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Abstract

The goal of the MobileASL project is to increase acces-

sibility by making the mobile telecommunications network

available to the signing Deaf community. Video cell phones

enable Deaf users to communicate in their native language,

American Sign Language (ASL). However, encoding and

transmission of real-time video over cell phones is a power-

intensive task that can quickly drain the battery.

By recognizing activity in the conversational video, we

can drop the frame rate during less important segments

without significantly harming intelligibility, thus reducing

the computational burden. This recognition must take place

from video in real-time on a cell phone processor, on users

that wear no special clothing.

In this work, we quantify the power savings from drop-

ping the frame rate during less important segments of the

conversation. We then describe our technique for recogni-

tion, which uses simple features we obtain “for free” from

the encoder. We take advantage of the conversational aspect

of the video by using features from both sides of the conver-

sation. We show that our technique results in high levels of

recognition compared to a baseline method.

1. Introduction

Mobile phones are rapidly becoming ubiquitous, with

over 2.68 billion mobile phone subscribers worldwide [16].

In the United States, federal law has long mandated ac-

cessibility to the telephone network for the Deaf through

subsidized telephone typewriters (TTY) and, more recently,

video relay service. However, there is no equivalent service

for access to mobile telecommunications. The MobileASL

project [5, 9] aims to expand accessibility for Deaf people

by compressing sign language video to enable mobile phone

communication. With today’s bandwidth limitations [12]

and the low processing power available on phones, two-

way real-time mobile sign language communication is not

feasible using current video compression technology in the

United States.

However, in the same way that there are characteris-

tics unique to speech that allow speech to be compressed

more than standard audio, sign language has distinct fea-

tures that should enable better compression than is typical

for video. In this work, we focus on recognizing activity

in sign language video in order to make adjustments that

might increase or maintain intelligibility while decreasing

cost. Cost can be measured in several ways: dollar value,

if users are expected to pay based on how much data they

transmit; processing power, so that real-time compression

may be achieved on a standard phone; and battery life, since

a short-lived phone is not very useful. One way to save

data transmission and processor cycles while minimally af-

fecting intelligibility is to lower the frame rate on the basis

of the activity in the video [8]. Because conversation in-

volves turn-taking (times when one person is signing while

the other is not), we may save power as well as bit rate by

lowering the frame rate during times of not signing, or “just

listening” (see Figure 1).

Figure 1. From left to right: a sufficient video frame rate is cho-

sen when the signer is signing, the frame rate decreases when the

signer is not signing (or just listening), and increases again when

the signer begins signing.

Our goal is to recognize the activity from a video stream

in real-time on a standard mobile telephone. Since we want
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to increase accessibility, we do not restrict our users to spe-

cial equipment or clothing. We only have access to the cur-

rent frame of the conversational video of the signers, plus a

limited history of what came before.

To accomplish our task, we harness two important

pieces: the information available “for free” from the en-

coder, and the fact that we have access to both sides of the

conversation. The encoder we use is H.264, the state-of-

the-art in video compression technology. H.264 works by

finding motion vectors that describe how the current frame

differs from the previous one. We use these, plus some ad-

ditional features, as input to a support vector machine. We

then improve our results by taking advantage of the two-

way nature of our video. Using the features from both con-

versation streams does not add complexity and allows us to

better recognize the activity taking place.

The paper is organized as follows. In the next section,

we briefly discuss related work. In section 3, we demon-

strate power savings on a mobile phone when encoding

and transmitting frame rate-adjusted videos. In section 4,

we describe our feature extraction and machine learning

techniques for real-time activity recognition on mobile tele-

phones. Section 5 contains our results, where we compare

our method to a simple thresholding technique and show

that we outperform it. We conclude in section 6.

2. Related Work

Sign language recognition is well-studied in the litera-

ture [18]. While related to our work, our goal is not trans-

lation or interpretation, but rather increasing accessibility

by enabling mobile telecommunication for the signing Deaf

community. We are constrained to on-line algorithms that

are efficient enough to recognize activity in real-time on a

mobile phone. Our users should be able to use our software

on a standard phone, without wearing special clothing or

using additional equipment.

We build on the work of Cherniavsky et al. [8]. They

performed user studies with native signers to examine in-

telligibility at different frame rates for conversational sign

language video. They also showed the feasibility of us-

ing machine learning to recognize different activity, though

the baseline method sometimes outperformed the machine

learning algorithm. They did not quantify the power use

on the mobile phone, and the videos used for the machine

learning were taken from a stationary camera on a tripod,

with a dark background. Because of this, only one side of

the conversation was available to train and test.

Most closely related to our work is vision-based sign lan-

guage recognition. There are two main parts to any recog-

nition task: feature extraction and machine learning. The

goal of feature extraction is to find a reduced representation

of the data that models the most salient properties of the

raw signal. In vision-based recognition, the features must

be extracted from video. If feature extraction is too slow

to support a frame rate of 5 frames per second (fps), it is

not real-time and thus not suitable to our purposes. This in-

cludes Huang et al. and Chen et al.’s Fourier descriptors to

model hand shape [7, 13]; Cui and Weng’s pixel intensity

vector [11]; Huang and Jeng’s active shape models [14];

and Tamura and Kawasaki’s localization of the hands with

respect to the body [22]. Though the time complexity was

unreported, it is likely that Imagawa et al.’s principal com-

ponent analysis of segmented hand images is not real-time

[15]. Yang et al. also did not report on their time complex-

ity, but their extraction of motion trajectories from succes-

sive frames uses multiple passes over the images to segment

regions and thus is probably not real-time [25].

More promising for our purposes are the techniques that

use the center of gravity (COG) of the hand and/or face.

One way to easily pick out the hands from the video is to re-

quire the subjects to wear colored gloves. Assan and Grobel

[3] and Bauer and Kraiss [4] use gloves with different colors

for each finger, to make features easy to distinguish. Tani-

bata et al. use skin detection to find the hands, then calcu-

late the COG of the hand region relative to face, the area of

hand region, the number of protusions (i.e. fingers), and the

direction of hand motion [23]. Kobayashi and Haruyama

extract the head and the right hand using skin detection and

use the relative distance between the two as their feature

[17] . Starner et al. use skin detection to track the hands

and extract the bounding ellipse and angle of least inertia of

the skin blobs [21]. Following on these techniques, some of

our features use the skin-detected areas of the video.

In the computer vision community, automatic activity

analysis is an active topic of research. Though conversa-

tional sign language video has not been explored to our

knowledge, shot change detection [20] (determining when

a scene changes) and human motion analysis [24] are both

widely studied. The first problem does not usually require

on-line algorithms and solutions to the second problem are

often not real-time and require processing power beyond the

scope of a mobile phone. We use the original shot change

detection method of differencing as a baseline to compare

against.

3. Power Study

In order to quantify the power savings from dropping the

frame rate during less important segments, we monitored

the power use of MobileASL on a Sprint PPC 6700 at var-

ious frame rates. MobileASL normally encodes and trans-

mits video from the cell phone camera. We modified it to

read from an uncompressed video file and encode and trans-

mit frames as though the frames were coming from the cam-

era. We were thus able to test the power usage at different

frame rates on realistic conversational video (described in

Section 4). We used a publicly available power meter pro-
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Figure 2. Power study results.

gram [1] to sample the power usage at 2 second intervals.

The minimum frame rate necessary for intelligible signing

is 10 frames per second (fps), but rates as low as 1 fps are

acceptable for the “just listening” portions of the video [8].

Thus, we measured the power usage at 10 fps, 5 fps, and 1

fps. Power is measured in milliamps (mA) and the baseline

power usage, when running MobileASL but not encoding

video, is 420 mA.

Figure 2 shows (a) the average power usage over all our

videos and (b) the power usage of a two-sided conversation

at 1 fps. On average, encoding and transmitting video at

10 fps requires 17.8% more power than at 5 fps, and 35.1%

more power than at 1 fps. Figure 2(b) has stars at periods

of signing for each signer. Note that as the two signers take

turns in the conversation, the power usage spikes for the

primary signer and declines for the person now “just listen-

ing.” The spikes are due to the extra work required of the

encoder to estimate the motion compensation for the extra

motion during periods of signing, especially at low frame

rates. In general the stars occur at the spikes in power us-

age, or as the power usage begins to increase. Thus, while

we can gain power saving by dropping the frame rate during

periods of not signing, it would be detrimental to the power

savings, as well as the intelligibility, to drop the frame rate

during any other time.

4. Activity Analysis

Our goal is to automatically detect from our video stream

when the user is signing and not signing, so we can lower

or raise the frame rate accordingly. We only have access to

the information available to us from the video stream, and

we must be able to determine the class of activity in real-

time. We first apply feature extraction to the video stream,

and then input those features to a support vector machine.

The conversational videos were recorded directly into

raw YUV format from a web cam. Signers carried on a

conversation at their natural pace over a web cam/wireless

connection. Two pairs recorded two different conversations

in different locations, for a total of eight videos. For each

pair, one conversation took place in a “noisy” location, with

lots of people walking around behind the signer, and one

conversation took place in a “quiet” location with a stable

background. We encode the videos with x264 [2], a pub-

licly available implementation of H.264, the latest standard

for video compression.

4.1. Features

The H.264 video encoder primarily works by encoding

how the current frame differs from the previous one. If

a video is encoded at a reasonable frame rate, it does not

change much from one frame to the next. H.264 works

by dividing a frame into 16 × 16 pixel macroblocks, then

sending for each macroblock the location of the macroblock

in the previous frame that it most closely resembles, plus

some residual information (see Figure 3(a)). Macroblocks

are in one of three categories: skip blocks, P blocks, or I

blocks. Skip blocks indicate that this macroblock is ex-

actly the same as in the previous frame; they are green in

Figure 3(a). P blocks have motion vectors associated with

them, and are sometimes subdivided into smaller portions.

In Figure 3(a), these are orange and blue. I blocks are in-

tra blocks, meaning that they get the pixel information from

the current frame rather than the previous one. They usu-

ally indicate the most motion of all, because the encoder is

unable to find a block in the previous frame that matches

the current macroblock. These are the red blocks in Fig-

ure 3(a). Note that the I blocks are centered around the left



hand moving rapidly toward the right, while there are mo-

tion vectors associated with the slower motions of the right

hand. The encoder chooses the cheapest of these in terms

of bits and sends it.

For each frame, we obtain either motion vector informa-

tion for each macroblock or an I block, which is an indi-

cation that the encoder gave up trying to find good motion

vectors. Because our videos are conversational over mo-

bile phones, the field of view is generally restricted to the

head and upper torso, so all of the motion vectors are rel-

evant. Because motion is the best indicator of activity, our

technique uses the sum of all motion vectors and the total

number of I blocks (a large value typically corresponds to

large motions).

The size and location of hands and face can also give a

rough indication of the activity. We detect skin via a sim-

ple and well-known RGB-based algorithm [19] that works

for many different skin tones. We apply a smoothing filter

and ignore “skin blocks” smaller than a certain threshold,

as these are usually just noise (in Figure 3(b), we ignore the

small blocks above and to the left of the main boxes). We

then use the center of gravity, area, and bounding box of the

three largest connected components as extra features. These

correspond roughly to the face, the right hand, and the left

hand, though often the skin-detection is noisy. When the

user is not signing, or signing close to her torso, there is of-

ten no component corresponding to the left or right hands.

In this case we send negative numbers, since that informa-

tion is useful.

Lastly, the sum of pixel differences between frames is

often used as a baseline for motion detection. Figure 3(c)

shows the result of subtracting the current frame from the

previous one. We test against the sum of pixel differences

in our results and incorporate it as a feature.

4.2. Machine learning

We use a support vector machine (SVM) [10] , a well-

known machine learning technique, to train and test on our

features. SVM is an algorithm that, given labeled training

data in the form of features and their classes, determines the

optimal separating hyperplane that maximizes the distance

between the two classes. The hyperplane is not necessarily

in the same dimension as the feature space; in fact, it is usu-

ally transformed nonlinearly to a higher dimensional space

in which greater separation may be achieved.

We use libsvm [6], a publicly available software pack-

age, to train and test our data. The kernel function we ap-

ply is the standard radial basis function. We improved the

results for the SVM by also considering the classification

of frames immediately previous to the one to be classified.

We looked at the classification returned by the SVM for the

three frames before this one, plus the current classification,

and returned the majority vote. This sliding window mod-

(a) Macroblock visualization; the lines emanating from the centers

of the squares are motion vectors.

(b) The bounding box and centroid visualization.

(c) Difference image. The sum of pixel differences is often used as a

baseline.

Figure 3. Feature visualization



eled the temporal nature of the video. We experimented

with different weightings on each frame, but found weight-

ing them equally worked best.

4.3. Joint information

The conversational aspect of our videos allows us to in-

corporate additional information into our training and test

sets. Namely, we are able to take features from both

streams to aid in our classification. Suppose that two par-

ticipants, Alice and Bob, are signing to each other over mo-

bile phones. To classify Alice’s next frame, we use the fea-

ture data from her previous frame plus the feature data from

Bob’s previous frame. Alice’s features make up the first part

of the vector and Bob’s make up the second part, and we use

Alice’s label for training purposes. To classify Bob’s next

frame, we use the same data, except that Bob’s features are

in the first part of the vector and Alice’s are in the second

part, and we use Bob’s label for training purposes.

5. Results

We compare the results of the SVM on single stream

and joint stream data to a very simple baseline differenc-

ing technique. A rough measure of motion is the sum of

the absolute differences between the current frame and the

previous frame. We determine the optimal threshold above

which we will classify the frame as signing by training. We

can combine data from both streams by simply subtracting

the difference of the other stream from the difference of the

current stream. Intuitively, this works because if the current

user is signing and the other user is not signing, the joint

difference will be large, but if the current user is not sign-

ing and the other user is signing, the joint difference will

be small (negative, in fact). If both users are signing or not

signing, the joint difference will be higher if the current user

is signing more vigorously.

We extracted features and trained and tested on eight

conversational videos, from four different conversations.

We divided each video into four parts, trained on three out

of the four, and tested on the fourth. We report the overall

accuracy on the entire video using this leave-one-out testing

method.

Table 1 shows that the single stream methods were all

outperformed by the joint stream methods. Furthermore,

our SVM technique, using the motion vector information as

features, outperformed the baseline method.

6. Conclusion and Future Work

In this work, we quantified the power savings on a mo-

bile video phone of lowering the frame rate during the less

important segments of a sign language conversation. By

dropping the frame rate to 1 fps at appropriate times, we

saved up to 35% of battery life. We then described our tech-

nique for realizing those savings by automatically recogniz-

ing when the user is signing. We utilized features available

“for free” from the encoder, as well as the joint information

from both sides of the conversation. We modeled the tem-

poral nature of the video by employing a sliding window.

Our method substantially outperforms a baseline method

that doesn’t use the joint information.

The next step is to perform the recognition within the en-

coder on the cell phone, over the GPRS network. Currently,

MobileASL has been ported to work on several different

types of cell phones, and users can carry on video conver-

sations over the WiFi network. We plan to add the frame

dropping technique to MobileASL and conduct user stud-

ies to determine the intelligibility and irritation level of the

conversations when the recognition makes mistakes. In par-

ticular, it would be interesting to know if users change their

style of conversation when the algorithm mistakenly lowers

the frame rate; if they made large gestures to “turn it back

on”, this could be detrimental to the overall power savings,

since both users would be labeled as signing.

We also plan to further our work in activity analysis of

sign language video. We would like to recognize finger

spelling frames, which might require a higher frame rate.

We plan to incorporate a hidden Markov model on top of

the SVM, that takes the classification from the SVM as in-

put and outputs its own classification. This would be an-

other way to model the temporal aspects of sign language

conversation.
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