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The Problem
• Operating system crashes are a huge problem

today
– 5% of Windows systems crash every day

• Device drivers are the biggest cause of
crashes
– Drivers cause 85% of Windows XP crashes
– Drivers are 7 times buggier than the kernel in Linux

• We built Nooks, a system that prevents drivers
from crashing the OS
– We can prevent 99% of faults in our tests that crash

native Linux
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Reality
• Windows XP

– 113 million copies sold in 2002
– 40 million lines of code
– $1 billion development cost
– 35,000 drivers available

• Linux:
– 18 million users
– 30 million lines of code
– Equivalent $1 billion development cost



Vision Requirements
1. Isolation
2. Recovery
3. Compatibility

• No code changes
• No new languages
• No new OS
• No new hardware
• No new perspective
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Assumptions and Principles

• Assumptions:
– Drivers are generally well behaved
– Don’t need to prevent every crash to be

useful
• Principles:

– Design for fault resistance (not fault
tolerance)

– Design for mistakes (not abuse)



Goal

We want a practical, “best-effort” solution
• Prevents many crashes
• Good performance
• Works with today’s operating systems and

drivers



Design of Nooks

• Standard Linux kernel and drivers
• Plus:

– Isolation
– Recovery

• Compatible with existing code
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Design Summary
• Isolation

– Lightweight Kernel Protection Domains
– eXtension Procedure Call (XPC)
– Copy-in/Copy-out
– Wrappers
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Design Summary
• Isolation

– Lightweight Kernel Protection Domains
– eXtension Procedure Call (XPC)
– Copy-in/Copy-out
– Wrappers

• Recovery
– Hardware and software checks
– Stop / Unload and GC / Reload



Some Limitations

• Blame the processor
• Blame the operating system
• Blame us
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Tested Drivers
• Sound card drivers

– SoundBlaster 16 (sb)
– Ensoniq 1371

• Network drivers
– Intel Pro/1000 Gigabit Ethernet (e1000)
– AMD PCnet32 10/100 Mb Ethernet  (pcnet32)
– 3COM 3c90x 10/100 Mb Ethernet
– 3Com 3c59x 10/100 Mb Ethernet

• Filesystems
– VFAT Windows-compatible filesystem (vfat)

• Other
– kHTTPd in-kernel web server (khttpd)



Reliability Test Methodology

Test

Inject bugs

Reboot

Load driver
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Nooks Stops Crashes
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Performance

• Dominant cost is XPC
– Performance depends frequency of

interaction with kernel
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Implementation Cost

• Changes to old code
– Kernel: 924 out of 1.1 million lines
– Device drivers+VFAT: 0 out of 33,000 lines
– kHTTPd: 13 out of 2,000 lines

• New code
– Nooks reliability layer: 22,266 lines



Summary
• Nooks provides a new reliability layer

between drivers and the OS
• Nooks prevents 99% of tested faults

that cause Linux to crash
• Nooks imposes a modest performance

cost



Questions?

Thanks to
Doug Buxton, Steve Martin,

Christophe Augier
Microsoft

www.cs.washington.edu/homes/mikesw/nooks



Why didn’t we use a
microkernel?

• Doesn’t address our limitations
– Isolation not much better
– Fault detection not much better
– Recovery not much better
– Doesn’t improve performance

• Requires more changes to the kernel
• Makes compatibility more difficult
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Future work

• Improve performance
• Better recovery
• Automate wrapper generation


