groups have
been identified manually, though one could use a recursive procedure for identifying groups having homogeneous
preferences.14 The 7 participants who reported using video relay services and video phone technology are denoted
the “heavy video use” group. The remaining 5 participants are denoted the “light video use” group, because
some individuals in this group use Internet chat services, such as Skype, which offer video communication as a
secondary feature. At every bitrate, the scale values for each of the two groups are statistically different from
uniform, as shown in Table 1. Furthermore, using the methods in Ref. 13, a χ2

4 hypothesis test identifies a
significant difference between these two groups at every bitrate, i.e., these two groups have statistically different
preferences. The results of this hypothesis test, with p-values, are provided in Table 2.

At each tested bitrate, the “light video use” group has a significantly higher preference for αmin = 0 than the
“heavy video use” group. Furthermore, at 25 kbps and 50 kbps, the “light video use” group prefers αmin = 0
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(a) 20 kbps.
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(b) 45 kbps.
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(c) 80 kbps.

Figure 5. Scale values generated from paired comparison data of participants whose first language is ASL or whose
first language is not ASL. Scale values are generated from paired comparison data according to the Bradley-Terry model.
Error bars indicate the 95% confidence intervals.

over αmin = 1.6, as shown in Figure 4. Conversely, the “heavy video use” group demonstrates a preference for
αmin = 1.6, where videos are coded for quality. This preference is most evident at 80 kbps, where the values
of αmin ≥ 0.1 are preferred unanimously over αmin = 0 and αmin = 0.02, causing the large difference in scale
values in Figure 4(c).

Variations in the preferences of the “heavy video use” and “light video use” groups may be attributable to
differences in their prior experience of digital video. Video-based communication technologies typically use a
quality criteria when coding video (e.g., they maximize PSNR). In this case, the coding distortions are gener-
ally distributed evenly across space. The strictly intelligibility optimized coder (αmin = 0) produces video in
which the signer and the background have significantly different distortion levels. This disparity in the spatial
distribution of distortion substantially differs from a quality optimized coder, and, consequently, differs from the
prior experiences of the “heavy video use” group, resulting in a preference for the coded ASL video that is more
consistent with their expectations.

An alternative grouping of ASL users divides the collection based on the level of experience with ASL. The
first group consists of those whose first or primary language is ASL, which commonly includes deaf persons or
hearing children of deaf adults. The second group consists of those who have learned ASL as a second language.
The differences between these groups are only significant at 20 kbps and not to the same degree of confidence as
the differences for the “video use” groups. The p-values are summarized in Table 2. Furthermore, the scale values
for each of these groups are consistent with those computed from the complete data set, as illustrated in Figure 5.
Other partitions of the participants yield similar conclusions; a user’s experience with video-based communication
serves as the most meaningful predictor of the preferred operating point in the quality-intelligibility trade-off.

5. CONCLUSIONS AND FUTURE WORK

A paired comparison experiment was conducted to evaluate user preferences for coded ASL video. Test videos
were generated using a quality-intelligibility coder, which provides a user-controlled parameter, αmin, that varies
the degree to which a quality criteria is emphasized over an intelligibility criteria. Videos at 3 bitrates were
coded using 5 test levels for αmin. At 80 kbps, users preferred videos coded according to the quality criteria,
because the intelligibility of these videos was sufficiently high. At the lower tested bitrates of 45 kbps and 20
kbps, the preferences varied with user demographics. Participants having significant experience using video-
based communication technologies preferred video coded according to the quality criteria while those with little
experience preferred video coded according to the intelligibility criteria. The existence of these two classes of
individuals confirms the need for a user-centric encoding option, because the most desirable quality-intelligibility
operating points vary across individuals and across bitrates.

The parameter αmin varies the spatial distribution of the distortions, either distributing distortion evenly
across a video frame (in the quality case) or heavily distorting the background region in order to improve the
quality in only the signer (in the intelligibility optimized case). For future study, these region-of-interest (ROI)
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coded videos will be evaluated by participants who are unfamiliar with ASL. Without any ASL experience,
a participant making paired comparisons in this setting will simply prefer the video having higher quality,
independent of the ASL content. The impact on the perceived video quality of ROI video of this type can
potentially be applied more generally to any videoconferencing scenario.
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