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ABSTRACT

This paper presents an H.264 standard-compliant video en-
coder optimized for region-of-interest (ROI) based coding
and applied to American Sign Language (ASL) videos. Three
encoding parameters are developed which allow the encoder
to allocate both rate and computational resources differently
between the ROI and non-ROI. An objective measure of in-
telligibility is included in an encoder parameter optimiza-
tion by modifying a fast offline distortion-complexity op-
timization algorithm, resulting in parameter selections that
demonstrate excellent rate-distortion-complexity performance.
These parameters can be stored in a look-up table for use by
an online algorithm that selects parameters based on avail-
able computational resources. The offline training is per-
formed both on a PC and a cell phone. The resulting param-
eter selections improve the encoder speed by up to 54.4% on
the PC and 62.1% on the cell phone with a small decrease
in intelligibility over the x264 default parameter setting.

1. INTRODUCTION
Current video cell phones, equipped with a camera and codecs,
have the potential for use in real-time mobile videoconfer-
encing. However, the availability of high bandwidth 3G net-
works is limited to few cities in the United States, ultimately
requiring a mobile videoconferencing system to operate at
very low bandwidths. Furthermore, real-time capture, en-
coding, and transmission of digital video is difficult on mo-
bile phones that have limited computational resources. This
motivates the development of low complexity video com-
pression algorithms.

In the past, the perceptual quality of videoconferencing
has been improved by reducing distortions in the user’s face
[1, 2]. Region-of-interest (ROI) based video compression
can be extended to American Sign Language (ASL) video.
For ASL video, an observer is tracking the signer’s face and
hands and evaluating distortions only in those regions. This
is supported by both the linguistic structure of sign language
[3] and by eye-tracking experiments [4]. Because of this
unique structure, several specialized algorithms have been
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proposed for encoding sign language video [4, 5, 6]. In the
author’s previous work, an ASL optimized video encoder
was developed using an objective measure of sign intelligi-
bility incorporated into an H.264 rate-distortion (R-D) opti-
mization algorithm [6]. For fixed levels of intelligibility, the
ASL encoder provided bitrate reduction up to 60% over a
traditional bitrate-MSE optimized video encoder. The goal
of this work is to achieve as much of this gain as possible
while maintaining a computational complexity appropriate
for mobile devices with low processing power.

In this paper, we propose an ROI-optimized video en-
coder that includes three new ROI-based parameters that al-
low variations in encoding complexity per macroblock based
on its relative importance. We use a fast offline algorithm
to search the space of all possible encoder parameters, to
find parameters that yield improvement in complexity (en-
coding speed), with only small decreases in intelligibility.
This approach improves the encoder speed on the PC and
cell phone platforms by an average of 45% and 52% (up to
54.4% and 62.1%), respectively, with negligible loss in in-
telligibility when compared to the x264 default parameter
setting.

The rate-distortion-complexity (R-D-C) optimization per-
formed in this work is evaluated specifically for ASL video,
but the same procedure can be applied to any class of ROI
video (e.g. videoconferencing), subject to the availability of
a distortion measure that reflects the relative importance of
each region. In this work, the face, hands and torso will be
referred to as ROI and the background as non-ROI.

This paper is organized as follows. Section 2 describes
the ROI-optimized video encoder used in this work. Section
3 describes the collection of encoding parameters available
to the encoder and the additional ROI-based encoding pa-
rameters. The performance of the additional encoding pa-
rameters are evaluated in Section 4. Finally, Sections 5 and
6 describe the search technique and present the complexity
versus distortion performance.



2. ROI-OPTIMIZED VIDEO ENCODER

The ROI-optimized encoder, applied to ASL video, is im-
plemented within x264 [7], an open-source H.264 encoder.
The R-D optimization uses an objective intelligibility mea-
sure, which is a function of the distortion in linguistically
relevant regions and accurately predicts an observer’s sub-
jective intelligibility rating [3]. Each frame of the input
sequence is segmented into the signer’s face, hands, torso,
and background, using color-based skin detection and mor-
phological processing. Given the region segmentation for a
particular frame, the distortions affecting intelligibility are
computed as a function of the weighted combination of the
spatio-temporal distortions in the face, hands, and torso of
the signer:

DI = WFDF +WHDH +WTDT , (1)

whereWF = 1.6, WH = 0.5, andWH = 0.1 [8]. Because
DI is a distortion measure it is inversely proportional with
intelligibility. The varying weights control the relativeim-
portance of each type of macroblock in the ROI; a distortion
in the signer’s face will result in a lower intelligibility than
the same level of distortion in the signer’s torso.

The distortion measureDI in Equation (1) is incorpo-
rated into a R-D optimization procedure similar to that of
[9] and applied to a collection of ASL videos. A conse-
quence of usingDI is that more rate is inherently allocated
to the ROI [6]. For a given Lagrangianλ, the encoding deci-
sionsde that includes motion vector, mode and quantization
step size (QP) is chosen such that it minimizes the joint R-
DI costJ(X, de) = DI(X, de) + λR(X, de), whereX is
a particular macroblock.

The work presented in [6] identified a functional rela-
tionship betweenλ and the resulting optimal QPs. Ulti-
mately, this allows for fast encoding by using a single pa-
rameterλ, defined for the entire frame, to quickly select
a QP value for each macroblock, depending on the region
types. The motion vector and mode for each macroblock
are still selected according to the minimum R-DI cost. One-
pass rate control is performed at the frame-level by adjust-
ingλ according toλ(n+1) = λ(n)−(Rtarget/Ractual−1),
whereRtarget andRactual are the target bits and actual bits
for framen [10]. For the first frame,λ is initialized using
an estimate provided by x264.

3. ROI-BASED COMPLEXITY ALLOCATION
PARAMETERS

Implementing the ROI encoder as an extension of x264 al-
lows for the use of all the encoding parameters available to
x264, the selection of which provides a tradeoff between
encoding complexity and R-D performance. Specifically,
four encoding parameters available in the x264 are varied to

achieve different R-D-C operating points: sub-pixel motion
estimation (subme); reference frames (ref); partition size
(part); and entropy coding and quantization (trellis).
Thesubme has 7 options corresponding to the number of it-
erations for half-pel and quarter-pel motion estimation. Ad-
ditionally, subme controls whether the R-D cost is fully
evaluated in the pixel domain or estimated in the transform
domain. A maximum of 16 reference frames can be spec-
ified usingref. Eight differentpart options specify the
partition size from4 × 4 and above for intra (I), predictive
(P) and bi-predictive (B) macroblocks [11]. Thetrellis
parameter has four options that include uniform quantiza-
tion with and without context adaptive arithmetic coding
(CABAC) (options 1 and 0); and two schemes that use CABAC
and Djikstra’s algorithm for finding the quantization for a
block of DCT coefficient such that the overall R-D cost is
reduced (options 3 and 4). We define a vector of parameter
options asparameter settings. An example of a parame-
ter setting is (subme=0,ref = 1,part=1,trellis=0),
which has the lowest computational complexity. In this pa-
per, the average encoding time is used as a measure of com-
plexity.

Three additional encoding parameters are added to the
x264 encoder that allow the encoding complexity to vary on
a per-block basis, depending on whether the block belongs
to ROI or not. In H.264, as many as 12-15 different parti-
tions need to be analyzed for a given macroblock. Our first
parameter,nonROI-part, restricts the partitions used by
the encoder for the background blocks. Since distortions
in background macroblocks do not contribute to the over-
all distortion measure in Equation (1), background mac-
roblocks can be encoded with very little rate (and conse-
quently, very high distortion). Motivated by this, the en-
coder is modified to have two sets of available partition
types, one for the ROI blocks and other for the non-ROI
blocks. For ease of integration into the pre-existing en-
coder structures, thenonROI-part has the same 8 op-
tions aspart. This allows the search for partitions in back-
ground macroblocks to be limited to only the coarsest parti-
tions while still enabling the finer partitions for the relevant
blocks.

The second parameter,ROI-subme, has the same 7 op-
tions as thesubme parameter and is applied to the ROI,
while thesubme option is applied to the non-ROI. In ad-
dition to varying the complexity of sub-pixel motion esti-
mation, thesubme also varies the accuracy and complex-
ity for R-D cost computation. The highestsubme option
computes the actual R-D cost by encoding and decoding a
macroblock, while the lowest option only estimates the R-
D cost from the coded macroblock. TheROI-subme to-
gether withsubme, allows the encoder to use the fast R-D
cost estimate on non-ROI blocks while computing the accu-
rate R-D cost and using high complexity sub-pixel motion



estimation for the ROI blocks.
The third ROI parameter addresses the complexity of

the motion search. In motion-compensated video coding,
motion search comprises a significant portion of the total
encoding time. To speed up the motion search, a ROI-based
motion search parameterROI-MS is included that specifies
a potentially different motion search method for the ROI
and non-ROI macroblocks. TheROI-MS uses the following
three fast motion search methods provided by x264 in the
order of increasing complexity: diamond (DIA), hexagon
(HEX) and uneven multihexagon search (UMH) [7].

For the specific case of ASL video, the distortion in the
signer’s face has the largest impact on the overall intelligi-
bility. To ensure lower distortion for the face region, we
choose a motion search method for the face region having
equal or higher complexity compared to the hand and torso
regions. TheROI-MS uses only the DIA search for the
background and has the following 8 options (1, . . . , 8) cor-
responding to the motion search in (face, hand/torso, back-
ground) regions: (DIA, DIA, DIA), (HEX, DIA, DIA), (UMH,
DIA, DIA), (HEX, HEX, DIA), (HEX, UMH, DIA), (UMH,
HEX, DIA), (UMH, UMH, DIA), and (UMH, UMH, UMH).

For each of the encoding parameters, higher options of-
ten corresponds to higher complexity. For example, a value
of part = 8 is the most complex and enables the encoder
to search over of all possible macroblock partitions. Con-
versely, a value ofpart = 1 restricts the search to only
the coarsest partitions but offers the lowest complexity. The
lower complexity options can increase the speed of the en-
coder but can can result in higher distortions at fixed bi-
trates.

4. RESULTS: PERFORMANCE OF THE
ROI-BASED COMPLEXITY ALLOCATION

PARAMETERS

Each of the three additional ROI complexity parameters is
evaluated explicitly in terms of its affect on the R-D-C per-
formance. Both the standard implementation of the x264
encoder and the ROI-optimized encoder serve as perfor-
mance benchmarks. In each of these benchmark cases, 8
ASL test videos are encoded at 8 fixed bitrates, ranging from
5 to 75 kbps, using the highest complexity option for each
of the 4 parameters described in Section 3, without any of
the ROI complexity modes enabled. For each fixed bitrate,
DI and the encoding time are averaged over the set of 8 test
videos.

Using the highest complexity parameter options guar-
antees that the R-D performance will be optimal, at the ex-
pense of average encoding time. The ROI-optimized en-
coder demonstrates improved performance over the x264
encoder in terms of both R-D and distortion-complexity (D-
C). For the same level of distortion, the ROI-optimized en-

coder achieves a reduction in rate from the x264 encoder
between 10% and 28% and a reduction in encoding time
between 15% and 25%, depending on the encoding bitrate.

To achieve the same level of distortion, x264 must op-
erate at a higher bitrate, because it allocates rate to the non-
ROI and the ROI indiscriminately, whereas the ROI encoder
allocates rate almost entirely to the ROI. The complexity
gains provided by using the ROI-optimized encoder can be
attributed to high distortion in the non-ROI. When using the
ASL intelligibility distortion measure in Equation (1) for
computing R-D cost, distortions in the non-ROI do not con-
tribute to the distortion measure. As a result, the encoder is
making encoding decisions that minimize the bitrate in the
non-ROI. By design, the x264 encoder (and, consequently,
the ROI-optimized encoder), applies several heuristics to
quickly encode a macroblock at very low rates, selecting
only coarse macroblock partitions or skip modes, in which
the co-located macroblock in the previous frame is copied
without performing a full motion search.

Each of the three proposed ROI-based complexity al-
location parameters are evaluated independently in terms of
their impact on the R-D-C performance of the ROI-optimized
encoder. For each test case, the encoding parameter settings
are chosen such that the ROI is encoded with the highest
complexity options and the non-ROI is encoded with the
lowest complexity option. Specifically, the three test cases
are:ROI-subme = 6,subme = 0;ROI-MS = 7 (UMH for
ROI, DIA for non-ROI); andnonROI-part = 8,part =
1. The other x264 parameters described in Section 3 are all
set to their highest complexity.

As illustrated in Figure 1(a), applying any of the ROI
complexity options results in a negligible effect on the R-D
performance. Each of the three cases performs nearly iden-
tical to the ROI-optimized encoder when using the high-
est complexity settings. Figure 1(b) illustrates the aver-
age complexity gains achieved by the ROI complexity op-
tions. TheROI-subme andROI-MS options provide sim-
ilar speed improvements of approximately 16%. In each of
these test cases, the complexity is reduced because of the
integer-pixel motion estimation (subme) and coarse mo-
tion search (ROI-MS) performed on the non-ROI. Some-
what surprisingly, thenonROI-part yields no speed im-
provement. Because x264 efficiently eliminates many of
the candidate partition sizes, further restricting the possible
partition size available for non-ROI blocks does not signifi-
cantly reduce the complexity of the system.

5. JOINT RATE-DISTORTION-COMPLEXITY
OPTIMIZATION

The H.264 coding standard only specifies the operation of
the decoder, leaving virtually infinite flexibility in the op-
eration of the encoder. The set of encoding parameters dis-
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(a) Rate versus intelligibility distortion. The ROI complexity parame-
ters achieve the same R-D performance as the ROI-optimized encoder.
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(b) Encoding time versus intelligibility distortion. TheROI-subme
andROI-MS parameters result in a 16% reduction in encoding time.

Fig. 1. The R-D-C space for 5 different encoding scenarios. The x264 encoder and the ROI-optimized encoder, each running with the
highest complexity settings, provide benchmark performance levels. The three ROI parameters are compared against the benchmarks.

cussed in Section 3 made available to the encoder determine
the achievable bitrate, distortion, and complexity. Ideally, a
video encoder will select the parameter setting which re-
sults in a compressed video that meets the target rate and
complexity constraints while minimizing the distortion, i.e.
operates on the convex hull of the R-D-C surface. To find
the set of R-D-C convex hull parameter settings, an exhaus-
tive search is required over all parameter settings. In our
case, exhaustive search requires 1,605,632 encodings per
video per bitrate (7 × 16 × 8 × 4 × 8 × 7 × 8). Because it
is impractical to perform an exhaustive search of this R-D-
C space on a mobile device, fast methods for choosing the
appropriate set of encoding parameters must be employed.

The dominant parameter setting pruning algorithm (DPSPA)
[11] is applied to determine close to optimal parameter set-
tings without performing a full search. DPSPA is a fast of-
fline algorithm that uses significantly fewer encodings com-
pared to an exhaustive search to estimate the D-C convex
hull. For a fixed bitrate, DPSPA provides a collection of pa-
rameter settings which correspond to operating points lying
approximately on the D-C convex hull, as illustrated in Fig-
ure 2. These points are nearly optimal in terms of their D-C
performance; for a fixed complexity constraint, the result-
ing distortion is minimized. Applying the algorithm over
a range of target bitrates approximates the full R-D-C con-
vex hull. Given a target bitrate and complexity constraint,
the optimal parameter setting can be chosen immediately,
effectively creating a lookup table which provides the ap-
propriate parameter setting for each rate and complexity.
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Fig. 2. Intelligibility distortion vs. encoding time (lower y-axis)
and the corresponding encoding frame rate (upper y-axis) for the
outdoor ASL training set at 30 kbps, running on the HTC TyTN II
cell phone. DPSPA parameter settings obtained on either the PC
or the cell phone have similar performance on the cell phone.

6. RESULTS: APPLYING DPSPA TO ASL VIDEOS

Three combinations of training and test sets are created from
a collection of 8 indoor ASL videos, filmed on a static back-
ground, and 8 outdoor ASL videos, filmed on a busy street.
The segmentation into ROI and non-ROI is performed of-
fline for each video. The three cases correspond to train-
ing and testing on only the indoor videos, only the outdoor
videos, and on both the indoor and outdoor videos. The



DPSPA algorithm is applied to a set of four training ASL
videos and four test ASL videos each having176 × 144
frame resolution, 200 frames and a frame rate of 15 fps.
These experiments are conducted on a Windows XP PC
having a 2.01 GHz AMD processor and on an HTC TyTN II
cell phone having a 400 MHz Qualcomm MSM7200 ARMv6
processor.

The x264 default parameter setting is the vector (subme
= 5, ref = 1, part = (P8 × 8,B8 × 8, I8 × 8,I4 × 4),
trellis= 1). This parameter vector corresponds to high
complexity sub-pixel motion estimation; use of larger num-
ber of macroblock partitions; one reference frame; and the
use of the context adaptive arithmetic coder (CABAC) with
uniform quantization. The default settings do not use any of
the region-based complexity optimization options.

The DPSPA algorithm is executed for 15, 30 and 60
kbps. The DPSPA parameter settings are applied to the test
set of ASL videos to obtain the average encoding speed im-
provement and change in intelligibility of DPSPA parameter
setting over the x264 default parameter setting. LetDI(p)
andC(p) correspond to the intelligibility distortion and en-
coding time of a parameter setting p. We define the change
in intelligibility as ∆DI = DI(default) −DI(DPSPA)

and speed gain =(C(default)−C(DPSPA))
C(default) × 100.

As demonstrated in Tables 1 and 2, the DPSPA parame-
ter settings provide average speed improvements of approx-
imately 45% on the PC and 52% on the cell phone with little
decrease in intelligibility. A difference of approximately 0.2
corresponds to a statistical change in subjective intelligibil-
ity score [8]. Therefore, the average decreases in intelligi-
bility shown in Tables 1 and 2 will not significantly reduce
the perceived intelligibility.

Tables 1 and 2 demonstrate that for both the PC and
cell phone encoding scenarios, the largest speed increase is
obtained on the outdoor test videos. Because these videos
were filmed on a busy street, the level of background activ-
ity is significantly high. The x264 encoder must spend com-
putational resources encoding these non-ROI, whereas the
ROI-optimized encoder can use very coarse, low-complexity
parameter options. The overall speed improvement of the
ROI-optimized encoder depends on the relative level of ac-
tivity in the non-ROI.

Tables 1 and 2 compare the performance against the
x264 default parameter settings, which were chosen heuris-
tically by its developers to provide good R-D performance
at a reasonable encoding speed. We apply this default pa-
rameter setting to our ROI-optimized encoder and call it the
ROI default parameter setting. The ROI default parameter
setting results in an overall D-C performance that lies on the
DPSPA points, as illustrated in Figure 2. While the ROI de-
fault parameter setting performs better than some encoder
parameter settings for the corresponding encoding speed, it
is not fast enough for real-time performance. DPSPA pro-

Table 1. Intelligibility distortion difference (∆DI ) and speed
gain of DPSPA parameter setting over the x264 default parame-
ter setting on a 2.01 GHz PC for different pairs of training and test
videos. Negative value for∆DI indicates a higher intelligibility
distortion for DPSPA.

Bitrate Indoor Outdoor Indoor &
Outdoor

(kbps) ∆DI speed ∆DI speed ∆DI speed
gain gain gain

15 ≈0 31.2% 0.03 43% -0.01 40.8%
30 -0.05 41.3% 0.05 48.2% -0.01 45.8%
60 -0.03 45% 0.07 54.4% 0.02 50.7%

Average -0.03 39.2% 0.05 48.5% ≈0 45.8%

Table 2. Intelligibility distortion difference (∆DI ) and speed gain
of DPSPA parameter setting over the x264 default parameter set-
ting on a HTC TyTN II cell phone for different pairs of training
and test videos.

Bitrate Indoor Outdoor Indoor &
Outdoor

(kbps) ∆DI speed ∆DI speed ∆DI speed
gain gain gain

15 ≈0 43.6% 0.01 49% -0.08 49.7%
30 ≈0 45.7% ≈0 55% -0.09 53.8%
60 ≈0 48% 0.01 62.1% -0.04 54.5%

Average ≈0 45.8% 0.01 55.4% -0.07 52.7%

vides points which allow the encoder to run at or above
10fps, the nominal limit for full ASL conversations. [12]

DPSPA provides a collection of parameter settings which
are appropriate for the specific test device on which it is run.
While DPSPA can be executed on the cell phone platform,
it is useful to investigate if the parameter settings generated
on the PC can still approximate the D-C convex hull on the
cell phone. The set of encoding parameters computed by
DPSPA when run on the PC is applied to the test videos en-
coded on the cell phone. Despite differences in the exact
parameter settings chosen, the PC-generated settings per-
form very close to the cell phone-generated settings. Figure
2 illustrates the D-C curves for the outdoor test videos at 30
kbps, comparing both collections of parameter settings. In
this case, the testing required for DPSPA, and the resulting
convex hull lookup table, can be generated on the PC and
simply ported to the phone without any loss in performance.

On the PC, the DPSPA often picks allROI-MS options,
while on the cell phone (HEX, UMH, DIA) is preferred over
(UMH, HEX, DIA) and (UMH, DIA, DIA) options. This
shows that on a cell phone, better intelligibility-complexity
tradeoff is obtained by using higher complexity UMH for
the hand macroblocks instead of the face macroblocks. Be-
cause the location of the face does not vary significantly be-



tween frames, a fast motion search algorithm (HEX) is suf-
ficient for identifying the appropriate motion vectors. The
signer’s hands movements are much wider over the frame,
and accurate motion vectors are identified using a higher
complexity motion search (UMH).

As parameter settings are generated from highest to low-
est complexity by DPSPA, thesubme option (associated
with the non-ROI) first decreases from its highest to low-
est option while theROI-subme is retained at its high-
est option. Therefore, DPSPA appropriately reduces encod-
ing complexity by choosingsubme options that favor lower
distortion of the ROI over the non-ROI, and lower complex-
ity in the non-ROI versus the ROI.

We compare the x264 default parameter setting with
the DPSPA parameter setting having comparableDI per-
formance for the three bitrates on the cell phone. Each of
the DPSPA parameter settings allow the encoder to operate
at or above 10fps. The DPSPA parameter settings include
trellis = 2 at 15 kbps while usingtrellis = 1 and
trellis = 0 for 30 kbps and 60 kbps. Whentrellis
= 2, the encoder uses trellis quantization for the best R-
D performance. At higher bitrates, when the intelligibil-
ity is high, DPSPA selects CABAC without trellis quantiza-
tion (trellis = 1) and the less efficient CAVLC entroby
coder (trellis = 0). The x264 default parameter setting
usestrellis = 1 at all bitrates. ForROI-subme and
ROI-MS, DPSPA picks integer pixel motion estimation and
the use of all DIA, which are both lower in complexity com-
pared to the default options ofsubme = 5 and HEX motion
search, respectively.

7. CONCLUSION

This paper presents a region-of-interest (ROI) encoder based
on the H.264 standard in which both rate and complexity
can be allocated to the ROI. The proposed encoder includes
three new parameters that specify the level of sub-pixel mo-
tion estimation in the ROI (ROI-subme), the partition size
restrictions for non-ROI macroblocks (nonROI-part), and
the ROI-based motion search complexity (ROI-MS). This
ROI-optimized encoder is evaluated for American Sign Lan-
guage video. TheROI-subme andROI-MS parameters
reduce the encoding speed by 16% without affecting the R-
D performance.

DPSPA, a fast offline algorithm, is used to choose pa-
rameter settings that have excellent rate-intelligibility-complexity
performance. These settings can be stored in a look-up ta-
ble that can be used by an online algorithm which chooses
parameter settings based on the currently available compu-
tational resources and bandwidth. When compared to the
x264 default parameter settings, the DPSPA parameter set-
tings gives up to 54.4% improvement in encoding speed on
a PC and 62.1% improvement in encoding speed on a cell
phone with a small decrease in intelligibility. Additionally,

computing the look-up table on the PC platform and im-
plementing it on the cell phone results in the same relative
performance as when the look-up table is computed on the
cell phone platform. Performing the training and develop-
ing a look-up table can be executed much more rapidly on a
PC and simply deployed to the cell phone.
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