
Improving the Reliability of
Commodity Operating

Systems
Mike Swift, Brian Bershad, Hank Levy

University of Washington

Outline

• Introduction
• Vision
• Design
• Evaluation
• Summary

The Problem
• Operating system crashes are a huge problem

today
– 5% of Windows systems crash every day

• Device drivers are the biggest cause of
crashes
– Drivers cause 85% of Windows XP crashes
– Drivers are 7 times buggier than the kernel in Linux

• We built Nooks, a system that prevents drivers
from crashing the OS
– We can prevent 99% of faults in our tests that crash

native Linux

Crashes Today
User

Program

Kernel
Driver

User
Program

Crashes Today
User

Program

Kernel
Driver

User
Program

Crashes Today
User

Program

Kernel
Driver

User
Program

Outline

• Introduction
• Vision
• Design
• Evaluation
• Summary

Vision
User

Program

Kernel
Driver

User
Program

Vision
User

Program

Kernel
Driver

User
Program

Reality
• Windows XP

– 113 million copies sold in 2002
– 40 million lines of code
– $1 billion development cost
– 35,000 drivers available

• Linux:
– 18 million users
– 30 million lines of code
– Equivalent $1 billion development cost

Vision Requirements
1. Isolation
2. Recovery
3. Compatibility

• No code changes
• No new languages
• No new OS
• No new hardware
• No new perspective

Outline

• Introduction
• Vision
• Design
• Evaluation
• Summary

Assumptions and Principles

• Assumptions:
– Drivers are generally well behaved
– Don’t need to prevent every crash to be

useful
• Principles:

– Design for fault resistance (not fault
tolerance)

– Design for mistakes (not abuse)

Goal

We want a practical, “best-effort” solution
• Prevents many crashes
• Good performance
• Works with today’s operating systems and

drivers

Design of Nooks

• Standard Linux kernel and drivers
• Plus:

– Isolation
– Recovery

• Compatible with existing code

Existing Kernels
User

Program

Kernel
Driver

User
Program

Isolation - Memory
User

Program

Kernel
Driver

User
Program

Stack
Heap

Lightweight Kernel Protection Domains

Isolation - Control Transfer
User

Program

Kernel
Driver

User
Program

Isolation - Control Transfer
User

Program

Kernel
Driver

User
Program

XPC

XPC

eXtension Procedure Call

Isolation - Data Access
User

Program

Kernel
Driver

User
Program

Isolation - Data Access
User

Program

Kernel
Driver

User
Program

Copy-in / Copy-out

Isolation - Interposition
User

Program

Kernel
Driver

User
Program

Isolation - Interposition
User

Program

Kernel
Driver

User
Program

XPC

XPC

Wrappers

Design Summary
• Isolation

– Lightweight Kernel Protection Domains
– eXtension Procedure Call (XPC)
– Copy-in/Copy-out
– Wrappers

Recovery - Fault Detection
User

Program

Kernel
Driver

User
Program

Processor

Recovery

Recovery - Fault Detection
User

Program

Kernel
Driver

User
Program

Recovery

Recovery - Fault Detection
User

Program

Kernel
Driver

User
Program

Recovery

Detector

Recovery
User

Program

Kernel
Driver

User
Program

Recovery

STOP

Stop

Recovery
User

Program

Kernel

User
Program

Recovery

Stop / Unload

Recovery
User

Program

Kernel
Driver

User
Program

Recovery

Stop / Unload / Reload

GO

Design Summary
• Isolation

– Lightweight Kernel Protection Domains
– eXtension Procedure Call (XPC)
– Copy-in/Copy-out
– Wrappers

• Recovery
– Hardware and software checks
– Stop / Unload and GC / Reload

Some Limitations

• Blame the processor
• Blame the operating system
• Blame us

Outline

• Vision
• Design
• Evaluation

– Reliability
– Performance
– Implementation Cost

• Summary

Tested Drivers
• Sound card drivers

– SoundBlaster 16 (sb)
– Ensoniq 1371

• Network drivers
– Intel Pro/1000 Gigabit Ethernet (e1000)
– AMD PCnet32 10/100 Mb Ethernet (pcnet32)
– 3COM 3c90x 10/100 Mb Ethernet
– 3Com 3c59x 10/100 Mb Ethernet

• Filesystems
– VFAT Windows-compatible filesystem (vfat)

• Other
– kHTTPd in-kernel web server (khttpd)

Reliability Test Methodology

Test

Inject bugs

Reboot

Load driver

Nothing Failure

Reliability Test Methodology

Test

Inject bugs

Reboot

Load driver

Nothing Failure Recovery

Nooks Stops Crashes

0

50

100

150

200

pcnet32
Extension

Nu
m

be
r o

f c
ra

sh
es

No Nooks

Nooks119

Nooks Stops Crashes

0

50

100

150

200

pcnet32
Extension

Nu
m

be
r o

f c
ra

sh
es

No Nooks

Nooks119

0

Nooks Stops Crashes

0

50

100

150

200

pcnet32 e1000
Extension

Nu
m

be
r o

f c
ra

sh
es

No Nooks

Nooks119

0

52

Nooks Stops Crashes

0

50

100

150

200

pcnet32 e1000
Extension

Nu
m

be
r o

f c
ra

sh
es

No Nooks

Nooks119

0

52

0

Nooks Stops Crashes

0

50

100

150

200

pcnet32 e1000 sb
Extension

Nu
m

be
r o

f c
ra

sh
es

No Nooks

Nooks119

0

52

0
10

1

Nooks Stops Crashes

0

50

100

150

200

pcnet32 e1000 sb kHTTPd VFAT
Extension

Nu
m

be
r o

f c
ra

sh
es

No Nooks

Nooks119

0

52

0
10

1

175

2
10

2

Performance

• Dominant cost is XPC
– Performance depends frequency of

interaction with kernel

0

0.2

0.4

0.6

0.8

1
Pl

ay
 M

P3

Re
ce

iv
e

St
re

am

Se
nd

St
re

am

Ap
ac

he
Sp

ec
W

eb

Co
m

pi
le

Lo
ca

l

Si
m

pl
e

W
eb

Workload

Pe
rf.

 R
el

at
iv

e
to

 N
at

iv
e

Li
nu

x

Relative Performance
sb

150 XPC/sec

0

0.2

0.4

0.6

0.8

1
Pl

ay
 M

P3

Re
ce

iv
e

St
re

am

Se
nd

St
re

am

Ap
ac

he
Sp

ec
W

eb

Co
m

pi
le

Lo
ca

l

Si
m

pl
e

W
eb

Workload

Pe
rf.

 R
el

at
iv

e
to

 N
at

iv
e

Li
nu

x

Relative Performance
sb

e1
00

0

e1
00

0

8,923 60,352150 XPC/sec

0

0.2

0.4

0.6

0.8

1
Pl

ay
 M

P3

Re
ce

iv
e

St
re

am

Se
nd

St
re

am

Ap
ac

he
Sp

ec
W

eb

Co
m

pi
le

Lo
ca

l

Si
m

pl
e

W
eb

Workload

Pe
rf.

 R
el

at
iv

e
to

 N
at

iv
e

Li
nu

x

Relative Performance
sb

e1
00

0

e1
00

0

e1
00

0

8,923 60,352 1,960150 XPC/sec

0

0.2

0.4

0.6

0.8

1
Pl

ay
 M

P3

Re
ce

iv
e

St
re

am

Se
nd

St
re

am

Ap
ac

e
Sp

ec
W

eb

Co
m

pi
le

Lo
ca

l

Si
m

pl
e

W
eb

Workload

Pe
rf.

 R
el

at
iv

e
to

 N
at

iv
e

Li
nu

x

Relative Performance
sb

e1
00

0

e1
00

0

e1
00

0

VF
AT

kH
TT

Pd

61,18322,6538,923 60,352 1,960150
XPC/sec

Implementation Cost

• Changes to old code
– Kernel: 924 out of 1.1 million lines
– Device drivers+VFAT: 0 out of 33,000 lines
– kHTTPd: 13 out of 2,000 lines

• New code
– Nooks reliability layer: 22,266 lines

Summary
• Nooks provides a new reliability layer

between drivers and the OS
• Nooks prevents 99% of tested faults

that cause Linux to crash
• Nooks imposes a modest performance

cost

Questions?

Thanks to
Doug Buxton, Steve Martin,

Christophe Augier
Microsoft

www.cs.washington.edu/homes/mikesw/nooks

Why didn’t we use a
microkernel?

• Doesn’t address our limitations
– Isolation not much better
– Fault detection not much better
– Recovery not much better
– Doesn’t improve performance

• Requires more changes to the kernel
• Makes compatibility more difficult

Nooks Catches Bugs

156

17

56

16 27

175

232

33 31

80

0

50

100

150

200

250

sb e1000 pcnet32 VFAT kHTTPd
Extension

N
um

be
r o

f f
ai

lu
re

s No Nooks

Nooks

Future work

• Improve performance
• Better recovery
• Automate wrapper generation

