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Isolation
Prevent extensions from causing the
  operating system to crash

Recovery
Restart crashed extensions automatically

Efficiency
Impose a minimum performance penalty

Backward Compatibility
Support existing extensions with no 
  code changes
Integrate into existing operating systems
  with few changes

Goals
Best effort, but support the rest
Don’t try to prevent every fault
Don’t try to support every extension

Design for fault resistence,
  not fault tolerance
We are interested in reliability, not 
  security.

Principles
Reliability is the critical problem 
 for commodity operating 
 systems
Linux, Windows XP ubiquitous in data 
  center,home, office, and appliances. 

Existing reliability solutions 
  have not transferred
Require rewrite of OS kernel and all 
  extensions
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Experience

Architecture

Implementation
Linux 2.4.10
Interposition through module load
Memory isolation with page tables
Fault detection with exception handlers

Experience
Isolated several kernel components

Network interface device drivers
VFAT File system
KHTTP Web server

Found bugs in extensions during development
3c90x driver overwrites memory after freeing
KHTTPD web server double-release kernel socket

Lessons learned
What makes isolation easier?

Enforce data hiding
Enforce regular calling conventions
Procedural, not macro, interfaces
Kernel allocated objects
No parameter shadowing

What extensions are easiest/cheapest to isolate?
Device drivers: simplest parameters
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Isolate device extensions with in a virtual memory protection domain
Use interposition to add parameter checks and protection domain change 
  to kernel-extension interface
Fault model
Crashing faults: causes OS to stop functioning
Functional faults: extension doesn’t perform correctly
Goal: prevent or recover from a large percentage of crashing faults

High Level Architecture

Wrappers
Interposed functions between kernel and extension
Responsible for validating parameters to kernel and data transfer between protection domains

Domain Manager
Manages memory isolation with separate page table per protection domain
Transfers control between domains by changing processor page table and swapping stack

Resource Manager
Maintains table of kernel objects in use by extensions
Maintains shadow copies of writeable objects for extensions
Maintains table of extension functions callable from kernel

Error handling
Errors from extension occur at:

Memory instructions: triggers restart of extension (can’t continue)
Calls to/from kernel: reflected as error codes returned to extension or kernel

Recovery Manager
Unwinds executing tasks
Releases kernel resources (from resource manager)
Unregisters extension functions from kernel
Reloads extension
Releases physical resources

Architecture Details

123Extension functions wrapped

.h 36

.c 22

Kernel source files changed

257Kernel Functions Wrapped

8271Total

840Miscellaneous

5240Wrappers

811Resource Management

1052Domain Management

328Recovery

Code Statistics


