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Abstract

Rate-Distortion-Complexity Optimization of Video Encoders with Applications to
Sign Language Video Compression

Rahul Vanam

Co-Chairs of the Supervisory Committee:
Professor Eve A. Riskin
Electrical Engineering

Professor Richard E. Ladner
Computer Science and Engineering

Applications for video compression have been growing over the years due to the availabil-

ity of higher network bandwidth, lower cost of memory, and faster processor speed. Some

new applications include real-time videoconferencing and video streaming. Most current

cell phones come equipped with a video camera, and have the ability to capture a video

and playback a recorded video. An emerging area of video compression is mobile videocon-

ferencing, which is enabling the Deaf to communicate in American Sign Language (ASL)

using video cell phones. Video encoders developed for PCs cannot be readily used for mobile

phones, due to mobile phones’ low processor speeds. In this thesis, we present algorithms

for improving the speed of the H.264 video encoder on both PC and cell phone platforms

by selecting encoder parameters that jointly trade off encoding speed and video quality at

different bitrates.

We also apply our algorithms to a region-of-interest based video encoder specific to ASL.

This encoder jointly optimizes for ASL intelligibility and bitrate. The parameters chosen

by our algorithms are demonstrated to significantly improve the encoding speed at a given

ASL intelligibility for different bitrates, on both PC and cell phone platforms.

ASL videoconferencing on a cell phone drastically reduces its battery life. To extend

the cell phone battery life, we detect the signer’s activity on the cell phone, and use it to





control the backlight of the cell phone and the encoding frame rate. This approach improves

the battery life by up to 54 minutes. Finally, we present a rate control method that allows

the encoder bitrate to adapt to time-varying network bandwidth. We show that when this

encoder operates with suitably chosen parameters, it yields both higher encoding speed and

ASL intelligibility on a cell phone over a constant bitrate encoder.
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Chapter 1

INTRODUCTION TO VIDEO COMPRESSION

Video encoders are used to compress digital video to allow for easy storage and transmis-

sion. Many common applications such as digital video broadcast, Youtube, internet video

chat, etc. use video compression. Current digital cameras, camcorders and video cell phones

are equipped with in-built video encoders. The video encoders are now available not only

as software plugins, but also as customized hardware and firmware for numerous electronic

devices. In this chapter, we give an overview of H.264/AVC [5], the current most advanced

video compression standard. We also describe the x264 encoder [6], and our MobileASL

videoconferencing application for cell phones [2]. Finally, we present the outline of this

thesis.

A video consists of series of images called frames. The playback speed of frames is

specified by the frame rate and is measured in frames per second (fps). The number of

pixels in each frame is specified by the height and width of a frame, and is referred to as

resolution. In a color video, each pixel is composed of three components: one luminance or

luma (Y) and two chrominance or chroma components (Cb, Cr).

Often compression is performed on the raw video by sub-sampling the two chrominance

components as this does not result in much visual difference. The 4:2:0 is one such format,

where the chrominance components are sub-sampled by two in both horizontal and vertical

direction. A raw 4:2:0 video with 30 fps and 176 × 144 resolution requires about 9 Mb/s.

This bitrate is quite high considering that current wireless transmission channels operate

at much lower bandwidth. A video can be compressed to lower its bitrate while preserving

content and quality.

Video compression standards define a bitstream syntax for the decoder. A bitstream con-

forming to a standard’s syntax will give the same decoded output when using any standard
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compliant decoder. The standard does not specify the encoder, therefore giving freedom

for development of algorithms that can improve the speed, quality and compression rate

of the encoder. Examples of international video compression standards are H.120, H.261,

MPEG-1, MPEG-2, H.263, VC-1 and H.264.

Certain image compression techniques are extended to video compression. For example,

when a frame has no similarity with its previous frames, like during a scene-change or

the first frame of a video, image compression schemes are used. Many image compression

schemes use the Discrete Cosine Transform (DCT) to frequency transform blocks of pixels,

followed by variable length coding scheme. This coding method is referred to as intra-frame

coding.

In video, there is often temporal redundancy, as a frame can have similar content with

frames occurring closer in time. Video encoders exploit this redundancy by finding for

each block of pixels in the current frame, a best match of block of pixels in previously

encoded frames to represent it. This is called inter-frame coding. Inter-frame coding involves

searching over previously encoded frames in a process called motion estimation. The best

matched block can be efficiently identified by a motion vector. It gives both the spatial

and temporal displacement of the best matched block with respect to the current block.

The encoded frames being searched are called reference frames. The encoder uses the

motion vector to predict the current block being encoded, and this process is called motion

compensation.

1.1 Overview of the H.264/AVC encoder

Recent video encoders use a hybrid of motion compensation and image-coding methods [7,8].

In this section, we provide an overview of the H.264 or MPEG-4 advanced video coding

(AVC) encoder. A more detailed discussion of this standard can be found in [1, 5, 8–10].

The H.264 was standardized by both the ITU-T and ISO/IEC in 2003 [5] and it yields an

average bitrate savings of about 50% over MPEG-2 for the same video quality [1]. The

different components of a H.264 encoder are shown in Figure 1.1.

In H.264, encoding is done per block of 16 × 16 pixels called a macroblock. A group

of macroblocks may be grouped into a slice, which can be independently decoded at the
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Figure 1.1: H.264/AVC encoder [1]. The shaded region includes components that are com-

mon for both the H.264 encoder and decoder.

decoder. When slices are not specified, a frame corresponds to a slice.

Intra-coding of luma samples are done on either a block of 4× 4 pixels or 16× 16 pixels.

Figure 1.2(a) shows 4 × 4 luma samples a–p that are to be intra coded using samples A–
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(a) (b)

Figure 1.2: (a) Intra luma 4 × 4 prediction on samples a-p using samples A-M that are

already encoded and (b) the eight directional modes of Intra luma 4× 4 [1].

M that have already been encoded. The intra luma 4× 4 has nine different modes, which

includes one DC mode and eight modes corresponding to a specific direction shown in Figure

1.2(b). Intra 4× 4 modes are useful for coding details more efficiently.

Intra-coding for 16× 16 blocks is done using one of the four modes: vertical, horizontal,

DC and plane mode. The first three modes are similar to the corresponding modes in intra

4×4. The plane mode uses neighboring top and left samples to predict current samples [10].

Intra prediction for chroma samples is the same as intra luma 16× 16, except it is done for

8× 8 blocks.

In inter coding, a macroblock can be partitioned into smaller subblocks, allowing motion

estimation on smaller blocks, resulting in better prediction. A 16× 16 block can be parti-

tioned into 16× 8, 8× 16, and 8× 8 subblocks. An 8× 8 block can be further partitioned

into 8×4, 4×8, and 4×4 blocks. Figure 1.3 shows different partition sizes allowed in H.264.

The H.264 standard allows up to 16 previously encoded frames as reference frames (known

as P-frames). In a B-frame, a block can be predicted from both a temporally occurring

previous frame and a future frame that have been encoded. In an example illustrated in

Figure 1.4, the B frame is predicted by previous I and P-frames, and a future P-frame.
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Figure 1.3: Macroblock partitions in H.264/AVC.

Figure 1.4: Example of intra (I), predictive (P) and bi-predictive (B) frames.

To improve prediction, H.264 allows motion estimation at half and quarter pixel po-

sitions. This is useful especially when objects in a frame have undergone fractional pixel

displacement. Sub-pixel motion estimation first finds the integer pixel position that results
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in the best match. These integer pixels are filtered using a 6-tap finite impulse response fil-

ter, both horizontally and vertically to obtain samples in half-pixel position. The samples at

quarter pixel position are then obtained by averaging over samples at integer and half pixel

positions [1]. Motion estimation is time-consuming because the search is performed over

different fractional pixel positions, for different partition sizes, and over different reference

frames.

Motion estimation finds the best motion vectors for each partition size or mode. The

different modes are compared and the mode that results in the least distortion for a given

rate is chosen for further encoding. This process is referred to as mode decision.

The difference or residual between the original block and intra or inter-frame prediction is

frequency transformed by a DCT. The DCT can efficiently compact the residue into fewer

non-zero coefficients. In H.264, an integer transform similar to DCT is used [11]. This

has advantage of lowering the decoder complexity and avoiding the mismatch in the inverse

transformed output due to floating-point arithmetic. The H.264 allows only a 4×4 transform

while the fidelity range extension to H.264 allows both 4× 4 and 8× 8 transform [12].

The quantization is controlled by a quantization parameter (QP). The quantization step

size doubles whenever the QP increases its value by six. An increase in the quantization step

size increases the number of zeros of quantized transformed coefficients, thereby decreasing

the bitrate.

The quantized transformed coefficients are scanned using a zigzag pattern that converts

a two dimension matrix into one dimensional vector. This vector of quantized coefficients

typically has few non-zero coefficients. They can be entropy coded either using context

adaptive variable length coding (CAVLC) or context adaptive binary arithmetic coding

(CABAC). CABAC provides higher compression than CAVLC, but at the cost of increased

complexity.

The encoder includes components that are common with the decoder as shown by the

shaded region in Figure 1.1. It ensures that prediction is identical at both the encoder and

decoder. At the encoder, the quantized and transformed coefficients are inverse quantized

and scaled to recover the residue. The residue is then added to the prediction, which is

filtered using a deblocking filter. The deblocking filter is part of the H.264 standard. The



7

deblocking filter removes the block-edges and improves the quality of the decoded frames.

The decoded frames are stored for prediction of subsequent encoded frames [8].

1.2 Rate-distortion Optimization

Each mode in the encoding process provides a bitrate and distortion. The goal of an encoder

is to choose a mode to minimize the distortion D such that the bitrate R is within a given

rate constraint Rt. The optimization problem is given by the following equation [7]

min D, subject to R < Rt. (1.1)

This can be formulated as a joint rate-distortion (R-D) optimization given as

min J = D + λR, (1.2)

where λ is the Lagrange multiplier. A solution to Equation 1.2 for a given λ corresponds to

an optimal solution to Equation 1.1 for a given Rt [7].

To find the best motion vector in motion estimation, the R-D cost given in Equation

1.2 is used. Computing the actual distortion between the reconstructed and original block

is time consuming due to the encoding and decoding process. Therefore, the distortion is

computed as the sum of the absolute differences (SAD) between the original block and the

block in the reference frame. For motion estimation, Equation 1.2 is reformulated as

min JMotion = SAD + λMotionRMotion, (1.3)

where RMotion corresponds to the bits required for the motion vector and the reference

frame index.

In the mode decision, the final mode is based upon the R-D cost similar to Equation

1.2. The distortion is the sum of the squared difference (SSD) between the original block

and the reconstructed block. The R-D optimization for the mode decision is formulated as

min JMode = SSD + λModeRMode, (1.4)
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where RMode corresponds to the bits associated with choosing a given Mode. We refer to

JMode as the actual R-D cost in future chapters.

1.3 x264 Encoder

In this section, we describe input parameters of the x264 encoder, an open source imple-

mentation of the H.264 encoder [6]. The x264 encoder has been compared with different

commercial H.264 encoders and it was found to provide the best quality in terms of PSNR,

DCT based video quality metric, and structural similarity metric [13]. In [14], the x264

encoder was compared with the JM reference encoder (ver 10.2) [15] and x264 was shown

to be 50 times faster while providing bitrates within 5% for the same PSNR. We use the

x264 encoder to test our algorithms.

The x264 encoder has several input parameters that determine the bitrate and distortion

of the encoded video, and the speed of the encoder. We refer to a vector of encoder parameter

choices as a parameter setting. An example of a parameter setting is the use of one reference

frame; a partition size of 4×4 and 8×8 for predictive blocks; quarter pixel motion estimation;

and CABAC for entropy coding. We describe some input parameters of the x264 encoder

below.

1.3.1 Number of Reference Frames (ref)

This refers to the number of reference frames for forward prediction. It ranges from 1 – 16

frames. A higher number of reference frames can result in a better match during motion

estimation, thereby resulting in a smaller residual. However, a higher number of reference

frames requires a higher encode time.

1.3.2 Partition Size (part)

This specifies the partition size allowed for intra (I), predictive (P) and bi-predictive (B)

macroblocks. For intra macroblocks, I4×4, I8×8 and I16×16 modes are allowed. I16×16 is

included by default even when not specified to the x264 encoder. For predictive macroblocks,

we have the choice of P4× 4 and P8× 8. In x264, use of P4× 4 implicitly considers P4× 8



9

and P8 × 4, and use of P8 × 8 implicitly considers P8 × 16, P16 × 8 and P16 × 16. For B

macroblock type, we consider B8 × 8 that implicitly considers B8 × 16 and B16 × 8. One

or more of the following partition size options can be specified to the encoder: P8 × 8,

P4×4, I8×8, I4×4 and B8×8. Including more partition sizes improves the rate-distortion

performance of the encoder. However, it increases the encode time.

1.3.3 Sub-pixel Motion Estimation (subme)

The x264 encoder selects candidate block types for the mode decision based upon the rate-

distortion cost computed during motion estimation. The subme option specifies the number

of iterations of half pixel and quarter pixel diamond search that has to be performed on

all candidate block types. The resulting block type having the least cost is then coded.

The subme option also specifies the number of iterations of half and quarter-pixel diamond

refinement search to be performed on the final partition size. The subme has seven options,

each of increasing complexity and improved coding efficiency which are listed below.

1. subme = 1: An integer pixel motion search is performed on all candidate block types

and the resulting best motion vector is refined using a half-pixel motion search.

2. subme = 2: It is the same as subme = 1, but it applies both half and quarter pixel

motion search for refinement.

3. subme = 3: It applies half pixel search on all candidate block types and then applies

quarter pixel search for refinement.

4. subme = 4: It is the same as subme = 3, but uses two iterations of quarter pixel search

for final refinement.

5. subme = 5: It is the same as subme = 4, except that it uses one iteration of half and

quarter pixel motion search for all candidate block types.

6. subme = 6: It uses two iterations of half and quarter pixel search for all candidate

block types and enables rate-distortion optimization for block types in I and P frames.
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7. subme = 7: In addition to the process in subme = 6, it uses rate distortion optimization

for refining the final inter or intra mode selected. In inter mode, it does a half pixel and

quarter pixel refinement using the actual R-D cost. While in intra mode, it computes

the R-D cost for different intra modes to determine the best mode. This option is

time consuming, but can provide the best rate-distortion performance.

1.3.4 Quantization Method (trellis)

There are three different quantization methods in x264 that are based upon rate-complexity

tradeoffs. The first method is based on the uniform deadzone quantization (called Trellis-0)

and the other two methods are based on the trellis approach (called Trellis-1 and Trellis-

2). There is an increase in both complexity and bitrate savings, by using higher order

implementations of trellis.

Trellis-1 and Trellis-2 differ in the quantization approach used during mode decision,

but they both use CABAC for entropy coding. There are two steps in the mode decision:

1. Computation and comparison of the R-D cost of the different candidate block types.

The R-D cost is obtained from motion estimation using Equation 1.3, where the sum

of the absolute Hadamard transformed difference is used instead of SAD.

2. The block having the least R-D cost from the previous step is chosen as the final block

type to be encoded. The final block is further refined by computing the actual R-D

cost using Equation 1.4.

Trellis-1 uses uniform quantization in step (1) and trellis in step (2) of mode decision.

Trellis-2 uses the trellis in both steps of the mode decision and therefore has higher com-

plexity.

We describe the trellis using a directed graph shown in Fig 1.5, where each column

represents 16 DCT coefficients of the 4x4 luma block denoted by C0, C1, . . . , C15 [16].

Each DCT coefficient can be coded with one of 8 possible CABAC contexts as shown by

the rows in Figure 1.5. The number of coefficients greater than one (NumLg1) and equal

to one (NumEq1) determine the CABAC context. The nodes of the graph are labeled as
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Figure 1.5: Trellis quantization in x264.

NumEq1 NumLg1. Each node belonging to a row in Fig 1.5 has the same NumEq1 NumLg1

and its values are shown by the entries in the right most column of Fig 1.5. The transition

between these nodes indicates a transition between states.

When NumLg1 > 0, the CABAC context does not consider NumEq1, and we represent

the state as Y i in Fig 1.5, where 0 ≤ i ≤ 3. When NumLg1 > 3, we represent the state

as Y Y. The trellis is implemented as a dynamic program, where any two states of the same

(DCT index, CABAC context) pair are considered the same, and only the one with the

least R-D cost is retained. The algorithm is described below:

1. The different states are compared based on the R-D cost and the state with the least

cost is chosen.

2. Transition between states: A new coefficient is encoded onto one of the partial en-

codings. First, the rate corresponding to CABAC and the distortion of the chosen

quantized level for the new coefficient are calculated. The CABAC context is then

updated depending on the level coded. The R-D cost corresponding to the new coef-

ficient is added to the total R-D cost of the current state. If a state is reached that

has already been reached through a different path in the trellis, then their R-D costs
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are compared and the path with the least cost is retained.

3. Dijkstra’s algorithm [17] is used to find the path with the least R-D cost.

4. Optimizations: Some coefficient values are unlikely to occur. Therefore, they are omit-

ted from the search without measurable quality loss. The coefficient is first quantized

by rounding it to the nearest integer. If the level or quantized coefficient equals zero,

the coefficient is chosen to be zero, and its column can be omitted from the directed

graph given in Fig 1.5. Otherwise, step (2) is repeated for both level and (level− 1).

For example, if the unquantized coefficient is 1.8, it is quantized to a level = 2. Then

step (2) is applied for both level = 2 and (level−1) = 1, and the horizontal transition

corresponding to level = 0 is omitted.

1.3.5 DCT Size (dct)

The x264 encoder either uses 4× 4 DCT or both 4× 4 and 8× 8 DCT.

1.3.6 Mixed Reference (mixed-refs)

This option allows the use of independent reference frames for each 8 × 8 partition of a

macroblock. When a higher number of reference frames is used, mixed-refs can improve

coding efficiency but increases complexity. When mixed-refs is not used, reference frames

are chosen per macroblock.

1.3.7 Motion Search Method (ms)

In motion estimation, search is performed on reference frames to find block of pixels that

best matches the current block of pixels. This process can be computationally expensive.

The x264 encoder provides four options for integer pixel motion search and they are listed

in order of increasing complexity and quality: diamond search of radius one (DIA) [18],

hexagon search of radius two (HEX) [19], uneven multihexagon (UMH) [20] and exhaustive

search (ESA) [21].
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The x264 encoder defines default options for its encoder parameters. They are used in

the absence of user specified options. Specifically, by default the following options are used:

one reference frame; P8× 8, B8× 8, I8× 8, I4× 4 partition size; subme = 5; and trellis

= Trellis-0. In this thesis, this parameter setting is referred to as the default parameter

setting.

1.4 The MobileASL System

Web based videoconferencing has become a popular and cost effective means to commu-

nicate. Most of these videoconferencing applications are software-based, do not require

expensive specialized hardware, and operate on most computers having a webcam. These

applications use real-time video encoders to compress and packetize video for transmission.

The MobileASL project [22] uses video compression to enable Deaf users to communicate

in American Sign Language (ASL) using video cell phones over low bandwidth network.

Video telephone and internet-based video chat services are already popular among Deaf

people. The MobileASL project extends videoconferencing to mobile cell phones, giving

Deaf people the mobility and access to communicate using American Sign Language. Mobile

videoconferencing is already available in Sweden, Japan, and other countries, but video

quality is poor and jerky, and often has significant delay.

MobileASL uses the x264 video encoder described in Section 1.3 for video encoding

and ffmpeg [23] for decoding [2]. The MobileASL team has ported the codec (encoder

and decoder) to an HTC TyTN II cell phone that has the Windows Mobile 6.1 operating

system, and a front facing camera. Like most videoconferencing applications, MobileASL

allows the user to see the other person in addition to himself/herself on the screen, and

this is illustrated in Figure 1.6. It also allows users to text and send SMS. The application

can operate both on a Wi-Fi and 3G data network and has cross-network communication

capability. That is, a video call can be established between two cell phones, with one cell

phone on a Wi-Fi network and the other on a 3G network. It also provides an online contact

list to the user, similar to a phone book containing user names and phone numbers. The

contact list is automatically and periodically updated on a server to map a user to a network

IP number.
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Figure 1.6: MobileASL running on a HTC TyTN II cell phone [2]. Neva Cherniavsky (on

the right) and I are shown talking to each other. The red circle and the arrow points to the

front facing camera.

1.5 Contributions

The biggest challenge in MobileASL has been to run the encoder at a high enough frame

rate on the cell phone. Video compression is very computationally intensive, and most cur-

rent cell phone processors are not fast enough to run the encoder in real-time. The x264

encoder can be sped up on a cell phone by choosing parameter settings that take fewer

computations at a cost of reduced quality; appropriate selection of parameter settings can

ensure both good quality and fewer computations. We propose fast offline algorithms for

finding such parameter settings using training videos, and storing the parameter settings

and their associated encoding time in a lookup table. When a test video has to be encoded,

a parameter setting is chosen from the lookup table based on the current available compu-

tational resources on the device. This approach improves the encoder speed on both PC

and cell phone platforms over the x264 default parameter setting, with little difference in

video quality. Chapter 2 describes our fast parameter settings selection algorithms.
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In Chapter 3, we present the metrics used to evaluate the performance of our algorithms.

We apply our algorithms to the x264 encoder and H.263+ encoder [24], and compare their

performance to other parameter setting selection methods and the x264 default parameter

setting. In Chapter 4, we run our algorithms on cell phones for ASL videos and evaluate

their performance. We analyze the cross-platform performance of our algorithms, and the

performance of our algorithms when there is a mismatch between ASL signers in training

and test videos.

In Chapter 5, we apply our algorithms to an ROI-based video encoder specific to ASL

[25], and compare the intelligibility, encoding speed, and bitrate performance to the x264

default parameter setting on both PC and cell phone platforms.

Running MobileASL on the cell phone quickly drains battery power thereby shortening

the cell phone life. In Chapter 6, we present methods that save battery power usage when

running MobileASL on the cell phone. These methods result in longer battery life when

compared to earlier power saving methods.

Bandwidth in wireless networks such as Wi-Fi and 3G is time varying. In Chapter 7, we

present a bitrate adaptive x264 encoder that adapts the bitrate per frame to the available

bandwidth. We show that by operating this encoder with parameter settings selected by our

algorithms, we get improvement in encoding speed and ASL intelligibility over the constant

bitrate x264 encoder. Finally in Chapter 8, we conclude and provide future directions for

research.
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Chapter 2

DISTORTION-COMPLEXITY OPTIMIZATION OF THE H.264
ENCODER

2.1 Introduction

During the standardization of H.264 the main focus was to improve its rate-distortion (R-D)

performance over earlier video coding standards. As a result, the H.264 standard supports

many new features that improve its R-D performance but at the cost of increased computa-

tional complexity. Some of the complex features supported by the H.264 standard include

multiple reference frames, quarter pixel motion estimation and compensation, CABAC, etc.

These features do not allow the H.264 encoder to run in real-time on low speed mobile

devices.

In this chapter, we discuss prior work in complexity optimization of video encoders in-

cluding the H.264 encoder. We describe six different distortion-complexity optimization

algorithms for the H.264 encoder, which include our four algorithms. We review the gen-

eralized Breiman, Friedman, Olshen, and Stone (GBFOS) algorithm [26] which is the basis

for three of our algorithms. Finally, we describe the multi-objective particle swarm op-

timizer [27] and formulate it for distortion-complexity (D-C) optimization of the H.264

encoder.

2.2 Motivation

The H.264 video encoder compresses a raw video to a specified bitrate, using parameters

defined by the user. In a videoconferencing application running on a cell phone, it is critical

that the encoder runs fast and gives good quality. Since parameter settings affect both

encoding speed and video quality, we would like to select parameter settings that trade off

well between the two quantities.

Since we have prior knowledge of the available network bandwidth, we use it as our
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Figure 2.1: Distortion (MSE) vs. complexity (average encoding time).

bitrate. We use the average mean squared error (MSE) of the luma component as the

distortion and the average encoding time per frame as the complexity corresponding to a

particular parameter setting. Each point in Figure 2.1 gives the distortion and complexity

corresponding to a certain parameter setting. A point in the distortion-complexity plot is

dominant if there exist no other point having both a lower distortion and complexity. As

shown in Figure 2.1, a point may not lie on the convex hull, but can still be dominant.

Optimal parameter settings can be found offline by running the encoder for all possible

parameter settings and obtaining a plot as in Figure 2.1, and selecting the parameter settings

corresponding to the dominant points. This approach is referred to as exhaustive search,

and it is very time consuming even with a fixed bitrate and current fast computers.

As an example, if we have 16 reference frames; 7 sub-pixel motion estimation methods; 10

partition sizes for intra and inter prediction; and 3 quantization approaches, the exhaustive

search will require 16×7×10×3 = 3360 encodings. Applying these encodings to 10 quarter

common intermediate format (QCIF) videos with an average encoding time of 65 s per

video per parameter setting on a 2.8 GHz Linux computer will result in total search time of
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10× 3360× 65s = 25 days. (The parameters used in this example are described in Section

1.3.) The search time would further increase with more variable encoder parameters, larger

video resolution, longer videos, and a larger number of training videos.

Although the exhaustive search time can be reduced by parallel computing, it does not

scale well with additional variable parameters. For example, when running an exhaustive

search in parallel on 10 computers the search time would reduce to 2.5 days. However, if we

included four additional parameters with 32 possible choices in the above search, the search

time on 10 machines would increase to 32×2.5 days = 80 days. This illustrates the need for

fast parameter settings selection algorithms. We have developed four fast parameter settings

selection algorithms that are significantly faster than an exhaustive search but have similar

performance. We describe our algorithms later in this chapter.

2.3 Related Work

Joint rate-distortion-complexity (R-D-C) optimization has been proposed for still image

coding in [28, 29]. In these methods, the optimization is performed by augmenting the

complexity constraints to the traditional R-D optimization using Lagrange optimization.

In [29], a quadtree-based DCT codec is considered, and the complexity optimization is done

on the inverse DCT operation at the decoder. In [28], R-D-C optimization is performed on

a tree-structured vector quantizer. It reduces the encoder complexity by using a simpler

distortion measure.

R-D-C or R-D optimization of motion-compensated transform-coded video compression

is complex. The complexity is due to the large number of parameter selections for each

frame, the many conditional decisions made in encoding, and the dependent coding of

multiple frames. Even intelligently derived R-D optimization algorithms have a search

complexity on the order of 1012 to 1014 to find R-D optimal frame coding parameters [30].

Complexity optimization of video encoders has been addressed in [31–33]. However,

these methods are largely ad hoc and heuristic, and no actual optimization is performed.

The optimization involves including only a subset of coding parameter choices and enforcing

algorithmic simplification. The effect of each parameter choice and simplification on both

performance and complexity reduction are quantified. In [34], an initial attempt towards
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complexity optimization is made. In this approach, the encoding choices are limited, and a

local search is performed on them to minimize complexity under a distortion constraint. It

assumes that distortion is convex in the coding parameters and rate is not considered.

Distortion-complexity optimization of the H.263 encoder has been proposed in [35],

where they use an adaptive mode control for choosing the motion estimation, sub-pixel

accuracy and DCT pruning on a per-frame basis. In multimedia transmission, R-D-C adap-

tation of the bitstream to receiver constraints and network conditions has been discussed

in [36]. In [37], for the low complexity H.264 decoder, bitstreams with I-frames or I and

P-frames were found to have better D-C performance over bitstreams with B-frames, for

the same bitrate.

2.4 Comparison with other Algorithms

Existing work on complexity optimization of the H.264 encoder can be classified into software

offline methods [38]; software online (i.e., real-time) methods; and hardware optimization

methods [39–48]. Software online methods can be further classified into those that adapt to

computational or power resources [49–56] and non-adaptive methods [57–61]. Most of these

algorithms modify one or more encoder components to achieve either speed improvement

or power saving. Our approach differs from prior work since we do not modify the encoder

but optimize it by selecting suitable encoder parameter settings.

The complexity optimization of the motion estimation and mode decision processes

in [57–61] do not adapt to computational resources. A joint online adaptive rate-distortion-

complexity (R-D-C) optimization scheme is presented in [49], where the product of com-

plexity controlled Lagrange multiplier and complexity parameter is added to the R-D cost

of motion search and mode decision.

For low power mobile devices, different online schemes have been proposed to adapt

the encoder to power availability [50–53, 55]. He et al. introduced a complexity scalable

video coder that uses a parametric power-rate-distortion (P-R-D) model [50]. This P-R-D

optimized encoder has been tested only on a PC and not on a cell phone. The optimization

is performed by varying the number of sum of absolute difference computations in motion

estimation, the number of DCT computations, and the frame rate. However, such paramet-



20

ric models have large computational overhead. In [51], He et al. designed a P-R-D model

for energy optimization of generic video encoders on portable devices and showed that it

provides significant power savings in delay-tolerant applications. Su et al. proposed a joint

power-distortion optimization scheme under a power constraint for the H.264 encoder [53].

During motion estimation, the additional search to refine the integer pixel motion vectors

and the use of sub-pixel motion estimation are skipped based on available computational

resources. The mode decision is approximated by predicting the macroblock partition size

based upon the partition size used in the spatial-temporal neighborhood.

Lu et al. present a complexity-distortion model that controls the number of non-zero

macroblocks and the number of sum of absolute differences [54]. However, it does not control

other encoder parameters such as sub-pixel motion estimation method, partition size, and

the number of reference frames. Agrawal et al. proposed adapting the encoder to the

available battery power by controlling the bits transmitted or frames dropped [55]. However,

decreasing bitrate and dropping frames can lower video quality. Li et al. developed a wireless

transmission system that assigns more bits and transmission power to the foreground than to

the background [52]. This ensures that the foreground has better decoded quality. However,

they do not adapt the encoder complexity to the available battery power.

An offline scheme for R-D-C optimization of the H.264 encoder at high bitrates (1.5

Mb/s) was presented in [38], where the R-D-C optimization is reduced to R-C optimization.

They optimize integer motion estimation and do not optimize any other encoder compo-

nents. Also, they do not test for lower bitrates and progressive video. This offline approach

has been extended to an online approach in [56] by using a complexity prediction model.

There has been prior work in developing hardware architecture or hardware specific

solutions to speed up the H.264 encoder. It includes H.264 encoder optimization and H.264

encoder implementation for specific processors [39–41] or programmable firmware [62]. In

addition, hardware architecture solutions have been proposed for different modules of the

H.264 encoder [42], such as for motion estimation [43], intra prediction [44], transformation

[45], CABAC [46], CAVLC [47], and deblocking filter [48]. Although hardware or platform

specific optimization can speed up the encoder, it does not provide the flexibility of including

newer algorithms or tools to the encoder.
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Our approach is similar to [35], where parameter settings are chosen such that the H.263

encoder is optimized for D-C. However, they use variable bitrate and exhaustive search for

finding the parameter settings offline, which can be time consuming. We have found no prior

work in the area of fast parameter settings selection algorithms. In this thesis, we propose

fast offline parameter settings selection algorithms that jointly optimize the H.264 encoder

for distortion-complexity without altering the encoder. Our algorithms can be applied to

any video encoder which has multiple parameters that each has more than one choice.

Because there is no component in our algorithms that is specific to low resolution and low

bitrate, our algorithms should also work well at higher bitrates and higher resolution videos.

2.5 The GBFOS Algorithm

Breiman et al. developed an algorithm for classification and regression trees, which traded

off the number of leaves with probability of error for a classification tree and mean squared

error for a regression tree [63], [64]. Chou et al. generalized this algorithm to a wider range

of problems, and this algorithm is called the GBFOS algorithm [26]. A real-valued function

of trees such as average distortion or rate is called a tree functional [26]. The GBFOS

algorithm requires the tree functionals to be monotonic and linear or affine.

Let S be a subtree of a complete tree T that shares the same root as shown in Figure

2.2, and it is denoted by S ¹ T . Let u1 and u2 be two monotonic tree functionals, where

u1 is monotonically increasing, and u2 is monotonically decreasing. The GBFOS algorithm

minimizes the tree functional J(S) = u1(S) + λu2(S) over all S ¹ T , where the parameter

λ = −∆u2/∆u1, and ∆u1 and ∆u2 are the change in u1 and u2, respectively, due to pruning

off all branches from any node within the tree T . The parameter λ can be interpreted as a

Lagrangian multiplier and as a slope of the distortion vs. rate curve (u1 is associated with

average rate and u2 with average distortion). The GBFOS algorithm prunes off branches of a

tree in order of increasing λ to find its subtrees having optimal distortion-rate performance.

These optimal subtrees are nested [4], [64].

We illustrate the GBFOS algorithm with an example. Given a codebook or tree T , the

GBFOS algorithm finds all codebooks or nested subtrees S having the same root node as T ,

and having R-D points that lie on the lower convex hull. For example, in Figure 2.3(a) ‘*’
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represent all possible codebooks or nested subtrees of T , and in Figure 2.3(d) S0, S1, S2, S3

are the GBFOS algorithm codebooks [3]. The first GBFOS codebook corresponds to the

entire tree T , which is given by the rightmost point in Figure 2.3(a). This codebook has the

lowest distortion and the highest rate. The root node t0 corresponds to the leftmost point,

since it has the highest distortion and the lowest rate. During each GBFOS iteration, the

space to be examined is limited to the rectangular region bounded by the root node and the

current subtree as illustrated in Figure 2.3(a), since rate is monotonically increasing and

distortion is monotonically decreasing, with decreasing tree depth. During each iteration,

the slopes from the current subtree to all subtrees that could be created by pruning one

internal node are computed, and the subtree corresponding to the minimum slope is selected

as it lies on the lower R-D convex hull. In Figure 2.3(b), the different lines corresponds to

the different slopes that are compared. The solid line corresponds to the minimum slope. In

future iterations, the search space is further reduced as illustrated by the shaded rectangular

region in Figure 2.3(c). The GBFOS iteration continues until the root node is reached.

The GBFOS algorithm has also been used for optimal bit allocation for classified vector

quantizer (VQ) with multiple classes [4]. In the fixed bitrate case, each class has a code-

book with the same number of codewords. However, for the variable rate case, each class

consists of different sized codebooks as shown in Figure 2.4. Therefore, using different sized

codebooks for different classes will result in unequal bit allocation among classes, resulting

in variable bitrate. The distortion-rate curves for different classes are obtained together

with their slopes λ. The algorithm compares slopes, finds the class with the least slope

and deallocates its bits. The resulting choice of codebooks for each class will have average

distortion and rate that lie on the lower convex hull of the R-D plot.

2.6 GBFOS algorithm for D-C optimization of the H.264 encoder

We apply the GBFOS algorithm used in R-D optimization of classified VQ with multiple

classes to the D-C optimization of the H.264 encoder. In the H.264 encoder, we have M

parameters instead of M classes. Each H.264 parameter has different options with different

D-C performance, similar to each class having codebooks of different sizes (and different

R-D performance). Therefore, the H.264 parameters can be illustrated as a tree shown in
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Figure 2.2: T is a whole tree with root t0. S is a pruned subtree of T .

Figure 2.5. Instead of choosing codebooks from each class that result in overall optimal

R-D performance, our objective is now to find H.264 parameter options that will result in

lowest distortion for a given complexity.

In classified VQ with multiple classes, the tree functionals rate and distortion are inde-

pendent, monotonic, and linear. For the H.264 encoder, the tree functionals encoding time

and mean squared error for different parameters are clearly not independent, but we shall

make an assumption that they are, which will result in parameter settings that are not nec-

essarily optimal. We approximate by varying one of the encoder parameters while setting

other parameters to their highest option, and attribute the resulting distortion-complexity

to the variable parameter alone.

We describe two approaches that use the GBFOS algorithm for obtaining encoder pa-

rameter settings. The first approach, which we call the GBFOS-basic algorithm, requires

only one iteration of encodings. The second algorithm requires more than one iteration of

encodings, and we call this the GBFOS-iterative algorithm [65]. Both of our algorithms use

the same preprocessing step. We found that the GBFOS-basic algorithm is very similar to
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(a) (b)

(c) (d)

Figure 2.3: The GBFOS algorithm. (a) The leftmost point is the root node, and the right-

most point the current subtree. A ‘*’ corresponds to a pruned nested subtree of the current

subtree. The shaded rectangular region is the search space. (b) During each iteration,

the slopes are compared between the current subtree and pruned subtrees. The next GB-

FOS codebook corresponds to the pruned subtree having the least slope indicated by the

solid line. (c) Future iterations have smaller search area. (d) The GBFOS codebooks are

S0, S1, S2, S3. [3]
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Figure 2.4: M − 1 tree model for optimal bit allocation [4].

the multiple choice knapsack problem greedy (MCKP-greedy) algorithm [66].

The first parameter setting generated by our algorithms has the highest complexity. As

successive parameter settings are generated, their complexity decreases. On the D-C plot

in Figure 2.9, the parameter settings would start at the rightmost point on the plot and

end at the leftmost point on the plot.

We explain our GBFOS algorithms with an illustrative example using the x264 encoder

having four variable parameters, namely ref, part, subme, and trellis, which have been

described in Chapter 1. We use {1, . . . , M} to denote a set of M encoder parameters, with

each parameter i having ni options {1, . . . , ni}. We denote a parameter setting as a vector

m = (m1, . . . , mM ). An example of an encoder parameter setting is the vector (1, 1, 1, 3)

that specifies an H.264 encoder with one reference frame; a partition size of P8 × 8; the

fastest sub-pixel motion estimation scheme; and the use of trellis algorithm for quantization

and CABAC for entropy coding. If X = {m1, . . . ,mi, . . . ,mk} is a set of parameter settings,

then parameter setting mi is dominant if there exists no parameter settings in X having

both lower encoding time and higher PSNR.
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subme = 1

subme = 2

subme = 7

ref = 1

ref = 2

ref = 16

part = 1

part = 2

part = 10

trellis = 1

trellis = 2

trellis = 3

Figure 2.5: Illustrating the H.264 encoder parameters as a tree model. A class is replaced

by a parameter, and VQ codebooks are replaced by parameter options.

2.6.1 Preprocessing Step

In this step, the D-C plot for each parameter is obtained by varying the parameter over

all options while setting other parameters to their highest option. For example, to obtain

the D-C plot for ref in Figure 2.6 (a), we set part = 10, subme = 7 and trellis = 3,

and vary ref from 1 to 16. This results in 16 parameter settings m1,j = (j, 10, 7, 3), for

1 ≤ j ≤ 16, each of which is used to encode all the training videos. For each parameter

setting m1,j , we use the average MSE over the training set as the distortion d1(m1,j) and

the average encoding time as the complexity c1(m1,j). (In general, for each parameter i, we

vary the parameter setting mi,j = (n1, . . . , ni−1, j, ni+1, . . . , nM ), for 1 ≤ j ≤ ni, and use

it to encode training videos to obtain its corresponding distortion di(mi,j) and complexity

ci(mi,j).) Figure 2.6 gives the D-C plots for ref, part, subme and trellis obtained by

running an x264 encoder on ASL videos at 30 kb/s.
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Figure 2.6: Distortion-complexity plots obtained by varying (a) number of reference frames,

(b) partition sizes (the options are listed in the legend), (c) subme values and (d) trellis

options. The convex hull points of each plot are shown connected by a dashed line.
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We denote the number of points on the D-C convex hull of parameter i as li. (The

number of convex hull points li may be less than the total number of parameter options ni.)

For example, in Figure 2.6(b), the parameter part has three points on the convex hull (l2

= 3), although it has 10 options. We reindex the points on the convex hull of parameter i

from 1 to li and store its original indices in vector origi. We denote the parameter setting

of a convex hull point by qi,j = (n1, . . . , ni−1, j, ni+1, . . . , nM ), where 1 ≤ j ≤ li. In Figure

2.6(b), the parameter settings on the convex hull are given by q2,j = (16, j, 7, 3), where

1 ≤ j ≤ 3, corresponding to the three different partition size options (P8 × 8), (P8 × 8,

P4 × 4, I8 × 8, I4 × 4), and (P8 × 8, P4 × 4, B8 × 8, I8 × 8, I4 × 4). Because the selected

partition sizes were the first, ninth and tenth options in Figure 2.6(b), orig2 = (1, 9, 10)

and orig2(l2) = orig2(3) = 10.

We define the slope between two points on the D-C convex hull as

Si(qi,j , j) = abs

(
d(qi,j)− d(qi,j−1)
c(qi,j)− c(qi,j−1)

)
, (2.1)

where abs() means absolute value. The parameter settings qi,j and their corresponding

slopes are used in the initialization step of both the GBFOS-basic and iterative algorithms.

2.7 GBFOS-Basic Algorithm

The GBFOS-basic algorithm uses only the D-C plots generated in the preprocessing step.

Pseudocode for the GBFOS-basic algorithm is given in Figure 2.7. The first parameter

setting is found in step 1, by selecting the least MSE option on the D-C convex hull of each

parameter. Continuing our example, in Figure 2.6, these parameters would be ref = 16,

part = 10, subme = 7 and trellis = 3, i.e. p = (16, 10, 7, 3). Next, the following steps

are repeated until there are no slopes left to prune:

1. Compare the slopes on the convex hull of the D-C plots to find the parameter with

the least slope.

2. Prune the least slope. In Figure 2.6, part has the least slope, so we prune it from 10

to 9.
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1. Obtain p = (orig1(l1), . . . ,origi(li), . . . ,origM (lM )) from qi,j , where 1 ≤ i ≤ M

and 1 ≤ j ≤ li.

2. Repeat until p = (orig1(1), . . . ,origM (1)):

(a) Choose parameter i∗ that results in the lowest slope Si∗(qi∗,li∗ , li∗) using

Equation (2.1).

(b) Set li∗ = li∗ − 1.

(c) Determine new p = (orig1(l1), . . . ,origi∗(li∗), . . . ,origM (lM )).

Figure 2.7: The GBFOS-Basic algorithm.

3. Find the new parameter setting p. In our example, p = (16, 9, 7, 3).

For both the GBFOS-basic and iterative algorithms, when a parameter has only one D-

C point left, it is no longer considered for pruning. We post-process the GBFOS-basic

parameter settings by selecting only those parameter settings whose associated D-C points

are dominant.

2.8 GBFOS-Iterative Algorithm

While the GBFOS-basic algorithm uses one set of D-C plots as shown in Figure 2.6, the

GBFOS-iterative algorithm generates new D-C plots during each iteration to result in new

parameter settings. In the first iteration, it uses the D-C plots generated by the preprocess-

ing step but it provides the possibility of finding improved parameter settings in subsequent

iterations.

The first two parameter settings of the GBFOS-iterative algorithm are the same as for

the GBFOS-basic algorithm. The following steps are repeated until there are no slopes left

to prune:

1. Regenerate the D-C plots for the parameters not pruned in the previous iteration. In

our example, we prune part in the first iteration and in the second iteration we obtain
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new D-C plots for ref, subme and trellis using the new value of part. For ref, we

set part = 9, subme = 7 and trellis = 3 and vary ref from 1 to 16 to obtain the

new D-C plot. (If ref was pruned in an earlier iteration to say 9, then we vary ref

from 1 to 9.)

2. Compare the slopes for all the encoder parameters.

3. Prune the least slope. In our example, we prune subme from 7 to 6.

4. Find the new parameter setting, which in our example is p = (16, 9, 6, 3).

Pseudocode for the GBFOS-iterative algorithm is given in Figure 2.8. In step 2c(ii) of

Figure 2.8, the number of points on the convex hull l′i may be less than li. Therefore, the

parameters are reindexed from 1 to l′i.

2.9 Dominant parameter setting pruning algorithm

The GBFOS-basic and GBFOS-iterative algorithms choose parameter settings whose D-C

performance are close to the optimal parameter settings obtained from exhaustive search.

Unfortunately, both the GBFOS-basic and GBFOS-iterative algorithms yield only a few

parameter settings. Figure 2.9 illustrates the GBFOS-basic points and shows the regions

where the GBFOS-basic points are sparse.

Since current cell phones have low computational capability, running the high complexity

x264 encoder causes frames to be dropped, resulting in a low frame rate. To ensure that the

video is encoded at a higher frame rate, one would need to choose a very low complexity

parameter setting, which would deteriorate video quality. Therefore, it is important to

choose the right parameter setting that can satisfy an encode time constraint and yield

higher PSNR. In the absence of a parameter setting for a given encode time, the encoder

must use a lower complexity/lower PSNR GBFOS-basic parameter setting.

An encoder could achieve a given average encode time per frame by using different

GBFOS-basic parameter settings over different frames. This is referred to as time-sharing.

Time-sharing may not be feasible in a scenario where different entropy coding schemes have
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1. Obtain p = (orig1(l1), . . . ,origi(li), . . . ,origM (lM )) from qi,j , where 1 ≤ i ≤ M

and 1 ≤ j ≤ li.

2. Repeat until p = (orig1(1), . . . ,origM (1)) in step 2(b):

(a) Find i∗ that results in the lowest slope Si∗(qi∗,li∗ , li∗) using Equation (2.1).

(b) Set li∗ = li∗ − 1. New p = (orig1(l1), . . . ,origi∗(li∗), . . . ,origM (lM )).

(c) For each i 6= i∗ and li > 1:

i. Obtain di(mij) and ci(mij) for mij = (orig1(l1), . . ., origi−1(li−1),

j, origi+1(li+1), . . . , origM (lM )), where 1 ≤ j ≤ origi(li) and j 6=
origi(li+1). Obtain the D-C plot and convex hull points of parameter i.

ii. Reindex the parameters of the convex hull points from 1 to l′i. Re-

construct the vector origi of length l′i, which contains original indices

corresponding to (1, . . . , l′i).

iii. Set li = l′i.

Figure 2.8: The GBFOS-Iterative algorithm.

to be used for different frames. In related work to avoid time-sharing, Kiang et al. presented

the Recursive Optimal Pruning Algorithm (ROPA) [67] for finding more tree-structured

vector quantizer codebooks compared to those generated by the GBFOS algorithm [26].

ROPA guarantees the minimum area under the rate-distortion curve corresponding to a

codebook.

To avoid time-sharing in our problem, we propose two different algorithms for finding

additional parameter settings over the GBFOS-basic algorithm. One of them is similar to

ROPA while the other performs a local search between two adjacent GBFOS-basic algorithm

parameter settings. These additional parameter settings allow the encoder to operate at a

higher PSNR.

Similar to ROPA, the DPSPA generates more parameter settings over the GBFOS-

basic algorithm, while still including the GBFOS-basic parameter settings. The DPSPA
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Figure 2.9: Distortion (PSNR) vs. complexity (average encoding time). Each data point

here corresponds to a parameter setting.

differs from the GBFOS-basic algorithm in the slope pruning stage because it considers the

dominant non-convex hull parameter settings, as shown by points C and D in Figure 2.10.

The algorithm is:

1. Preprocessing step. Generate the D-C plot for each parameter using the procedure

given in the preprocessing step of Section 2.6.1, and find the D-C convex hull parameter

settings and compute their slopes using Equation (2.1). For each D-C plot, we find

regions that can have dominant points as shown by the shaded region in Figure 2.10.

Points outside this region are discarded since they are dominated by the convex hull

points. For each pair of convex hull points, find the dominant points that lie in its

shaded region. Figure 2.10 is the D-C plot for the subme parameter containing convex

hull points A and B and their dominant non-convex hull points C and D. Let the

points A, B, C, and D correspond to parameter settings (16, 10, 7, 3), (16, 10, 4, 3),
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Figure 2.10: Dominant Parameter Setting Pruning Algorithm (DPSPA). The dominant

non-convex hull points are C and D. Path traversed by the DPSPA is indicated by red

arrows and the path of the GBFOS-basic algorithm is indicated by the black arrow.

(16, 10, 6, 3), and (16, 10, 5, 3), respectively.

2. The first parameter setting is the same as in the GBFOS-basic algorithm. Let p = A

= (16, 10, 7, 3) be the first parameter setting.

3. Repeat the following steps until there are no convex hull slopes left to prune:

(a) Compare the slopes of the convex hull for different parameters and find the

parameter with the least slope. For example, let subme in Figure 2.10 have the

least slope in the first iteration, and let it correspond to the line segment AB.

(b) In the GBFOS-basic algorithm, we would prune AB. In the DPSPA, we instead

check if the slope contains dominant non-convex hull points that lie in the shaded

region. If so, we generate new parameter settings by pruning each such point.

For example, in Figure 2.10, we prune AC, CD, and DB to result in three new

parameter settings C = (16, 10, 6, 3), D = (16, 10, 5, 3) and B = (16, 10, 4, 3).
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Step 3(b) generates additional parameter settings over the GBFOS-basic algorithm. We

post-process the DPSPA parameter settings similarly to the GBFOS-basic algorithm by

choosing only the non-dominated DPSPA parameter settings.

2.10 Controlled Local Search Algorithm

Our controlled local search algorithm (CLSA) is similar to the popular local search algorithm

in combinatorial optimization [68]. Our algorithm performs a parameter setting search

between two GBFOS-basic parameter settings. During each search iteration, new parameter

settings are generated, which form the starting points for the future iterations.

Let the start and end parameter settings from the GBFOS-basic algorithm be denoted

by vectors p = (p1, . . . , pM ) and q = (q1, . . . , qM ), respectively. We denote the PSNR-Y

and encode time of a parameter setting m as d(m) and c(m), respectively. The function

min(., .) gives the minimum of the two numbers. The resulting parameter setting generated

by our algorithm is stored in set B.

The pseudocode for our local search algorithm is given in Figure 2.11. In each iteration,

we consider a new start parameter setting x while the end parameter setting is always

q. The subroutine expansion(.) defines the neighborhood of a parameter setting x. We

generate at most two parameter settings for each parameter in x by incrementing it by one

and two. For example, if x = (1,1,1,1) then we generate parameter settings (2, 1, 1, 1) and

(3, 1, 1, 1) by increasing the first parameter in x.

In Step (6) of Figure 2.11, we restrict the number of parameter settings in the neighbor-

hood of x, otherwise the number of parameter settings generated per iteration would grow

exponentially. We use the concept of dominance in pruning parameter settings in Step (6a).

In Step (6b), we retain only those parameter settings in E that have encode time between

x and q, and discard the rest. In Steps (7) and (8), we discard any pruned set that does

not contain q, to avoid generating parameter settings with PSNR and encode time beyond

q.

Our algorithm searches from a lower PSNR and lower complexity parameter setting

to a higher PSNR and higher complexity parameter setting. A descent algorithm could

be formulated similar to Figure 2.11 with start and end parameter settings interchanged
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Controlled Local Search Algorithm(p, q)

1. Let A = {p} and B = {q}.
2. while A 6= ∅
3. Choose x ∈ A

4. B = B ∪ {x}
5. E = expansion(x).

6. Remove from E any y ∈ E that satisfies either conditions

(a) y is dominated by any element in E ∪B.
(b) c(y) > c(q) or c(y) < c(x).

7. if (q ∈ E)

8. A = A ∪E−B.

9. return B

expansion(x)

1. G = ∅
2. for 1 ≤ i ≤ M : G = G ∪ {b2i−1} ∪ {b2i},

where b2i−1 = (x1, . . . , min(xi + 1, ni), . . . , xM ) and b2i = (x1, . . . , min(xi +

2, ni), . . . , xM ).

3. return G

Figure 2.11: Controlled local search algorithm.

and modifying the expansion(.) subroutine to decrease each parameter option. In our

experiments, we find that the approach in Figure 2.11 finds more parameter settings in

the low and mid encode regions while a descent algorithm finds more parameter settings in

the high encode time region. Because our target application is real-time encoding over cell

phones, we search from lower PSNR/complexity to higher PSNR/complexity to find more

points in the low and mid encode time regions.
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2.11 Multiobjective particle swarm optimizer

A multiobjective optimization algorithm optimizes several objective functions simultane-

ously. Our distortion-complexity optimization is a multiobjective optimization problem

since it involves two objective functions: the MSE, and encoding time. As a comparator to

the four algorithms presented in this thesis, we consider the multiobjective particle swarm

optimizer (MOPSO). We specifically consider the MOPSO algorithm developed by Coello

et al. [27, 69] because it has comparable performance to the nondominated sorting genetic

algorithm-II, the Pareto archive evolutionary strategy, and the microgenetic algorithm for

multiobjective optimization, but is faster [27].

We formulate our D-C multiobjective optimization problem as follows and apply the

MOPSO algorithm: find m = (ref, part, subme, trellis) which satisfies the following

inequality constraints: 1 ≤ ref ≤ 16; 1 ≤ part ≤ 10; 1 ≤ subme ≤ 7; and 1 ≤ trellis ≤ 3,

and optimize d(m) and c(m).

In MOPSO, the user specifies the initial number of D-C points or particles and the

number of iterations. The initial particle positions are randomly chosen. During each

iteration, particle positions are updated by a velocity step. The algorithm stores the non-

dominated particle positions in a repository. Each particle’s best position so far is stored

in a buffer, and the velocity and position of the particle are updated using knowledge of its

best position so far and the previous global best solution. Due to the randomness associated

with the algorithm during the initial particle generation and velocity update stages, the final

solution differs with each run of the algorithm.

The similarity between MOPSO and our algorithms is that they both generate points on

the Pareto Front. The Pareto Front points are dominant among a given set of points, which

are a subset of exhaustive search points. The MOPSO finds the Pareto Front heuristically by

randomly searching through the distortion-complexity space using the concept of dominance.

Our algorithms find the Pareto Front by comparing the distortion-complexity slopes of

different parameters. These slopes approximate a Lagrange multiplier used to combine

d(m) and c(m) to a single cost function. In Chapter 3, we will show that the Pareto Fronts

generated by MOPSO and our algorithms are not identical.
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2.12 Summary

In this chapter, we presented four new parameter settings selection algorithms: the GBFOS-

basic and GBFOS-iterative algorithms, DPSPA, and CLSA. The last two algorithms gen-

erate additional parameter settings over the GBFOS-basic algorithm. We described the

MOPSO and applied it to our D-C optimization problem. We illustrated these algorithms

using four x264 encoder parameters. In the following chapter, we compare the performance

of these algorithms using different training and test videos, and different video encoders.
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Chapter 3

PERFORMANCE OF OUR ALGORITHMS ON X264 AND H.263+
ENCODERS

3.1 Introduction

In this chapter, we present metrics to evaluate the performance of our algorithms presented

in the previous chapter. We compare our algorithms with exhaustive search, multiobjective

particle swarm optimizer (MOPSO), and the x264 default parameter setting. We present an

ROI-based motion search method as a new x264 parameter to improve motion estimation

speed for ASL videos. We include this as an additional parameter in our parameter setting

space, and apply our optimization algorithms to select the parameter settings. Finally, we

test our algorithms on the H.263+ encoder [24].

3.2 Performance Metrics

We denote the parameter settings from an exhaustive search as r1, r2, . . . , rNopt , and the pa-

rameter settings generated by algorithm A as p1,p2, . . . ,pNA
. Both categories of parameter

settings are ordered in increasing encoding time. Algorithm A represents a fast algorithm.

Let c(pi) and MSE(pi) denote the average encoding time and the mean squared error of the

luma component of a parameter setting pi, respectively. The PSNR of the luma component

of a parameter setting pi, averaged over an entire video is then defined as

PSNR(pi) = 10 log10

2552

MSE(pi)
, (3.1)

where MSE(pi) is the mean squared error of the luma component averaged over all frames

in the video.

The following four metrics are used to compare the performance between the parameter

settings from algorithm A and exhaustive search:

1. Maximum PSNR difference (MaxA). This metric gives the maximum PSNR differ-

ence between parameter settings from algorithm A and exhaustive search. For each
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parameter setting pi, we first find the parameter setting rki
that has nearly the same

encoding time and its index is obtained as follows

ki = arg min
1≤j≤Nopt

(c(rj)− c(pi) ≥ 0), (3.2)

The maximum PSNR difference is

MaxA = max
1≤i≤NA

(PSNR(rki)− PSNR(pi)). (3.3)

2. Mean PSNR difference. This is defined as

MeanA =
1

NA

NA∑

i=1

(PSNR(rki)− PSNR(pi)), (3.4)

where index ki is obtained using Equation (3.2).

3. Hyperarea ratio (HR) [70]. This metric measures the spread of our algorithm’s D-

C points relative to the dominant points of the exhaustive search. A lower spread

indicates that the algorithm’s D-C points are clustered together, which means the

encoding time range of the parameter settings is restricted. For example, if all the

parameter settings have high encoding time, the encoder cannot choose a low com-

plexity parameter setting appropriate for low processor speed, thereby resulting in

slow encoding.

We first define the hyperarea for algorithm A as

HAA =
NA∑

i=1

MSE(pi)(c(pi)− c(pi−1)), (3.5)

where c(p0) = 0. Similarly, we compute the hyperarea for the dominant points HAopt.

The hyperarea ratio is defined as

HRA =
HAopt

HAA
. (3.6)
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We would like the HR to be close to one, since this would mean a good D-C spread

of the parameter settings. If the HR is greater than one, the parameter settings have

a good D-C spread but have not converged to the dominant points.

4. Number of parameter settings generated. We seek to generate more parameter settings

since they increase the possibility of finding higher PSNR parameter settings that

satisfy an encoding time constraint.

3.3 Results for the H.264 Encoder

In our tests, we use video sequences from three data sets. One of the data sets contains

15 QCIF video sequences from [71] that are often used in MPEG codec evaluation. We

will refer to them as the Standard data set. The other two data sets are American Sign

Language videos created at the University of Washington, with one set (ASL-1) containing

10 video clips at QCIF resolution and the other set (ASL-2) containing 10 video clips at

320×240 resolution. The ASL-1 data set contains different videos from the ASL-2 data set.

Table 3.1 lists videos in each data set. These video clips are encoded using x264 (March 26,

2006 version) [6] at 30 frames per second (fps). We choose three target bitrates: 30 kb/s,

150 kb/s and 300 kb/s. The average number of frames for ASL-1, ASL-2 and Standard test

sets are 1073, 1687 and 720 frames, respectively. Tests are conducted on a Linux machine

with a 2.8 GHz Intel CPU.

We consider the four variable parameters described in Section 2.6 and vary each parame-

ter over their entire range. We use the following constant parameters in our encodings: 8×8

and 4× 4 DCT; one B-frame; IPBPBP... group-of-picture structure; uneven multihexagon

motion search; and spatial motion vector prediction for direct mode. The other parameters

are set to their default options.

3.3.1 Training data results

We compare the performance of our algorithms to exhaustive search and MOPSO using

the three data sets and three bitrates. Figure 3.1 shows the D-C curves for the ASL-

1 data set at 30 kb/s and we find that GBFOS-basic and GBFOS-iterative points are
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Table 3.1: List of videos.

ASL-1 data set ASL-2 data set Standard data set

Accident BadLuckDitch akiyo

Childhood ScaryMovie claire

DayAtSchool CaptionedMovies foreman

FavoriteActors School mother

FoodILike DaughtersGraduation bridge-close

Graduation BadLuckLadder grandma

MakeUpJob WaterWorld news

MonthInOregon SistersCooking bridge-far

Theater FancyRestaurant coastguard

VolleyBall Maryland highway

salesman

carphone

container

mobile

silent

close to the dominant points. The performance of different algorithms for different data

sets are given in Tables 3.2, 3.3 and 3.4. Figure 3.2 illustrates the performance of the

GBFOS-basic algorithm, dominant parameter setting pruning algorithm (DPSPA), and

MOPSO for the ASL-1 data set at 30 kb/s. The DPSPA generates additional parameter

settings over the GBFOS-basic algorithm. Because the PSNR performance and hyperarea

ratio for the GBFOS-basic algorithm and DPSPA are very similar, we only report the

number of parameter settings for DPSPA in Table 3.2. From Table 3.2, the maximum

PSNR difference for both the GBFOS-basic algorithm and the DPSPA is 0.58 dB. Their

mean PSNR difference is significantly less, indicating that most points lie close to the

dominant points. The GBFOS-iterative algorithm has a lower maximum PSNR difference
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Figure 3.1: Distortion-complexity plot comparing GBFOS-basic and iterative points with

the dominant points from exhaustive search for the ASL-1 data set at 30 kb/s.

of 0.36 dB, and for the ASL-1 data set it generates points that almost lie on the dominant

points as shown in Table 3.2(c).

Since the parameter settings generated by the MOPSO algorithm differ during each run,

we run it 100 times, find the 95% confidence interval for the four metrics, and report them

in Table 3.2(b). The worst case 95% confidence interval for the maximum PSNR difference

is [0.39 dB 0.45 dB], corresponding to the ASL-2 data set at 30 kb/s. The confidence

interval for the mean PSNR difference is low indicating the MOPSO points often lie close

to the dominant points. Compared to other algorithms, the MOPSO often generates fewer

parameter settings and has lower HR indicating that its D-C points have lower spread. This

is illustrated in Figure 3.2, where MOPSO points were obtained from a single run of the

algorithm.

We next compare the number of encodings required by different algorithms. Let n1, ..., nM

be the number of options of each of the M parameters. Then the number of encodings re-
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Table 3.2: Results corresponding to the ASL-1 data set. (a) Both the GBFOS-basic algo-

rithm and DPSPA have similar performance and take 33 encodings. (b) The 95% confidence

interval results for MOPSO. MOPSO also takes 33 encodings. We would like the Hyperarea

ratio (HR) to be close to one. (c) Performance of the GBFOS-iterative algorithm.

Bitrates GBFOS-basic algorithm DPSPA

PSNR diff (dB) HR # of points # of points

Max Mean

30 kb/s 0.58 0.07 0.995 14 24

150 kb/s 0.21 0.05 0.975 10 11

300 kb/s 0.45 0.03 1 18 25

(a)

Bitrates MOPSO

PSNR diff (dB) HR # of points

Max Mean

30 kb/s [0.31 0.43] [0.09 0.12] [0.62 0.67] [12 13]

150 kb/s [0.26 0.34] [0.10 0.12] [0.67 0.77] [9 10]

300 kb/s [0.28 0.36] [0.08 0.10] [0.61 0.69] [12 13]

(b)

Bitrates GBFOS-iterative algorithm

PSNR diff (dB) HR # of points # of

Max Mean encodings

30 kb/s ≈ 0 ≈ 0 0.99 18 223

150 kb/s ≈ 0 ≈ 0 0.99 17 197

300 kb/s 0 0 0.99 20 235

(c)
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Table 3.3: Training data results for the ASL-2 data set. (a) Both the GBFOS-basic algo-

rithm and DPSPA have similar performance. (b) The 95% confidence interval results for

MOPSO. (c) Performance of the GBFOS-iterative algorithm.

Bitrate GBFOS-basic algorithm DPSPA

PSNR diff (dB) HR # of points # of points

Max Mean

30 kb/s 0.33 0.1 0.98 7 11

150 kb/s 0.49 0.13 1.01 15 20

300 kb/s 0.15 0.03 0.99 17 23

(a)

Bitrate MOPSO

PSNR diff (dB) HR # of points

Max Mean

30 kb/s [0.39 0.45] [0.15 0.17] [0.86 0.94] [9 9]

150 kb/s [0.26 0.31] [0.12 0.14] [0.67 0.73] [9 9]

300 kb/s [0.19 0.24] [0.07 0.08] [0.60 0.67] [10 11]

(b)

Bitrate GBFOS-iterative algorithm

PSNR diff (dB) HR # of points # of

Max Mean encodings

30 kb/s 0.03 ≈ 0 0.99 13 127

150 kb/s 0.01 ≈ 0 ≈ 1 13 118

300 kb/s 0.22 0.02 ≈ 1 22 218

(c)
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Table 3.4: Training data results corresponding to the Standard data set. (a) Both the

GBFOS-basic algorithm and DPSPA have similar performance. (b) The 95% confidence

interval results for MOPSO. We would like the Hyperarea ratio (HR) to be close to one.(c)

Performance of the GBFOS-iterative algorithm.

Bitrate GBFOS-basic algorithm DPSPA

PSNR diff (dB) HR # of points # of points

Max Mean

30 kb/s 0.12 0.04 0.98 9 10

150 kb/s 0.22 0.05 ≈ 1 14 18

300 kb/s 0.27 0.06 0.99 14 19

(a)

Bitrate MOPSO

PSNR diff (dB) HR # of points

Max Mean

30 kb/s [0.27 0.32] [0.09 0.11] [0.65 0.70] [10 11]

150 kb/s [0.16 0.2] [0.08 0.09] [0.37 0.44] [10 11]

300 kb/s [0.22 0.25] [0.09 0.1] [0.71 0.85] [11 13]

(b)

Bitrate GBFOS-iterative algorithm

PSNR diff (dB) HR # of points # of

Max Mean encodings

30 kb/s 0.18 0.04 0.99 12 155

150 kb/s 0 0 ≈ 1 22 285

300 kb/s 0.36 0.04 0.99 15 229

(c)
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Figure 3.2: Distortion-complexity plot comparing GBFOS-basic algorithm, DPSPA and

MOPSO for the ASL-1 data set at 30 kb/s.

quired per training video for searching the dominant points exhaustively is

Nexhaustive =
M∏

i=1

ni, (3.7)

while for the GBFOS-basic algorithm, it is

NGBFOS = 1−M +
M∑

i=1

ni. (3.8)

The difference between Nexhaustive and NGBFOS can be quite large, even when using few

parameters. For example, using our four H.264 parameters, we obtain Nexhaustive = 3360

and NGBFOS = 33, meaning the GBFOS-basic algorithm takes about 1% of the number

of encodings required for exhaustively searching the dominant points. The DPSPA always

takes the same number of encodings as the GBFOS-basic algorithm. The number of en-

codings required for the GBFOS-iterative algorithm depends upon the data set. In the

worst case, it requires the same number of encodings as exhaustive search. However, from

our experiments, using different bitrates and data sets, we found the maximum number of
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encodings is 285, which is only 8.5% of the number of encodings required by exhaustive

search.

The number of encodings required for MOPSO is the product of the number of itera-

tions and the number of initial points, both of which are user-specified. We choose these

MOPSO parameters so that MOPSO has the same number of encodings as the GBFOS-

basic algorithm. We shall exclude discussion on both the DPSPA and MOPSO in the rest

of this chapter, since the DPSPA has similar performance to the GBFOS-basic algorithm,

and MOPSO generates parameter settings that are non-deterministic, and have low D-C

spread and PSNR performance similar to the other algorithms.

We next compare the performance of parameter settings generated across an entire data

set vs.single video in the data set. We illustrate the comparison for ASL-1 data set at 30

kb/s in Figure 3.3 for GBFOS-basic and GBFOS-iterative algorithms. We find the two set

of points very close indicating that parameter settings obtained across training data set

performs equally well on individual training videos.

3.3.2 Cross-validation results

To test the robustness of the GBFOS-basic algorithm against change in video content, the

parameter settings obtained from a training set are applied to a test set. We use three

(training set, test set) pairs, namely (ASL-1, ASL-2), (ASL-1,Standard) and (Standard,

ASL-1) for three different bitrates: 30 kb/s, 150 kb/s and 300 kb/s. We compute the

hyperarea ratio, and the maximum and mean PSNR difference on the test data and list

them in Table 3.5. Figure 3.4 shows that GBFOS-basic and iterative points are close to the

dominant points for the (ASL-1, Standard) case at 30 kb/s. For all (training, test) pairs, the

GBFOS-basic and iterative algorithms have maximum and mean PSNR difference within

0.6 dB and 0.25 dB, respectively, showing that our algorithms are robust to changes in the

data set.
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Table 3.5: Cross-validation for different (training, test) data pairs on a 2.8 GHz PC for the

(a) GBFOS-Basic algorithm, (b) and (c) MOPSO, and (d) the GBFOS-iterative algorithm.

Bitrate (Standard, ASL-1) (ASL-1, Standard) (ASL-1, ASL-2)

(kb/s) PSNR diff (dB) PSNR diff (dB) PSNR diff (dB)

Max Mean HR Max Mean HR Max Mean HR

30 0.33 0.1 0.96 0.12 0.05 1.03 0.33 0.15 1.14

150 0.59 0.14 1.01 0.6 0.11 0.89 0.56 0.24 1.08

300 0.45 0.15 0.79 0.30 0.07 1.39 0.29 0.1 1.06

(a)

Bitrate (Standard, ASL-1) (ASL-1, Standard)

PSNR diff (dB) PSNR diff (dB)

(kb/s) Max Mean HR Max Mean HR

30 [0.3 0.4] [0.1 0.1] [0.6 0.7] [0.3 0.4] [0.1 0.1] [0.7 0.7]

150 [0.5 0.6] [0.2 0.2] [0.7 0.8] [0.3 0.3] [0.1 0.1] [0.4 0.4]

300 [0.5 0.5] [0.1 0.1] [0.5 0.6] [0.3 0.3] [0.1 0.1] [0.8 0.9]

(b)

Bitrate (ASL-1, ASL-2)

PSNR diff (dB)

(kb/s) Max Mean HR

30 [0.5 0.6] [0.2 0.3] [0.9 0.9]

150 [0.3 0.4] [0.2 0.2] [0.7 0.7]

300 [0.3 0.3] [0.1 0.1] [0.5 0.6]

(c)

Bitrate (Standard, ASL-1) ( ASL-1, Standard) (ASL-1, ASL-2)

(kb/s) PSNR diff (dB) PSNR diff (dB) PSNR diff (dB)

Max Mean HR Max Mean HR Max Mean HR

30 0.58 0.13 0.98 0.11 0.05 1.04 0.38 0.23 1.19

150 0.43 0.06 1.01 0.14 0.06 0.89 0.49 0.14 1.08

300 0.47 0.15 0.8 0.3 0.07 1.4 0.28 0.06 1.05

(d)
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Figure 3.3: Performance comparison between parameter settings obtained from a single

video and across a data set for the (a) GBFOS-basic algorithm and (b) GBFOS-iterative

algorithm, using ASL-1 data set at 30 kb/s.

3.3.3 Comparison with the default parameter setting

We compare the performance of the GBFOS-basic parameter settings with the x264 default

parameter setting, which is (1, 8, 5, 1) [6] on a 2.8 GHz PC. For evaluation, we pick the

GBFOS parameter setting p that has PSNR close to the default parameter setting q and

measure the speed gain and PSNR difference. Using the definition for PSNR() and c()

defined in Section 3.2, we define the speed gain as

Sg(p,q) =
c(p)− c(q)

c(q)
, (3.9)

and define the PSNR difference as

∆PSNR(p,q) = PSNR(p)− PSNR(q). (3.10)

We use the three (training, test) pairs used previously and use five videos each from
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Figure 3.4: Cross-validation using ASL-1 training data and Standard test data at 30 kb/s.

The dominant points are obtained from exhaustive search using Standard test data set.

the ASL-1 and ASL-2 data sets and six videos from the Standard data set. We list the

results for the three bitrates and three (training, test) pairs in Table 3.6. Figure 3.5 shows

that the GBFOS-basic parameter settings have better D-C tradeoff compared to the default

parameter setting for the (ASL-1 training, ASL-2 test) pair at 30 kb/s. The GBFOS-basic

and iterative algorithms result in a maximum speed gain of 37% and PSNR loss that is

within 0.26 dB of the default setting.

3.3.4 Comparison between CLSA, DPSPA and the GBFOS-basic algorithm

In Chapter 2, we described the controlled local search algorithm (CLSA) and DPSPA, which

generate additional parameter settings over the GBFOS-basic algorithm [72]. In this section,

we compare the performance of the CLSA and DPSPA to the GBFOS-basic algorithm at

30 kb/s on a Linux computer with 2.8 GHz Intel CPU, and a Sprint PocketPC 6700 with

a 416 MHz Intel CPU.

For our tests on the Linux machine, we use 10 videos from both the ASL-1 and ASL-2
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Figure 3.5: Performance of the GBFOS-basic algorithm and the x264 default parameter

setting for the ASL-1 training data and ASL-2 test data at 30 kb/s on a 2.8 GHz PC.

data set at 30 fps. We perform cross-validation by randomly choosing six videos containing

three of each resolution as the test data and the remaining 14 videos as our training data.

We run both the CLSA and DPSPA to obtain extra parameter settings over the GBFOS-

basic algorithm in the low and mid encode time regions indicated in Figure 3.6. Figure 3.6

illustrates GBFOS-basic points A and B, and additional points in between them generated

by DPSPA and CLSA. (In Figure 3.6(b), point C performs less well due to the mismatch

between training and test data.) From Figure 3.6, we find that CLSA often finds DPSPA

points.

To evaluate the performance of our algorithm, we measure the maximum PSNR dif-

ference between each additional point generated and the lower PSNR/complexity GBFOS-

basic parameter setting on test data. We use this difference since the encoder would need

to operate at the lower GBFOS-basic parameter setting, if it could not find suitable param-

eter settings in the intermediate region. We would like the additional parameter settings

generated to be spread over a given time region instead of clustering around a single param-

eter setting. Therefore, we measure the maximum encode time difference between adjacent
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Table 3.6: Performance of (a) GBFOS-basic and (b) iterative parameter settings relative to

the x264 default parameter setting on a PC for different (training, test) data.

Bitrate (Standard, ASL-1) (ASL-1, Standard) (ASL-1, ASL-2)

(kb/s) ∆PSNR Speed gain ∆PSNR Speed gain ∆PSNR Speed gain

(dB) (%) (dB) (%) (dB) (%)

30 -0.26 27.8 -0.08 12.3 -0.08 37.4

150 0.09 17.2 -0.2 29.5 -0.18 19.7

300 -0.07 34.2 -0.17 5.7 -0.07 9.4

(a)

Bitrate (Standard, ASL-1) (ASL-1, Standard) (ASL-1, ASL-2)

(kb/s) ∆PSNR Speed gain ∆PSNR Speed gain ∆PSNR Speed gain

(dB) (%) (dB) (%) (dB) (%)

30 -0.01 21 -0.08 12.3 -0.08 37.1

150 0.06 19.1 ≈ 0 19.5 -0.1 22.4

300 -0.09 15.5 -0.06 31.8 -0.08 8.03

(b)

parameter settings generated by our algorithms on the test data.

Table 3.7 gives results for both CLSA and DPSPA on the Linux platform. Both algo-

rithms yield slight improvement in maximum PSNR on the Linux platform. For the CLSA,

we use the following start and end GBFOS-basic parameter settings for low encode time

region {(1,3,1,2),(1,3,3,2)}, and for mid encode time region we use {(5,4,3,2),(5,4,7,2)}, re-

spectively. The DPSPA takes the same number of encodings as the GBFOS-basic algorithm

while the CLSA takes additional encodings. The CLSA takes more encodings, and yields

more additional parameter settings.

For our tests on the cell phone, we use 10 QCIF videos from the ASL-1 data set. Five
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Figure 3.6: The parameter settings generated by CLSA and DPSPA for ASL test data on

Linux platform. Points A and B are also generated by the GBFOS-basic algorithm. (a)

Low encode time region and (b) mid encode time region. Point C performs less well due to

the mismatch between training and test data.

of them were used in our earlier test on the Linux machine, but have a frame rate of 10

fps. The other five videos were recorded on a HTC TyTN II cell phone at 15 fps and have

different signer and background compared to the other videos. We perform a leave-one-out

cross-validation, by training on 9 videos and testing on one video. Since we are testing on

the cell phone, we consider only three variable parameters each having fewer options. We

use the subme options (0,1,2,3), where the option zero corresponds to integer pixel motion

estimation. We use part options (0,1,2) which correspond to P16× 16; P8× 8; and I8× 8,

P8 × 8, respectively. We use all three trellis options. We use only one reference frame, no

B-frames and diamond search.

Both the GBFOS-basic algorithm and the DPSPA take only 9 encodings per video on

the training data. We apply the CLSA to the low and mid encode time regions by using

{(1,1,0,1),(1,1,1,1)} and {(1,2,1,1),(1,2,3,1)} as the start and end GBFOS-basic parameter
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Table 3.7: Results for the x264 encoder on Linux platform. Both the GBFOS-basic algo-

rithm and DPSPA take only 33 encodings.

Low encode time Mid encode time
CLSA DPSPA CLSA DPSPA

Number of encodings per video 17+33=50 33 123+33 = 156 33
Number of additional 3 1 15 3

parameter settings generated
Maximum PSNR gain (dB) 0.25 0.22 0.34 0.28

Maximum encode time 3× 10−4 4× 10−4 13× 10−4 49× 10−4

difference (seconds)

Table 3.8: Results for the x264 encoder on PocketPC platform. Both the GBFOS-basic

algorithm and DPSPA take only 9 encodings.

Low encode time Mid encode time
CLSA DPSPA CLSA DPSPA

Number of encodings per video 8+9=17 9 6+9=15 9
Number of additional 1 0 3 1

parameter settings generated
Maximum PSNR gain (dB) 0.71 0 0.664 0.43

Average maximum encode time 45× 10−4 59× 10−4 49× 10−4 73× 10−4

difference (seconds)

setting pairs, respectively. The results for low and mid encode time regions are tabulated in

Table 3.8. The CLSA gives a maximum PSNR gain of 0.71 dB on the PocketPC platform.

The CLSA again takes more encodings compared to the DPSPA, but also yields parameter

settings with a higher PSNR gain. Since the DPSPA does not find any parameter settings

in the low encode time region, the maximum encode time difference is the time difference

between the two adjacent GBFOS-basic parameter settings. The CLSA results in fewer

parameter settings for the cell phone data when compared to the Linux data, since we

consider fewer parameters with fewer options.
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3.4 ROI-based Motion Search for ASL Videos

In this section, we propose region of interest(ROI)-based motion search method for ASL

videos for the x264 encoder and use it as an additional parameter to test our algorithms.

Our ROI-based motion search improves the speed of the encoder without loss in PSNR.

Each frame in an ASL video sequence can be classified into three distinct regions, namely

head, torso and background as shown in Figure 3.7. In ASL videos, the head has limited

motions while the hands have larger motions that often occur in the torso region. Con-

sidering this prior knowledge, we can use different motion search methods for the different

regions. We hand-label the macroblocks that belong to the head and torso regions of our

data set and use the GBFOS-basic and iterative algorithms to find the ROI-based motion

search methods that result in good distortion-complexity performance.

Motion estimation (ME) is the most time-consuming part of the H.264 encoder as it uses

multiple prediction modes and reference frames. We shall consider the following four x264

motion search methods, which are listed in increasing complexity and have been described

in Section 1.3: DIA, HEX, UMH and ESA.

In our tests, we consider 8 different region-of-interest (ROI) based motion search meth-

ods: UMH for all regions, while the other 7 methods use DIA for the background and use

either DIA, HEX or UMH for the head and torso regions. In [73] and [74], it was shown

that fluent signers look at the face 95% of the time when watching ASL videos. This leads

us to choose a motion search method for the torso region of similar or lower complexity

when compared to the motion search of the face region, thereby ensuring better quality for

the face region. Therefore, we consider the following 7 (head, torso) motion search pairs:

(DIA, DIA), (HEX, DIA), (HEX, HEX), (UMH, DIA), (UMH, HEX), (HEX, UMH) and

(UMH, UMH). We do not consider the combination of DIA search for the head and UMH

or HEX for the torso region.

Our data set includes five ASL video clips belonging to the ASL-2 data set and they are

encoded at 30 fps and 30 kb/s on the same computer as in Section 3.3. The head region

consists of 5×8 macroblocks (height×width) and the torso consists of 6×12 macroblocks

(See Figure 3.7). We conduct an exhaustive search using the same variable parameters
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Figure 3.7: Different regions of an ASL video frame.

from Section 3.3 together with 8 ROI-based motion search options mentioned above. We

plot the distortion-complexity convex hull points in Figure 3.8. We find that using ROI-

based motion search improves the speed of the encoder up to 11.3% over using UMH for

the entire frame. At faster encoding speeds, the ROI-based motion search chooses different

search methods for different regions, but at slower speeds it chooses all-UMH and the two

sets of dominant points overlap as shown in Figure 3.8. This makes sense as UMH provides

higher PSNRs when longer encoding time is available.

Table 3.9: Results for the GBFOS-basic and iterative algorithms when using ROI-based

motion search as one of the x264 encoder parameters.

GBFOS-basic algorithm GBFOS-iterative algorithm

Max PSNR diff (dB) 0.05 0.05

Mean PSNR diff (dB) 0.02 0.01

# of encodings 40 273

Hyperarea ratio 0.98 0.98

# of points 10 13
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Figure 3.8: PSNR vs. average encoding time per frame for the dominant points with and

without ROI-based motion search at 30 kb/s.
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Figure 3.9: PSNR vs. average encoding time per frame for ROI-based motion search at 30

kb/s.

To find the dominant points using the five variable encoder parameters mentioned above,

we require 16 × 10 × 7 × 3 × 8 = 26, 880 encodings per video sequence, using Equation
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(3.7). However, using the GBFOS-basic and GBFOS-iterative algorithms, we require 40

and 233 encodings only, i.e., 0.15% and 1% of the encodings required by an exhaustive

search, respectively. Figure 3.9 shows that both the GBFOS-basic and iterative points lie

close to the dominant points. Table 3.9 shows that both our algorithms have a maximum

PSNR difference of 0.05 dB, and also have very similar performance for other metrics. This

indicates that when using the ROI-based motion search with other x264 parameters, the

low complexity GBFOS-basic algorithm can be used to find the parameter settings.

3.5 Results for the H.263+ Encoder

In this section, we use both our GBFOS algorithms for choosing H.263+ encoder parameters.

Many new features and modes were introduced in the H.263 standard [75] to improve its

compression efficiency, resulting in the H.263+ standard [76]. H.263+ allows different source

formats and provides scalability that helps improve error resilience. This standard has 12

new modes that include unrestricted motion vectors, advanced intra coding, deblocking

filter, slice structure, improved PB-frames, alternative inter variable length coding (VLC),

and modified quantization [24]. These modes may have two or more options. Similar to

the H.264 encoder, finding the optimal parameter settings for the H.263+ encoder using

exhaustive search is time consuming.

We have considered the H.263+ encoder since it is fairly different from the x264 encoder.

We use the reference source code for H.263+ from [77] and enable the use of deblocking filter

in our tests. We consider the following variable parameters, with their respective options

given in parentheses: advanced prediction mode (on, off); advanced intra coding mode

(on, off); integer pel search window (0,1,. . . ,15); unrestricted motion vector mode (H.263,

H.263+, and H.263+ unlimited range); and quantization methods (arithmetic coding, and

modified quantization mode with and without the use of alternate inter VLC mode).

In the advanced prediction mode, each of the four 8× 8 luma subblocks belonging to a

macroblock can have a motion vector. The advanced intra coding mode allows interblock

prediction from neighboring intrablocks. It uses modified quantization and a separate VLC

table for intrablocks. In unrestricted motion vector mode, the motion vectors are allowed

to point outside the picture. However, using the H.263 option the motion vectors are
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restricted to reference within a picture area. In the alternate inter VLC mode, the VLC table

used for intrablocks can be used for coding interblocks as well. The modified quantization

mode allows the quantizer value to be changed at the macroblock level, and allows the use

of smaller quantizer step size for chrominance samples, and finally extends the range of

representable quantized DCT coefficients [24].

Our test set includes 10 ASL videos clips of 600 frames each from the ASL-1 data set

used in Section 3.3. We encode the videos at 30 kb/s and 30 fps and obtain our results

using the same computer used in Section 3.3. For generating the marginal plots for each

parameter, we consider the following parameter options to result in least MSE: advanced

prediction mode = on; advanced intra coding mode = on; integer pel search window = 15;

unrestricted motion vector mode = H.263+ unlimited range; and quantization method =

arithmetic coding.

Figure 3.10 shows that points belonging to the GBFOS algorithms are close to the dom-

inant points from exhaustive search. The number of encodings required for generating the

dominant points, GBFOS-iterative, and GBFOS-basic points are 1536, 52 and 23, respec-

tively. That is, the GBFOS-basic and iterative algorithms take only 1.5% and 3.4% of the

number of encodings required by exhaustive search, respectively. From Table 3.10, we find

that both our algorithms have similar mean and maximum PSNR difference, hyperarea ra-

tio, and number of points. Therefore, when encoding ASL videos at a very low bitrate (30

kb/s) using the H.263+ encoder, we can just use the GBFOS-basic parameter settings.

3.6 Summary

In this chapter, we compared the performance of the GBFOS-basic and iterative algorithms,

DPSPA, CLSA, MOPSO, and exhaustive search, using several performance metrics. The

GBFOS-basic and iterative algorithms take only 1% and 8.5% of the time required for

exhaustive search and result in a maximum and mean PSNR difference of 0.6 dB and 0.25

dB, respectively. The MOPSO generates parameter settings that are non-deterministic

having low D-C spread. The DPSPA takes the same number of encodings as the GBFOS-

basic algorithm but generates more parameter settings. Given two GBFOS-basic parameter

settings, the CLSA generates additional parameter settings between them using additional
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Figure 3.10: Distortion-complexity plot comparing GBFOS-basic and iterative points with

dominant points from the exhaustive search for the H.263+ encoder when using ASL-1 data

set at 30 kb/s.

Table 3.10: Results for the H.263+ encoder when using ASL-1 data set at 30 kb/s and 30

fps. The DPSPA generates the same points as the GBFOS-basic algorithm.

GBFOS-basic algorithm GBFOS-iterative algorithm

Max PSNR diff (dB) 0.78 0.78

Mean PSNR diff (dB) 0.25 0.33

# of encodings 23 52

Hyperarea ratio 0.99 ≈ 1

# of points 6 7
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encodings. The overall PSNR performances of the GBFOS-basic and GBFOS-iterative

algorithms, DPSPA, and MOPSO are very similar. Therefore, we would recommend either

the use of GBFOS-basic algorithm or DPSPA for generating parameter settings, since they

take the fewest encodings. (We did not consider CLSA in this comparison, since it requires

two GBFOS-basic parameter settings as its input.)

The GBFOS-basic and iterative parameter settings improve encoding speed by up to

37% over the x264 default parameter setting on a PC, with negligible loss in PSNR. The

use of ROI-based motion search parameter improves the encoding speed by 11.3% over

using the UMH search, with no loss in PSNR. Finally, we demonstrate the generality of our

algorithms by applying them to the H.263+ video encoder, to select parameter settings that

trade off well between PSNR and encoding speed. In the following chapter, we will analyze

the performance of our algorithms on cell phones for encoding ASL videos.
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Chapter 4

AMERICAN SIGN LANGUAGE VIDEO COMPRESSION ON CELL
PHONES

4.1 Introduction

Current mobile devices such as cell phones, PDAs, and PocketPCs are equipped with video

cameras and codecs that can ultimately be used for real-time video communication of

ASL [78]. The compression efficiency of H.264 encoder makes it suitable for use in such

mobile devices that operate at low bandwidth. Also, many cell phones have hardware

H.264 decoders, which allow fast decoding. Since cell phones typically have low processing

speed (on the order of hundreds of MHz, although the new HTC EVO phone has a 1 GHz

processor), it is essential to use encoder parameter settings that optimize the encoder for

both frame rate (speed) and quality.

An exhaustive search for finding distortion-complexity optimized parameter settings on

a cell phone is infeasible due to its slow processor speed. Continuing with our example in

Section 2.2, for a 416 MHz PocketPC, an exhaustive search with four variable parameters

would approximately take 25 days × 2.8 GHz
416 MHz ≈ 5 months! To speedup the process of finding

parameter settings, we propose to use the GBFOS-basic algorithm which takes≈ 5 months×
1% = 1.5 days.

In this chapter, we apply the GBFOS-basic algorithm to the x264 encoder for encoding

ASL videos on a cell phone. We compare the performance of the GBFOS-basic algorithm

with the estimated convex hull on the PocketPC. We analyze the cross-platform performance

of the GBFOS-basic parameter settings. We show that the GBFOS-basic parameter settings

are robust to different ASL signers used in training and test videos. Finally, we compare the

performance of the GBFOS-basic parameter settings to the x264 default parameter setting

on a cell phone.
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4.2 Comparison with the estimated convex hull

In this section, we compare the performance of the GBFOS-basic parameter settings to an

estimate of the convex hull on the Sprint PocketPC with a 416 MHz Intel processor. To

save time, we estimate the convex hull parameter settings by running all possible combina-

tions of parameters selected by the GBFOS-basic algorithm. We choose only three variable

parameters (ref, subme and part), and use trellis = 3 for quantization method. We use

a training set consisting of five 320× 240 ASL videos at 10 fps, containing 100 frames each

encoded at 25 kb/s. The five ASL videos belong to the ASL-2 data set described in Section

3.3 with the frame rate sub-sampled from 30 to 10 fps.

In our tests, the GBFOS-basic algorithm results in parameter settings that have four

different options for subme, three options for part and 9 options for ref. We use all possible

combinations of these parameters (4× 3× 9 = 108 encodings) to estimate the convex hull.

However, the GBFOS-basic algorithm here takes 31 encodings only.

Figure 4.1 shows that the GBFOS-basic algorithm performs well and overlaps with most

points on the estimated convex hull. Both the estimated convex hull and the GBFOS-basic

algorithm require fewer encodings than an exhaustive search which requires 7× 16× 10 =

1120 encodings.

4.3 Cross platform performance

In this section, we investigate the use of PC-based GBFOS-basic parameter settings on

the cell phone and compare it with cell phone-based GBFOS-basic parameter settings. In

our experiments, we use two cell phone platforms, a Sprint PocketPC used in the previous

section, and a HTC TyTN-II cell phone which has a 400 MHz ARM processor. For the

Sprint PocketPC, we use the videos described in Section 4.2 and use the same four x264

encoder parameters described in Section 3.3.

For the HTC cell phone, we use QCIF ASL videos at 15 fps recorded on the cell phone

itself. We use five training videos and one test video at 30 kb/s. We trade off subme

(1, . . . , 6); ref (1, . . . , 8); and part (1, . . . , 8). Figures 4.2 (a) and (b) show that the GBFOS-

basic parameter settings obtained from a 2.8 GHz Linux machine perform very close to
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Figure 4.1: PSNR vs. average encoding time per frame on a Pocket PC for ASL-2 data set

at 25 kb/s.

the cell phone parameter settings, indicating that the training time for the GBFOS-basic

algorithm can be further sped up by running it on a Linux machine. Continuing with our

previous example, running the GBFOS-basic algorithm on the Linux machine would take

only 6 hours instead of 1.5 days on a cell phone.

4.4 Performance across different ASL signers

In this section, we investigate whether the GBFOS-basic parameter settings are robust to

mismatch in signers in test and training videos. In our experiments, we use the ASL-1

data set described in Section 3.3 having Jessica as the signer, and two ASL videos with a

different signer (Gina) at 15 fps. Both user category videos are QCIF resolution and we

encode them at 30 kb/s. We run our tests on a 2.8 GHz PC. We train the GBFOS-basic

parameter settings using the Jessica video and apply them to the Gina test video. We

obtain the GBFOS-basic parameter settings from a training Gina video and apply it to the

test Gina video used before.

Figure 4.3 shows points corresponding to both sets of parameter settings on the Gina

test video. We find that the maximum PSNR difference is 0.2 dB, which suggests that the
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Figure 4.2: Cross platform performance of GBFOS-basic parameter settings. Comparing

performance of Linux trained parameter settings vs. parameter settings obtained from (a)

Sprint PocketPC and (b) HTC Ty TN-II cell phone. The two plots are obtained using

different test videos and encoder parameters.

GBFOS-basic parameter settings are not overtrained for a specific signer in the training

video, and can be used across different signers without significant loss in PSNR.

4.5 Comparison with the x264 default parameter setting

In this section, we compare the performance of the GBFOS-basic and GBFOS-iterative

parameter settings with the x264 default parameter setting on a HTC TyTN-II cell phone.

We use the MobileASL software described in Section 1.4.

We use ten 96 × 80 resolution videos from the ASL-1 data set at 10 fps. We choose

five videos for training and use the rest for testing. To further speed up the training time

for finding the parameter settings on the cell phone we run the GBFOS-basic and iterative

algorithms on a 2.8 GHz PC. We select a GBFOS-basic parameter setting and a GBFOS-
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Figure 4.3: Performance of GBFOS-basic parameter settings on videos belonging to different

signers on a PC.

iterative parameter setting that have similar PSNR performance as the default parameter

setting on the PC, and test them on the cell phone to compare their encoding speed. For

each test video, parameter setting, and bitrate we encode, transmit, receive, decode and

display the video in real-time on the cell phone for sixty seconds, and measure the average

encoding frame rate.

The default parameter setting results in 7 fps at 30 kb/s, and 5 fps at both 150 kb/s and

300 kb/s, while the GBFOS-basic parameter setting results in frame rates close to 10 fps at

all three bitrates. For lower bitrates, the GBFOS-iterative parameter setting provides close

to 10 fps. At 300 kb/s, the GBFOS-iterative algorithm chooses parameter setting having

higher complexity, thereby resulting in a frame rate of 7.5 fps. Because we obtained our

parameter settings from a PC, it is likely that the GBFOS-iterative algorithm chose the

higher complexity parameter setting at 300 kb/s, since it does not affect the frame rate on

a high speed PC. Studies have shown that a minimum of 10 fps is required for maintaining

ASL intelligibility [79,80] indicating that the GBFOS-basic and iterative parameter settings
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often provide frame rates necessary for ASL intelligibility.

In Table 4.1, we list the the average frame rates achieved when using the default, GBFOS-

basic and GBFOS-iterative parameter settings on a HTC TyTN II cell phone. The GBFOS-

basic and iterative algorithms improve the encoder speed by up to 94.1% and 89.3% which

corresponds to 4.9 and 4.7 fps increase in frame rate over the default parameter setting,

respectively. Since the GBFOS-basic and GBFOS-iterative parameter settings have similar

performance, we use the low complexity GBFOS-basic algorithm to train for parameter

settings.

The frame rates between the default parameter setting and the GBFOS-basic and

GBFOS-iterative parameter settings differ. This makes a PSNR comparison difficult on

a cell phone. Therefore, we instead compare the PSNR on a PC to ensure equal frame

rates. We found that the PSNR differences between the default and our parameter settings

were within 0.3 dB, indicating comparable quality.

4.6 Summary

In this chapter, we showed that the GBFOS-basic algorithm performs close to the esti-

mated convex hull parameter settings on the cell phone. We showed that the GBFOS-basic

parameter settings are not overtrained for a specific training platform. Therefore, we can

speed up training time by running the GBFOS-basic algorithm on a PC and use the pa-

rameter settings on a cell phone. The GBFOS-basic parameter settings have been shown

to be robust to mismatch in signers in training and test videos. Finally, on a cell phone

the GBFOS-basic parameter setting nearly doubles the frame rate over the x264 default

parameter setting with negligible loss in PSNR.
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Table 4.1: Comparing the frame rates of the x264 default parameter setting with (a)

GBFOS-basic parameter setting and (b) GBFOS-iterative parameter setting, on a HTC

TyTN-II cell phone when using ASL-1 training and test data. The GBFOS-basic and iter-

ative parameter settings used in this experiment are listed below.

Bitrate (kb/s) Default (fps) GBFOS-basic (fps) GBFOS-basic

parameter setting

30 7.2 9.7 (1, 2, 3, 2)

150 5.2 9.5 (1, 5, 1, 2)

300 5.2 10.2 (1, 1, 1, 2)

(a)

Bitrate (kb/s) Default (fps) GBFOS-iterative (fps) GBFOS-iterative

parameter setting

30 7.2 10 (1, 1, 3, 2)

150 5.2 10 (1, 1, 1, 2)

300 5.2 7.6 (1, 6, 3, 1)

(b)
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Chapter 5

DISTORTION-COMPLEXITY OPTIMIZATION OF THE CORNELL
ASL INTELLIGIBILITY-OPTIMIZED VIDEO ENCODER

5.1 Introduction

Region-of-interest (ROI) based video encoders are traditionally used to achieve bitrate sav-

ings by allocating more bits to the most relevant regions and fewer bits to other regions.

They could also be used to reduce the complexity of encoding by allocating more complexity

to the important regions. In this work, we shall combine these two concepts to achieve joint

rate-distortion-complexity optimization.

In related work, the perceptual quality of videoconferencing was improved by reducing

distortions in the user’s face [81, 82]. ROI-based video compression can be extended to

American Sign Language (ASL) video. For ASL video, distortion in face and hand regions

affects intelligibility. This is supported by both the linguistic structure of sign language

[83] (e.g. how information is conveyed) and by eye-tracking experiments [84]. Because of

this unique structure, several specialized algorithms have been proposed for encoding sign

language videos [84–86].

In [86], Ciaramello and Hemami developed an ASL optimized video encoder using an

objective measure of intelligibility incorporated into an H.264 rate-distortion (R-D) op-

timization algorithm. A performance bound for the system is obtained using the Viterbi

algorithm to search over all possible quantization parameters and encoding modes. For fixed

levels of intelligibility, the bitrate is reduced by 60% over an R-D optimization algorithm

which measures distortion as MSE. The goal of our rate-distortion-complexity optimiza-

tion is to achieve as much of this R-D gain while maintaining a computational complexity

appropriate for mobile devices with low processing power.

In this chapter, an ROI-optimized video encoder is presented that includes three new

ROI-based parameters that allow variations in encoding complexity per-macroblock based
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on its relative importance. We use the DPSPA described in Section 2.9 to search the space of

encoder parameter setting, to find parameter settings that yield improvement in complexity

(encoding speed), with only small decreases in intelligibility. This approach improves the

encoder speed on the PC and cell phone platforms by up to 54.4% and 60.8%, respectively,

with negligible loss in intelligibility when compared to the x264 default parameter setting.

The rate-distortion-complexity (R-D-C) optimization performed in this work is evaluated

specifically for ASL video, but the same procedure can be applied to any class of ROI video

(e.g. videoconferencing), subject to the availability of a distortion measure that reflects the

relative importance of each region. In this work, the face, hands and torso are the ROI and

the background is the non-ROI.

5.2 Objective Metric for ASL intelligibility

In this section, we describe the objective intelligibility metric for ASL videos developed by

Ciaramello and Hemami [87]. This metric is used as a distortion measure instead of MSE.

The following four components form a part of the intelligibility distortion metric:

1. Spatial distortion (d′k).

2. Temporal increase in spatial distortion (tvk).

3. Coding distortion in the background macroblocks (DNewBG).

4. Intelligibility loss due to low frame rate(f(rf )).

The procedure for computing the distortion measure is described below.

Let Y (i, j, n) and Ŷ (i, j, n) correspond to the luma pixel values of the original and

processed videos at spatial location (i, j) in frame n. Ȳ (n) is the mean luma pixel value

in frame n. The distortion between original and processed video at pixel location i, j and

frame number n is given by

ec(i, j, n) =
Y (i, j, n)− Ŷ (i, j, n)

Ȳ (n)
. (5.1)
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Let k denote the head, hands, and torso regions in a frame, and Nk denote the number

of pixels in each region k. Let N be the total number of frames in the video. The average

spatial distortion in each region k is computed by

dk(n) =
1

Nk

∑
i,j∈Region k

ec(i, j, n)2. (5.2)

If distortion occurs in a small set of frames, the video can still be intelligible. To eliminate

the effect of short duration distortion, a median filter of odd frame length γ is applied to

dk(n) as follows

d′k(n) = median

(
dk(n− γ − 1

2
), . . . , dk(n +

γ − 1
2

)
)

. (5.3)

To penalize for abrupt and sustained increases in distortion, the average of the largest

5% of the positive gradients of d′k(n) is computed for region k as follows

tvk = avg5%(∆d′k(n)), (5.4)

where ∆d′k(n) is the positive gradients of d′k(n).

To reduce the complexity of encoding background macroblocks, they can be skipped.

However, if a background macroblock contains a face or hand in the previous frame, and

was skipped in the current frame, portions of the hand or face will be noticeable in the

decoded background macroblock. This artifact can be very distracting and possibly reduce

the intelligibility. To include this distortion in the objective metric, an average distortion

is computed specifically for such background macroblocks (NewBG) as

DNewBG =
1
N

N∑

n=1

1
Nk

∑
i,j∈NewBG

ec(i, j, n)2. (5.5)

A lower frame rate can affect intelligibility and this loss is modeled as a sigmoid function

given by

f(rf ) = a1(1− e−e
a2−a3rf ), (5.6)

where a1, a2, and a3 control lower asymptote, convergence locations and growth rate, re-

spectively, and rf is the instantaneous frame rate. The constants a1 = 10, a2 = 0, and

a3 = 0.5.
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The final objective intelligibility measure is given by

DI = log10

(
1 + DNewBG +

∑

k

αk

N

N∑

n=1

d′k(n) + βktvk

)
+ f(rf ), (5.7)

The values of αk, βk, and the parameters in f(rf ) are optimized using ground truth

subjective intelligibility ratings of a collection of processed ASL videos. The weights were

determined to be αface = 1.6, αhands = 0.5 and αtorso = 0.1. A higher weight is given to

the face since distortion in the signer’s face results in lower intelligibility compared to the

same distortion in the signer’s torso.

The objective metric developed prior to the metric given in Equation 5.7 used only

weighted mean squared error computed at different regions of an ASL video, and is given

by

DI = log10

(
1 +

∑

k

αk

N

N∑

n=1

dk(n)

)
. (5.8)

The authors of this metric have observed that their new metric in Equation 5.7 can be

approximated by the sum of Equation 5.8, and f(rf ) given by Equation 5.6, for videos

within a data set.

5.3 ASL Intelligibility Optimized Video Encoder

Ciaramello and Hemami’s ASL intelligibility optimized video encoder is implemented within

the x264 encoder. Each frame of the input sequence is segmented into the signer’s face,

hands, torso, and background, using color-based skin detection and morphological pro-

cessing. The ASL-tuned distortion measure in Equation (5.7) is incorporated into a rate-

distortion (R-D) optimization procedure similar to that of [88].

For a given Lagrangian λ, the parameter p that includes motion vector, partition size

and quantization step size (QP) is chosen such that it minimizes the joint R-D cost of a

macroblock X given by

J(X, p) = D(X, p) + λR(X, p). (5.9)

A consequence of using the distortion measure DI is that more rate is inherently allocated

to the important regions (i.e., face, hands, and torso). The work presented in [86] identified
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a functional relationship between λ and the resulting optimal QPs. Therefore, a λ value is

mapped to QP corresponding to each region. The motion vector and partition size for each

macroblock are selected according to the minimum R-D cost.

The ASL video encoder has four different rate control options:

1. Single pass constant λ method. In this approach, a user-specified λ is applied to all

frames. A constant λ corresponds to constant QP, which does not result in constant

average bitrate. (Two different videos encoded using the same λ result in different

bitrates.)

2. Single pass constant average bitrate method. In this approach, the user specifies the

average bitrate. To achieve the target bitrate, the encoder updates λ in successive

frames as follows:

λ(n + 1) = λ(n)−
(

Rtarget

Ractual
− 1

)
, (5.10)

where Rtarget and Ractual are the target and actual bits for frame n, respectively.

3. Multi-pass constant average bitrate method. Here a bisection search approach is used

to find a λ for the entire video that results in the user-specified bitrate. However, it

can take multiple encodings to find the suitable λ.

4. Multi-pass constant intelligibility method. It is similar to the previous approach,

except that a search is performed for λ that results in the user-specified intelligibility.

We perform rate-distortion-complexity optimization using the first and the second rate

control methods, since they are single pass methods.

5.4 ROI-based Complexity Allocation Parameters

Implementing the ASL intelligibility optimized video encoder as an extension of x264 allows

for the use of all the encoding parameters available to x264, the selection of which provides

a tradeoff between encoding complexity and R-D performance. Specifically, four encoding

parameters available in the x264 are varied to achieve different R-D-C operating points:
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sub-pixel motion estimation (subme); reference frames (ref); partition size (part); and

entropy coding and quantization (trellis). These parameters were described in Section

1.3. For trellis, a fourth additional option that uses uniform quantization with CABAC

is included.

Three additional encoding parameters are added to the x264 encoder to allow the encod-

ing complexity to vary on a per-block basis, depending on whether the block belongs to the

ROI or not. In H.264, as many as 12-15 different partitions need to be analyzed for a given

macroblock. Our first parameter, nonROI-part, restricts the partitions used by the encoder

for the background blocks. Since the distortion in background macroblocks have less effect

on overall intelligibility, background macroblocks can be encoded with very little rate (and

consequently, very high distortion). Motivated by this, the encoder is modified to have two

sets of available partition types, one for the ROI blocks and other for the non-ROI blocks.

For ease of integration into the pre-existing encoder structures, the nonROI-part has the

same 8 options as part. (We consider only 8 part options instead of 10 used in Chapter 3.)

This parameter allows the selection of coarser partitions for background macroblocks and

finer partitions for the ROI blocks.

The second parameter, ROI-subme, has the same 7 options as the subme parameter and is

applied to the ROI, while the regular subme option is applied to the background or non-ROI

region. In addition to varying the complexity of sub-pixel motion estimation, the subme also

varies the accuracy and complexity for R-D cost computation. The highest subme option

computes the actual R-D cost by encoding and decoding a macroblock, while the lowest

option only estimates the R-D cost from the coded macroblock. The ROI-subme together

with subme allow the encoder to use the fast R-D cost estimate on non-ROI blocks, while

computing the accurate R-D cost and using high complexity sub-pixel motion estimation

for the ROI blocks.

The third ROI parameter addresses the complexity of the motion search. In motion-

compensated video coding, motion search requires a significant portion of the total encoding

time. To speed up the motion search, a ROI-based motion search parameter ROI-MS is

included that specifies a potentially different motion search method for the ROI and non-

ROI macroblocks. The ROI-MS uses the following three fast motion search methods provided
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by x264 in the order of increasing complexity: diamond (DIA), hexagon (HEX) and uneven

multihexagon search (UMH) [6]. Details of ROI-MS are given in Section 3.4.

5.5 Joint Rate-Intelligibility-Complexity Optimization

The set of encoding options discussed in Section 5.4 determines the achievable bitrate, dis-

tortion, and complexity. The x264 default parameter setting is the vector (subme = 5, part

= 8, ref = 1, trellis= 1, nonROI-part=part, ROI-subme=subme, ROI-MS=0). The ROI-

based parameters have been disabled, by setting nonROI-part and ROI-subme to part and

subme, respectively, and ROI-MS to all HEX. The default parameter setting uses high com-

plexity sub-pixel motion estimation; all possible macroblock partitions; one reference frame;

and the use of the context adaptive arithmetic coder (CABAC) with uniform quantization.

An ideal video encoder will select the parameter setting which results in a compressed

video that meets the target rate and complexity constraints. An exhaustive search over all

possible parameter settings requires 2,508,800 encodings per video (7× 10× 16× 4× 10×
7 × 8). Because it is impossible to perform an exhaustive search of this rate-distortion-

complexity space on a mobile device, fast methods for choosing the appropriate set of

encoding parameters must be used. We apply DPSPA described in Section 2.9 to the ASL

video encoder to find near optimal parameter settings. Applying DPSPA over a range of

target bitrates effectively provides a look-up table that specifies the parameter settings to

use such that distortion is minimized while satisfying both rate and complexity constraints.

The following sections give results when applying DPSPA to the ASL video encoder for two

different single pass rate control methods.

5.6 Single pass constant λ rate control method

The DPSPA algorithm is applied to a set of nine training ASL videos and six test ASL

videos each having 320× 240 frame resolution, 200 frames and a frame rate of 15 fps. The

results are reported for fixed values of λ. These experiments are conducted on a Windows

XP PC having a 2.01 GHz AMD processor.

The DPSPA is executed for values of λ = {0.5, 1, 5, 40, 150} corresponding to average

bitrate of {215.5, 155.8, 74.2, 28.8, 16.1} kb/s for the default parameter setting on test
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Table 5.1: Relative performance of DPSPA parameter setting over the default parameter

setting for ASL test videos. A positive bitrate gain implies lower bitrate for DPSPA. Tests

were performed on a Windows XP PC with 2.01 GHz AMD processor.

λ Avg. rate Max speed Avg. speed ∆DI

gain gain gain (dB)

0.6 2.4% 15.7% 14.4% -0.08

1.1 0.47% 19.2% 16.8% 0

5 26.8% 21.2% 13.7% -0.16

46 -0.49% 20.1% 15% -0.67

150 0.66% 18% 13.7% -0.22

videos. The ROI option ROI-subme is not considered in our experiment. The performance

of the DPSPA parameter settings is evaluated using the relative gain in bitrate, maximum

and average encoding speed improvement, and the loss in intelligibility of DPSPA parameter

setting over the default parameter setting. Let R(q), DI(q), and C(q) correspond to the

bitrate, intelligibility distortion measure, and encoding time of a parameter setting q. Since

we are running the test on a PC, the average frame rate is very high (approximately higher

than 50 fps), resulting in f(rf ) ≈ 0 in Equation 5.6. Therefore, we compute DI using

Equation 5.8. Let p and q represent DPSPA and default parameter settings, respectively.

We then define rate gain as (R(q)−R(p))
R(q) × 100, change in intelligibility as ∆DI = DI(q) −

DI(p), and speed gain = (C(q)−C(p))
C(q) × 100.

As demonstrated in Table 5.1, the DPSPA parameter settings provide average speed

improvement of 15%, and average bitrate reduction of 6% with little decrease in intelligibil-

ity. A difference of approximately 1.5 dB corresponds to a statistical change in subjective

intelligibility score [86]. Therefore, the average decrease in intelligibility shown in Table 5.1

will not significantly reduce the perceived intelligibility.

The reductions in complexity result from choosing an appropriate set of encoding pa-

rameters, including the use of the additional coding modes tuned for region-based coders.
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Table 5.2: The default parameter setting (fixed) and DPSPA parameter settings for different

values of λ.

Parameter Default λDPSPA

name 0.6 1.1 5 46 150

subme 5 3 3 3 2 2

ref 1 3 1 1 1 1

part 8 6 8 8 3 3

trellis 1 0 0 2 2 2

backgrd-part – 8 7 3 6 7

ROI-MS – 6 5 6 6 6

Table 5.2 lists the encoder parameter settings which have been applied to the test videos.

While the default parameter setting uses HEX search for the entire frame, the DPSPA pa-

rameter setting exploits the ROI-MS option, using either (HEX, DIA, DIA) or (DIA, DIA,

DIA) for (face, torso, background), each of which have lower search complexity than the

default setting. DPSPA often chooses lower complexity subme and nonROI-part compared

to the default subme=5 and P8×8, I8×8, I4×4 for background macroblocks. Since DPSPA

generates parameter settings that trade off joint rate-intelligibility cost with encoding time,

it does not always pick parameters having lower complexity than the default setting. For

example in Table 5.2, for λDPSPA = 0.6, DPSPA picks three reference frames instead of

one reference frame. The additional computation cost is mediated by the corresponding

reduction in distortion.

5.7 Single pass constant average bitrate rate control method

Three combinations of training and test sets are created from a collection of 8 indoor ASL

videos filmed on a static background, and 8 outdoor ASL videos filmed on a busy street.

The segmentation into ROI and non-ROI is performed offline for each video. The three

cases correspond to training and testing on only the indoor videos, only the outdoor videos,
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and on both the indoor and outdoor videos. The DPSPA is applied to a set of four training

ASL videos and four test ASL videos each having 176 × 144 frame resolution, 200 frames

and a frame rate of 15 fps. These experiments are conducted on a Windows XP PC with a

2.01 GHz AMD processor and on a HTC TyTN II cell phone with a 400 MHz Qualcomm

MSM7200 ARMv6 processor. Three bitrates are considered: 15, 30 and 60 kb/s. We

consider all the three ROI parameters and four x264 parameters described in Section 5.4.

On a PC, due to high frame rates ( > 50 fps) we compute DI using Equation 5.8 only,

and ignore the frame rate component f(rf ). On a cell phone since the frame rates are lower

than 13 fps, we approximately compute DI by adding Equations 5.8 and 5.6. In Equation

5.6, f(rf ) is computed using the average frame rate instead of the instantaneous frame rate.

The DPSPA parameter settings are applied to the ASL test videos and ∆DI and speed

gain are measured as described in the previous section. The intelligibility distortion measure

DI is computed using Equation 5.8. As demonstrated in Table 5.3, the DPSPA parameter

settings provide average speed improvements of approximately 45% on the PC with little

decrease in intelligibility. A difference of approximately 0.2 corresponds to a statistical

change in subjective intelligibility score [87]. Therefore, the average increase in DI on a PC

shown in Table 5.3 will not significantly reduce the perceived intelligibility compared to the

x264 default parameter setting.

On a cell phone, we compare the default parameter setting with the highest speed DPSPA

parameter setting. From Table 5.4, we find that on an average the DPSPA parameter

setting improves speed by 127.3%, and lowers DI by 0.66 over the default parameter setting.

Specifically for outdoor videos at 60 kb/s, using DPSPA parameter setting improves the

frame rate from 4.2 fps to 10.6 fps, and lowers DI from 1.63 to 0.44, which corresponds to

a subjective score improvement from ‘very difficult’ to ‘very easy.’ We also find that with

increase in bitrate, using DPSPA parameter setting improves speed and ∆DI . This can be

attributed to the slow encoding speed of the default parameter setting at higher bitrates.

Similar observation was also made in Section 4.5.

Tables 5.3 and 5.4 demonstrate that for both the PC and cell phone platforms, the

largest speed gain is obtained on the outdoor test videos. Because these videos were filmed

on a busy street, the level of background activity is high. The x264 encoder must spend



79

0 2 4 6 8 10 12
0

1

2

3

4

5

6

Frame rate (fps)

D
I

 

 

DPSPA parameter settings HTC
x264 default parameter setting
ROI default parameter setting

Figure 5.1: Performance of DPSPA parameter settings vs. default parameter setting on the

HTC TyTN II cell phone for outdoor ASL videos at 30 kbps.

computational resources encoding these regions, whereas the ROI-optimized encoder can

use very coarse, low-complexity parameter options. The overall speed improvement of the

ROI-optimized encoder depends on the relative level of activity in the non-ROI.

Tables 5.3 and 5.4 compare the performance against the x264 default parameter settings,

which were chosen heuristically by its developers to provide good R-D performance at a

reasonable encoding speed. We apply this default parameter setting to our ROI-optimized

encoder and call it the ROI default parameter setting. Figure 5.1 shows that both the ROI

and x264 default parameter settings are not fast enough for real-time performance on the

cell phone. DPSPA provides points which allow the encoder to run at or above 10 fps on

the cell phone, the nominal limit for full ASL conversation [89].

DPSPA provides a collection of parameter settings which are appropriate for the specific

test device on which it is run. While DPSPA can be executed on the cell phone platform, it is

useful to investigate if the parameter settings generated on the PC can still approximate the

D-C convex hull on the cell phone. The set of encoding parameters computed by DPSPA
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Figure 5.2: Performance of the PC-based and HTC TyTN II cell phone-based parameter

settings on the cell phone for outdoor ASL videos at 30 kbps.

when run on the PC is applied to the test videos encoded on the cell phone. Despite

differences in the exact parameter settings chosen, the PC-generated settings perform very

close to the cell phone-generated settings. Figure 5.2 illustrates the D-C curves for the

outdoor test videos at 30 kbps, comparing both collections of parameter settings. In this

case, the training required for DPSPA to generate the lookup table can be done on a PC

and used on the cell phone without loss in performance.

On the PC, the DPSPA often picks all ROI-MS options, while on the cell phone (HEX,

UMH, DIA) is preferred over (UMH, HEX, DIA) and (UMH, DIA, DIA) options. This

shows that on a cell phone, better intelligibility-complexity tradeoff is obtained by using

higher complexity UMH for the hand macroblocks instead of the face macroblocks. Because

the location of the face does not vary significantly between frames, a fast motion search

algorithm (HEX) is sufficient for identifying the appropriate motion vectors. The signer’s

hand movements are much wider over the frame, and accurate motion vectors are identified

using a higher complexity motion search (UMH).
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Table 5.3: Intelligibility distortion difference (∆DI) and speed gain of DPSPA parameter

setting over the x264 default parameter setting on a 2.01 GHz PC for different pairs of

training and test videos. Negative value for ∆DI indicates a higher intelligibility distortion

for DPSPA.

Bitrate Indoor Outdoor Indoor &

Outdoor

(kbps) ∆DI speed ∆DI speed ∆DI speed

gain gain gain

15 ≈0 31.2% 0.03 43% -0.01 40.8%

30 -0.05 41.3% 0.05 48.2% -0.01 45.8%

60 -0.03 45% 0.07 54.4% 0.02 50.7%

Average -0.03 39.2% 0.05 48.5% ≈0 45.8%

As parameter settings are generated from highest to lowest complexity by DPSPA, the

subme option (associated with the non-ROI) first decreases from its highest to lowest option

while the ROI-subme is retained at its highest option. Therefore, DPSPA appropriately

reduces encoding complexity by choosing subme options that favor lower distortion of the

ROI over the non-ROI, and lower complexity in the non-ROI versus the ROI.

We compare the x264 default parameter setting with the highest frame rate DPSPA

parameter setting for the three bitrates on the cell phone. Each of the DPSPA parameter

settings allows the encoder to operate above 10 fps. For both subme and ROI-subme, the

DPSPA parameter setting chooses option 1 or 2, which has lower complexity compared to

the default subme = 5 option. For motion search, DPSPA picks DIA search for all regions

instead of the higher complexity HEX default option.

5.8 Summary

In this chapter, an ROI-based ASL video encoder that is optimized for rate-intelligibility

was presented. Three new ROI-based encoder parameters were proposed for the ASL en-
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Table 5.4: Intelligibility distortion difference (∆DI) and speed gain of DPSPA parameter

setting over the x264 default parameter setting on a HTC TyTN II cell phone for different

pairs of training and test videos.

Bitrate Indoor Outdoor Indoor &

Outdoor

(kbps) ∆DI speed ∆DI speed ∆DI speed

gain gain gain

15 0.26 109.2% 0.59 107.1% 0.48 102.6%

30 0.55 111.4% 0.77 140.7% 0.6 137.5%

60 0.65 130% 1.2 155.1% 0.88 152.3%

Average 0.49 116.9% 0.85 134.3% 0.65 130.8%

coder that allow lower complexity options to be used for non-ROI regions, resulting in

complexity gains without affecting intelligibility. The DPSPA is used to find parameter

settings at different bitrates, which approximate the rate-intelligibility-complexity convex

hull. We perform the rate-intelligibility-complexity optimization on the encoder when using

two different single pass rate control methods. On a PC, for the encoder with the constant

λ single pass rate control scheme, the DPSPA parameter setting yields a maximum speed

improvement of 21.2% over the x264 default parameter setting with negligible loss in intel-

ligibility. When using the constant average bitrate scheme, the DPSPA parameter setting

yields a maximum speed improvement of 54.4% over the default parameter setting on a PC

with negligible loss in intelligibility. On a cell phone, the DPSPA parameter setting yields a

maximum speed improvement of 155% (corresponding to 6.4 fps frame rate improvement),

while significantly decreasing the intelligibility distortion over the default parameter setting.

Finally, for the ASL video encoder on the cell phone, the DPSPA parameter settings can

be obtained on a PC without loss in performance.
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Chapter 6

BATTERY POWER SAVING FOR ASL VIDEO COMMUNICATION
OVER CELL PHONES

6.1 Introduction

Battery life is an important parameter that consumers consider when buying a cell phone.

Shorter cell phone battery life defeats the mobility functionality, making the cell phone less

useful. Running a computationally intensive application such as video conferencing on a cell

phone affects battery life. In this chapter, we will review prior work in improving battery

life of a HTC TyTN II cell phone when running the MobileASL application. We will present

a new method that adaptively controls the backlight of the screen during ASL conversation

on MobileASL, and show that it further improves battery life over earlier methods.

6.2 Prior work

In ASL communication, users take turns in signing, i.e., when one person is signing, often

the other person is listening. In prior work, a frame is classified as signing/listening, and the

listening frame is assigned lower encoding complexity, by either dropping it [90], lowering

its resolution, or both [91]. This lowers the total power consumption without affecting the

intelligibility of the video. We describe the two prior methods below.

6.2.1 Variable Frame Rate Method

In the variable frame rate method (VFR), a simple thresholding is used to detect whether

a video frame is signing/listening [92], [90]. First, the difference between the current frame

Ik and previous frame Ik−1 is computed by

d(k) =
∑

i,j

|Ik(i, j)− Ik−1(i, j)|. (6.1)
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Using ASL training videos, a threshold τ is determined, such that difference values

d(k) > τ are labeled as signing, or otherwise labeled as listening. In the same study, this

approach was shown to have a classification accuracy of 84.6%. During the listening portions

of the video, the frame rate is dropped from 15 fps to 1 fps. That is, during one second

of listening, only one frame is encoded and transmitted, although the cell phone camera

captures 15 fps. The reduced frame rate results in choppy video during listening parts.

The savings in encoding complexity results in additional battery life of 23 minutes over the

average battery life of 284 minutes [90], [91]. The low computational complexity of the VFR

method makes it suitable for use on a cell phone.

6.2.2 Variable Spatial Resolution Method

The variable spatial resolution method (VSR) downsamples the listening frame resolution

by one-fourth, while retaining the original resolution for signing parts of the video [91]. In

MobileASL, this would imply 96× 80 resolution for signing and 48×40 for listening. The

downsampled frame is upsampled by two in both dimensions at the decoder to maintain

the original spatial resolution. This causes the frame to be blurry during listening periods.

The VSR uses the same thresholding method as in VFR for detecting signing/listening,

and provides similar battery savings as VFR. Its advantage is that the frame rate is main-

tained the same during both signing and listening parts of the video. Another method that

combines both lower spatial resolution and frame rate for listening parts of the video was

also presented in [91] and it provided battery life savings of 31 minutes (i.e., 8 minutes of

improvement over VSR or VFR).

6.3 Backlight Control

Most current PDAs and cell phones are equipped with a fairly sized LCD screen, which

allows the user to watch movies, browse the internet, read e-mails, etc. with ease. This is a

step ahead of earlier cell phones that were restricted to making voice calls and sending text

messages. The HTC TyTN II cell phone has a 320 × 240 resolution LCD screen. One of

the drawbacks encountered with larger LCD screens is limited battery life. A study in [93]
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showed that LCD backlight in a PDA consumes 50% of the total power. Therefore, lowering

the use of LCD backlight should improve the overall battery life of the cell phone.

There exists prior work in LCD backlight control to extend battery life. Chang et al.

developed an approach to save power by dimming the backlight of a LCD display while

restoring the brightness of the screen by applying image compensation techniques [94]. The

authors proposed another idea where the backlight was dimmed when low ambient light was

detected [93]. A dimly lit LCD screen is visible in low ambient light or darkness. However,

this scheme requires a photo sensor in the mobile device to detect the ambient light. Iyer

et al. [95] use an organic LED display that uses energy proportional to the light output of

the display. To save energy, they implement dark windows that either reduce the brightness

or change colors of the non-region-of-interest. Four different dark windows are tested. Two

of them are brightness control: background half and full dim, and the other two are color

control: background gray and green scale.

6.3.1 Adaptive backlight control for ASL communication

In this section, we propose a battery power saving scheme that dims the LCD screen of the

HTC TyTN II cell phone based on whether the MobileASL user is signing or listening. Due

to turn-taking in ASL, when one person signs, the signer’s backlight can be dimmed, since

the other person is listening. However, the backlight of the listener is at normal brightness

to allow signs to be seen clearly. This adaptive dimming of backlight is demonstrated to

improve cell phone battery life.

The thresholding approach described in Section 6.2.1 is used to classify signing/listening

activity. We consider three states of operation for our backlight control: signing, listening

and sleep. During the signing state, the backlight is dimmed, and during the listening state

the backlight is made bright. We use the Windows API DevicePowerNotify() to control the

brightness of the screen. To avoid flicker due to sudden fluctuation between states, a buffer

is used that stores states up to 2 seconds in the past (or 23 past frames). If more than 67%

of the buffer is labeled listening, then the screen is turned bright, as it is most likely that

the current state is listening. Otherwise, the screen is dimmed.
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We transmit the current state to the other person’s cell phone. If both users are in

listening mode for more than 20 seconds (or 240 frames), it is very likely that both of them

are not in front of their cell phones. The state is changed to sleep state and both screens

are dimmed. If an activity is detected on either of the cell phones after the sleep mode is

turned on, both screens are made bright. It is likely that one of the users is at the cell phone

to continue his/her conversation, and therefore a bright screen on both ends is needed.

When both users begin to sign, both screens are turned bright. Although there is turn

taking in ASL conversation, the listening person could always interrupt. So, in this case

the signer’s screen would turn bright allowing him/her to see other person signing. We

illustrate the different operating modes of our adaptive backlight control in Figure 6.1.

We refer to MobileASL using no power savings as the default method. We compare the

performance of default, VFR, adaptive backlight control (ABC), and combined implemen-

tation of ABC and VFR. The combined ABC and VFR approach encodes a video at full

frame rate with screen dimmed during signing, and during listening parts it drops encoding

frames to 1 fps (as in VFR) with the screen made bright. (We do not consider VSR since

it has not been implemented for conversational ASL videos on the cell phone.) For each

method, we run the MobileASL for 30 minutes using prerecorded conversational ASL video.

During the test, the battery life on the cell phone is measured every 5 seconds and stored

on the cell phone. A plot of battery life vs. time for each power saving method is linear,

and it can therefore be linearly extrapolated to 0% battery life, to give us estimated battery

life. This is illustrated in Figure 6.2.

We run MobileASL for each power saving scheme on two cell phones using two different

ASL videos, and average the total battery life across cell phones and ASL videos. Running

MobileASL using the default approach results in 198 minutes of average total battery life.

The improvements in battery life when using different power saving schemes over the default

approach are listed in Table 6.1. For VFR, we obtain 10 minutes of power saving compared

to 23 minutes reported in [91]. The measured results are lower because the results in [91]

correspond to the best case, i.e., when the entire video is classified as listening with the

camera facing the wall. Since all frames are labeled as listening the video is encoded at

1 fps. Also, since the camera faces the wall, all macroblocks will be encoded using low
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(a) (b)

(c)

Figure 6.1: Different modes of adaptive backlight control: (a) screen bright when current

user listens and the other user signs; (b) screen dim when current user signs and other user

listens; and (c) screen bright when both users sign.
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Figure 6.2: Battery life of a HTC TyTN II cell phone (HTC32) vs. time when running

MobileASL using different power saving schemes using a prerecorded video (Gina.yuv).

complexity skip blocks.

Table 6.1 shows that our approach combined with VFR gives an average improvement in

battery life of 54 minutes or 27.3% improvement over the default approach. This approach

saves power during both signing and listening parts of the video. During signing parts it

dims the screen and during listening parts it encodes only 1 fps. With only ABC, we get 30

minutes of extended battery life that corresponds to 13.8% improvement over the default

approach. Although VFR is seen to give only 10 minutes of improvement over the default,

when combined with ABC it helps extend the battery life by 24 minutes over ABC alone.

6.4 Summary

We presented an approach to extend battery life by controlling the backlight of the LCD

screen. The brightness of the screen is either turned dim/bright depending on whether the
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Table 6.1: Comparing different power saving methods for the MobileASL application relative

to the default approach. The results are averaged over two prerecorded ASL videos and two

cell phones.

Power saving Average battery Additional battery % increase in

method life (minutes) life (minutes) battery life

Default 198 0 0

VFR 208 10 5%

ABC 228 30 15.2%

ABC + VFR 252 54 27.3%

user is signing/listening. This approach provides significantly higher battery life savings

over earlier methods that only lower encoding complexity during listening parts of the

ASL conversation. When combining VFR with our ABC method, we obtain 54 minutes of

additional battery time over the default case. A subjective study with users needs to be

conducted to evaluate the usability of this approach.
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Chapter 7

RATE-DISTORTION-COMPLEXITY OPTIMIZATION OF THE H.264
VIDEO ENCODER FOR TIME-VARYING NETWORKS

7.1 Introduction

In previous chapters we considered the bitrate to be constant (except for chapter 5) and

performed optimization for distortion and complexity of the video encoder. However, in

transmission media such as Wi-Fi and 3G networks, the bandwidth varies over time. A

constant bitrate rate control scheme is a disadvantage in applications where the bandwidth

is time varying, if the encoder is restricted to operate at the lowest bitrate. This motivates

the use of a bitrate adaptive encoder since it allows the use of higher bitrates (and higher

quality) when higher bandwidth is available.

In prior work, De Vito et al. proposed a rate control method to allow the bitrate of a

group-of-pictures (GOP) to adapt to the available bandwidth [96]. However, this method

is somewhat limited in practice since channel bandwidth can vary within a GOP interval.

Schierl et al. used a combination of temporal scalability and bitrate switching to adapt

the encoded bitrate to the available bandwidth [97]. Bitrate switching is done by having

multiple bitstreams at different bitrates. Encoding multiple bitstreams on a cell phone is

impractical. Temporal scalability is achieved by dropping non-referenced frames resulting

in lower bitrate. Dropping a non-reference frame in ASL video could lower intelligibility

since this frame could contain important information. In this chapter, we propose a rate

control scheme which allows encoded bitrate to adapt on a frame-level basis.

Internet-based video chatting services provided by Skype and Google have become pop-

ular and cheap ways to videoconference between remote users. Since these services have to

support time varying network bandwidths, it is very likely that they employ variable bitrate

video encoders. De Cicco et al. investigated Skype’s performance as a function of variation

in available bandwidth, loss rate, and jitter considering Skype as a blackbox, since Skype’s
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algorithm is proprietary [98]. They found that Skype varies the encoded video frame rate,

frame quality, frame resolution, and transmission rate based on the bandwidth, loss rate,

and jitter. When there is a sudden increase in the number of lost packets, Skype increases

its packet size. At lower bitrates, Skype maintains high frame rate, but lowers the frame

resolution. Also, Skype adapts to both increases and decreases in available bandwidth,

thereby indicating that it uses a bitrate adaptive video encoder.

To allow the MobileASL application to adapt to varying bandwidth, we modify the rate

control of the x264 encoder. Our proposed rate-distortion-complexity optimization scheme

is illustrated in Figure 7.1. We pre-compute GBFOS-basic parameter settings for different

bitrates and complexities and store them in a lookup table. When a frame is encoded, the

current bandwidth and available computational resources are used to select a parameter

setting from the lookup table, resulting in higher ASL intelligibility and frame rate.

7.2 Adaptive bitrate x264 video encoder

Rate control allows selection of encoding parameters to maximize quality under bitrate and

decoder video buffer constraints. The rate control in H.264 can be performed at three

different levels of granularity - group of pictures level, picture level, and macroblocks level

[99]. At each level, the rate control algorithm selects the quantization parameter (QP)

values that determine the quantization of the transformed coefficients. As the QP increases,

the quantization step size increases and the bitrate decreases. The rate control in x264 is

based on the libavcodec’s rate control implementation [23], which is mostly empirical. Five

different rate control modes are available in x264: there are one two-pass mode and four

one-pass modes [14].

In this section, we describe our modification to the x264 rate control algorithm to al-

low bitrate adaptation to available bandwidth. Specifically, we modify the constant bi-

trate (CBR) one-pass rate control method of the x264 encoder to obtain an adaptive

bitrate (ABR) one-pass rate control method. We modify the rate control parameters

(wanted bits window and cplxr sum) that are used to determine the QP for a given frame.

We refer to the available bandwidth as the target bitrate. The x264 encoder averages these

rate control parameters over previous frames to meet a global average target bitrate. We
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Figure 7.1: Schematic diagram of the proposed rate-distortion-complexity optimization

scheme using a look-up-table containing GBFOS-basic parameter settings. R is the es-

timated bandwidth and C is the computational resources available to the encoder.

find that when the target bitrate for a frame decreases, the actual instantaneous bits used

by the x264 encoder does not lower. Therefore, when the target bitrate decreases, we reset

the rate control parameters (instead of averaging them). This modification allows x264 to

meet the current target bitrate instead of a global average target bitrate. However, when the

target bitrate either increases or remains unchanged, we average the rate control parameters

across previous frames.
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Figure 7.2: The performance of the adaptive bitrate x264 encoder to varying target bitrate.

Figure 7.2 shows the performance of our rate control scheme in response to variations

in target bitrate when applied to an ASL QCIF video at 15 fps tested on a 2.01 GHz PC.

We use the default parameter setting in our test. We consider this pattern for the target

bitrate since it is within the range of the 3G network [100]. We clearly see that our rate

control method adapts well to variations in the target bitrate.

7.3 Results

We ported the x264 encoder with our rate control method to the HTC TyTN II cell phone.

Since there is no off-the-shelf available bandwidth estimation software which runs on the

cell phone, we simulate a bandwidth variation pattern that operates within the allowed

bandwidth range of the 3G network. For future work, an approach described in [100] could

be implemented on the cell phones to measure available bandwidth. In our experiment we

specifically consider bitrate variation between 40 to 100 kb/s, since bitrates above 100 kb/s

do not significantly improve the quality of a QCIF ASL video.

We use two ASL QCIF videos having 700 frames each at 15 fps in our test labeled

‘indoor’ and ‘outdoor.’ We consider a target bitrate that varies with time as illustrated
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in Figure 7.3. We vary the target bitrate every 50 frames or 3.34s. This bitrate variation

duration is shorter than the 20 s duration considered in [101] and 100 s duration considered

in [98]. We consider three different schemes to encode the videos: CBR at 40 kb/s with

default parameter setting; ABR with default parameter setting; and ABR with GBFOS-

basic parameter settings. For CBR, we specify a constant bitrate of 40 kb/s since this is the

lowest bitrate of the given bitrate range. (Packet loss can occur if operating bitrate exceeds

the available bandwidth. Therefore, we set the CBR encoder to the lowest bitrate range.)

Since the x264 encoder is utilizing most of the computational resources on the cell phone,

we use the lowest complexity GBFOS-basic parameter setting (ref = 1, part = 1, subme

= 1, trellis = 1) in our test.

The videos are encoded on the cell phone for different rate control schemes and parameter

settings on the HTC cell phone. We plot the instantaneous bitrate per frame in Figure 7.3.

From Figure 7.3, we find that our adaptive rate control scheme adapts well to the varying

target bitrate, while the constant bitrate method does not adapt, as expected. The average

bitrate, intelligibility distortion, and frame rate for all three cases are listed in Table 7.1.

Again, the outdoor video has higher intelligibility distortion than the indoor video.

When using the default parameter setting, ABR results in a very small improvement in

intelligibility over CBR, although ABR has higher bitrate. This is because the distortion

intelligibility metric penalizes ABR for having a lower frame rate. That is, an increase in

bitrate does not significantly improve intelligibility at low frame rates. When using the

GBFOS-basic parameter setting with ABR, there is both increase in frame rate and bitrate,

which results in an improvement in intelligibility over the default parameter setting using

the CBR method by 0.2 and 0.32 for indoor and outdoor videos, respectively. This is

significant since a difference of 0.2 corresponds to a change in subjective intelligibility score

of Ciaramello et al. [87]. Therefore, by using the GBFOS-basic parameter settings and

ABR, we increase the average bitrate, intelligibility and frame rate.
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Table 7.1: Performance of the x264 encoder on a HTC cell phone when using different rate

control methods and parameter settings, with varying target bitrate, when applied to (a)

indoor video and (b) outdoor video.

Rate control Parameter Average bitrate Intelligibility Frame rate

method setting (kb/s) distortion (fps)

CBR at 40 kb/s Default 40.3 0.64 6.8

ABR Default 47.3 0.63 6.6

ABR GBFOS-basic 47.7 0.43 13.1

(a)

Rate control Parameter Average bitrate Intelligibility Frame rate

method setting (kb/s) distortion (fps)

CBR at 40 kb/s Default 40 1.11 5.8

ABR Default 48 1.08 5.7

ABR GBFOS-basic 48.4 0.79 9.4

(b)
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Chapter 8

CONCLUSION AND FUTURE WORK

8.1 Conclusion

In this thesis, we proposed four fast offline parameter settings selection algorithms that

choose parameter settings that trade off well between PSNR and encoding time. Our algo-

rithms take less than 8.5% of the number encodings required by exhaustive search of pa-

rameter settings, but have similar PSNR performance. We compared our algorithms with

the multiobjective particle swarm optimizer, which generates random parameter settings

having low D-C spread. Our algorithms improve the encoding speed over the x264 default

parameter setting on PC and cell phone platforms by up to 37.4% and 94.1%, respectively,

with little difference in PSNR.

To show the generality of our algorithms, we applied them to the H.263+ encoder.

To speed up the motion estimation for ASL video compression in x264, we introduced

a new ROI-based motion search parameter, which uses different motion search methods

for different regions of the video. We included this parameter with other x264 encoder

parameters, and applied our parameter settings selection algorithms on them.

On a cell phone platform, our algorithms generate parameter settings whose PSNR-

encoding time performance are close to the estimated convex hull parameter settings. Our

parameter settings are robust to the training platform, and we have shown that the PC-

based parameter settings perform well on a cell phone. Our parameter settings are also

robust to different signers used in training and test videos.

We applied our algorithms to the ROI-based video encoder specific to ASL developed at

Cornell University. This encoder uses an ASL intelligibility distortion metric instead of the

MSE. Our parameter settings trade off well between encoding time and ASL intelligibility.

On a PC and cell phone platforms, our parameter setting improves the encoding speed by

up to 54.4% and 155%, respectively, over the x264 default parameter setting, with negligible
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or no loss in intelligibility.

We presented two methods to extend cell phone battery life when running MobileASL.

Both methods use information about whether the user is signing or listening. The first

method controls the backlight of the cell phone, and the second method combines the first

method with dropping the encoder frame rate to 1 fps during listening parts of the video.

The combined approach yields 54 minutes additional battery life which corresponds to 27.3%

improvement. Finally, we presented an adaptive bitrate rate control method that allows the

x264 encoder bitrate to adapt to time-varying available bandwidth. Using our parameter

settings with this encoder improves the average bitrate, intelligibility, and encoding speed

over the constant bitrate x264 encoder.

Future video standards, such as High Efficiency Video Coding (also referred to as H.265),

are expected to perform better than the H.264 standard [102]. It is very likely that these

standards will have more tools and higher encoding complexity. Our parameter settings

selection algorithms can easily be extended to future standards to jointly optimize them for

rate, distortion, and complexity.

Our MobileASL software will soon be publicly available, and is expected to revolutionize

the way Deaf people communicate by giving them access to video cell phones. Video relay

services should be accessible through MobileASL, allowing Deaf people to use cell phones to

communicate with hearing persons. Our parameter settings selection algorithms, battery life

saving methods, and the rate control scheme can improve the user experience of MobileASL

on cell phones by providing higher intelligibility and frame rates necessary for ASL video

communication.

8.2 Future work

8.2.1 Computing available bandwidth on cell phones

In Chapter 7, we presented a bitrate adaptive rate control method for the x264 encoder,

which allows the bitrate per frame to vary according to the available bandwidth. We did

not measure the available bandwidth in real-time, but simulated the bandwidth variation.

It will be useful to develop a bandwidth estimation algorithm for cell phone platforms,
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and use the real-time bandwidth estimate as the input to our encoder. There are several

publicly available bandwidth estimation tools, such as pathload [103], pathrate [104], and

pathChirp [105] for Linux platforms. However, there are none available so far for cell phones.

It is possible that these programs could be adapted for use on cell phones.

8.2.2 Speed control algorithm

A speed control algorithm was developed for the x264 encoder, which allows the encoder to

adapt its parameter settings per frame based on the available computational resources [106].

The speed control algorithm uses a lookup table of parameter settings. In current cell

phones, the x264 encoder consumes almost all of the processor resources even at lower

complexity parameter settings. In the future, when cell phones with faster processors are

available, the speed control together with a lookup table of our parameter settings could be

used to control the encoder complexity on a frame-level basis.

8.2.3 User study for battery power savings method

In Chapter 6, we present two methods to save cell phone battery power when running

MobileASL. A user study will have to be carried to determine the usability of these methods,

and these methods may need to be adapted based on user feedback. The user study will

involve ASL fluent signers using MobileASL with different power savings schemes, and

comparing our proposed methods with the earlier methods.

We would like to combine the adaptive backlight control with variable frame rate and

variable spatial resolution on the cell phone, and analyze its battery power savings. It is

likely that this combined approach will give higher battery power savings. The MobileASL

research group is planning to conduct a field study, where Deaf participants will be given

the MobileASL phones for a few months to use and test the different power saving methods.
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