
Improving the reliability of commodity operating systemsNOOKS
http://www.cs.washington.edu/homes/mikesw/nooks

Isolation
Prevent extensions from causing the
 operating system to crash

Recovery
Restart crashed extensions automatically

Efficiency
Impose a minimum performance penalty

Backward Compatibility
Support existing extensions with no
 code changes
Integrate into existing operating systems
 with few changes

Goals
Best effort, but support the rest
Don’t try to prevent every fault
Don’t try to support every extension

Design for fault resistence,
 not fault tolerance
We are interested in reliability, not
 security.

Principles
Reliability is the critical problem
 for commodity operating
 systems
Linux, Windows XP ubiquitous in data
 center,home, office, and appliances.

Existing reliability solutions
 have not transferred
Require rewrite of OS kernel and all
 extensions

Problem

Mike Swift, Steve Martin, Doug Buxton, Leo
Shum, Mirco Stern

Hank Levy, Brian Bershad

Experience

Architecture

Implementation
Linux 2.4.10
Interposition through module load
Memory isolation with page tables
Fault detection with exception handlers

Experience
Isolated several kernel components

Network interface device drivers
VFAT File system
KHTTP Web server

Found bugs in extensions during development
3c90x driver overwrites memory after freeing
KHTTPD web server double-release kernel socket

Lessons learned
What makes isolation easier?

Enforce data hiding
Enforce regular calling conventions
Procedural, not macro, interfaces
Kernel allocated objects
No parameter shadowing

What extensions are easiest/cheapest to isolate?
Device drivers: simplest parameters

Application Daemon

Device Device Device

Driver Driver
Driver
Driver

Linux Kernel

Nooks Isolation Manager

Application
Applications

Daemon
Daemons

Kernel
Service

Kernel
Service

Driver

Nooks
Recovery Agent

Kernel
Service

NOOKS Isolation Manager

Recovery
Manager

Task Unwind

Hardware
Release
Kernel

Release
Unload/
Reload

Domain
Manager

Isolated
Procedure

Call

Memory
Manager

Object Manager

Object
Mapping

Object
Update

Isolate device extensions with in a virtual memory protection domain
Use interposition to add parameter checks and protection domain change
 to kernel-extension interface
Fault model
Crashing faults: causes OS to stop functioning
Functional faults: extension doesn’t perform correctly
Goal: prevent or recover from a large percentage of crashing faults

High Level Architecture

Wrappers
Interposed functions between kernel and extension
Responsible for validating parameters to kernel and data transfer between protection domains

Domain Manager
Manages memory isolation with separate page table per protection domain
Transfers control between domains by changing processor page table and swapping stack

Resource Manager
Maintains table of kernel objects in use by extensions
Maintains shadow copies of writeable objects for extensions
Maintains table of extension functions callable from kernel

Error handling
Errors from extension occur at:

Memory instructions: triggers restart of extension (can’t continue)
Calls to/from kernel: reflected as error codes returned to extension or kernel

Recovery Manager
Unwinds executing tasks
Releases kernel resources (from resource manager)
Unregisters extension functions from kernel
Reloads extension
Releases physical resources

Architecture Details

123Extension functions wrapped

.h 36

.c 22

Kernel source files changed

257Kernel Functions Wrapped

8271Total

840Miscellaneous

5240Wrappers

811Resource Management

1052Domain Management

328Recovery

Code Statistics

