Improving the Reliability of Commodity Operating Systems

Mike Swift, Brian Bershad, Hank Levy University of Washington

Outline

- Introduction
- Vision
- Design
- Evaluation
- Summary

The Problem

- Operating system crashes are a huge problem today
 - 5% of Windows systems crash every day
- Device drivers are the biggest cause of crashes
 - Drivers cause 85% of Windows XP crashes
 - Drivers are 7 times buggier than the kernel in Linux
- We built Nooks, a system that prevents drivers from crashing the OS
 - We can prevent 99% of faults in our tests that crash native Linux

Crashes Today

Crashes Today

Outline

- Introduction
- Vision
- Design
- Evaluation
- Summary

Vision

Vision

Reality

- Windows XP
 - 113 million copies sold in 2002
 - 40 million lines of code
 - \$1 billion development cost
 - 35,000 drivers available
- Linux:
 - 18 million users
 - 30 million lines of code
 - Equivalent \$1 billion development cost

Vision Requirements

- 1. Isolation
- 2. Recovery
- 3. Compatibility
 - No code changes
 - No new languages
 - No new OS
 - No new hardware
 - No new perspective

Outline

- Introduction
- Vision
- Design
- Evaluation
- Summary

Assumptions and Principles

- Assumptions:
 - Drivers are generally well behaved
 - Don't need to prevent every crash to be useful
- Principles:
 - Design for fault resistance (not fault tolerance)
 - Design for mistakes (not abuse)

Goal

We want a practical, "best-effort" solution

- Prevents many crashes
- Good performance
- Works with today's operating systems and drivers

Design of Nooks

- Standard Linux kernel and drivers
- Plus:
 - Isolation
 - Recovery
- Compatible with existing code

Existing Kernels

Isolation - Memory

Lightweight Kernel Protection Domains

Isolation - Control Transfer

Isolation - Control Transfer

eXtension Procedure Call

Isolation - Data Access

Isolation - Data Access

Copy-in / Copy-out

Isolation - Interposition

Isolation - Interposition

Design Summary

- Isolation
 - Lightweight Kernel Protection Domains
 - eXtension Procedure Call (XPC)
 - Copy-in/Copy-out
 - Wrappers

Recovery - Fault Detection

Recovery - Fault Detection

Recovery - Fault Detection

Recovery

Recovery

Stop / Unload

Recovery

Stop / Unload / Reload

Design Summary

- Isolation
 - Lightweight Kernel Protection Domains
 - eXtension Procedure Call (XPC)
 - Copy-in/Copy-out
 - Wrappers
- Recovery
 - Hardware and software checks
 - Stop / Unload and GC / Reload

Some Limitations

- Blame the processor
- Blame the operating system
- Blame us

Outline

- Vision
- Design
- Evaluation
 - Reliability
 - Performance
 - Implementation Cost
- Summary

Tested Drivers

- Sound card drivers
 - SoundBlaster 16 (sb)
 - Ensoniq 1371
- Network drivers
 - Intel Pro/1000 Gigabit Ethernet (e1000)
 - AMD PCnet32 10/100 Mb Ethernet (pcnet32)
 - 3COM 3c90x 10/100 Mb Ethernet
 - 3Com 3c59x 10/100 Mb Ethernet
- Filesystems
 - VFAT Windows-compatible filesystem (vfat)
- Other
 - kHTTPd in-kernel web server (khttpd)

Performance

- Dominant cost is XPC
 - Performance depends frequency of interaction with kernel

Relative Performance

Relative Performance

Relative Performance

Implementation Cost

- Changes to old code
 - Kernel: 924 out of 1.1 million lines
 - Device drivers+VFAT: 0 out of 33,000 lines
 - kHTTPd: 13 out of 2,000 lines
- New code
 - Nooks reliability layer: 22,266 lines

Summary

- Nooks provides a new reliability layer between drivers and the OS
- Nooks prevents 99% of tested faults that cause Linux to crash
- Nooks imposes a modest performance cost

Questions?

Thanks to Doug Buxton, Steve Martin, Christophe Augier Microsoft

www.cs.washington.edu/homes/mikesw/nooks

Why didn't we use a microkernel?

- Doesn't address our limitations
 - Isolation not much better
 - Fault detection not much better
 - Recovery not much better
 - Doesn't improve performance
- Requires more changes to the kernel
- Makes compatibility more difficult

Nooks Catches Bugs

Future work

- Improve performance
- Better recovery
- Automate wrapper generation