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Abstract

The goal of Denali is to safely execute many inde-
pendent, untrusted server applications on a single phys-
ical machine. This would enable any developer to inject
a new service into third-party Internet infrastructure;
for example, dynamic content generation code could
be introduced into content-delivery networks or caching
systems. We believe that virtual machine monitors
(VMMs) are ideally suited to this application domain.
A VMM provides strong isolation by default, since one
virtual machine cannot directly name a resource in an-
other. In addition, VMMs defer the implementation of
high-level abstractions to guest OSs, which greatly sim-
plifies the kernel and avoids “layer-below” attacks. The
main challenge in using a VMM for this application do-
main is in scaling the number of concurrent virtual ma-
chines that can simultaneously execute on it.

The distinction between Denali and existing VMMs is

that we make aggressive use of para-virtualization tech-

niques. Para-virtualization entails selectively modifying

the virtual architecture to enhance scalability, perfor-

mance, and simplicity. By using para-virtualization, we

believe Denali will be able to scale up to an order-of-

magnitude more virtual machines than existing VMMs.

We have implemented a prototype virtual machine mon-

itor that runs in ring 0 on bare x86 hardware. In addi-

tion, we have built a simple guest OS tailored to writing

Internet services.

1 Introduction

Improvements in networking and computing
technology are pushing application functionality
into the wide-area infrastructure. This computing
model has many advantages: services are immedi-
ately available to clients without cumbersome soft-
ware distribution, services are always available and
can be accessed from any device, services can be
administered centrally, and administration or main-
tenance can be out-sourced to an infrastructure ser-
vice provider rather than handled in-house.

Many of today’s services are maintained by large
organizations, such as Hotmail. However, the ben-
efits of infrastructure computing should apply just
as well to small services. A popular vision that we

share is that any individual should be able to inject
a new service into the Internet infrastructure for a
small fee. As an example, a group of game play-
ers could deploy a server to a well-connected point
in the Internet for the duration of a multi-player
game session. As another example, the owners of
a web service that includes dynamically generated
content could inject both static and dynamic por-
tions of their site into a content-delivery network.

These scenarios have significant trust implica-
tions: infrastructure providers cannot trust con-
sumers’ services, and services generally do not trust
each other. Correspondingly, a mechanism must ex-
ist to enforce strong isolation between services and
the infrastructure, both in the security sense (pre-
venting one service from corrupting another) and in
the performance sense (fairly multiplexing physical
resources such as CPU, memory, and network band-
width). The simplest approach to providing this
isolation would be to run each service on its own
physical machine. In addition to isolating services
from each other, this would also allow each service
to choose its own operating system and software.
However, dedicating physical machines to services
is wasteful, as it eliminates the possibility of statis-
tically multiplexing a machine across many services.
It is also not cost-effective, as we believe there will
be many services that neither require nor can afford
the cost of an entire physical machine.

1.1 Statistically multiplexing services

The benefits of statistically multiplexing services
are re-enforced by Zipf’s law, which states that the
frequency of an event is proportional to x

−α, where
x is the rank of the event compared with all other
events. Many studies of web servers, documents,
web caches, and other network services have shown
that popularity is almost always driven by Zipfian
distributions [7]. Based on this, we expect that
the popularity distribution of infrastructure services
will also be driven by Zipf’s law.

Zipfian distributions have two significant impli-
cations (Figure 1). First, most requests go to a
small number of popular services. Second, most
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Figure 1: Zipfian service popularity distribution:

This figure shows the CDF of requests to 10,000 hypo-
thetical services driven by a Zipfian probability distri-
bution, with α = 0.75.

services are relatively unpopular, but a non-trivial
fraction of requests go to these unpopular services.
Because the amount of resources that a service re-
quires is typically proportional to the workload it
supports, popular services will require significant
computational and networking resources. In con-
trast, there will be a large number of services that
require scarcely any resources, motivating the desire
to multiplex many of them on a single computer for
reasons of affordability and manageability.

Fortunately, Moore’s law has resulted in com-
modity components with enormous processing
power, storage, and network bandwidth. A single
modern computer can support a large amount of
service traffic: recent SPECweb results show that
single CPU servers can serve 2,000 HTTP requests
per second, or 172 million requests per day. Corre-
spondingly, we believe that if isolation can be en-
forced without introducing prohibitive overhead, a
single computer can host a large number of con-
current services (hundreds, or perhaps thousands)
while supporting an aggregate throughput that is
comparable to a single-service computer.

1.2 Denali: supporting lightweight pro-
tection domains

The Denali project seeks to implement
lightweight protection domains that allow many
untrusted services to execute inside the network
infrastructure. In particular, Denali’s protection
domains must have the following properties:

• Strong isolation: arbitrary code executing in
a protection domain is prevented from perturb-
ing code executing in another domain, both in
terms of security and performance.

• Scales to many protection domains: in our
application domain, we will need to execute
hundreds or thousands of protection domains
simultaneously on a single physical computer.

• Rapid swapping: to support a workload con-
sisting of many requests to unpopular services,

the act of swapping in a service that hasn’t ex-
ecuted in a long time must be fast.

We also believe services will be relatively inde-

pendent, and therefore sharing across protection do-
mains is infrequent. Thus, a mechanism that ob-
tains these three properties at the cost of increased
sharing overhead is acceptable.

In this paper, we argue that virtual machine mon-
itors (VMMs) are one of the few practical mecha-
nisms that provide strong enough isolation for our
desired application domains. Our research agenda
includes mechanisms and design techniques to en-
hance the ability of a VMM to scale up in the
number of concurrently executing virtual machines
(VMs). This paper represents an initial exploration
of this agenda, in which we use a prototype im-
plementation of a lightweight VMM system (de-
scribed in Section 3) to explore design possibilities.
Section 4 provides performance measurements from
several micro- and macro-benchmarks. We discuss
future work in Section 5, related work in Section 6,
and then conclude.

2 An Argument for VMMs

A virtual machine monitor is a software layer that
virtualizes all of the resources of a physical machine,
thereby defining and supporting the execution of
multiple virtual machines (VMs) [13, 28, 29]. The
interface exported by a VMM is a virtualized hard-
ware/software interface, including a CPU, physi-
cal memory, and I/O devices. A VMM typically
executes directly on physical hardware, and more
specifically, below the level of operating systems.
Within each VM, a “guest” operating system pro-
vides the customary set of high-level abstractions
such as files or network sockets (Figure 2).

We believe VMMs are capable of providing strong
isolation between virtual machines, both in the secu-
rity and performance sense. However, for VMMs to
work in our application domain, they must demon-
strate adequate performance as the number of con-
currently executing VMs scales up. In the remain-
der of this section, we discuss the isolation prop-
erties of VMMs and then introduce some issues of
scale that arise when executing many VMs.

2.1 Security isolation

One of our isolation objectives is to sandbox un-
trusted code to prevent services from directly read-
ing or modifying the state of other services or of the
underlying protection system.1 The requirements

1We are not pursuing stronger properties such as moni-
toring information flow or eliminating covert channels.
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Figure 2: OSs compared with VMMs: (a) An OS
shares and protects high level abstractions built out of
low-level physical resources. (b) With a VMM, protec-
tion is below abstraction. By exposing virtualized (pro-
tected) low-level resources, each VM can run its own OS
to define high-level abstractions for its applications.

of our application domain are fundamentally differ-
ent from those that guided the design of protection
in conventional desktop or time-sharing operating
systems. In Denali, the unit of protection is a ser-
vice instead of a user, and there is little need to
share data between services (and hence protection
domains). Virtual machine monitors are well-suited
to this application domain because they directly ad-
dress problems that plague conventional OSs:

Simple, static sharing policy. VMMs impose
a simple sharing policy: all data is private to a vir-
tual machine unless it wishes to share that data over
the network. The advantage of this approach is that
it obviates the task of constructing an appropriate
protection policy. The disadvantage is the increased
cost of sharing data between applications. However,
we believe this trade-off is justified, given that our
application domain demands little sharing between
applications.

In contrast, the principals in a conventional OS
are users that share data through protected abstrac-
tions; this results in very complicated sharing poli-
cies (e.g., “allow Jim to read file X” or “allow all
of Sally’s programs to use the network”). The com-
plexity of expressing an appropriate policy grows
with the number of principals and protected ab-
stractions. Even if an OS is flexible enough to allow
all policies to be expressed, this complexity implies
that, in practice, it is difficult to verify that a given
policy behaves according to its author’s intentions.
By removing protected sharing, VMMs avoid the
issue of expressing complex policy.

Protection is below abstractions. VMMs
defer the implementation of high-level abstractions
like file systems and network stacks to guest operat-
ing systems. This greatly simplifies the implementa-
tion of the VMM (which has positive security impli-
cations), and it also eliminates “layer-below vulner-
abilities” to which conventional operating systems
are susceptible.

In a conventional OS, policy is expressed in terms
of high-level abstractions like files, instead of low-
level resources like disk blocks. Unfortunately, ex-
pressing protection policy in terms of abstractions
gives rise to layer-below phenomena in which an at-
tacker illicitly accesses resources by tunneling be-
low the abstraction layer. For example, an attacker
could read raw disk blocks to bypass the file system
reference monitor, use a packet sniffer to capture the
password of a local account, or force a core dump
to access protected in-memory data.

Private namespaces. With the exception of
network addresses, all names exposed by a VMM
are private to a VM. As a result, a VM cannot

even construct a name that refers to the resource
of another VM. Even if a VM is compromised by
an attacker, it cannot access any other machine’s
data, assuming that the VMM’s mapping from vir-
tual to physical resources is implemented correctly.
The only global (and hence shared) namespace that
a VMM exposes is the set of MAC addresses on
the virtual ethernet subnet. Security vulnerabilities
that can be exploited over the network are beyond
the scope of our project; however, we point out that
any network-enabled application must be prepared
to handle malicious traffic that arrives from the net-
work, and that a VM that desires complete isolation
need only drop all network traffic.

In comparison, an operating system typically ex-
poses several global namespaces (such as the set
of all file names) through which users share data.
These global namespaces can jeopardize security
if they are misconfigured or poorly protected; for
example, attackers could use aliases such as sym-
bolic links to gain illicit access to resources. Global
namespaces also grant unfettered access to an at-
tacker that has gained supervisor privileges.

2.2 Performance isolation

Although the term “isolation” typically refers to
security, an equally important aspect of service iso-
lation is performance isolation (as evidenced by the
rash of recent denial-of-service attacks). Our goal
is to provide approximate resource fairness across
services, even in the presence of malicious services
or heavy network load. We do not aim to provide
precise guarantees of the sort that are required by
real-time applications.

The need to support high-level abstractions pre-
vents most OSs from providing strong performance
isolation. High-level abstractions create contention
points where applications compete for resources and
synchronization primitives. This leads to the ef-
fect of resource “cross-talk” [19], in which appli-
cations’ resource management decisions interfere
with each other. An additional problem posed by



high-level abstractions is that precise resource ac-
counting is difficult because resources are tied up
in the implementation of the abstractions them-
selves. For example, the file buffer-cache and
TCP/IP socket buffers consume memory resources
that aren’t “charged” to any particular application.
Likewise, network protocol processing is often per-
formed in the context of the running process instead
of the receiving process, which can lead to unfair-
ness and receiver live-lock [15].

By deferring the implementation of abstractions
to guest OSs, VMMs need not suffer from these de-
ficiencies. As we will show in Section 3, virtual
hardware devices within the VMM act as queues
for VMs’ resource accesses, making it possible for
a VMM to implement policies such as fair queu-
ing and stride scheduling. Because the VMM ex-
poses hardware-level resources, there are fewer un-
accounted resources than in conventional operating
systems.

2.3 Our challenge: scaling a VMM

Our goal in Denali is to support a large number
of protection domains efficiently. VMMs are known
to introduce virtualization overhead, but as we con-
firm in Section 4, the performance degradation from
this overhead is modest on today’s machines. More
importantly, there are many issues of scale that arise
as we increase the number of concurrently execut-
ing virtual machines. For example, at the archi-
tectural level, as more VMs concurrently execute it
becomes less likely that a given physical interrupt
arrives when the VM it is associated with is run-
ning. Issues of scale also affect operating system
design; running hundreds of VMs implies executing
hundreds of TCP/IP stacks on the same physical
processor, which has implications for timer design.

In the following section, we describe how we ex-
ploit the notion of para-virtualization to address is-
sues of scale. Para-virtualization exposes a virtual
architecture that is slightly different than the physi-
cal architecture. The differences in the architecture
are driven by improvements in scalability or reduc-
tions in system complexity. Modifying the architec-
ture breaks backwards compatibility with existing
OS code, which is a major disadvantage. However,
it enables us to co-design the virtual architecture
with the operating system, which gives us consider-
able latitude when exploring issues of scale.

Para-virtualization has been used in previous
VMMs, including VM/370 [29] and Disco [9]. These
systems added a combination of instructions, regis-
ters, or devices to the virtual architecture to im-
prove performance. However, because the goal of
these systems was to run legacy OSs, their use of
para-virtualization was minimized. Our contribu-

tion is to explore architectural modifications with-
out regard to backwards compatibility of OS code.

A potential criticism of para-virtualization is that
it blurs the line between a VMM and a conventional
OS. While this is true, we chose the term “virtual
machine monitor” because we find virtualized hard-
ware to be a useful metaphor for implementing the
isolating properties discussed above: no shared ab-
stractions, a simple sharing model, and no global
namespaces. We discuss the relationship between
Denali and previous systems in Section 6.

3 Design and Implementation

In this section, we describe Denali’s para-
virtualized architecture. In addition, we describe
a prototype VMM and guest OS that utilize this
architecture.

3.1 Para-virtualization in Denali

The Denali architecture is based on the x86 in-
struction set; this allows most virtual instructions to
execute directly on the physical processor. However,
the Denali architecture differs from the underlying
x86 architecture in a number of ways that improve
scalability, reduce implementation complexity, and
increase performance.

We have introduced purely virtual instructions

that have no counterpart in the physical architec-
ture; these are conceptually similar to OS system
calls, except that they are non-blocking and they
operate at the architectural level instead of at the
level of OS abstractions. We have modified exist-

ing instructions’ semantics; although we cannot re-
move instructions from the physical architecture,
we classify certain rarely used instructions as dep-
recated and having undefined semantics. We have
added virtual registers as a lightweight mechanism
for passing data between the VMM and its VMs;
these registers are mapped to a well-known region
of a VM’s address space. Our virtual I/O devices
export a simplified architectural interface, designed
in part to minimize VM/VMM boundary crossings.
Finally, as we will describe, other architecture fea-
tures are heavily modified (e.g., interrupt delivery)
or eliminated (e.g., virtual memory).

3.1.1 Para-virtualization for scalability

A simple barrier to scaling up to hundreds of VMs
is that an OS must execute an idle loop when it has
no useful work to do. In a VMM system, these loops
waste CPU cycles, degrading the performance of the
system. Denali introduces an “idle” instruction that
allows a VM to yield control of the processor. Af-
ter invoking it, the VM remains unscheduled until



a new virtual interrupt arrives for it. By invoking
this instruction, the VM promotes higher CPU uti-
lization and increases its own performance, as it is
no longer charged for these cycles.

The idle instruction is similar to the x86’s halt
instruction, which puts a physical machine to sleep
awaiting an interrupt. Denali’s idle instruction en-
hances this functionality with a timeout parameter
that allows a VM to bound its sleep time. This ef-
fectively introduces a yield primitive that allows for
fine-grained sharing of the processor, such as when
a VM is waiting for a TCP timeout to expire.

A second scalability obstacle relates to virtual in-
terrupt dispatching; when a physical interrupt ar-
rives, the VMM raises a virtual interrupt in the
appropriate VM. As the number of VMs grows, it
becomes increasingly unlikely that the physical in-
terrupt is destined for the currently running VM:
handling physical interrupts destined for an inactive
VM is the common case. One possible policy is to
context switch to the destination VM immediately
upon physical interrupt arrival. This synchronous
dispatch model preserves timely delivery of inter-
rupts, but unfortunately incurs the large cost of two
context switches, which can result in context-switch
thrashing as the number of VMs grow. Addition-
ally, synchronous interrupt delivery fails to provide
performance isolation in the presence of a denial of
service attack.

Instead, Denali exposes an asynchronous inter-
rupt dispatch mechanism in which physical inter-
rupts are queued until the target VM runs. Multiple
interrupts destined for the same VM are batched, re-
ducing VMM/VM boundary crossings and allowing
the guest OS to handle virtual interrupts in an or-
der of its own choosing. The importance of batching
grows as the number of VMs (and hence the number
of queued interrupts) increases.

We have also modified the semantics of interrupts
to improve scalability. On physical hardware, inter-
rupts generally imply that something just happened.
In Denali, a virtual interrupt implies that something

happened in the recent past, possibly while you were

context switched out. This semantic shift is particu-
larly useful in the implementation of virtual timers.
An OS typically maintains a “ticks” variable that is
incremented on each hardware timer tick; mimick-
ing this behavior on a VM requires raising a virtual
interrupt for each timer tick that occurs while the
VM isn’t running. Instead, Denali raises a “time has
passed” virtual interrupt, and it exposes the number
of physical timer ticks since system start in a vir-
tual register. This eliminates additional VMM/VM
crossings to determine elapsed physical time.

3.1.2 Para-virtualization for simplicity

Hardware architectures are complex. Precisely
replicating a physical machine requires a VMM to
emulate many hardware constructs: privileged ma-
chine instructions, virtual memory, the BIOS, and
I/O devices. However, some of these features are
not necessary for our application domain. Para-
virtualization provides an opportunity to remove or
modify these features, vastly simplifying our VMM.

An example of architectural complexity is the
presence of non-virtualizable instructions in the x86
instruction set [37]. These instructions behave dif-
ferently in user mode and kernel mode; because vir-
tual machines execute with the physical processor
in user mode, this breaks backwards compatibility
with legacy code. As a result, x86 VMMs such as
VMWare and Plex86 [32] require elaborate binary-
rewriting and virtual memory protection techniques
to prevent these instructions from being directly ex-
ecuted. Because we are not concerned with back-
wards compatibility, we are content to deprecate
these instructions.2 Although the effects of these
instructions are undefined, they are confined to the
issuing VM.

A more radical architectural simplification is that
Denali does not expose virtual memory hardware.
Denali’s virtual machines are constrained to use
single address spaces, implying the use of library
OSs similar to those in the Exokernel [17]. We be-
lieve this change is warranted because Denali tar-
gets small applications that do not require internal
protection mechanisms. If multiple protection do-
mains within an application are required, language
techniques can be employed (as in Pilot [18]).

We have eliminated other x86 components from
our virtual architecture as well. The BIOS is used
primarily to bootstrap a conventional OS and to
determine system-specific parameters.3 We have re-
placed the BIOS bootstrap functionality by simply
having the VMM load a VM’s image into memory,
much like a process is loaded by an OS. System pa-
rameters such as CPU speed and the size of (virtual)
physical memory are accessible in read-only virtual
registers.

Our final set of architectural simplifications relate
to I/O devices. Denali exports a small number of
generic devices, rather than the large number of het-
erogeneous devices found on most systems; we cur-
rently support a network interface card, a serial de-

2The most commonly used of these are pushl and popl,
which are used to enable and disable interrupts. We re-
placed this functionality with a virtual register that serves as
an interrupt-enabled flag. This also eliminates a VMM/VM
crossing when virtual interrupts are enabled or disabled.

3The BIOS also contains power management functions;
Denali does not expose power management to VMs.
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Figure 3: The Yakima virtual machine monitor:

Arrows represent control and data flow. Some compo-
nents (such as the virtual keyboard) are not shown.

vice, a timer, and a generic keyboard/console. De-
vice interfaces are streamlined to minimize the num-
ber of VMM/VM crossings. For example, transmit-
ting any number of ethernet frames requires a single
virtual I/O instruction. By contrast, existing phys-
ical NICs can require a dozen I/O instructions to
implement the same functionality [39]. Addition-
ally, Denali’s virtual devices do not require initial-
ization during startup, simplifying guest OS device
driver implementation and reducing OS boot time.

3.2 The Yakima VMM implementation

Our prototype VMM implementation, called
Yakima, runs in ring 0 on bare x86 hardware.
Yakima is event-driven and non-blocking, and the
only thread owned by the VMM is an idle thread.
Currently, Yakima only runs on uniprocessors, but
we have designed it to be extensible to SMPs.

Figure 3 illustrates the major components of
Yakima. At the lowest layer of the system are sup-
port libraries from the Flux OSKit [22]. We use the
OSKit as a hardware abstraction layer to simplify
interactions with devices, page tables, interrupt vec-
tors, and the BIOS. We also use a small portion of
the OSKit’s libc library for dynamic memory man-
agement and interacting with the console. We do
not use any of the OSKit’s larger libraries for pro-
cesses, network stacks, and similar abstractions.

The Yakima VMM multiplexes physical resources
and exports the Denali architecture to each VM. At
Yakima’s core is a simple round-robin CPU sched-
uler coupled with a timer to prevent a VM from
stealing the CPU; improving the scheduling policy
is a topic for future work. Affiliated with the sched-
uler is an idle table, which contains a list of idle
machines (those that invoked the idle instruction
described in Section 3.1.1). Yakima wakes up an
idling VM when either a virtual interrupt arrives or
its idle timeout value is exceeded.

The instruction emulator implements instruc-

tions that cannot be directly executed by a VM,
including I/O instructions and the halt instruction
that terminates a VM. The instruction emulator
also implements virtual instructions that have no
counterpart in the x86 architecture. Denali’s virtual
instructions are mapped to illegal opcodes, which
Yakima traps and emulates. At the moment, our
only virtual instruction is the idle instruction.

Yakima emulates an ethernet subnet; each ma-
chine has its own MAC address and is outwardly
indistinguishable from a physical machine. Yakima
maintains receive and transmit FIFOs on behalf of
each VM; these emulate the FIFOs that exist on real
NICs. At a lower layer, a packet scheduler and a
virtual ethernet switch perform network multiplex-
ing and demultiplexing, respectively. Currently, the
packet scheduler uses a simple round-robin schedul-
ing policy. We plan to explore more sophisticated
fair queuing policies in the future.

Yakima’s approach to memory management is to
statically allocate physical pages for each active vir-
tual machine. Although static allocation is ineffi-
cient, it is simple to implement and avoids worst-
case thrashing behavior. To date, static memory
allocation has proven to be reasonable for our ap-
plication domain: our web server VM requires only
12 megabytes of memory, which allows for over 80
concurrently active VMs on a physical machine with
1 gigabyte of physical memory.

The protection of each virtual machine’s physical
address space works in much the same fashion as a
conventional OS. Yakima maintains page tables for
each virtual machine; the address space visible to a
VM contains a VM-accessible region, and a second
region which is only accessible to the VMM.4

Yakima also includes support for a supervisor vir-

tual machine, which is responsible for bootstrap-
ping the VMM. The supervisor VM has access to
privileged VMM calls to create and destroy other
VMs. Currently, any user with physical access to
the machine can issue supervisor calls. If more so-
phisticated security policies are desired, it would be
straightforward to replace or enhance the supervisor
VM with additional functionality.

3.3 Ilwaco: an example guest OS

We have developed a simple guest OS, named
Ilwaco, which provides high-level abstractions to ap-
plications and shields applications from the details

4While this appears to violate the namespace isolation ad-
vocated in Section 2, we argue that isolation is not affected
because protection is still based on statically mapped page ta-
ble entries. Whether these entries reside only in the VMM ad-
dress space or are mapped into each VM but protected from
VM access is irrelevant. Exposing the VMM’s address space
in each VM eliminates TLB flushes on VMM/VM crossings,
vastly reducing virtualization overhead.



of the Denali virtual architecture. Among the ab-
stractions provided by Ilwaco are a TCP/IP stack,
a threads package, a subset of the libc library, and
the BSD sockets interface.

The Ilwaco TCP/IP stack is a port of the Alpine
user-level TCP/IP infrastructure [16]. Alpine con-
sists of the FreeBSD 3.3 stack and a support library
that emulates the BSD kernel environment. We
modified the support library to use Denali’s inter-
rupt and timer models, and linked the stack against
a device driver for the Denali virtual NIC.

Ilwaco contains a threads package that includes
basic primitives such as fork, kill, locks, and condi-
tion variables. Ilwaco threads are non-preemptive;
this simplified development since the BSD TCP/IP
stack assumes a non-preemptive thread environ-
ment. If a thread performs a timed sleep operation,
the thread scheduler adds the sleep duration to a
priority queue. If there are no runnable threads,
the scheduler passes the smallest sleep duration to
the Denali virtual idle instruction.

Finally, Ilwaco’s supported subset of libc enables
basic console I/O via printf and scanf, string ma-
nipulation, random number generation, and mem-
ory management. The majority of these functions
were ported from OSKit libraries. Some functions
were modified to interact with Denali’s virtual hard-
ware; for example, malloc reads the size of (virtual)
physical memory from a virtual register.

3.4 Work in progress

Denali is a work in progress, and there are several
pieces of functionality that have yet to be imple-
mented. Our highest priority is the implementation
of stable storage functionality. Despite the lack of
disk, our system supports a non-trivial web server
VM, as we will describe in the next section.

The resource management policies in our pro-
totype VMM are overly simplistic. Both the
packet and CPU schedulers use simple round-robin
scheduling policies. Neither scheduler accounts for
the amount of resources used during a round-robin
iteration—the packet size for network traffic and
the quantum for CPU scheduling. Although these
schemes are sufficient to prevent starvation, they
are not suitable for enforcing robust performance
isolation. We are working to incorporate exist-
ing scheduling algorithms like fair queuing [14] and
stride scheduling [41].

Our VMM can only execute as many VMs as
will fit in physical memory: we have not yet im-
plemented the swapping of an idle VM to disk. In
addition, supporting a large number of inactive vir-
tual machines will require changes to the guest OS.
For example, the TCP stack registers timers that

fire every 200 milliseconds and every 500 millisec-
onds. If left unmodified, this would force an inac-
tive virtual machine to be swapped in 5 times per
second, regardless of whether there are any pending
connections. There are likely to be many such ele-
ments of a conventional OS that must be modified
to improve the scalability of our system.

4 Measurements

In this section, we describe a set of micro-
benchmarks and application level benchmarks de-
signed to show the performance of the prototype
Yakima VMM and of applications executing on our
example guest operating system.

For all of the experiments described below, we
ran our VMM and VMs on a 1700MHz Pentium
4 with 256KB of L2 cache, 1GB of RAM, and In-
tel PRO/1000 PCI gigabit ethernet cards connected
with Intel 470T ethernet switches. Within Yakima,
we ported version 3.0.7 of Intel’s PRO/1000 de-
vice driver to the Flux OSKit Linux driver glue
substrate. We used 1500 byte MTUs for our
ethernet packets. To generate workloads for our
server benchmarks, we used a mixture of several
1700MHz Pentium 4 and 930MHz Pentium III ma-
chines, thereby ensuring that the workload genera-
tion clients were not the bottleneck of the system.

4.1 Micro-benchmarks

Our first set of measurements attempt to charac-
terize the performance of the Yakima VMM, inde-
pendent of application-level behavior.

4.1.1 Context switch time

We measured the time to context switch between
virtual machines. To quantify the effect of cache
pollution, we considered two workloads: the “worst-
case test” cycles through a large memory buffer be-
tween each context switch; the “best-case test” does
not touch memory between context switches. Pre-
emption was disabled for these tests.

Figure 4 describes the context switch time as a
function of the number of virtual machines. For the
worst-case workload, context switch time starts at
3.9 microseconds for a single virtual machine, and
increases to over 9 microseconds for multiple VMs.
For the best-case workload, the context switch time
starts at 1.4 microseconds for a single virtual ma-
chine and exhibits small peaks as we exhaust the
capacity of the L1 and L2 caches.

Taken as a whole, these numbers suggest that De-
nali’s context switch time is manageable. Even the
worst-case time of 9 microseconds is small relative
to the thousands of microseconds that are required
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Figure 4: Yakima context switch time: The worst-
case context switch time, with a memory intensive work-
load, tops out at 9.4 microseconds. The best-case con-
text switch time, whose workload does not touch mem-
ory, tops out at 3.2 microseconds.

for TCP/IP protocol processing (refer to Figure 6
below). In addition, over 40% of the context switch
time is devoted to simply entering and exiting the
kernel, which suggests that a conventional OS would
demonstrate similar performance.

4.1.2 Control flow from VM to VMM

VM to VMM control flow transfers can happen
in two situations. First, the supervisor VM can in-
voke a privileged system call into the VMM by ex-
ecuting the int instruction. Second, the VMM will
trap and emulate privileged instructions, which hap-
pens when a VM issues programmed I/O using the
inb/outb instructions. The end result of both is
the same: control is vectored to a kernel address
specified in the x86 interrupt descriptor table5.

We measured the transfer time from VMs using
a null system call and a generic programmed I/O
instruction. The null system call is slightly cheaper
than a programmed I/O instruction: 1759 cycles
for the system call versus 2129 cycles for the PIO.
In retrospect, using the int instruction for all con-
trol transfers, instead of using inb/outb for PIOs,
would provide slightly better performance. Fortu-
nately, the performance difference is not noticeable
in practice.

4.1.3 Packet processing overhead

Figure 5 shows the cost of packet processing for
application-level UDP packet transmission and re-
ception, for both 100 and 1400 byte packets.

A transmitted packet first traverses the TCP
stack and then is processed by the guest OS device
driver. This driver signals the virtual NIC using a
PIO, resulting in a trap into the VMM. Inside the
VMM, the virtual NIC implementation copies the
packet out of the guest OS into a Tx FIFO. Once

5PIO instructions raise a general protection fault when
executed in user mode.

the VMM has decided to transmit the packet, the
physical device driver is invoked.

Packet reception essentially follows the same
path in reverse. When the physical NIC receives
a packet, it raises an interrupt, causing a device
driver to execute. The driver hands the packet to
the VMM, which then demultiplexes it into an ap-
propriate virtual NIC Rx FIFO. When the virtual
NIC is ready to hand the packet to its VM, the
VMM copies the packet into the guest OS, and raises
a virtual interrupt. The guest OS’s device driver
processes the packet and gives it to the TCP stack,
eventually resulting in the packet being handed to
the application.

As indicated in Figure 5, the physical device
driver and TCP stack incur significantly more cost
than the VMM itself. Handling a received packet
in the physical device driver represents 43.3% and
38.4% of the total packet processing costs for small
and large packets, respectively.6 A non-trivial por-
tion of this cost is due to the Flux OSKit’s interac-
tion with the 8259A PIC; we plan on modifying the
OSKit to use the more efficient APIC. The TCP
stack represents 37.3% and 41.8% of a small and
large received packet’s processing time, respectively.
Of course, it is possible to optimize the stack within
the guest OS to reduce overhead.

The transmit path currently incurs two packet
copies and one VM/VMM boundary crossing; it
may be possible to eliminate one or both of these
copies using virtual memory copy-on-write tech-
niques. The receive path incurs the cost of a packet
copy, an mbuf deallocation within the Flux OSKit,
and a VMM/VM crossing. The mbuf deallocation
attempts to coalesce the mbuf memory back into a
global pool, and is therefore fairly costly. With ad-
ditional optimization, we believe we can lower this
cost as well.

4.2 Application-level benchmarks

The second set of measurements that we gath-
ered were end-to-end measurements of network ap-
plications running on top of our Ilwaco guest OS.
These measurements show two things. First, the
absolute performance numbers we obtain are com-
parable with those of a conventional operating sys-
tem (Linux), and therefore that the overhead of vir-
tualization is not prohibitive. Second, performance
is upheld as we scale up the number of virtual ma-
chines running on a single system. These scaling
numbers are only a start: as future work, we plan
on exploring scaling issues in detail as we scale up

6While the device driver appears to be less expensive on
the transmit path, the cost of interacting with the NIC is
not included in these numbers, since this interaction is asyn-
chronous and largely driven by the NIC itself.
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Figure 5: Packet processing overhead: These two timelines illustrate the cost (in cycles) of processing a packet,
broken down across various functional stages, for both packet reception and packet transmission. Each pair of
numbers represents the number of cycles executed in that stage for 100 byte and 1400 byte packets, respectively.

far beyond the roughly 10 VMs that we present in
this paper.

4.2.1 TCP/IP performance

To measure TCP/IP throughput and latency, we
wrote a simple application that opens a TCP con-
nection to a remote server and sends data as quickly
as possible. The remote server calculates aggregate
TCP/IP throughput across all measured VMs. To
measure end-to-end latency, we ping the supervisor
machine while the throughput test is in progress.

The results of these tests are shown in Figure 6.
TCP/IP throughput reaches a peak value of 560
Mb/s for 2 virtual machines.7 The low value for a
single VM is due in part to TCP dynamics: because
our TCP/IP stack runs within a VM, the system
must cross the VMM/VM boundary before sending
data in response to an ACK. This overhead cannot
be optimized without pushing knowledge of TCP
into the VMM. Fortunately, these effects are masked
with multiple VMs because the VMM maintains an
outbound transmit FIFO for each virtual machine;
this means that the VMM can overlap packet trans-
mission from one VM with computation within an-
other. The bandwidth drop for more than 2 VMs is
likely due to cache contention: the size of the TCP
socket buffers is exactly half the L2 cache.

When only the supervisor VM was running, the
baseline ping time was 212 microseconds. Each ad-
ditional TCP-intensive virtual machine caused the
ping time to increase by roughly 3 milliseconds.
This suggests that latency may prove to be more
problematic than bandwidth when running a large
number of concurrent VMs, and that additional
techniques for reducing each VM’s compute time
may be required. Eliminating unnecessary memory
copies should prove beneficial in this respect.

7We did not explicitly consider fairness between VMs in
this test. Informally, we observed a low variation of band-
width across VMs.
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Figure 6: TCP throughput and latency vs. #

VMs: The top graph shows the average TCP through-
put for a set of n virtual machines. Throughput reaches
a peak value of 560 Mb/s for 2 VMs . The bottom graph
shows end-to-end latency, which increases by roughly 3
milliseconds per virtual machine.

4.2.2 Web server performance

Our final set of benchmarks test the performance
of a web server running on top of Ilwaco. We
implemented our own simple multi-threaded server
that dispatches incoming requests to a pre-allocated
thread pool. The web server serves static content;
because we do not yet have a file system in Ilwaco,
we used a Perl script to embed a document tree in
a Unix file system into a set of C source files that
was statically compiled into the application.

We used the httperf [34] tool running on Linux
2.4.7 to generate workloads for our benchmarks. Us-
ing this tool, we subjected the web server to two
different workloads, varying the rate at which we
generated requests and measuring the throughput,
latency, and error rate of the server under these dif-
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Figure 7: Web server performance: As a function of offered load and the number of concurrent VMs, these
graphs illustrate (a) the throughput (in connections/s and megabits/s) of our web server, (b) the download latency
of our web server, and (c) the error rate of our web server. The “small” document workload has an average document
length of 2079 bytes, and the “large” document workload has an average document length of 134,128 bytes.

ferent loads. We also varied the number of simulta-
neously running web server VMs; the reported num-
bers below represent the aggregate load summed up
over all VMs. The small document workload con-
sists of repeated requests to a set of small HTML
files averaging 2,079 bytes including HTTP headers.
The large document workload consists of repeated
requests to a single 134,128 byte PDF file.

Figure 7 illustrates our results. For the small
document workload, a single VM achieved a peak
sustained response rate of 5,379 documents/second.
This rate greatly surpasses the saturation point
of most popular web servers (including Apache),
but this is not a fair comparison, since Apache
is more fully featured than our server. For the
large document workload, a single VM achieved
a peak sustained data throughput of 449.6 Mb/s,
which is commensurate with the peak aggregate
TCP throughput observed in Section 4.2.1.

As we scaled up the number of VMs, we noticed
that the aggregate bandwidth served by the entire
system dropped, although we observed that band-
width was fairly split across the VMs. For the small
document workload, the aggregate throughput for 8
VMs was 72.8 Mb/s, compared with 86.6 Mb/s for
the single VM case. For the large document work-
load, the 8 VM aggregate throughput was 324 Mb/s,
compared with 427.7 Mb/s for the single VM case.
We believe that this drop in performance is due to
a combination of context switching overhead and
perturbations in TCP dynamics because of context
switching across machines; proving this hypothesis

is the subject of future work.
For comparison, we reran our benchmarks

against the same web server running on Linux. We
compiled the server against a Linux library imple-
menting Ilwaco’s system call API. For the small doc-
ument workload, we observed a peak response rate
of 5,490 documents/second, and for the large docu-
ment workload, we measured a sustained through-
put of 507.9 Mb/s. The fact that Linux achieves
only slightly higher TCP/IP throughput demon-
strates that the overhead of virtualization intro-
duced by Yakima is relatively small.

5 Future Directions

As we discussed in Section 3.4, there are several
short-term directions that we are pursuing, includ-
ing adding disk support, swapping of idle VMs, the
exploration of more sophisticated resource manage-
ment algorithms, and exploring issues of scale in
depth. Besides this, we have a longer-term research
agenda. We believe that lightweight virtual ma-
chines are a tool that enables many powerful, new
applications that we plan to explore.

Inserting services below the OS: VMMs pro-
vide a layer of indirection between the guest OS and
hardware; this facilitates the insertion of new sys-
tem services transparently to the OS. Two services
of interest are checkpointing and migration; VMs
are uniquely suited to provide these because all OS
and application state is accessible to a VMM. OS
state such as file descriptors and socket buffers can



be captured by the VMM in the memory and disk
footprint of a VM. The only additional state to be
captured is virtual hardware state, such as requests
queued in virtual disk FIFOs.

VMMs also provide the opportunity to hot-swap
virtual devices transparently to a VM. For exam-
ple, a generic virtual block device interface could be
mapped to a conventional hard disk, a RAID array,
or a distributed disk like Petal [33]. Other poten-
tial services include NUMA memory management
[9], fault tolerance [8], and secure logging [11].

Virtual machines for content distribution:
A significant challenge for Internet services is deal-
ing with client load that can vary over several or-
der of magnitudes. The problem of flash-crowds on
the web motivated replication mechanisms such as
content delivery networks and proxy caches; unfor-
tunately, these systems can only handle static data
to date. According to a recent study by Wolman et
al. [43], between 20–40% of web documents are dy-
namically generated and are therefore not amenable
to these systems.

We propose using VMMs inside a CDN to gener-
ate dynamic content at the edge of the network. In
addition to providing improved availability through
replication, CDNs can mitigate wide-area network
failures, which are a significant cause of service out-
ages [10]. VMMs enforce security and performance
isolation, allowing service providers to provide guar-
anteed service levels to their clients. Lightweight
VMs would let a CDN host a large volume of dy-
namic content, and VM migration would enable the
demand-loading of active content into CDNs.

Virtual clusters: VMMs introduce the pos-
sibility of emulating many virtual clusters on top
of a physical cluster of workstations [3]. In such
a system, a service author would provide a collec-
tion of processes that would execute on a collection
of virtual cluster nodes. Cooperating VMMs exe-
cuting on each physical node in the cluster would
map each service’s virtual machines onto the physi-
cal resources in the cluster. This would enable bet-
ter multiplexing among a large set of services with
bursty request streams. As the relative load on a
virtual cluster increases, the system could increase
that virtual cluster’s relative share of physical re-
sources. We also anticipate having the VMMs in-
teract with L2/L4 load balancing switches, in order
to map externally visible IP addresses onto virtual
clusters.

The ability to migrate VMs can be used as a load-
balancing mechanism in virtual clusters. If two pop-
ular virtual clusters map to the same physical ma-
chines, some of the virtual machines can be moved
to take advantage of idle resources elsewhere. Also,
migration would enable under-utilized machines to

be switched off, which has positive repercussions for
power conservation.

6 Related Work

6.1 Operating System improvements

Many projects have sought to improve the OS
as a reference monitor to isolate untrusted code.
Privilege subsetting defines restricted rights for un-
trusted code, distinct from normal user privileges
[6, 12, 30]. Although this provides mechanism

to isolate untrusted code, the problem of express-
ing appropriate policy is not specifically addressed.
These proposals typically do not address layer-below
attacks or vulnerabilities due to global namespaces.

To address file system global namespace vulner-
abilities, some OSs provide a chroot system call
to contain a process to a subtree in the global file
system. In theory, additional OS extensions could
provide similar containment in other shared names-
paces, such as PIDs and network addresses. How-
ever, this would not eliminate layer-below vulnera-
bilities as the OS would still retain the significant
complexity associated with high-level abstractions.
For example, it has been shown that it is possi-
ble to use cached file descriptors to break out of
a chroot’ed namespace.

Several systems propose mechanisms to supple-
ment the OS reference monitor. Janus [27] allows
a user-level server to intercept systems calls from
untrusted processes. Software wrappers [24] pro-
vide better performance by pushing the interception
layer into the kernel. These systems provide mecha-
nisms, but again do not address the problem of ap-
propriate policy. Unfortunately, OSs have hundreds
of system calls, implying policy is complex. Addi-
tionally, these systems require knowledge of appli-
cation behavior, while virtual machines do not.

A promising approach to isolation is inferring ap-
plication behavior using system call traces [1] and
machine learning techniques [25]. However, this ap-
proach confines applications to “typical” patterns of
behavior and doesn’t respond well to non-malicious
changes in application behavior. Virtual machines
provide the ability to isolate untrusted code without
knowledge of application semantics.

WindowBox [4] seeks to isolate untrusted code to
a virtual desktop inside Windows 2000. However,
because it is implemented inside a conventional op-
erating system, WindowBox’s security is limited by
high-level abstractions and global namespaces. By
virtualizing at a layer below operating system ab-
stractions, VMMs are more secure.

Fluke [23] proposes a recursive VM model, in
which a parent can re-implement OS functionality



on behalf of its child processes. In Denali, we vir-
tualize at a layer below OS abstractions, whereas
Fluke’s virtual architecture includes high-level IPC
calls. By virtualizing at the level of hardware, we
avoid imposing a fixed set of protection abstractions
and nullify layer-below vulnerabilities.

Server and multimedia systems have led to OS
improvements for performance isolation. Resource
containers [5] demonstrates that OS abstractions for
resource management (processes and threads) are
poorly suited to applications’ needs. Our work dif-
fers in that resource management is below OS ab-
stractions, which makes precise resource accounting
more tractable and accurate.

A limitation of VMs as resource principals is that
they do not span multiple protection domains, mak-
ing it difficult to have a common service (like a
DNS resolver) shared by all VMs. The virtual ser-
vices work [36] is notable for tracking resource usage
across server boundaries. However, this work suffers
from significant implementation complexity; it also
relies on intercepting system calls, which is subject
to the same caveats as the Janus work.

Many proposals for fair resource allocation poli-
cies exist: fair queueing for network bandwidth [14],
stride scheduling for CPU allocation [41], and the
Cello framework for disk bandwidth allocation [38].
This work is complementary to Denali; we plan on
incorporating some of these policies in our VMM.

6.2 Software virtual machines

Software virtual architectures such as Java, Om-
niWare [2], and the Microsoft Common Language
Runtime have been proposed to isolate untrusted
code. However, running multiple applications in
a single VM has many of the same problems as
running multiple applications on an OS. Libraries
(e.g., Java’s class library) provide shared abstrac-
tions that can be subverted through layer-below at-
tacks. The trend toward extensible security archi-
tectures [42] means that security policy must be ex-
pressed in two places (the host OS and the soft-
ware virtual machine). Finally, resource manage-
ment within a single VM is complicated by the abil-
ity to share resources through pointers.

Alternatively, each application could be isolated
in its own software VM, similar to a hardware VM
architecture. Software VMs require complex soft-
ware runtimes, which, in the case of Java, has led
to numerous security vulnerabilities. We believe
a VMM that is nearly identical to the underlying
hardware is simpler to build and more robust.8.

8We are intrigued by the possibility of using transparent
instruction set mapping, as is done on the Transmeta Crusoe
processor.

6.3 Small kernel architectures

VMMs have served as the foundation of several
“security kernels” [26, 31, 35]. More recently, the
NetTop initiative has sought to create secure virtual
workstations running on VMWare [40]. Our work
differs from these efforts in that we aim to provide
scalability as well as isolation. Our work also as-
sumes a weaker threat model: we are not concerned
with covert channels between VMs.

Denali is similar in many respects to microkernel
operating systems [20]. Indeed, Denali’s virtual ma-
chines could be viewed as single-threaded applica-
tions on a low-level microkernel. However, the main
focus of microkernel research is in pushing OS func-
tionality into shared servers, which are themselves
susceptible to the security vulnerabilities discussed
in section 2. While it may be possible to remove
shared servers from a microkernel system, our work
addresses issues related to scaling to a large num-
ber untrusted applications. On the other hand, fast
IPC is not a major focus of our research because
data sharing is not a requirement of our applica-
tions domain.

Exokernels [17, 21] eliminate high-level abstrac-
tions to enable OS extensibility. Although this en-
ables optimizations based on physical names, it dis-
courages isolation because all resources exist inside a
single, globally-visible namespace. This necessitates
complex mechanisms to download protection policy
based on high-level abstractions into low-level Ex-
okernel protection mechanisms. Moreover, the vir-
tual name spaces exposed by a VMM facilitate rapid
swapping, since virtual-to-physical name bindings
can be transparently modified by the VMM. Swap-
ping applications is more difficult on an Exokernel
system because there is no way to transparently
remap library OS address translations.

Nemesis [19] shares our goal of eliminating ap-
plication resource “crosstalk”. Nemesis adopts a
similar approach to us, pushing most kernel func-
tionality (including protocol processing and device
drivers) into application space. Our systems dif-
fer in that Nemesis is not designed to sandbox un-
trusted code; Nemesis applications share a global
file systems and a single virtual address space.

6.4 Virtual hosting platforms

Numerous commercial and open-source prod-
ucts provide support for virtual hosting, including
freeVSD, Apache virtual hosts, the Solaris resource
manager, and Ensim’s ServerXchange. All work
within a conventional operating system or applica-
tion, and therefore cannot provide the same degree
of isolation as a VMM.



Two commercial VMMs provide virtual host-
ing services: VMWare’s ESX server and IBM’s
z/VM system. By allowing ourselves to change the
virtual architecture and co-design the OS (para-
virtualization), we believe that Denali will scale to
many more VMs on similar hardware than these
products. Our work also addresses resource man-
agement in the face of a large number of concurrent
VMs; we are not aware of any publications on this
subject related to these products.

7 Conclusions

In this paper, we argued that virtual machine
monitors are well-suited to the task of hosting many
untrusted applications on a single physical machine.
VMMs defer the implementation of high-level ab-
stractions and sophisticated protection policies to
guest operating systems. This makes the monitor
simpler, and facilitates strong security and perfor-
mance isolation, at the cost of increased sharing
overhead.

To scale up to a large number of virtual machines,
Denali utilizes para-virtualization, which entails se-
lectively modifying the virtual architecture. Us-
ing para-virtualization techniques, we co-designed a
VMM and a guest operating system capable of sup-
porting a non-trivial web-server application, which
can serve over 5,379 HTTP requests per second.

Although Denali is a work-in-progress, our work
thus far demonstrates that it is possible to achieve
strong isolation and reasonable performance using
a virtual machine monitor. We also demonstrated
that some of the issues that impact scaling up the
number of concurrent virtual machines demand a
reconsideration of the virtualized architecture, and
indeed, the co-design of the virtual architecture with
guest operating systems.
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