Improving the Reliability of
Commodity Operating
Systems

Mike Swift, Brian Bershad, Hank Levy
University of Washington

 Introduction
* Vision

* Design

 Evaluation

« Summary

Outline

The Problem

- Operating system crashes are a huge problem
today
— 5% of Windows systems crash every day

- Device drivers are the biggest cause of
crashes
— Drivers cause 85% of Windows XP crashes
— Drivers are 7 times buggier than the kernel in Linux

» We built Nooks, a system that prevents drivers
from crashing the OS

— We can prevent 99% of faults in our tests that crash
native Linux

Crashes Today

User User
Program Program
Driver

Kernel

Crashes Today

User User
Program Program
Driver
Kernel

S

Crashes Today

User
Prog

User
Program

Kernel

river

 Introduction
* ViIsIion

* Design

 Evaluation

« Summary

Outline

Vision

User User
Program Program
Driver
Kernel

S

Vision

User User
Program Program
Driver

Kernel

Reality

- Windows XP

— 113 million copies sold in 2002
— 40 million lines of code

— $1 billion development cost

— 35,000 drivers available

 Linux:
— 18 million users

— 30 million lines of code
— Equivalent $1 billion development cost

Vision Requirements

1. Isolation

2. Recovery

3. Compatibility
 No code changes
 No new languages
e No new OS
e No new hardware
 No new perspective

 Introduction
* VIsIion

* Design

 Evaluation

« Summary

Outline

Assumptions and Principles

» Assumptions:
— Drivers are generally well behaved

— Don’t need to prevent every crash to be
useful

* Principles:

— Design for fault resistance (not fault
tolerance)

— Design for mistakes (not abuse)

Goal

We want a practical, “best-effort” solution
* Prevents many crashes
- Good performance

» Works with today’s operating systems and
drivers

Design of Nooks

« Standard Linux kernel and drivers
* Plus:

— Isolation
— Recovery

- Compatible with existing code

Existing Kernels

User User
Program Program
Driver

Kernel

Isolation - Memory

User User
Program Program
Driver
Kernel Stack
Heap

Lightweight Kernel Protection Domains

|Isolation - Control Transfer

User User
Program Program
Driver
Kernel / \A

o\

|Isolation - Control Transfer

User User
Program Program
XPC Driver
Kernel / \A
\.A’C

eXtension Procedure Call

|Isolation - Data Access

User User
Program Program

Bv\ Driver

Kernel —~

|Isolation - Data Access

User User
Program Program
B Driver
Kernel B

Copy-in / Copy-out

|solation - Interposition

User User
Program Program
Driver
Kernel e "\

oI

|solation - Interposition

User User
Program Program

/.\ Driver
Kernel 4 xpc 4
xpc

Wrappers

Design Summary

» Isolation
— Lightweight Kernel Protection Domains
— eXtension Procedure Call (XPC)
— Copy-in/Copy-out
— Wrappers

Recovery - Fault Detection

User User
Program Program
Driver
Kernel
Recover;j /*
N\ 4
Processor

Recovery - Fault Detection

User User
Program Program

Driver
Kernel
Recovery‘/—*

Recovery - Fault Detection

User User
Detector
Program * Program

/

Kernel /

Recovery,

Driver

Recovery

Kernel /\

Recovery,

v
)

User User
Program Program
Driver

S

Stop

Recovery

User User
Program Program
Kernel \Q
Recovery,

Stop / Unload

Recovery

User User
Program Program
Driver
Kernel /\ \4@ Y
Recovery,
Stop / Unload / Reload

Design Summary

» Isolation
— Lightweight Kernel Protection Domains
— eXtension Procedure Call (XPC)
— Copy-in/Copy-out
— Wrappers
* Recovery

— Hardware and software checks
— Stop / Unload and GC / Reload

0

Some Limitations

ame the processor
ame the operating system
ame us

Outline

Vision

Design

Evaluation

— Reliability

— Performance

— Implementation Cost
Summary

Tested Drivers

Sound card drivers

— SoundBlaster 16 (sb)

— Ensoniq 1371

Network drivers

— Intel Pro/1000 Gigabit Ethernet (e1000)

— AMD PCnet32 10/100 Mb Ethernet (pcnet32)

— 3COM 3c90x 10/100 Mb Ethernet
— 3Com 3¢59x 10/100 Mb Ethernet

Filesystems
— VFAT Windows-compatible filesystem (vfat)

Other
— kHTTPd in-kernel web server (khttpd)

Reliability Test Methodology
v

Load driver

v

Inject bugs

S

Nothing Failure

—

Reboot

Reliability Test Methodology
v

Load driver
Inject bugs
>
Nothing Failure Recovery
T

Reboot

200

-t
o1
o

100

Number of crashes

a1
o

Nooks Stops Crashes

119

pcnet32

Extension

Il No Nooks
Il Nooks

200

-t
o1
o

100

Number of crashes

a1
o

Nooks Stops Crashes

119

0

pcnet32

Extension

Il No Nooks
Il Nooks

200

-t
o1
o

100

Number of crashes

a1
o

Nooks Stops Crashes

119

52

0 I

pcnet32 e1000

Extension

Il No Nooks
Il Nooks

200

-t
o1
o

100

Number of crashes

a1
o

Nooks Stops Crashes

119

52

0 IO

pcnet32 e1000

Extension

Il No Nooks
Il Nooks

Nooks Stops Crashes

200

Il No Nooks
Il Nooks

-t
o1
o

100

Number of crashes

a1
o

pcnet32 e1000 sb
Extension

200

-t
o1
o

100

Number of crashes

a1
o

Nooks Stops Crashes

175
10
2 2
-
pcnet32 e1000 sb KHTTPd VFAT

Extension

Il No Nooks
Il Nooks

Performance

 Dominant cost is XPC

— Performance depends frequency of
interaction with kernel

Relative Performance

150 XPC/sec

GETTY
s|duig

|e20]
a|dwo)n

gqomoads
ayoedy

weals
puas

wea.ns
CYVERELY

gs ediN Aeld

- ® © % o O
o O O O

XNui aAIlEN O} 9ANe|9Y "Mad

Workload

Relative Performance

GETTY
s|duig

|e20]
a|dwo)n

gqomoads
ayoedy

weals
puas

0001®

00018 Weans
aA1929Y

8,923 60,352 XPC/sec

150

gs ediN Aeld

- ® © % o O
o O O O

XNui aAIlEN O} 9ANe|9Y "Mad

Workload

Relative Performance

qdaM
a|dwig

@)
()
K
m.u |e20]
S< a|dwo)n
o
& 00012 BMoeDS
- ayoedy
o
& 00012 puoe
o puas
©
()
S 0001® Wweals

. 9A1999Y
(0 0)
o
L0 gs edin Aeid

- ® © % o O
o O O O

XNui aAIlEN O} 9ANe|9Y "Mad

Workload

Relative Performance

| O

@ |3 gaM

~lo Pd1l1HX aidwisg

O (A

o | X

% |e207

% gomoads
M

W, 000}® aoedy

QA

% weains

mw, 0001I?® puas

2]

S 000}® weains

o 9A1929Y

=)

L0 gs edin Aeid

- @ 9 ¥ o o©°

o o o o
XNui aAIlEN O} 9ANe|9Y "Mad

Workload

Implementation Cost

» Changes to old code
— Kernel: 924 out of 1.1 million lines
— Device drivers+VFAT: O out of 33,000 lines
— kHTTPd: 13 out of 2,000 lines
- New code
— Nooks reliablility layer: 22,266 lines

Summary

* Nooks provides a new reliability layer
between drivers and the OS

* Nooks prevents 99% of tested faults
that cause Linux to crash

* Nooks imposes a modest performance
cost

Questions?

Thanks to

Doug Buxton, Steve Martin,
Christophe Augier

Microsoft

www.cs.washington.edu/homes/mikesw/nooks

Why didn’t we use a
microkernel?

» Doesn’t address our limitations
— Isolation not much better
— Fault detection not much better
— Recovery not much better
— Doesn’t improve performance

* Requires more changes to the kernel
- Makes compatibility more difficult

Number of failures

250

200

150

100

50 -

Nooks Catches Bugs

232

sb el000 pcnet32 VFAT KkKHTTPd

Extension

Future work

* Improve performance
» Better recovery
» Automate wrapper generation

