L4

APINB5500:

THE LANGUAGE AND ITS IMPLEMENTATION

by

Gary A. Kildall

Technical Report No. 70-09-04, Computer Science Group

University of Washington
Seattle, Washington 88105

September 1970

.

ii

ABSTRACT

APLNB5500 is a multiple-user interpretive system for a conversational
programming language implemented on the Burroughs B5500 computer at the
University of Washington. The language is patterned after APL\360 which is
an implementation of 'Iverson Notation." This paper describes the differ-
ences between the APL\360 and APL\B5500 languages. In addition, the algo-

rithms and data structures used in the implementation of APL\B5500 are given.

iii

ACKNOWLEDGEMENTS

The APLAB5500 programming system was developed by members of the Computer
Science Group at the University of Washington. The system was implemented by
Leroy Smith, Sally Swedine, Mary Zosel, and the author, under the guidance
of Dr. Hellmut Golde. The author is grateful to Dr. Golde and the co-imple-

mentors of APL\B5500 for numerous helpful suggestions regarding the prepara-

tion of this manuscript.

TABLE OF CONTENTS

Introduction o0 00 00 0w 0 e
Hardware Configuration Required for APL\B5500 . .
Software Environment Required by APL\BS500
APINB5500 Language Description
APL\B5500 Implementation . . . « « « « « v v « .+ .
APL Resource Management « « « + v « . .
The Terminal Input/Output Handler
APL Virtual Memory Management
The APL Function Editor « «v
The APL Monitor Command Handler
Storage and Representation of APL Data Structures
Active and Passive Symbol Tables
The APL Statement Compiler + + v « v « . .
The APL "Machine” ¢« v v v v v v v v .
Conclusion T
References e e e e e e e e e e
Appendix A Gt e e e e e e e e e e e e e e e e
Appendix B S e e e e e e e e e e e e e e e e

iv

17
18
22
28
34
38
48
52
56
63
79

82

3

LIST OF FIGURES
FIGURE ‘ PAGE
1. Sample APL\B5500 Terminal Session + . « « v v v v « . . 5
2. APL\BS5500 Software Components« v v v v v v v v v v . 18
3a. User State Register v v v v v v v v v 20

3b. User State Table v v v v v v v v v v v . e e e e 20

4 Resource Management State Diagram « 22
5 Station Table with Corresponding Station Element 25
6. Input/Output Buffers and Queues v v v v v v v v v v . 27
7 Terminal Input/Output Handler Logic . . . + v v v v v v v v v . . 28
8. Conceptual Structure of Virtual Memory 31
9. User Codes and User Phrases « v v v v v v v v v v v v o 33
10. Storage Units for'Names and Data .+ . . 0 0 00 e e e e 35
11. Function Storage Units v v v v v v v v v e e e 37
12. Function Label Unit Structure + v v v v v v v v . . 38
13. User State Register Entries for the Function Editor 40
14. TFunction Editor State Diagram« v & v v « v v v v L1

15. The Format of a Library« v v v v v v v v oo)
16. User/User Communication v v v v v v v v v . u7
17. Data and Function DesCriptors . . « v v v v v v o v w v o v v . 50
18. Scratch Pad Data Representation + v v « v v . . 51
18. Passive Symbol Table v v v v v v e e e e e e 53
20. Active Symbol Table FOormat . . .+ v v v v v v v v e e e e 55

21. Function Label Table Structure « + v v o o v v « v . . 56
22, Code String Format . . . v v v v v v v e e e e e e e e 58
23. Pseudo-code Word Format . . . « «v v v v 4w v w e e e e e 80
24. Lexical Pass State Diagram . . . « v v v v v v e u e e 62
25, Code Gemeration Pass .+ « v v v v v v 4w u e e e e e 64
26. Transformation of an APL Statement « v « v « v v « . . 66

27. Evaluation of Reverse Inverted Polish 69

vi

FIGURE PAGE
28. Data Structure Resulting from Statement Compilation 70
23. ELxecution Stack and Control IndexX . . . v v v v « v o v o o v . . 72
30. Interpretation of APL Code Strings . . . + &+ v v v v o« v v o o . 73
3l. Control Word Format . . « v ¢ v v v v v v v v v e e e e e e e T4
32a. Initial Execution Stack Contents . . . + v «v v 4 & o o v v o o . 76
32b. Execution Stack After Interruption 76
33. Stack Organization for Function Execution v v « & o + . 78

34, APL Machine Logic G e e e e e e e e e e e e e e e e e e 80

TABLE

oE W oN
. . . .

LIST OF TABLES

APL\360 to APL\B5500 Transliteration . .
APINB5500 Monitor Commands . . .
APLAB5500 Function Editor Commands
Priviledged Monitor Commands

13 . .

Infix to Reverse Inverted Polish Transformations

PAGE

11
. 18
. 42
63

INTRODUCTION

APL\B5500 is a multiple-user interpretive system for a conversational
programming language implemented on the Burroughs B5500 computer at the
University of Washington. The language is patterned after APL\360[1] which
is an implementation of "Iverson Notation"[2]. The APL\B5500 system provides
line-by~line evaluation of APL statements as input by a programmer at a re-
mote teletype station. The system provides both an "immediate execution
mode" and a '"stored program facility." The basic data elements of APL are
numeric and character constants. Identifiers, however, can be used to name
numeric and character data for later reference. In addition, the data ele~-
ments are in the form of scalars, vectors, and arrays. A large number of
special-purpose operators operate on the data elements allowing concise ex-
pression of mathematical or manipulative constructs.

A comprehensive set of commands allowscommunication with the APL system
monitor providing a number of facilities useful in a conversational program-
ming envircnment.

The conciseness of APL statement expression along with APL monitor func-
tions makes APL\B5500 an excellent interactive programming system,

A full discussion of the capabilities of APL\B5500 are given elsewhere[3];
the purpose here is to provide a reasonably complete discussion of the inter-
nal structure of the system. It is useful, however, to provide an introduction
to the language as well as to point out major differences between the APL\360
and APL\B5500 languages.

The structure of APL statements is most easily shown with a simple ex~
ample. Consider the following ALGOL 60 program

begin integer n; real t;
read (n);
begin real array all:n] ; integer i;
for i:=1 step 1 until n do
" Dbegin read (aliJ); t:=t+ali]
end;
ti=tin
end;
write (t)
end;

which calculates the average value from a set of values stored in a dynami-

cally allocated array A.l With input data

e

B

6, 5, 5, 4, 4, 8, 16,
the ALGOL program produces the output
7.
An APL statement pair which performs the same computation is as Ffollows:

X =5 5 u u 8 16
(+/%X) % RHO X

Dynamic storage allocation occurs on the first line where a vector constant
is assigned to the variable X. The second line performs the required COMpU=
tation and causes the numeric scalar result to be printed.

The second APL statement contains three operators which require expla-
nation: the reduction operator (/), the divide operator (%), and the RHO
operator. The reduction operator applies the operator occurring on its left
to the vector to its right by "placing" the operator between each element of
the vector. Thus, since

X=5 5 4 4 8 16
then

(+/%)
is equivalent to

5+ 5+ 4+ 4+ 8+ 16,
In this case, the divide operator divides the scalar to its left by the
scalar value occurring on its right. The divide operator, as used here, is
said to be '"dyadic' since it occurs between two operands (i.e., it operates
on two operands, resulting in a single operand). The RHO operator is
"monadic' in this example since it operates on onlv one operand (the one
which occurs on its right). The RHO operator is used here to extract the

"dimensionality" of the vector X. RHO X results in the scalar value 6 since

lThis ALGOL example includes the use of "read" and "write' procedure
calls which produce the obvious effect. Clearly, the computation could be
performed without the array A; it is included here in order that the dynamic
storage allocation can be compared.

A

X represents a vector with six elements. Thus, the second APL expression
{+/¥% % RHDO ¥
reduces to a final scalar result through the following steps:

(+/%) % RHO ¥

(+/%X) % 6

(+/(5 54 4 816)) %6
{42} % 6

7.

It should also be noted that there is no hierarchy of operator sevaluation
in an APL statement. All operators are applied from right to left in the
statement; the order of evaluation can be controlled, however, by properly
parenthesizing sub-expressions. Hence, the APL statement

+/X % RHO X
reduces to (approximately) the same result as above through the steps:

+/4 % RHO ¥

+/X % 6

+/{5 5 b 4 8 18}

+/(5%6 5%6 u%s u%s 58%5 15%6)

((5%6)+ ((5%6)+((u%6)+((u%6)+((8%6)+(16%6)))13))
7.

.
g

¥

ﬁ::u

ymm

Note that in this case the divide operator des the vector on its left by

the scalar on its right, resulting in a vector. The results may actualls

e

differ, of course, due to truncation errors.

There are approximately forty-five special-purpose opevators in
APL\B5500. Most of these operators can be taken as monadiec or dyadic depend-
ing upon the context in which thev are used.

As mentioned previously, APL statements can be grouped together in
stored programs or "functions.” The APL programmer defines a function by en-
tering "function definition mode." This is accomplished by typing a § ("'del')

T
at the teletype, followed by an identifier which names the function.”

lAlthougﬁ all APL programs are called "functions,” it is not nscessary

that the program return a value in the usual functional sense.

L

An APL function defined for the purpose of calculating the average of a set

of numbers follows:

SAVERAGE

£1] x:=[]

[21 (+/X) % RHO X
&
ol

The line numbers enclosed in brackets on the left are typed out automatically

P

-

i1 d&

83

by APLAB5500 when the user is operating in function definition mode.
dition to automatic line numbering, an extensive set of commands is provided
for displaying defined functions, deleting function lines, and altering pre-
vicusly typed lines.
The above function is invoked by typing
AVERAGE

at the teletype. The function begins execution at line one and immediately

encounters the [] ("quad"). Lxecuting the quad causes the teletype to be
opened for input with the prefix

L]:
indicating that APL requires input data from the terminal station in order to
continue execution. The APL programmer may then type input data such as:

5 5 4 4 8 16
and the result

7
is printed at the teletype.

As mentioned above, APLAB5500 provides the AFPL user with a set of
monitor communication commands. These monitor commands allow the user to
sign onto the APL svstem, interrogate APL regarding the contents of a work
area, maintain separate work areas, and provide APL execution parameters for
his programs.

All APL monitor commands are prefixed with a ")" by the user in order to
distinguish them from other APL statements. MNost of the APL\B5500 commands

A

correspond exactly to APL\360 commands{1l]. A more complete discussion of APL

monitor commands is found in a later section: the sample terminal session given

in Figure 1, however, includes a number of monitor command examples,

ESECESYEBERARE,
Ds NIXON LOGGED IN WEDNESDAY 10-21-70
X:=5 5 4 4 8 16~
Ke
5 5 4 4 8 16

SAVERAGELL 113~
AVERAGE

£113 Xe=[1
{23 (+/X)7ZRHO X

AVERAGE~
[
55 4 48 16~
7
Y VARS~
AVERAGE(F)Y X Y
YFNSe-
AVERAGE
JDIGITS-
9
IDIGITS 3-
i %2 3+
0.333
IDIGITS 5-
1 % 3~
?.33333
YWIDTH-
72
JLOGGED~

(1> IS De. NIXON
(2) IS5 P. NIXON

JORIGINS-
1

YFUZZ=
ie-11

) SEED=
59823125

JCLEAR~=

YVARS~

NULL.
YOFF=
END OF RUN

FIGURE 1
SAMPLE APLAB5500 TERMINAL SESSION

10 42

HARDWARE CONFIGURATION REQUIRED FOR APLABS5500

APLABS500 is implemented on a Burroughs B5500 computer system. The
machine used in the implementation is a single processor system with 32,768
words of 48-bit central memory. Messages to and from remote teletypes are
buffered in a single Burroughs B487 Data Transmission Terminal Unit (DTTU).
The B487 DITU is interfaced with model 33 or model 35 teletypes through line
adaptors and Western Electric 103A2 (dial-up) data sets. The equipment re-
quired for remote operation of APL\B5500 i1s a model 33 or model 35 teletype
with attached acoustic coupler or data set. The remote teletypes must oper-
ate in half~-duplex mode. In addition, teletvpes may be directly connected
to the B487 DTTU through line adaptors.

The virtual memory of the APL system requires access to at least cne
B475 Disk File Storage Module (9.6 million character capacity).

No line printers, tape drives, or card readers are required for normal
APL operation.

A complete description of the B5500 hardware components is given in the

B5500 hardware reference manualli].

SOFTWARE ENVIROWMENT REQUIRED BY APL\B5500

APLN\BS500 is designed to operate concurrently with other batch and con-
versational programs under control of the RB5500 multiprogramming Master Con-
trol Program (MCP). APL is coded entirely in B5500 Extended Algol, except
for a few statements which allow APL to directly communicate with the MCP,
Fer the most part, APL runs under the same conditions as any B5500 user pro-
gram and thus enjoys the protection and facilities (e.g., dynamic storage al-
location, automatic overlay, and disk-file input/output facilities) provided
by the MCP,

A primary design objective in the organization of APL was that the re~-
sulting system operation interfere as little as possible with normal B5500
user program processing. In light of this objective, APL central memory re-
quirements are approximately 3000 words of resident (non-overlayable) storage
with an additional 7000 words of transient (overlayable) storage. Resident

and transient requirements can be altered at APL system compilation time with

a corresponding trade-off in system response time.

The current version of APLNBS5500 also requires the services of a separate
priviledged program called the 'remote handler.” The remote handler interro-
gates the B487 DTTU and passes messages between the B487 and APL. APL has
been coded in such a way as to allow the remote handler to be removed and its
functions taken over by APL with a small amount of re-coding.

In many ways, APL\B5500 can be considered a time-sharing submonitor and
language processor under the B5500 MCP since it:

(1) handles its own virtual memorv,

(2) handles its own terminal input/output processing,

(3) supervises execution of APL statements and functions,

(4) schedules APL user tasks and APL monitor tasks for execution,

(5) maintains back-up storage for APL work areas, and

(6) provides an APL-oriented command language for user control of

APL monitor functions,
After initial connection of a user terminal to the BS5500, the terminal is un-
der control of the APLNBS5500 svstem,

A complete description of the B5500 software is given in the Narrative

~

Description of the BS5500 Master Control Program{5].

APLAB5500 LANGUAGE DESCRIPTION

The APLA\B5500 statement and monitor command syntax is, for the most part,
structurally equivalent to APLA360, with a transliteration of the APL\360
character set. The correspondence between the two languages 1s maintained as
much as possible in order that an APL programmer can easily make the transition
from one language to the other. In addition to the usual APLA\360 operators,
the proposed monadic epsilon operator {"execute string") is implemented in
APLA\B5500, as shown in Table 1. The monadic epsilon operator operates on a
vector character string containing an APL statement. The result of the opera-
tion is the result of the evaluation of the APL statement contained in the
character string. Thus,

EPS "2+3"

results in the scalar 5, If the APL statement 1s invalid, an appropriate error

message is printed.

APINB5500 monitor commands are summarized in Table 2. The command struc-
ture is similar to that of APIN360 except for the "SYN,'" "NOSYN," "'STORL,"
"ABORT," and "Line Edit" commands.

The Line Ldit command is particularly useful when only a slight error has
been made in & line typed by the user. The form of the Line Edit is:

J'<search string>"<insert string>"<search string>"
Jl'<search string>'<insert string>"
In either case, the last message tvped by the APL user is edited according to
the Line Edit command and resubmitted for processing by APL. The action of
the Line Edit is as follows: the first <search string> is located by APL in
the last line typed by the user; when it is found the <insert string> is placed
into the line, and all characters up to the occurrence of the second <search
string> are deleted., If the first <search string> is not found then no changes
are made. If the second <search string> is not found then all characters after
the <insert string> are deleted. TFinally, if the second <search string> is
not specified then no characters are deleted. The null string is found imme-
diately in all cases. Thus, 1f the user first types:

({(+/{X=AVE)%2/% 1i=1)%.5
he will receive an error message (unbalanced parenthesis: "#2/" should have
been typed as "#2)"). The line can be altered bv typing:

}wzn}n%n
and APL will respond with:

((+/(X-BVE)#2)% N-1)#.5.
The statement is then resubmitted for execution. This command is extremely
useful when a long expression has been typed which needs simple alteration.
A similar command is available in function definition mode allowing alteration
of all or part of a function definition.

APLANBS500 alse differs from APLN360 in the method of handling global
variables when executing functions. Functions which contain errors (syntactic
or semantic) are 'suspended' at the point where the error occurs. Suspended

functions may have cperated upon global variables to produce new values for

APLN360 TO APLN\B5500 TRANSLITERATION

TABLE 1

APLN3E0 APLNB5500 MONADIC FORM DYADIC FORM
+ + identity addition
- - additive inverse subtraction
% & sign multiplication
o % mult inverse division
L % exponential exponentiation
@ LoG natural logarithm logarithm
I CEIL or MAX ceiling maximum
L FLKE or MIN floor minimum
| ABS or RESD absolute value residue
o FACT or COMB factorial combinatorial
7 RNDM random number random deal
~ NOT negation
o CIRCLE circular circular
< LSS less than
= LEQ less or equal
B equals
not equal
2 greater or equal
> greater than
A and
v OR or
» NAND nand
i NOR nor
1 I0TA index generator indexing
o RHO dimension vector restructuring
R . ravel catenation
& TRAKS transpose
L BASVAL base~2 value base value
T REF representation
€ EPS execute membership
+ TAKE take
¥ DROP drop
: 5 heterogeneous output
/ / compression
\ \ scan expansion
) PHI reversal rotation
A SORTUP sorting up
7 SORTDH sorting down

TABLE 1 (CON'T)

APLA360 APL\BS5500 USAGE
return key « end of message signal
(] 1] input or display

=
2
-

character input

=: or GO transfer control
w -
1= assignment
S S R S S subscripts
7t minus sign
3 O or L power of ten
A S function definition

"string' "string" string quotes

11

TABLE 2

APLAB5500 MONITOR COMMANDS

MONITOR COMMAND

MONITOR FUNCTICHN

JSAVE <name>

All variables and functions in the
active work area are stored in a disk
file library. The library is labeled
with the user's B5500 <job number>
and the identifier specified by
<name>

JSAVE <name> LOCK

This command performs the same function
as above except that all other APL
users are prevented from accessing the
library,

JLOAD <name>

The library labeled <job number> and
<name> is activated for the user. All
library variables and functions are
accessible after the LOAD operation,

JLOAD <job number>,
<name>

This command allows access to saved
libraries of other APL users when the
library was originally saved without
the lock option. The <job number>
corresponds to the user who originally
saved the library.

JCOPY <name>,<function>

This command adds the function named

by <function> to the active work area
for the user from the library labeled
by <name>,

JCOPY <job number>,
<name> <function>

This command has the same function

as the copy command above except that
another APL user's library may be ref-
erenced.,

JCLEAR <name>

This command removes the referenced
librarv from the disk.

JCLEAR

This command causes all variables and
functions in the active work area to be
erased,

JERASE <name>

This command selectivelv erases variables
or functions named by <name> from the
active work area,

Nompe
ot
o
93]

This command provides the user with a
list of all defined functions in the
active work area,

e

TABLE 2 (CON'T)

12

MONITOR COMMAND

MONITOR FUNCTIOH

JVARS

This command lists all variable and
function names in the active work
area. Tfunctions are identified bv a
following "(F),"

This command lists the names of all
suspended functions in the active
work area,

This command lists the names of local
variables in suspended functions as
well as the function name.

JABORT

This command terminates all suspended
functions,

JSTORE

This command stores variables into
the active work area which are global
to suspended functions and which have
been altered during function execu-
tion., If the ABORT command is issued
before the STORE in suspended mode,
global variables are left in their
original state for re-execution at a
later time,

J'<search string>"
<insert string>"
<search string>

This is the Line Edit command. The
command is used to alter the most
recently tvped line, This command
is described fullv in the text.

JORIGIN <integer>

The origin (first subscript) of ar-
rays is assumed to be that specified
by the integer value <integer>,

JHWIDTH <inteper>

This command changes the width of
the output line to <integer> char-
acters,

JDIGITS <integer>

This command changes the number of
digits printed after the decimal point
in_output to <integer> digits.

JSEED <integer>

This command changes the base of the
random number generator,

JSYN This command causes APL toc check
each line typed by the user in func-
tion definition mode for syntactic
correctness.,

JNOSYN This command reverses the action of

the SYN command above,

TABLE 2 (CON'T)

13

MONITOR_COMMAND

MONITOR FUNCTION

JLOGGED

This command lists the terminal number

and user identification of each active
APL user.

JMSG <integer>
<message>

The MSG command allows active APL
users to communicate. The <integer>
is the terminal number of the station
which is to receive the character
string <message>,

NOTE:

If the <integer> in any of the commands ORIGIN, WIDTH,

DIGITS, or SEED is omitted then the current value assumed by APL is

printed.

14

the global variables. The altered values are not permanently entered into
the active work area until the function has successfully completed or until
the user has issued the STORE command while the function is suspended. This
feature allows re-execution of the corrected function without re-initializa-
tion of the global data.
The APL\B5500 function editor differs somewhat from the APL\360 editor.

The APL editor is invoked whenever the APL user types a $ ('"del") followed
by a function "header" while in calculator mode. The simplest form of a
function header is an APL identifier. Hence, if the user types:

SF
APL will enter function definition mode and (assuming F is a new function)
will respond with

(1]
and await the first line of the function F by opening the teletype for input.
As subsequent lines of text are entered, the line counter is incremented by

one. Thus the user could enter the three lines:

[1] &
[2] B
(3] C

with the line numbers to the left supplied automatically by APL. Although
APL will "prompt' the user for the fourth line, it is possible to insert lines
elsewhere in the function. The user could, for example, insert a line be-
tween lines one and two by replying to the prompt with:
(4] (1.11D
overriding the line prompt. APL will then take the increment last used bv
the APL programmer and prompt with:
[1.23.
The smallest increment possible is ,0001 between lines., The largest line
number possible is 9999,9999,
In general, any line prefixed by a "[" while in function definition
mode is taken to be an editor command. Table 3 provides a complete listing
of APLAB5500 editor commands.
The <line reference> is a basic constituent in almost all editor commands.

In the simplest case, the <line reference> is an integer value corresponding

15

TABLE 3

APIN\B5500 FUNCTION EDITOR COMMANDS

APL EDITOR COMMAND

COMMAND FUNCTION

This command causes the currently
active function to be displayed at
the terminal,

[<line reference>[]]

This command causes the line specified
by the <line reference> to be display-
ed at the terminal,

[<line reference>[]
<line reference>]

This command causes all lines from
the first through the second <line
reference> to be displayed at the
terminal.

[<line reference>]<state-
ment>

This command inserts the APL stateément
specified by <statement> in the
current function at the line denoted
by <line reference>. The current

line and the increment are changed in
most cases,

[<line reference>]

This command deletes the Tunctioen”
line corresponding to <line refer-
ence>,

[<line reference>][<line
reference>]

This command deletes all lines from
the first through the second <line
reference>.

LI0TA]

This command causes the current
function to be completely renumbered
starting at one with an increment of
one,

[["]l<line edit>

This command causes the APL editor to
alter all lines of the current function
according to the rule given in the
<line edit>. The <line edit> is the
same as the edit described under APL
monitor commands.

[<line reference>[']]
<line edit>]

This command is similar to the above
edit command except that only the
line referred to by <line reference>
is_altered.

[<line reference>["]
<line reference>]<line
edit>

This command applies the <line edit>
from the line specified by the first
<line reference> through the line
specified by the second <line ref-
erence>.

16

to a line of a function. Thus (referring to the delete command of Table 3),
the user could delete the first three lines of the above function by typing
(after the APL prompt):

(1.21 [13021].
APL deletes the lines and returns the prompt:

[1.2]
opening the terminal for input. Note that the function F now contains:
3] c.

Another type of <line reference> is an APL statement label. Statements
are labeled by placing identifiers separated by colons before the APL state-
ment. Thus, the APL user may continue definition of [by typing (with prompt-
ing by APL):

[1,2] [ulp

[5] B F+G
[6] L1:L2:H+I
[71]

where "E,'" "L1," and "L2'" are all statement labels. Although statement labels
are used primarily for transfer of control at function execution time, they
can be used as <line reference>s when in function definition mode. The line
with <line reference> S5 canbe deleted by tvping either of the following com-

mands :

(5]
LE].

A <line reference> may also involve a numeric offset on either side of

the statement label. Line 5 can be displayed by typing:

(L1-1{1]]
and APL will respond:

[5] E: F+G.
Further, an entire set of lines around statement five may be displaved by
typing:

[E-1[]JE+1],
resulting in the response from APL:

fu] D
[5] E: F+G
(6] L1:L2:H+1I.

17

APL allows statement labels toc be edited as well. The statement at line
six can be edited by typing:
(L2f"13:L"am,
APL searches the line labeled L2 for an occurrence of ":L," inserts a "3" im-
mediately after the occurrence, and deletes characters up to the following ":."
Hence, the command:
(L2011
results in an error message (the label L2 no longer exists), but the command:
rLsfil
results in the display:
[6] L1:L3:H+I.

A last point which should be made is that labels within functions are
treated as local variables, but are initialized to their respective line num-
bers. The line number value of a label may be altered during function execu-
tion. Further examples of function definition are given in the discussion of
the APL\B5500 function editor implementation.

Appendix A shows a sample APL\B5500 terminal session including examples
of APL operators, APL monitor commands, and APL function editor usage.,

A formal definition of the syntax of APL\B5500 is included in Appendix B.

APLAB5500 IMPLEMENTATION

The internal data structures and program organization of APL\BS500 are
given in the following sections. The time-sharing facilities of APL are ex-
plained along with a description of monitor command execution and APL 'Machine"
organization. APL\B5500 functions are logically divided into component parts
as shown in Figure 2:

1. Resource Management. Central memory and central processor resources

are allocated by the Resource Management component of APL\B5500.

2. Terminal Input/Output Handler. Terminal message bufferring and dis-

patching, along with primitive input/output facilities, are provided by
the Terminal Input/Output Handler.

3. Virtual Memory Management. The Virtual Memory Management section pro-

vides an APL controlled extension of the B5500 central memory resources.

APL
TERMINAL MEMORY APL
INPUT/OUTPUT MANAGEMENT FUNCTION
HANDLER EDITOR
T /
T APL
RESOURCE
MANAGEMENT
T T
APL } MONTTOR j
"MACHINE" APL COMMAND |
STATEMENT HANDLER ;
COMPILER
FIGURE 2

APLN\B5500 SOFTWARE COMPONENTS

18

ie

4. APL Function Editor. Terminal messages issued while the user is in

function definition mode are processed by the APL Function Editor.

S. Monitor Command Handler. All terminal input messages which are pre-

fixed with a ")" (i.e., APL monitor commands) are processed by the Moni-
tor Command Handler.

6. APL Statement Compiler. The APL Statement Compiler checks the syntax

of APL statements submitted for execution by the user. In most cases,
"pseudo~code" is generated corresponding to the APL statement.

7. APL "Machine.' The APL "Machine' is a software simulation of a com~

puting machine oriented toward execution of APL statements.

APL RESQURCE MANAGEMENT

APL Resource Management is responsible for allocation of work to the other
components of the APL system. In addition, the needs of the various terminal
users are monitored constantly.

The current "state'" of each active APL user is maintained in a table call-
ed the User State Table, shown in Figure 3. Fach element of the User State
Table, called a User State Register, corresponds to exactly one APL user. The
field width of each element in the User State Register varies according to the
maximum data size.

APL schedules tasks for execution based on a simple two-queue algo-
rithm{6], with tasks which have not required a full time-slice in a (first-in
first-out) queue for immediate processing. A production queue lists all tasks
which require central processor resources and which have used at least one
time-slice. Users without a task in the immediate queue or production queue
are considered to be in an "idle" queue.

The "current mode" field of the User State Register indicates the present
status of the corresponding user's APL run. The current mode of a particular
user can be:

1. Calculator Mode. The user is in an idle state and is not using the

APL Function Editor. Further, the user is not executing APL statements.
APL is awaiting input from the user's terminal.

2. Execution Mode. The user is in the process of executing an APL

statement. The APL statement may or may not have invoked functions.

CURRENT | USER | SEED | ORIGIN |FUZZ |DIGITS |WIDTH
MODE MASK

MISCELLANEOUS
RUN PARAMETERS

FIGURE 3A

USER STATE REGISTER

USER STATE REGISTER 1

USER STATE REGISTER 2

&
%
@

CURRENT ——= USER STATE REGISTER i

USER

USER STATE REGISTER n

FIGURE 3B

USER STATE TABLE

20

P

21

3. Function Definition Mode. The user is currently defining an APL

function. All messages, except those prefixed by ")," are directed to
the APL Function Editor.
4. Input Mode. A user in execution mode is changed to input mode when
his APL program requestsinput from the terminal (by encountering a
"quad'" or "quote quad''). The user is restored to execution mode when
input is completed.
5. Error Mode. A user is put into error mode when his program encoun-
ters an error during execution. MHessages are sent to the terminal and
corrective action is taken before changing the user's current mode.
Concurrency of APL tasks is thus maintained by retaining the status of
each user in order that his task may be started and stopped in various states

of execution. The current user is set by the Resource Manager before exscu-

®

tion of an APL +task is init cated by an index

p..u

iated. The current user is ind
te the corvesponding User State Register, as shown in Figure 3b. When control
E & 3 =

is given to another APL component, such as the Function Editor, a small incre-

w’
~+
oy
¢
o]
i
wir
P’}%
ot
g
@
ot
[
o]
o]
[N
]
]
(s
[
ot
o
1]

ment of processing is done for the current user

user to define one line of an APL funct a

e on editor to define a line of his APL function.

This notion of concurrency is, of course, fundamental in the operation

of any operating system, including time-sharing. Each component of the system
must be coded in such a way as to return control to the Resocurce Management

em users do not notice

,
s
&
(a3
O
(a3
s
0
e
53]

l%v;
:‘Y

component as soon as possible in order

bote
O
o
(i
b
o
o}
jd
0
[
2]
p)
o
9]
<y

any delay. This notion is referred to here as ''Ffunct
The "user mask' field of the User State Register shown in Figure 3a con-
tains a set of binary "switches' associated with the user's APL run.

positions of the user mask include:

1. The Master Mode Bit. The master mode bit is
T

ot

s
Register belongs to the APL system supervisor. The system supervisors

]

user code is compiled into the APL system, and thus is the only initial

set {i.e., the

et
¥

valid user. A user operating with the master mode b

system supervisor) is provided with additional monitor commands which

N~ INVOKE
/7 TERMINAL I/O '\
HANDLER. RETURN

- \ AFTER AT LEAST
IMMEDIATE _ ONE INPUT

USER QUEUE “~_MESSAGE

TCALL FOUND EMPTY PQG@C’?’Q’\?
” TERMINAL zg’@ ' .

(HANDLER TO START |
Qmsm\mmg ‘
N /0)

SING REQUIRE- |
_ MENTS OF

" FIRST USER \

USER IN 7\
USER CQDE FUNCTION MESSA@E ! gSgRj’ﬁ
VALID DEF[NITION STARTS — | EXEG{}‘%Q};
MODE WITH "}" USERIN MODE
CALGULATOR A
MODE

I IB%E’E?{%&-
|/ IZE USER STATE
REGE%TER§ WORK
AREA, SEND DATE/
“_ AND TIME_~

CALCULATOR EXE-
MOpE
ERROR '

_MESSAGE/

/ USER INTO \ guicyt USER IN
IMMEDIATE J*USED IMMEDIATE
h ' QUEUE, ONE
TIME,SLICE
. USED

AISER INTO S
\IDLE QUEUE /

FIGURE &

RESOURCE MANAGEMENT STATE DIAGRAM

22

5

23

allow user codes and user phrases to be added to or deleted from the
APL system.

2. The Debug Bit. The debug bit can be set by a user operating in mas-

g

[

ter mode. When this bit is set, various system diagnostic information

provided at the user's terminal.

®

3. The Nosyntax Bit. The nosyntax bit of the User State Register can

be set with the "NOSYN" monitor command. Inr put lines typed by the user
in function definition mode are not checked by APL for syntactic correct-
ness when the nosyntax bit is set.

4. The Suspension Bit. The suspension bit is set when the user's APL

execution encounters an error. The function in error is "suspended” and

may be re-activated at a later time.

The remaining fields of the User State Register contain values of run
time parameters along with variable information used by the various components
of the APL system. The actual content of the "miscellaneous run parameters’
field, shown in Figure 3a, is discussed in detail when the individual compo-

nents are considered.

jor s
[
s
@
[0
o]
=
o]
{
]

It should be noted that the system components, other than t}
Manager, need not be concerned with keeping track of the active system users.
Once the Resourcs Manager selects a user for execution the other system compo-
nents refer to the User State Register indicated by the curvent user index in
the User State Table. Thus, the individual components act upon data either
located in the current User State Register or upon data addressed by
within the currvent User State Register,

A simplified state diagram, given in Figure 4, shows the actions of the

Resource Manager.

THE TERMINAL INPUT/OUTPUT HANDLER

The Terminal Input/Output Handler provides an interface between the APL
system components and the terminal users. This interface includes message
queueing facilities, I/0 interrupt handling, input message scanning and trans-
lation, and ocutput formatting capabilities. In addition, the Terminal I/0
Handler adds items to the immediate queue for processing at the appropriate

times. The I/0 functions are grouped into the following types:

24

1. Message Queue and Table Maintenance. Information is maintained de-

scribing the status of each terminal port. I/0 buffers and quaues are
also kept in order by this component.

2. Input Message Scanner. The scanner provides a common facility for

extracting lexical elements from the input message corresponding to the
current user.

3. Output Formatting Routines. All preparation of output messages from

the APL system components is handled by the Output Formatting Routines.

The message queue and table maintenance component of the I/0 Handler
maintains the status of each terminal port in the Station Table, shown along
with the relevant fields of a Station Element in Figure 5. The Terminal I/0
Handler maintains the Station Table in order that it may determine for each
terminal port:

1. if the station is physically connected to the B5500 system (physical

connection bit),

2. if the terminal has an input message or messages waiting to be proc-
essed by APL (read ready bit),

3 i

e

iy

the terminal is set-up to accept a message (write ready bit),

4. 1if a message has been sent to a station but transmission has not been
completed (output finish wait bit),

5. if some component of the APL system has requested that a message be
readied for processing (input request bit),

6. if an APL component has passed a message through the 1/0 Handler to
be written on the terminal (output request bit),

7. if the "break key' at the terminal has been depressed by the APL
user (break kev depression bit),

8. if an APL system component has acknowledged that the break key has
been depressed, has taken the appropriate action, and has requested that
the break key depression bit be reset (break key reset bit),

9. the number of messages from the terminal which have not yet been proc-
essed by APL (input queue size),

10. the number of messages produced by APL which have not yet been sent

to the terminal because the station is not write ready (output queue size),

. STATION
TARLE
£
&
o
&
PRUS.
»_-1 ¥
= H
bed
=
~
ol
e~
_STATION . ELEMENT
r ——
i & &

A & & & 4 & & 4
T APL LOGGED RBIT

APL HEADING BIT

INPUT OR OUTPUT QUEUE SIZE EXCEEDED

OUTPUT QUEUE SIZE

INPUT QULUE SIZE

BREAK KEY RESET BIT

BREAK KEY DEPRESSION BIT

OUTPUT REQUEST BIT

INPUT REQUEST BIT

QUTPUT FPINISH WAIT BIT

WRITE READY BIT

READ READY BIT

PHYSICAL CONNECTICN BIT

FIGURE 5
STATION TABLE WITH CORRESPONDING STATION ELEMENT

25

26

11. if the maximum number of messages in the input queue or in the

output queue has been reached (input or output queue size exceeded bit),
12.
station (APL heading bit), and

pota

f the APLNB5500 heading has been printed at the

13. if the user has successfully signed-on to the APL system {(APL logged
bit).
Thus, since there is a Station Element for each terminal port, the I/0 Handler
can immediately determine the I/0 status of any terminal.

Input/Output buffers are maintained for active APL users as shown in

b

igure 6. An I/0 queue is maintained on back-up storage with forward pointers
(starting at the input or output buffer) connecting all elements of the queue
for a particular user. The disk I/0 queue may, at a particular point in time,
contain both input and output messages in transit to or from the APL system,

The 1/0 queues are, of course, maintained on a first-in first-out basis
except when a time-slice '"jiggle'" iIs sent by an APL component. The jiggle is
a null message which rattles the teletype typing mechanism letting the system
user know that APL processing is in progress. The jiggle message goes to the
front of the output queue for a particular user.

Sine

]

-

the terminal user normally waits for a response from APL for each
line of input, the input queue will rarely contain more than one message.

The Terminal I/0 Handler has access to the scheduling queues which are
searched by the Resource Manager. Thus, when a particular user sends a message
for APL processing while in the idle queue, the I/0 Handler places the user in
the immediate queue for processing. The Resource Manager allocates processor
time to the user when the user gets to the front of the immediate queue.

The state diagram of Figure 7 shows the logic of the I/0 Handler in proc-
essing terminal messages.

The scanning and formatting routines provide APL system component inter-
face with the I/0 Handler. The input message scanner provides lexical analysis
of input messages upon request by APL components. The terminal input buffer
referenced by the scanner is always that of the current user, as defined by the
Resource Manager. The scanner provides translation from external symbols to
internal coded form, identifies and converts positive and negative integer and
real numbers as well as numbers in power-of-ten notation. In addition, APL

variable, function, and command identifiers are isolated by the scanner. IExcept

Yo

ONE INPUT BUFFER

INPUT BUFFER TABLE

OUTPUT BUFFER TABLE

27

o,
%)
o Lo
L3 L fad
% S5 a
. mo =
tal 17" INPUT MESSAGE ¢ 5wl 157 ourpur wEssacE
4 D 4
£ B
o =S
<t o<
o L e
% Z @
o S a
INPUT /OUTPUT QUEUE

LAST MESSAGE A

SND -

Z INPUT MESSAGE

T _MESSAGE A

Note: The end of list is denoted by "AM

FIGURE &
INPUT/CUTPUT BUFFERS AND QUEUES

ar / DETER- N\
T » MINE TVPE OF

“oute

INPUTREQUEST REQUEST
i BIT SETy

_STATION®S IN- /
/ BREAK KEY

“"PUT BUFFER .
~ " DEPRESSION

\ (FIRST ELEMENT"
_ OF INPUT /

/0 PRQ- \
CESSING RE-
QUESTED ™

{ { oUTPUT BUF-

7 PIACE N QUFUED/
[MESSAGE AT\ / /

A_END OF OUT-}

/" BREAK KEY
DEPRESSION BIT }e-
\,FOR THIS STA-/

{ NATE QEE?Q?E}
OUTPUT FOR |
~———= __/FORA USER wm@z -
/18: PHYSICALLY CON-\\ —
{ NECTED, BREAK KEY | °
| DEPRESSION BIT RE-
. SET, OUTPUT RE-
\ QUEST BIT SET OR | zsmgrmﬁ :
 OUTPUT QUEUE NON-/ ~\ “QUEUE _~
EMPTY AND OUTPUT/
s warr o NO STATION
“\BIT RESET

7 STATION

7 USER INTO ¥

[7 START ™\
([OuTPUT, SET\
\OUTPUT FINISH
N WAIT BIT

ouTPUT O
QI}EUEQ ’&zm QU!:ZUED

12:3 51}‘??335
(AND TABLES FOR |
xm ACTIVE /

TERMINAL INPUT/OUTPUT HANDLER LOGIC

28

29

for string constants, all input to the APL components is processed by the

input scanner.

Conversely, all output from APL components directed to terminal users is

funneled through the output formatting routines. The formatting routines pro-

vide the APL system with primitive formatting capabilities: character strings

are appended to the output buffer belonging to the current user according to

the following ou

L

out controls:

acters to those already in the

c
fer, but do not send the message to the station {there iz more +o come),

2. append characters to the characters in the current user's output

buffer and queue the message for output,

the contents of the current user's output buffer; place

characters in the output buffer, but do not send the message,

4., first send the contents of the current user's output buffer to the

terminal, place characters in the output buffer and send this second

In conclusion, the Terminal Input/Output Handler processes all terminal

messages sent from other APL components or sent to APL components from the

ugsers’' terminals.

Functional concurrency is maintained by initiating as manvy

terminal message transfers as possible without causing unnecessary delavs bhe-

fore returning to

the Resource Manager.

APL VIRTUAL MEMORY MANAGEMENT

&

o

interfere as 1littl

s mentioned previously, a fundamental desipn criterion was that APLABSS00

e as possible with normal B5500 operations. In particular,

the central memory requirements for APL must be minimized without causing an ex-

cessive increase in overall response time. One solution to the storage problem

might be to use the automatic overlay feature of the B5500 MCP. Automatic

overlay, however,

areas used by APL

cannot be directly controlled by APINBS5500. Thus, the data

are extended beyond the central memory areas through the use

of an APL-suited virtual memory structure.

The APL Virtual Memory is a completely independent component of the

APLNBS500 system,

but is used in conjunction with a central memory data area

30

called the "scratch pad." The scratch pad data areas make use of the automat-
ic overlay features of the MCP while the virtual memory is directly controlled
by APL.

Although the physical structure of the virtual memory is described else-
where[7], enough detail is given here in order that one may understand its use
by the various APL system components.

The virtual memory is physically structured using simple demand paging
techniques[8]. A file on back-up storage is divided intc "pages" (the page
size is determined at compile time) with an index to these pages residi ing in
central memory. In addition, a number of central memory "page frames' are
maintained in central memory to hold most-recently accessed pages. The number
of page frames can be altered dynamically by other APL components, de epending
upon APL storage requirements and the number of active APL users.

Virtual memory access routines provide the interface between APL system
components and the APL Virtual Memory. The virtual memory access routines

3

give the virtual memory a conceptual structure which is quite different from

ey

the physical structure.

Conceptually, the APL virtual memory is divided into "storage units.”

The storage units can be created dynamically by APL components and are of no
predetermined size {(except for the maximum extent of the disk file).
The storage units, in turn, can be one of two types: 'ordered" storage

or "'sequential' storage. Ordered storage units contain data in tables appear-

ng to the APL components as contiguous alphabetically arranged data with Fix-

i

ed field lengths. Sequential storage units contain data elements of variable

i

length, but are only accessible through a fixed address within the storage

unit. The maximum number of storage units which can be active at any given
time is 512.

.

Figure 8 shows the conceptual structure of virtual memory. Ordered and
sequential storage units are often related through a right-most field in order-
ed storage unit elements. This field might contain the address of a data element
an associated sequential storage unit, although this assumption is not made by

the virtual memory routines.

i

I

s

ORDERED
STORAGE

UNIT

P e

AAA

AB

SEQUENTIAL STORAGE UNIT

DATA ELEMENT 1 DATA ELE

MENT 2 DATA ELEMENT 3

L)

ATA ELEMENT &

227

B -
ORDERED
STORAGE
UNTT

|

e Y.
SEQUENTIAL STORACE UNIT

o5

B,
DATA ELEMENT

00006000

0000001

8999939

CONCEPTUAL STRUCTURE OF VIRTUAL MEMORY

&

APL

{ad
2

2 ®

initializes with storage units one and two reserved for user codes

and associated user phrases as shown in Figure 9. Initially, storage unit

one contains only the system supervisor's user code, and unit two contains
¥

his user phrase. Units one and two increase in size as the system supervisor

adds more user codes and user phrases.

The
voutines

1.

(%]
@

services provided for APL components by the virtual memory access
can be categorized as follows:

Storage Maintenance.

a. A particular direct access disk file can be named for use as

a virtual memory back-up storage area.

b. Particular storage units can be created and destroyed.

¢. The number of active page frames can be increased or decreased.

d. APL components may designate that

«

ital information, necessar
for proper system recovery in case of failure, be written onto
back-up storage.

Storage Interrogation and Alteration.

a. Variable-length data can be stored in a specified sequential
storage unit.
b. Ordered storage units may be searched for a particular data

item on demand by an APL component.

(s}
W

Information can be inserted into a specified ordered storag
unit.

d. The contents of a particular address in either ordered or se-
guential storage can be retrieved.

e. Elements in either ordered or sequential storage units can be
deleted.

f. Entire storage units can be erased with the corresponding data
areas added to free storage.

Storage Utility Functions.

a. The number corresponding to the next available storage unit
can be obtained by an APL component. The unit can then be used
for storage.

b. The size (number of data elements) in a specific storage unit

can be requested by an APL component.

.

APL
USER CODES

UNIT 1
{ORDERED
STORAGE)

ALS3

H003

HoOoL

M552

@

4993

Uool

UNIT 2

0002

{SEQUENTIAL STORAGE)

L]

2302

g SYSTEM SUPERVISOR

D. NIXON, GENERAL ACCNT

APL

USER PHRASES

Cad

2

3y

¢. The mode of a particular unit can be determined (i.e., whether
the unit has been designated as an ordered or a sequential storage
unit).

The work area of an APL user may consist of several ordered and sequen-
tial storage units. At sign-on time, the user is assigned an ordered storage
unit, called "names," and a sequential storage unit, called "data." The
"names' unit contains variable and function names, along with additional in-
formation about the names. The "data" storage unit holds numeric and charac-
ter array results computed during the APL run. As shown in Figure 10, the
"data' storage unit also contains a 'recent" copy of the user's User State
Register. This recent copy of the User State Register allows a user to re-
start an APL session with very little loss of work in the case of a hardware
or software failure.

The important concept here is that at any point in the APL run, a portion
of the user's work area, consisting of ordered and sequential storage units,
is located in central memory page frames while the remainder is located on
back-up storage. The portion in central memory is based entirely on data ac-
cess activity. This, of course, is a fundamental concept in any implementa-
tion of demand paging. The scheme does, however, allow the storage units to
become much larger than would be possible if all tables and data were to re-
main in central memory.

It will become evident in later sections that the ordered and sequential
storage units, along with the virtual memory access routines are well-suited
to the needs of the APL system.

As a final note, the APL Virtual Memory Manager, like other APL compo-
nents, maintains functional concurrency. When the virtual memory manager has
back-up storage maintenance to perform, it does so in small increments each
time it is called. Thus, control returns to the Resource Manager as soon as

possible,

THE APL FUNCTION FDITOR

The APL Function Editor component of the APL\BS500 system provides func-

tion definition and editing capabilities for APL users. The Function Editor

¢

k4

"NAMES"

(ORDERED STORAGE UNIT)

AAA

AB

"DAT
(SEQUENTIAL S

35

A"
TORAGE UNIT)

USER _STATE REGI

STER

(RECENT COPY)

422

NUMER

AN D

CHARAC

ARRAY

IC

ottt o]

TER

S

USER STATE

REGISTER

4

NAMES

‘Q\\

DATA

7

T iUNIT NUMBER OF "DATA" SEQUENTIAL

STORAGE UNIT

UNIT NUMBER OF "NAMES" ORDERED

STORAGE UN

FIGURE 10

IT

STORAGE UNITS FOR NAMES AND DATA

36

handles the syntax of the function header and creates internal data struc-
tures from the header to pass to the other APL componients. The Editor relies
upon the virtual memory access routines in implementing the editing functions.

Every function defined by the APL user causes two units of storage to be
allocated: an ordered storage unit called a "function label unit," and a
sequential storage unit called a "function text unit.” The function label
unit contains entries corresponding to the line numbers of the function along
with addresses of lines of function text in the corresponding function text
unit.

Figure 11 shows the interconnection of the function label unit and the
function text unit. The left-most field of each entrv of the function lahel
unit contains the line numbers in full character form (without a decimal point).
The right-most field contains the address of the corresponding line in the
function text unit. Note that the function header is assumed to be line zero
of the function.

Addition and deletion of text and line numbers is accomplished by using
the corresponding virtual memory access routines.

The Function Fditor also keeps track of local variables and lakels in
functions. As shown in Figure 12, a number of cases occur:

1. the local variables are all marked with 3 right-most field in the

function label unit which is less than or equal to zero:

a. the local variable which contains the value to be returned at
the end of function execution is marked with a negative one,

b. the arguments (formal parameters) are marked with a minus two
and minus three,

¢. all other local variables are marked with zeroes:

2. labels are marked with the full character representation of their

corresponding line numbers.

Case (2) above allows access to lines of text throush the line labels.

Like all other APL system components, the Function Editor must maintain
functional concurrency. Clearly, there are many situations where functional
concurrency becomes a problem (e.g., displaying lines of text). Thus, the

Function Editor maintains a number of variables in the User State Register,

37

FUNCTION DEFINITION

$STDEV
(1] AVE = (+/%)% N :=RHO X
rz21 ((+/(X-AVE)*2)%N-1)*.5
(3] S

STORAGE UNIT STRUCTURE

FUNCTION LAREL UNIT
(ORDERED)

00000000

4

00010000

®

00020000

FUNCTION TEXT UNIT
(SEQUENTIAL)

S STDRV [JAVT 1= (4/3)%

N i=REO X JJC (+/(x-AV

E)*2)%N-1)¥,5

FIGURE 11
FUNCTION STORAGE UNITS

38

SUBROUTINE NILADIC MONADIC DYADIC
HEADER FUNCTION FUNCTION FUNCTION
HEADER HEADER HEADER
Sty Isd S7:=F;13d S7Z:FP YiI3J S7:=X T Y;1J
-
—uﬂ‘zz;\ﬂ\suu‘"‘“~FUNCTION DEFINITION
1] L: X:=I0TA 3
(2] Z:=X RHO 1
F2,13 M: N: 7458
FUNCTION LABEL UNITS
(ORDERED STORAGE)
SUBROUTINE HILADIC FUNCTION
STRUCTURE STRUCTURE
1 gooooonn I 000onnnn
J 000000095 J nnnnoonn
L 00010000 L 00010000
i 00021000 M 000210060
M No021000 N n0n21000
00000000 D 7 -1
0010000 nit: 20N00000 wl_
00020000 ol N0N10000 Dol
06021000 DA__ 00020000 D
o ' 00021000 Dy
DYADTIC FUNCTION
STRUSTURE MONADIC TUNCTION
I 50000000 STRUCTURE
J 00000600 I 00000000
L 00010000 J 00200000
M nnn21a00 L nnninnnn
N 0nN21000 M nN021000
X -3 N 00021000
Y -2 Y -2
Z -1 7 -1
00Coa000 DL noononNon Do
00010000 p;__ 00010000 ?i_
00020000 Dy 00020000 o
00021000 Dy NO021000 Dy
HOTE: F is the function name, I and J are local variables, X and Y
are formal parameters, and 7 denotes the value returned by F. The values
P1s P D,, D, represent the addresses of the correspondine lines of text

in the function t

ext unit.

FUNCTION

LABEL

FTGURE 12
UNIT STRUCTURE

39

as shown in Fipure 13. The Function Fditor fields are only defined when the
user is in function definition mode when they contain:
1. the number of the ordered storage unit assigned as the function
label unit,
2. the number of the sequential storage unit assigned as the function
text unit,
3. the name of the function being edited,
4, the current line of the function being defined,
5. the current line increment for this user,
€. the editing "submode" (i.e., deleting text, editing, or displaving
lines of text),
7. the editing submode boundaries (e.g., the starting and ending line
numbers for the displav command).
A corresponding entry is made in the '"names' ordered storage unit for
this user as scon as the function definition is closed. The entry for a func-
tion consists of the name of the function in the left-most field and the numhbers
corresponding to the function label unit and the function text unit in the
right-most field,
Note also that the Function Editor examines the nosyntax hit of the ucer
mask whenever a new line is inserted or an old line is edited in a function.
If the nosvntax bit is reset then the Lditor passes the APL statement to the
APL Statement Compiler for a syntax check. The user is notified if errors

are detected.

The state diagram of Figure lu4 shows the basic logic of the Function

Editor.

THE APL MONITOR COMMAND HANDLER

After a terminal user has initially sicned-on to the APINBS5500 system, the
Resource Manager passes all messages which begin with a)" to the Monitor
Command Handler for processing. The Monitor Command ilandler processes the
monitor commands shown in Table 2, aleng with the system supervisor commands

listed in Table 4. The entire set of monitor commands can be caterorized as:

USER STATE REGISTER

ug

FUNCTION |FUNCTION FUNCTION CURRENT | EDITING EDITING
LABEL TEXT NAME LINE SUBMODE BOUNDS
UNIT UNIT
— | A A b

—EDITING SUB-
MODE VALUES

~LINE OF FUNCTION CUR-
RENTLY BEING DEFINED

~FULL CHARACTER REPRESENTA-
TION OF FUNCTION NAME

—— SEQUENTIAL STORAGE UNIT NUMBER COR-
RESPONDING TO FUNCTION TEXT UNIT

—ORDERED STORAGE UNIT CORRESPONDING TO FUNCTION
LABEL UNIT

—USER MUST BE IN FUNCTION DEFINITION MODE

FIGURE 13
USER STATE REGISTER ENTRIES FOR THE FUNCTION EDITOR

MODE.,

ruNcTioN ~DEFINITION.

EXAMINE
ANAMES" UNIT FOR
FUNCTION NAME

FUNCTION
NAME NOT
FOUND

" ALLOCATE
AND INITIALIZE
PUNCTION LABEL UNIT

/ PERFORM
f {LINE EDIT OR)
\ DISPLAY ON

EDITOR
SUBMODE

DEPINITION., INI- |
TIALIZE USER
 STATE REGIS~ |,

LOWER
BOUND OF SUB-
_MODE BOUN

SYNTAX OF BOUND
EDITOR COMMAND EXCEEDS
.AND DETERMINE UPPER

FUNCTION BOUND

COMMAND
INGORRECT
UPDATE FUNCTION) 1inE

LABEL UNIT
- NOT
SEL EDI}‘%R

RO, _JINSERTION NOSYNTAX

BJT RESET

FUNCTION EDITOR STATE DIAGRAM

42

TABLE &

PRIVILEDGED MONITOR COMMANDS

MONITOR COMMAND

COMMAND FTUNCTION

JASSIGN <user code> <user
phrase>

This command assigns a new user
code to be recognized by APL.

The <user code> goes into the user
code ordered storage unit. The
<user phrase> goes into the user
phrase sequential storage unit, and
serves to identify the user to
other APL users.

JDELETE <user code>

This command removes a user code
and associated user phrase from
the APL system.

JLIST CODES

This command provides a listing
at the system supervisors terminal
of all assigned user codes.

JLIST USERS

This command provides a complete
listing of all assigned user codes
and user phrases.

JDEBUG MEMORY <integer>

This command specifies that a trace of
APL virtual memorv activity be

given. The <integer> specifies trace
options.

JDEBUG POLISH

This command causes the APL state-
ment compiler to print a trace of the
code produced for each APL state~
ment executed by the system super-
visor,

43

1. System Maintenance Commands. The system maintenance commands allow

the APL system supervisor to add, delete, and alter user codes and user
phrases. In addition, the supervisor can set system diagnostic flags.
These commands are recognized only when the master mode bit is set

in the user's User State Register.

2. Work Area Maintenance Commands. Work area maintenance commands al-

low the APL user to add or delete items from his associated work area.
The user may also save the work area in a separate file, and later re-
activate the work area.

3. APL Run Parameter Specification. Variables which affect the APL

run for a user can be displayed and altered through APL monitor com-
mands (e.g., "WIDTH" and "ORIGIN").

4. Line Edit Command. The last line entered by each user can be alter-

ed and re-submitted, as discussed previously using the Line Edit com-
mand.

5. Function Suspension Commands. The function suspension commands allow

the user to control function execution when functions have been suspended

due to errors.

6. Run Termination Commands. The APL user may terminate the APL run

using a number of different options.

The implementation of most of the monitor communication algorithms is
straightforward. It is useful, however, to examine the data structures in-
volved in these operations.

If the monitor command to be executed is a system maintenance command ,
the master mode bit of the User State Register for the current user is examin-
ed. If this bit is reset then the user is issued an error message. Otherwise
the Monitor Command Handler uses the virtual memory access routines to examine,
add to, or delete from the user code ordered storage unit and the user phrase
sequential storage unit.

The work area maintenance commands access the ''names" ordered storage
unit. The variables and functions can be listed and deleted by application
of the appropriate virtual memory access routines. In addition, the total

content of the work area may be copied to an external library for later use.

4y

This operation involves accessing and copying all ordered and sequential
storage units allocated for the user's work area. The '"names' ordered stor-
age unit provides an entry point for referencing all variables and functions.
The library is constructed by first constructing a dictionary, as shown in
Figure 15. All non-scalar data is copied into the library from the 'data”
sequential storage unit, with appropriate addresses in the library dictionary.
Whenever functions are encountered in the ''names" unit, the corresponding
function label unit and function text unit are accessed through the unit num-
bers in the right-most field of the function entry. The line label, along
with the function text for each line, is forward-chained for each function.
The dictionary entry for the function addresses the head of this chain.

Library load and copy operations reference the directory of a particu-
lar library to obtain addresses and data lengths in the library. The load
and copy operations occur in just the opposite order from the save operation.
The situation arises, however, when copying functions into an active work
area, where the function name being copied is identical to a variable name
occurring in the "names" unit. In this case, the variable, along with the
corresponding data, is removed from the work area before copying the function.

All of the above operations make use of the virtual memery access rou-
tines in searching and altering storage units.

The APL run parameter specification commands are easily implemented.
Display is accomplished by referencing the corresponding field of the User
State Register (e.g., the "digits' field). Similarly, the fields may be al-
tered directly on command by the user. Thus, if the command is "DIGITS,"
the "digits" field is retrieved from the User State register and displayed.
If the message typed by the user is "DIGITS 3" then a new value of three is
inserted in the user's User State Register.

The Line Edit command is implemented by retaining a copy of the last
message typed by the user in calculator mode (initially the null message).
The Line Edit is processed according to the rules given earlier, and a "simu-
lated" teletype input is performed with the new edited line. The simulated
input, however, goes to the beginning of the input queue for the user. The

Line Edit command does not replace the last message typed by the user; hence,

USER STATE REGISTER

7

NAMES

DATA ?

"NAMES"
(ORDERED)
A o SCALAR
BBB 1234
STDEV | ¢ ¢
777 -

Y

"DATA"
(SEQUENTIAL)

USER STATE REGISTER |

#- NUMERIC VECTOR |

#{ CHARACTER VECTOR |

FUNCTION LABEL

UNIT

(ORDERED)

00000000

00010000

00020000

~—3~FUNCTION TEXT UNIT

(SEQUENTIAL)

STDEV H’AVE 2= (+/X)%

N :=RHC X

; (+/(X~-AV

E)%*2)%N-1)%,5

RESULTING DISK LIBRARY

1
LIBRARY DESCRIPTIVE INFORMATION

AAA L. | & |BBB 1234
STDEV - 227, L, | e—
NUMERIC VECTOR CORRESPONDING 71O

AAA, WITH LENGTH L I 100000000
STDEV || J00010000AVE := (+7X)%

N :=RHO X || 100020000((+/(X-AV

E)#2)%N-1)*.5

il » [CHARACTER VEC

TOR CORRESPONDING TO ZZZ, WITH

LENGTH L2

FIGURE 15

THE FORMAT OF A LIBRARY

45

us

it is possible to edit the same line several times.

User to user communication is made possible with two monitor commands:
the "LOGGED" command and the "MSG" command. The first command displays the
user phrases corresponding to each active APL user, along with the user's
station number. The Monitor Command Handler refers to the user phrase stor-
age unit to obtain this information.

The users may communicate as shown in Figure 16. The user specifies the
station number with the "MSG" command of the user which is to receive the
message. The message is extracted from the originator's input and placed
(with the proper prefix) at the beginning of the output queue of the station
receiving the message.

The last command to consider is the "OFF" command. This command informs
the APL system that the user wishes to discontinue the APL session. Two op-
tions are available:

i. MOFF," and

2. "OFF DISCARD.™
In case (1), APL assumes the user wishes to be physically disconnected from
the system with the active work area saved under the library name "CONTINUE."
The appropriate bits are reset in the station table entry for the port, and
the library is constructed. A termination message is then printed, followed
by deallocation of data areas (storage units, buffers, and registers).

Case (2) is similar to the first except that a library is not constructed.

In either case, APL assumes that some user wishes to sign-on again after a

short period. The terminal is not physically disconnected, and the buffers
are retained for this port until a fixed time has elapsed without a sign-on
at the terminal.

The monitor command handler is distinct from the other APL components,
but provides a command language and command facilities which are useful in
the APL environment.

In conclusion, it can be easily seen that the Monitor Command Handler
makes use of the virtual memory access routines in the implementation of

nearly all the commands.

FROM (2): ARE YOU GOING TO BE WORKING LATE TONIGHT... 47

JMSG 2 I THINK I WILL QUIT ABOUT MIDNIGHT~

xb
3
FACT X*®2« ~
3 62880
LOG 473~
61591
FROM (2): HAVE YOU FINISHED THENUMERICAL ANALYSIS ASSIGNMENT...
JMSG 2 I ALMOST HAVE THE BIG ANSWER~
LBG 474«
SYNTAX ERROR AT 474
LOG 474~
616121
(LOG 3)+(L0OG 4~
2+ 48491
LOG 12+
2o 48491

FROM (2): DO YOU HAVE A SAVED COPY THAT I CAN COMPARE WITH.
YMSG 2 YES I SAVED ONE ABOUT 1 HOUR AGO~-
LOG 362880~

12.80183
FROM (2): IS IT UNLOCKED... WHAT IS THE NAME OF THE LIBRARY..
YMSG 2 IT IS INTERPOLLY.«.READY TO GO~ :
) VARS >

INTERP (F) STRING X Y

STRING~

A VERY FAT CAT

INTERP«
FROM (2): OKeeo I AM GOING TO LOAD ITe..
INTERPOLATION PROBLEM Ct1

INPUT X VALUES

L1z
= 2 4 6 8 10 12 15 20«
INPUT Y VALUES

L3
LOG Ve~
INPUT VALUE TO INTERPOLATE

{3
i3«
INTERPOLATED VALUE IS 2.56564

LOG 13~
256495

JOFF=
END OF RUN

FIGURE 16
USER/USER COMMUNICATION

48

STORAGE AND REPRESENTATION OF APL DATA STRUCTURES

The methods used in data storage and representation are fundamental in
the understanding of the two APL components remaining to be discussed: the
APL Statement Compiler, and the APL "Machine."

The fast-access data area mentioned earlier, called the scratch pad,
contains data which is "active." Further, each data item residing in the
scratch pad has an associated "descriptor" which gives the characteristics
of the data. The organization of the scratch pad, data layout, and descrip-
tor formats are the subjects of this section.

The scratch pad may be considered the memory of the simulated APL ma-
chine. The scratch pad is, in fact, an array which increases and decreases
in size as the requirements for working storage increase and decrease.

Space is allocated within the scratch pad using a variation of simple seg-
menting{9].

All APL data in a particular user's work area can be considered "active'"
or 'passive." Data can be active for a user only when the user is executing
an APL statement or function, and the data has been referenced during the exe~-
cution. Passive data is that data which can be referenced through the 'mames"
ordered storage unit assigned to the user. References to passive data may
occur when the user is executing an APL statement. In this case, a copy of
the passive data is brought into the scratch pad during the computation. Ac-
tive data in the scratch pad may replace passive data in the user's work area
at the end of execution (i.e., the user'returns to calculator mode from exe-
cution mode). In addition, new results may have been computed during execu-
tion causing additions to the '"names" and "data" storage units.

At any point in the execution of several users' APL programs, the scratch
pad contains active data for all of these users. The passive data, however,
is kept distinet in the individual "names" and "data" storage units referenced
through the corresponding User State Registers.

Data which is active in the scratch pad is identified through the use
of "descriptors." The descriptors, shown in Figure 17, identify data by pro-

viding the following information:

¢

Lg

1. Descriptor Identification Bit. The descriptor identification bit

is set if the descriptor refers to APL data.

2. Data Presence Bit. The data presence bit is set when data corres-

ponding to the descriptor is present in scratch pad memory.

3. Named Bit. The named bit is set in a descriptor when the data
associated with a descriptor is not a temporary resulf.

4. Scalar Bit. The scalar bit is set in descriptors which reference
scalar data.

5. Character Bit. The character bit is set in a descriptor when the

descriptor refers to a character array rather than numeric data.

6. Back Pointer Field. The back pointer field is primarily used to

identify the origin of the descriptor in scratch pad memory.
7. Rank Field. The rank field of a descriptor contains the number of

dimensions in the data associated with the descriptor.

8. Scratch Pad Field. The scratch pad field holds the actual scratch

pad address of the data associated with the descriptor.
The size of each field depends upon the maximum value that can be assumed in
each case. *

Data in array form is stored in row-major order with the dimensionality
of the array in the first few locations, as shown in Figure 18.

The use of descriptors allows execution-time determination of the com-
plete meaning of a particular operator. Thus, the meaning of the statement

X+Y
cannot be exactly determined at compile~time since the "+ could represent a
scalar-scalar, scalar-array, or array-array operation. The exact operation
is determined at execution time by examining the data descriptors involved
in the operation.

The use of descriptors is also extended to APL functions. Referring again
to Figure 17, function descriptors contain the following information:

1. Descriptor Identification Bit. The descriptor identification bit

is reset for function descriptors.

2, Argument Field. The argument field contains the number of arguments

(parameters) required for function execution.

50

DATA/FUNCTION DESCRIPTOR

f e ~ J\ J v J
BACK POINTER RANK SCRATCH PAD
FIELD FIELD FIELD
f’“__‘j““““ﬁ
Lid
‘\

CHARACTER BIT

SCALAR BIT
' \ DATA
NAMED BIT DESCRIPTOR
f_-_“&“—”\
DATA PRESENCE BIT
1S =l DESCRIPTOR IDENTIFICATION BIT (SET) ~
A 4
\

RETURN VALUE BIT

ARGUMENT FIELD

. FUNCTTON
FUNCTION PRESENCE BIT DESCRIPTOR

DESCRIPTOR IDENTIFICATION BIT (RESET) -/

FIGURE 17
DATA AND FUNCTION DESCRIPTORS

APL STATEMENT

2 3 RHO IOTA 6

SCRATCH FAD REPRESENTATION

DATA DESCRIPTOR >

FOR VECTOR (2 3)

Y

[1hfop] 777/ [1] e———

DATA DESCRIPTOR

RESULTING FROM

EXECUTION

Q77 2 ——

DATA DESCRIPTOR

(2R IS2 0 Bugy (bR DT |l (GO L]

FOR CONSTANT 6
[hhbld 777 o] =

DATA DESCRIPTOR
FOR IOTA &

!

Liblddd 722 [\ [e——

D JUHE JW N = IO

FIGURE 18

SCRATCH PAD DATA REPRESENTATION

£

52

3. Return Value Bit. The return value bit is set for function descrip-

tors corresponding to functions which return a value from execution,
The presence bit, back pointer field, and scratch pad field are used in the
same manner as in the data descriptor.

Descriptor access is accomplished through the symbol tables described in

the following section.

ACTIVE AND PASSIVE SYMBOL TABLES

Corresponding to active and passive data and functions in APLN\B5500
there are active and passive symbol tables. The passive symbol table is
just the 'names" ordered storage unit shown in Figure 10. The details of the
passive symbol table entries are shown in Figure 19. The contents of the
right-most field of a passive symbol table entry depends upon the type of
entry. In particular, a non-present (presence bit reset) data or function
descriptor may appear with the name, or simply a scalar value will appear if
the name represents a scalar.

Each passive symbol table entry is identified by the entry identification
field. The entry identification field may take on one of the following
values: A

1. Scalar. The name corresponding to the entry is a scalar. The scalar

value is contained in the right-most field of the passive symbol table

entry.

2. Array. The entry corresponds to an array variable. The right-most

field contains a non-present data descriptor. The scratch pad field con-

tains an address in the "data" sequential storage unit where the corres-
ponding data can be found. The data is loaded into the scratch pad when
the variable becomes active and is accessed.

3. Function. The entry represents a defined function. The right-most

field contains a non-present descriptor. The back pointer field, however,

contains the unit number of the function label unit, and the scratch pad
field contains the number of the function text unit corresponding to the
function.

The passive symbol table is always searched using the virtual memory access

routines.

53

PASSIVE SYMBOL "DATA" SEQUENTIAL
TABLE STORAGE UNIT

("NAMES'" ORDERED

STORAGE UNIT)

~»| VECTOR DATA |

FUNCTION
™ LABEL UNIT
(ORDERED STORACE)

R < ;’:
ESw
FUNCTION
TEXT UNIT
(SEQUENTIAL
&— STORAGE)
FUNCTION ENTRY VARIARLE ENTRY
LS ~ I\N_J__ - J N 7 Fra y
FUNCTION ENTRY FUNCTION VARIABLE ENTRY DATA
NAME IDENTIFICA- DESCRIP~ NAME IDENTIFICA- DESCRIP~
FIELD TION FIELD TOR FIELD TION FIELD TOR OR

SCALAR

FIGURE 18
PASSIVE SYMBOL TABLE

[#31
E

The active symbol table exists for a particular user only during execu-
tion of a statement or function. The active symbol table, shown in Figure 20,
is located in the scratch pad and is addressed through the symbol base field
of the user’s User State Register. At any given time, there may be several
active symbol tables in the scratch pad; one for each user of APL in the pro-
cess of executing APL statements. The active symbol table contains entries
for the active data, not including constants, temporary results, or local
variables. The descriptors in the active symbol table may or may not have
their presence bits set.

The entry identification field (switched to the front of the name for
machine-dependent reasons) has an additional bit position, called the "alter-

d b

[

]

t," in the active symbol table. The altered bit indicates whether or

not changes have been made to data which is active and thus needs to be changed

W

in the '"data" storage unit. In addition, the altered bit is set for variables
which are created during execution and do not yet exist in the passive symbol
table. All variables with their altered bit set are changed or entered in

the passive symbol table when the user returns to calculator mode from execu-
tion.

Another important symbol table used in compilation and execution of APL
statements is called the function label table, shown in Figure 21. The fune-
tion label table is essentially an extension of the active symbol table in
the scratch pad. A function label table is constructed whenever an APL state-
ment references a function with the presence bit reset in the corresponding
function descriptor. The function descriptor is replaced by a data descriptor
referencing the function label table as soon as the table is constructed. The

information found in the function label table is derived from the function's

corresponding function label unit.

"3

he function label table is logically an APL numeric vector referenced
by the (now present) data descriptor in the active symbol table. The right-
most fields of the numeric labels are initially all non-present data descrip-
tors with the scratch pad fields referencing the corresponding lines of text
in the function text unit.

Thus, it is possible to address all variables and functions through the

CACTIVE SYMBOL
TABLE

VARIABLE OR FUNCTION ENTRY

L] |

A4 N

FUNCTION

OR
DATA DESCRIPTOR

- NAME FIELD
/
y;#/,gw“f#’ ENTRY IDENTIFICATION FIELD

ALTERED BIT

USER STATE REGISTER

SYMBOL
BASE FIELD

FIGURE 20
ACTIVE SYMBOL TABLE FORMAT

&

PASSIVE DATA STRUCTURES

PASSIVE SYMBOL FUNCTION LABEL | runcrioN TEXT
TABLE UNIT UNIT
w7 00000000 M =X P YT ggi
J 00000000
L 00010000 X:=I0TA 3 || Z:=
M 00021000
N 00021000 X RHO 1 fI M: N:
§ X -3 v 2
§ P Y =2 7+ 5
z -1
00000000 s
00010000 D
00020000 p;ﬂ
00021000 P,
4 T RUCTURES
ACTIVE SYMBOL ACTIVE DATA STRUCTURE
TABLE FUNCTION LABEL
TABLE
29 o
1“2“z i’}?
n N
I 00060000
F & J 00000000
L 00010000
M 00021000
N 00021000
) -3
Y -2
z -1
00000000 p}~‘7 INITIALLY,
00010000 P ALL NON-PRE-
50020060 Péﬂ §a SENT DATA
00021000 P DESCRIPTORS
NOTE: n., is the relative location of the first numeric label, n_

5
L

is the relatiVe location of the first argument, n, is the prelative lsoéation
of the second argument, and n, is the relative location of the result.

FIGURE 21
FUNCTION LABEL TABLE STRUCTURE

§7

passive symbol table for a particular user. In addition, all active data
and functions, along with function labels and local variables are accessible
through the active symbol table and function label table.

The reasons for maintaining the active and passive areas can be stated as
follows: the amount of data and the number of functions in a work area may be
voluminous. Further, during the execution of a calculator mode statement {which
places the user in execution mode)it may happen that only a small fraction of
the work area is actually referenced. Although passive data and functions are
readily accessible through the virtual memory, it happens that little used
areas remain on back-up storage (because of the demand paging). Active data
and functions, however, are not paged out of central memory since they reside
in the scratch pad. The assumption, of course, is that the accessed data has
the highest probability of being accessed again before the user returns to
calculator mode.

It should also be noted that lines of text in an active function are com-

th

r's APL

]

piled only on demand. That is, there must be an attempt by the us

program to execute a particular line of an APL function before that line is

13

compiled. Once the line is compjiled, it remains in the scratch pad in a com-

led form until the user returns to calculator mode. Again, the assumption

-
fle

v

[

ty

that function lines which have been executed have the highest probabil

[
o

iy

of being re-executed. Further discussion of demand compilation is found in

the sections which follow.

THE APL STATEMENT COMPILER

The APL Statement Compiler generates an internal pseude-code string cor-
responding to APL statements submitted for compilation. The APL Statement Com-
piler can be called while the current user (as defined by the Resource Manager)
is in function definition mode or in execution mode. If the user is in function
definition mode, no code is generated, nor is any scratch pad memory allocated,

In execution mode, the compiler returns a present data descriptor address-
ing an APL numeric vector in the scratch pad. This vector has, as its first

element, a present data descriptor addressing an APL character vector contain-

ing the original APL statement, as shown in Figure 22. The original statement

[
W

maintained with the compiled code in order that error messages may be printed

PRESENT DATA

58

DESCRIPTOR
1 <
N WORDS
A
p
- .] 9
b vt ~ -
PSEUDO-CODE WORDS
PRESENT DATA
DESCRIPTOR
g M APL STATEMENT
L
~
M CHARACTERS
FIGURE 22

CODE STRING FORMAT

&

59

during execution. In any case, the APL Statement Compiler is called upon to
compile only one statement at a time, thus maintaining functional concurrency.

APL pseudo-code words, shown in Figure 23, are interpreted by the simu-
lated APL machine during execution of the statement. The type field of the
code word indicates whether the code word represents an operand or constant
fetch, or an APL operation or defined function call. If the code word repre-
sents an operand or constant then the fields are defined as follows:

1. Operator Type. The operator type is not used for operands and con-

stants.
2. Type Field. The type field indicates whether the code word repre-
sents an operand or a constant.

3. Location Field. The location field contains the scratch pad address

of the data descriptor corresponding to the code word (i.e., the descrip-
tor for the operand or constant).
Y. Rank Field. The rank field is not used.

5. Address Field. The address field contains the location of the operand

or constant within the original APL statement. This location allows exact
error reporting during execution.

If the code word represents a function or operator then the fields are:

]

1. Operator Type. The operator type indicates the number of operand

involved in the operation or function.
2. Type Field. The type field indicates whether the code word repre-
sents a function or operand.

3. Location Field. If the code word represents an APL operator then

the location field contains an integer number assigned to this operator.
If the code word describes a function then the location field containg
the address of the descriptor for this function in the active symbol
table.

4. Rank Field. The rank field contains an operator "subscript’ (see
the following explanation of the "[' operator) if the code word repre-
sents an operator. If the code word represents a function then the rank
field indicates whether or not the function returns a value.

The final code string for an APL statement is generated in two passes:

_PSEUDO-CODE WORDS

Lo | =1 j
A } '\ ‘
’ 1 ADDRESS FIELD
RANK FIELD
. LOCATION FIELD
TYPE FIELD
OPERATOR TYPE FIELD
OPERATOR TYPE FIELD TYPE FIELD LOCATION FIELD
NILADIC OPERAND DESCRIPTOR
MONADIC CONSTANT ADDRESS
DYADIC OPERATOR OPERATOR
TRIADIC FUNCTION CODE
RANK FIELD ADDRESS FIELD

VALUE RETURNED
OR NOT RETURNED

OPERATOR
SUBSCRIPT

FIGURE 23
PSEUDO~-CODE WORD

LOCATION OF LEXICAL
ITEM WHICH GENERATED
THE CODE WORD (USED
FOR ERROR REPORTING)

FORMAT

60

61

a forward pass, called the lexical pass, and a backward pass, called the code
generation pass. The two pass approach is taken in order to arrange the code
words in the proper order for a right-to-left execution of the statement.

The lexical pass involves the identification of each lexical item in
the infix expression (operators, constants, variables, and functions). Dur-
ing this pass, shown in Figure 24, a push-down stack, called Infix, is load-
ed with code words corresponding to the lexical items. All table look-ups
in the function label table, active symbol table, and passive symbol table
occur during the lexical pass. In addition, all scalars, along with numeric
and character vector constants, are placed into the scratch pad.

During the code generation pass, the Infix stack is examined and a form
of suffix notation is generated by rearrangement of the code words. This
form will be termed '"reverse inverted polish" since it involves not only suf-
fix form, but also a rearrangement of the operands . (this form can alsc be
thought of as direct polish written backwards). The reverse inverted polish
form is suitable for execution by the simulated APL machine and is sufficient
for the proper right-to-left execution. The fundamental transformations from
infix to reverse inverted polish form are shown in Table 5. Note the "sub-
script computation" operator in Table 5, denoted by ”[n.” This operator is
"subscripted’ by n; that is, the number of operands involved in the subscript
computation is denoted by n.

One might think that the usual reverse polish form would be sufficient
for proper APL statement execution. However, statements such as:

A+ A:=5
where the variable "A" initially has a value other than five is evaluated in-
correctly if reverse polish form is used.

The logic of the code generation pass is shown in Figure 25 in simplified
form. There are a number of special cases not covered by the diagram in
Figure 25 such as the occurrence of the quad or quote quad; however, the dia-
gram does cover most cases. Error conditions are not shown in the state dia-
gram for the code generator, but may be detected in a number of ways, including:

1. attempting to mark an operator or function as dyadic when it is de-

fined as a monadic operator or function, or vice-versa;

~" PLACE
" APL STATEMENT X
/TO BE COMPILED INTO

\ SCRATCH PAD AS

\. A CHARACTER
~__VECTOR _~

ITEM 18 AN o !
OPERATOR Eggi?é EE%N?I?IE& USER

ITEM IS A NUMBER _quore FXECUTING A FUNCTION
//STRUCT A GHAR-\
(ACTER VECTOR WITH \
\ DESCRIPTOR IN |
THE SCRATCH _/p,

~"CONSTRUCT ~~\
/A SCALAR OR ARRAY \
{ CONSTANT WITH DATA
\ DESCRIPTORIN
_ THE SCRATCH __/

m@ﬁ?ﬁ@g

{DESCRIPTOR ??%?sﬁ
 PASSIVE INTO AC-
SYMBOL_X

TO ”Q?E%%’E’SR "

SET LOCATION
FIELD 70O é?ERAw

“IOR NUMBER.(’

ITEM IS\
A FUNCTION

E?é?‘f? X’EC'FOR \

DATA DESCRIPTOR § \
\ INTC ACTIVE

/. SET
/ OPERATOR TYPE \
fFIELD TO NUMBER
(OF ARGUMENTS, SET
| TYPE FIELD TO |
\"FUNCTION," SET |
\ RANK FIELD IF A
\. VALUE RE- /
_ TURNED

/ POSITION OF\ /
[LEXICALITEM Y
| IN APL STATE - b

\JABLE FOR

&2

63

TABLE 5
INFIX TO REVERSE INVERTED POLISH TRANSFORMATIONS

INFIX REVERSE INVERTED POLISH
m X Xm
Xd4d¢ Yy xd
M X XM
XDY Y XD
{ 35,5 e 3 S_ 8 ce 5 r
XESy 38,3 S, “n “n-1 Sy, 5y XL,
NOTE: m denotes a monadic operator, d denoctes a dvadic operator,

M denotes a monadic function, D denotes a dyadic function, and X, Y,
§1§ SQ through Sn denote valid APL expressions.

INFIX STAC,
ANIT — ’
ENTRY TOP OF OPERA-

TOR STACK TO CODE

INITIAL-~
IZE "OPERATORS"®
STACK. SET
~N TO1

ITEM IS A
FUNG

ITEM IS A " ITEM IS AN
CONSTANT OR

OPERAND

CODE STRING IF | |
‘t :]o)l OR NOT MARKED & | |

opmmoa CODI NOT |,
IN TYPE FIELD
OF CODE

PLAC
CODE WORD
INTO CODE
“~STRING

ITEM I8
A N("

/" IF TOP
/' OF OPERATORS
IS *[n" THEN MO

[TO CODE STRING.
| MOVE TOP OF OPERA-
TORS STACK TO COD
\ STRING IF NOT

SUB-
(SCRIPT "["
_BY N

OPERATORS sms&
DEIETE TOP OF |
. OPERATORS /

ITEM 18

TORS STACK TO \ |
CODE STRING

IF NOT "] " AND,
SET MONA- /
DIC

“] * FROM TOP
OF OPERATORS)
STACK

NOTE: The Operators stack is marked if the stack is
empty, or if the top element is "]" or ")."
FIGURE 25

CODE GENERATION PASS

65

2. the absence of an anticipated code word on the operators stack

(e.g., delete")" from the top of the operators stack anticipates

the occurrence of the ")");

3. examination of the operators stack for extraneous symbols at the

end of the transformation.

Figure 26 shows the steps occurring in the transformation of an APL
statement into reverse inverted polish form. For purposes of illustration,
the symbolic equivalent of each code word in the Infix stack is used, rath-
er than the code word itself. Note also that the stacks extend to the right
for readability. Operators in the final code string which have been recog-
nized as monadic are marked with a prime (').

Figure 27 shows the evaluation of the resulting reverse inverted polish
taken from Figure 26. Circles enclose operands and operators which result in
a single operand.

All constants created during the lexical pass are attached to the code
string through the data descriptor returned by the statement compiler, as
shown in Figure 28. Thus, the data descriptor returned by the statement
compiler provides access to the constants associated with the APL statement,
the APL statement itself, and the pseudo-code words corresponding to the
original statement.

The connection between the APL statement compiler and the simulated

APL machine is given in the following section.

THE APL "MACHINE"

The APL "Machine" component of APINBS5500 is a software simulation of a
fictitious APL processor. The architecture of this '“machine' is similar to
that of the BS5500 in that it is a stack-oriented, descriptor-based processor.
The simulated machine, however, executes an order-code which is suitable for
APL statement execution. Thus, the simulated machine does not directly use
the B5500 hardware stack mechanism. The Machine is capable of interpreting
APL statements when expressed in reverse inverted polish form. In addition,
the Machine provides control functions including transfer-of-control within
APL functions, and execution interruption facilities necessary for maintain-

ing functional concurrency within the component.

APL EXPRESSION
(D IS A DYADIC FUNCTION, M IS A MONADIC FUNCTION)

A[ABS B+3;C[3]-B:=M 5;(3 D u)-8]

(1) I A[ABS B+3;C[3]-B:=M 5:;(3 D 4)-8]
n 0 1] T
1b—2c

(2) I A[ABS B+3;C[3]-B:=M 5;(3 D u4)- 8
n ¢ 1]

1 C 8-

(3) I A[ABS B+3:C[3]1-B:=M 5;(3 D 4) -
n 0 1] - - T
1 cC 8

(4) I A[ABS B+3;C[3]-B:=M 5;(3 D 4)

n 0 1]-) T

1 c 8

(5) I A[ABS B+3;C[3]-B:=M 5:;(3 D &4

n o 11-) T

1 C 8l

(6) I A[ABS B+3;C[3]-B:=M 5;(3 D

n 0 1J=) D T

1 C 8y

(73 I A[ABS B+3;C[3]-B:=M 5;(3

n ¢ 11-) D

1 C 84 30D

(8) I A[ABS B+3;C[3]-B:=M 5; (

n 0 1] -ffl

1 ¢ 843D -

(9) I A[ABS B+3;C[3]-B:=M 5

n 0 1]

2. C 843D -

(10y I A[ABS B+3;C[3]-B:=M 5§

n o 1]

2 C 8u4u3D-5

FIGURE 26
- TRANSFORMATION OF AN APL STATEMENT

ws w0

(21)

et O

O

OO o

O

[@3]

o

A[ABS B+3;C[3]-B:= M
1] M- T
84 3D~ 5

A[ABS B+3;C[3]-B :i::]
11 M
843D-~-5 M

]

A[ABS B+3;c[3]- ?
l:} = * *
8 43D~ 5 M B =
A[ABS B+3;c{3] -
l] - 4——--——___j

843D ~-5M"B :=

A[ABS B+3:C[3]
11- 2 Je—T
84 3D ~5M'B :=

A[ABS B+3;C[3
131-2[
84 3D -5M'B :=3

ATABS B+3;C [
11- 2 1 [
B4 3D—5M'B := 3

A[ABS B+3; C p————m

11 -F[

84 30D 1 5 M'B := C fl i
A[ABS B+3

1]

84 3D-5M"'B =3¢ [l -

A[ABS B+ 3}
1]
84 3D-5M"B :=

1
[
(@]
Eauue]
i
[C—

1
A[ABS B +
1] +
84 3D ~-5M"B :=3°¢C [l - 3
FIGURE 286

(CONTINUED)

67

(22)

Figure 25.

oo OO O o

O

68

A[ABS Bt
l] +} [*
84 3D-5M"B :=3¢C [l -3 B +
Al ABS
1] ABS
843D-5MB:=3¢C [l - 3B+
A [P—§
1 1°7¢[, aBsk .
84 3D>5M B :=3¢C [1 - 3 B + ABS!
At
[,k »
3, '
84 3D ~-5M'B :=3¢ [l - 3 B + ABS' A [3

RESULTING REVERSE INVERTED POLISH

843D ~5M"B:=3¢ [l - 3 B+ ABS' A [3

NOTE:

"I" represents the Infix stack (in symbolic form), "O"
represents the operators stack, and "C" represents the code string.
Each step shows the effects of one circuit through the diagram of

69

HSITOd QILMIANI ISNIATH
L¢ ENODI4

J0 NOILVIVAZ

] v

se

B

PRESENT DATA
DESCRIPTOR

¢ |1 []

70

14

2 3 RHO IOTA 6

PSEUDO-CODE WORDS

CONSTANT
CHAIN

PRESENT DATA

7\, o & o - J

Y ¥ h#
IOTA (2 3) RHO

PRESENT DATA

DESCRIPTOR DESCRIPTOR
> L 0 ¢ > X 1 L
L 6 - 2
2
3
FIGURE 28

DATA STRUCTURE RESULTING FROM STATEMENT COMPILATION

71

Each APL user in execution mode is provided with an execution stack
located in the scratch pad and addressed through the stack base field of the
User State Register. The execution stack, shown in Figure 29, has the top-
of-stack index as its first element. The remaining elements of the execution
stack consist of either descriptors or execution control words (described be-
low).

In addition to the execution stack, a control index (CI) is maintained
which points to the current pseudo-code word being processed for the user.

As the CI moves through a code string, code words representing operands cause
the corresponding descriptor to be loaded onto the execution stack. Code
words which represent operators or user-defined functions, however, cause the
corresponding operation or function to be applied to the top descriptors.

The descriptor resulting from the operation or function call replaces those
descriptors involved in the operation or function call. Data descriptors with
a reset named bit (temporary data) cause the corresponding data to be removed
from the scratch pad when "unstacked." Figure 30 shows the steps involved in
the execution of the simple APL statement of Figure 28. This method of APL
statement interpretation is, of course, both natural and straightforward.

Control words mark various positions in the execution stack. The control
words appear in a number of forms, as shown in Figure 31. The control words
have the following functions:

1. Interrupt Mark Stack Control Word (IMS). The interrupt mark stack

control word is placed at the top of the execution stack at the end of
the user's execution period. Information in this control word allows
later recovery of additional information for restarting execution.

2. Program Mark Stack Control Word (PMS). The program mark stack con-

trol word contains information leading to the code string in execution
directly above the control word in the stack.

3. Function Mark Stack Control Word (FMS). The function mark stack

control word is inserted into the execution stack whenever defined func-
tions are invoked during execution.

4. Quad Input and Quote Quad Input Mark Stack Control Words (QMS and

QQMS). The quad input and quote quad input mark stack control words are

EXECUTION
STACK
f—-\v/ ™
DESCRIPTORS
AND
— > CONTROL
:;Efz\k WORDS
T
PSEUDO-CODE WORDS
*STACK TOP _J ; ﬁ7
CI
(CONTROL INDEX)
VA L
STACK
BASE

USER STATE REGISTER

FIGURE 29
EXECUTION STACK AND CONTROL INDEX

72

5

73

(1 & IOTA 2 3 RHO (3) 6 IOTA 2 3 RHO
L 1]]] l]]
CI CI
EXECUTION EXECUTION 2
STACK STACK i 2
\/ e
3
r 1] e
ST T T
1
p 2
- < 3
I > 4
6
(2} ’ 5 IOTA 2 3 RHO (4) & IOTA 2 3 RHO
{ i | | l i i 1
CI CI
EXECUTION EXECUTION
STACK STACK
v"‘
> | 1] ed— 6 | 2] 2
1 3
2 » 1
3 (2
T 5 o N
6 5
-e © 6

FIGURE 30
INTERPRETATION OF APL CODE STRINGS

. CONTROL WORD

MEMORY ADDRESS FIELD

INDEX FIELD

LAST CONTROL WORD FIELD

CONTROL WORD IDENTIFICATION FIELD

INTERRUPT MARK STACK
PROGRAM MARK STACK

FUNCTION MARK STACK

QUAD INPUT MARK STACK

QUOTE QUAD INPUT MARK STACK

FIGURE 31
CONTROL WORD FORMAT

74

75

inserted into the execution stack whenever the user's APL program re-

quests quad or quote quad input from the terminal.

All control words are linked together in the execution stack through the
"last control word" field of each control word. The use of the '"index" field
and the "memory address' field depends on the type of control word.

The execution stack is initialized with a program mark stack upon entry
to execution mode from calculator mode. The program mark stack addresses the
data descriptor corresponding to the compiled calculator mode statement, as
shown in Figure 32a.

An interrupt mark stack control word is inserted at the top of the execu-
tion stack whenever time-slice interruption of execution occurs, as shown in
Figure 32b. At the time of the interruption, the control index (CI) is placed
into the index field of the program mark stack.

A number of actions take place in the case that 2 calculator mode state-
ment invokes a function, or a function invokes another function. The argu-
ments to a function are at the top of the execution stack at the time of the
call because of the form of the reverse inverted polish. The function descrip-
tor is examined in the active symbol table (addressed directly by the pseudo-
code word) and, if not present, the function label table is constructed as
shown in Figure 21. The function mark stack control word is inserted into the
execution stack, followed by the descriptors for each argument and local var-
iable. In order to obtain call-by-value parameters, all data described by
data descriptors with a set named bit cause a copy operation on the data items
before passing the new descriptor to the function.

The descriptors corresponding to local variables, including labels, are
kept in the stack area above the function mark stack. Local variables which
do not correspond to formal parameters are initially set to "null" by plac-
ing a null vector (rank field zero) data descriptor into the stack. Labels
are treated as any other local variable except that the descriptor in the
stack is initially a present scalar data descriptor addressing a numeric sca-
lar corresponding to the line on which the label appears.

The simulated APL Machine also keeps track of the current line being

executed by a user when the user is executing a function. The current line

78

EXECUTION
, STACK
 DATA DESCRIPTOR
"‘“‘4::[:]:1323 —»{APL,_STATEMENT]
L
CPMS“[O[* —_ 1¢1 T [T T 1711
S—— PSEUDO-CODE WORDS

FIGURE 324
INITIAL EXECUTION STACK CONTENTS

EXECUTION
STACK
wiusfe] |
S
DESCRIPTORS
PSEUDO-CODE WORDS
N I I I
pus | [c1 [« c1
FIGURE 32B

EXECUTION STACK AFTER INTERRUPTION

77

is called the line index (LI), and is essentially an index into the corres-
ponding function label table. A program mark stack control word is inserted
into the execution stack after the parameters and local variables in order to
start the function, as shown in Figure 33.

Two points should be made about function execution. First, because of
the index field in each of the control words, functions may be invoked at any
point in the execution of a function. The CI is saved in the previous program
mark stack, and the LI is saved in the previous function mark stack (if it
exists). Upon return from the function execution, the CI and LI can be re-
covered, and control is returned to the pseudo-code word which follows the
function call. Secondly, since the descriptors for parameters, local vari-
ables, and labels are maintained in the execution stack, and since the pseudo-
code strings are "pure' (i.e., they are not self-modifying), recursive func-
tion invocation is permitted.

At the end of function execution, the function mark stack is deleted.

If the function returns a value, the descriptor representing the value is
placed at the top of the execution stack. The LI and CI are then recovered
from the control words which are "lower' in the execution stack.

Note also that the data descriptors in the function label table are
initially marked non-present (refer to Figure 21). Any reference to a non-
present data descriptor causes the APL Machine to make the data present
(i.e., in the case of data, the '"data" sequential storage unit is referenced
with the corresponding data brought into the scratch pad). In the case of
data descriptors in the function label table, the corresponding APL statement
is retrieved from the function text unit and the APL Statement Compiler is
called to compile the line. The resulting data descriptor replaces the pre-
viously non-present data descriptor in the function label table. The compiled
form of the statement then remains in the scratch pad until the user returns
to calculator mode.

This 'demand compilation" avoids unnecessary compilation of statements
which are never executed. In addition, functional concurrency is more easily
attained since the compilation is incremental.

When the user returns to calculator mode from execution, the Rescurce

EXECUTION FUNCTION LABEL

STACK TABLE
/‘”\w
»PMSie] [e
J LOCAL LI~ =
VARIABLES,
LABELS, AND

PARAMETERS

—» FMS| ¢ |L1] »
]
DATA

DESCRIPTORS

—i PMS| A [CI] @
DATA
DESCRIPTOR
T
—{ | ¢ T T T T 7
cI
COMPILED CODE FOR CALCULATOR
MODE STATEMENT
FIGURE 33

STACK ORGANIZATION FOR FUNCTION EXECUTION

e

L

79

Manager calls upon the APL Machine to make active data into passive data. The
active symbol table is examined for variables which have the altered bit set.
Entries are then made into the 'names" and "data" storage units for these var-
iables. Thus, the passive data retains its original form until the completion
of execution. Passive data is not altered if an error is encountered during
the execution of the APL program unless the STORE monitor command is issued by
the user.

If an execution error is encountered, the user is notified and the execu-
tion is suspended. During suspension, the user may examine the active symbol
table, the stack locations corresponding to the local variables of the most-
recently executing function, and the local variables of any other suspended
functions. The user may alter these variables and continue function execution,
or abort the execution. If the function is aborted before a STORE command is
issued, then the active symbol table values are destroyed and the passive sym-
bol table values are retained. Thus, the function can be restarted without
re-initialization of global quantities.

Additional functions of the simulated APL Machine include:

1. deallocation of all scratch pad memory cells (returning the Storage

areas to the B5500 MCP) when no users are in execution mode, and

2. deallocation of areas reserved for a particular user returning to

calculator mode from execution mode.

Although the above discussion is a simplification of the functions of
the simulated APL Machine, it does provide an outline of the operations and
data structures involved. The state diagram given in Figure 34 shows the
logic of the APL Machine.

A detailed discussion of efficient APL "machine" organization and data
representation, along with an extensive bibliography concerning APL-related

topics, is given by Abrams[10].

CONCLUSION

The APINB5500 system is a self-contained time-sharing submonitor for the
Burroughs B5500 computer providing full APL\360 processing capabilities. Al-

though the design of APL\B5500 was affected by limited computer resources,

#

o

" RETURN
O RESOURCE
MANAGER

RELEASE
EXEGUTION U‘SER*SPACE

S'I‘ARTING TIME ., ™
/ EXTRACT IMS FROM
TOP OF ACTIVE STACK
AND CI FROM PRE-
“JVIOUS CONTROL .

EXECUTION STACK, Y
(CALLAPL COMPILER AN

CHANGE TO EXECU-/ /UENT G1. Exo
(TRACT NEXT CODE

' N/ON TOP ELE.
OPERAND (MENTS OF EXE-
OR CONSTANT .

PILE APL DTATE— ~
/MENT CORRESPONDIN
TO LI. REPLACE DE-
 SCRIPTOR AT 1I

~BY RESULT

PONDING DATA
DESCRIPTOR ONTO
_ EXECUTION «

" PRESENCE
BIT ?u;SET

: X
NOTF: FLT denote~ the function label table.

FIGURE 3u

APL MACHINE LOGIC

80

81

such as central memory, the overall design is thought to be sufficiently
general to be applicable to other APL implementations.

The APL\B5500 system is presently in a stable condition: no major modi-
fications in design are foreseen. It is necessary, however, to measure the
effectiveness of the various APL components in an attempt to make minor modi-

fications and adjustments to tune the system for best performance.

W
.

10.

82

REFERENCES

Iverson, K. E., and Falkoff, A. D. APL\360: User's Manual. Interna-
tional Business Machines Corporation, 1968.

Iverson, K. E. A Programming Language. Wiley, New York, London, 1962.

Kildall, G., Smith, L., Swedine, S., and Zosel, M, Preliminary APINB5500
Manual. University of Washington Computer Center, 1970.

B5500 Information Processing Systems Reference Manual. Burroughs Corpor-
ation, Detroit, Michigan.

A Narrative Description of the Burroughs B5500 Disk File Master Control
Program. Burroughs Corporation, Detroit, Michigan.

Stimler, S. Some criteria for time-sharing system performance. Comm.
ACM, 12, 1 (January 1969), 41-53,

Kildall, G. Experiments in large scale computer direct access storage
manipulation. Tech. Rep. No, 69-1-01, Computer Science Group, Univer-
sity of Washington, Seattle, Washington, January 1969,

Kuehner, C., and Randell, B. Demand paging in perspective. AFIPS con-
ference Proceedings, 33, Part 2, 1968, 1011-1018.

Randell, B. A note on storage fragmentation and program segmentation.
Comm. ACM, 12, 7 (July 1969), 365-372.

Abrams, P. An APL machine. SLAC Report No. 114, Stanford Linear Accel-
erator Center, Stanford University, Stanford, Ca., February, 1970.

APPENDIX A - SAMPLE TERMINAL SESSION
EUmZEEEBElEBEX

MARY LOGGED IN THURSDAY 10-22-70 09:27

Y VARS~

INTERP (F) NEWTON (F) STRING X
YFNS«

INTERP NEWTON
JERASE STRING~

) VARS~
INTERP (F) NEWTON (F) X X0
2+ 2«
4
2=2«
4]
-De
-2
#2e
-2
2 #2-
2 =2
242«
2 =2
28&3+ 4«
14
(2&3)+ 4+«
10
YUY = Y
(2&3)~-4
2
3¢4 MAX 4.5~
445
YDIGITS~
3
YDIGITS 9+«
4 & 3 MAX S.1-
204
(483) MAX 5.1+
12

CIRCLE 1=
3141592654

CIRCLE 1 2+
3.141592654 6.283185307

1 CIRCLE 1+
B841470985

10TA 4+«
1 2 3 4

CIRCLE 10TAa 2+
3.141592654 6.283185387

SG:=M GCD N«
T 11 G:=Me
21 Me=M RESD N«
T 31 =:(M NEG@ GX/XITe
T 4] L30"11/7"CON"T«
.41 {3011~
r31 =:{M NEQ B>/CONT

141 N =G«

X

83

=

@

(51
[51
L6l

1l
£21
£31
L 41
[S13

£ 61
L 41
£ 61l

tz21
£31
L 43

L 61

£zl
£ 31
L 4]
£31

{61

L&l
[3.21

011
(21
£31
[3.11
L 4]
[51

[3.21]

[61
[61

£11
fe1l

"] JVICDNT: e,

M oee N
fd e Y
ot
1

[aa W 1 B |

o
Q
O
<

RESD N
NEQ B37/CONT
tNez=G

O ETOon
3 o6 ae as en

- N I [
1 XXX

il
13

LCONT(L 11"
CONT:N:=G
(20141~

M:=M RESD N
=: (M NEQ ©)/CONT
CONT:N:=G

[LCONT-20 JCONT+11~

M:=M RESD N
=:(M NEG B8)Y/CONT
CONT:N:=

-
=3

X
2 GCD 2«

)SI~

GCD S

)SI Ve

GCD S CONT
CONT=

G M

GrMsNe
2

=¢ (e
$GCD«~
[31]=:0«
L0311«

=

GCD N

CAR I o]

XX

RESD N
NEQ @3/CONT

ZS s ooy
a9 =

tNes=G

n oy o
#3 (7) ss a0 se a5 os

-

$e
2 GCD 2~

36 GCD 64~ -

SGCD~
{3103.11~
(€11~

M GCD N
M

G
G
M:=M RESD N

e® 2¢ o8

onou

84

e

ol

[41

{61
{61
L 43
L 41

{41

{41

{13
21l
£33
41
{51

£11d
£el
£31
L 4]
£513

L1l
(el
{31
£43

{51
£ 43

[53
£51

TeNe=G

i C,

CUN
HB
CCONTL™13* "N
L4011~

NT:N:=G

[40"100 N~
(3]=:L& M NEQ O~
L4r™11mLem-
[4r31+-

OO0
XT3 X
Y
™M
n
w)
z

e O

it

o X
P
18]
[
=

T el |
e e LI *S *e te
—_Z 0 0o

36 GCD 64«

5]

=FIB N«

2 MIN 4«
B+
(

P e +

Eﬁl!(\lll

=L<1~

Lo T N T O PR 1
3 ee ee ws es [N
L [N e [N 2 e

[y e’

oo N

s 5% 2 ee se

e § e 4 T

)SIe

FIB S
YS5I Ve

FIB S N
Ne

~N

Ze

JABORTe
SFIBL4L"]1""Z3~
L4011~

[43=:Z:=(FIB N-1)>+FIB N-2+«

Lariyreze-

FIB N-1)+FIB N=-2«

=1
FIB N-1)+FIB N-2

85

{51 Laullje - -+

86
L 4] Z:=(FIB N=1)+FIB N-2

{513 S
FIB 2«
1
FIB 4«
FIB S«
YSIVe
NULL .
SFIBLLI1%-
Z:=FIB N
{113 =:N+2 MIN 4
{213 =:Z:=¢
L3131 ER B EVAR
L 43 2:=(FIB N=~1)+FIB N=-2

SFIBLIL"™ITe"(N+2)" M«
{513 Li101d~

[113 =1 (N+2) MIN 4
[s3 S«
FIB 2«
1
FIB 4«
3
FIB 6«
8
FIB 8+«
21

SINTERPLL[11%+

INTERP; X3Y3Z5D3N
TINTERPOLATION PROBLEM C1*
=3 (0=&/CI0TA Nz=RHO X)>=X IOTA X:=L1)/UNIQERR,® RHO [J1:="INPUT X VA

=:(N NEQ RHO Y:=[1)/DIMERR,® RHO [J:="INPUT Y VALUES"
+5] =3(N GEQ@ D:=X IOTA Z:=(1)/FOUNDZ»0 RHO [J:=" NPUT VALUE TO INTERP

£ 4] =: 0,0 RHO [1:="INTERPOLATED VALUE IS"s3+/7(Y&C&/DIIDI=L=X) L&/ (NS N~
IIRHOCIN®*2)RHO @>N RHO 1)/,X CIRCLE . =X

51 FOUNDZ: =:0,8 RHO [31:="INTERPOLATED VALUE IS";Y[D1]

L &1 UNIQERR: =:0,0 RHO [1:="X VALUES NOT UNIQUE ERROR"

t71 DIMERR: "DIMENSIONS DO NOT MATCH ERROR"

SINTERPLIOTAl~-

{9l [FOUNDZ-103FOUNDZ+115%~

£51 =: 0-0 RHO [J:="INTERPOLATED VALUE ISYs3+/CYaC&/DY Dt =Z-XK) %&/ (N» N-
PYRHOCON*2YRHO @,N RHO 1)/,X CIRCLE .« -X

L6l FOUNDZ: =:0,0 RHO [J:="INTERPOLATED VALUE IS";YCD]

£71 UNIQERR: =:0,0 RHO [l:="X VALUES NOT UNIQUE ERROR"

INTERP«
INTERPOLATION PROBLEM C1

INPUT X VALUES
[J1:

1 4 6 10«
INPUT Y VALUES

{1

&
2

308 12 4p«

INPUT VALUE TO INTERPOLATE

{1z
S(—
INTERPOLATED VALUE IS 9.592592593

$X:=FX NEWTON DFX; ERR-
LABEL ERROR AT X:=FX NEWT

JFNS«
FIB GCD INTERP NEWTON
SNEWTONLL11%-

t=FX NEWTON DFX3ERR
c=X0
HE

oK

TCREZ2)-22" NEWTON "2&X'«
1414213562

TOXR2-2" NEWTON "28&X"'=
SYNTAX ERROR AT (X%x2-2%28X

NEWTON
Lz2i

[ARINEY

SYNTAX ERROR AT EPS FX, "2
)"‘2")'.“

TOLXKA2-2)7" NEWTON "28&x"

SYNTAX ERROR AT (X*x2-2)%2&

NEWTON
r21 SYNTAX ERROR AT EPS FX, "%

Y51 Ve

NEZWTON S DFX ERR FX
NEZWTON S DFX ERR FX

=10«

YABORT=
)SI Ve
NULL.
YUY -
=34

SYNTAX ERROR AT 0

"WALLA WALLA WASH® -
WAaLLA WALLA VWASH

¢ ' NEQ® STRINGY/STRING:=[1-
{1

IALLA WALLA WASH«
SYNTAX ERROR AT WASH
SYNTAXK ERROR

(" " NEQ@ STRING)/STRING:=
L1

TUALLA WALLA WASH" -
WALLAWALLAVASH

STR:=["]«
A FAT CAT+

STRe
A FAT CAT

ABS ERR) GEQ @-6)/25 0 RHO X:=X-ERR:=EPS FX.,

L1«

STRINGL 2 1® RHO 6 + ICTA 10l

WALLA UWASH

R H A SH

[}
Alaw v s

2 18 RHO 6 DROP STRING-
WAaLLA WASH

WALLA WASH

YWIDTH 30«
SNEWTONILI1SG~

XKe=FX NEWTON DFX3ERR
{11 Ke=X0
{2l =:({ABS ERR) GEQ €e-63/2,
@ RHO X:=X-ERR:=EPS FX, “%',
DFX

JDIGITS-
9

1330«

SYNTAX ERROR

1430«
#.033333333
JDIGITS 3«
1438«
2.033
JWIDTH 72«
13 RNDM 52~
49 43 27 14 26 21 44 9

YOFF
END OF RUN

16

29

30

32

88

&

&

89

APPENDIX B - SYNTAX

<apl program> ::=)<logins<«<statement set>+) <logouts>«
<login> ::= <user code>

<user code> ::= <identifiers>

<logout> ::= @FF<off option>

<0ff option> ::= DISCARD|<empty>

<gstatement sets> ::= <statement>‘<statement set><«<statement>
<statement> ::= <monitor command>!<apl statement>]<empty>

<monitor command> ::=) <command>

<command> ::= <library maintenance>|CLEAR[ERASE<identifier list>[FNS}
VARslszlSIV[ABgRT]STgRE§<buffer edit>| <run paraneters|
L¢GGEDl<message>

<library maintenance> ::= L@AD<library name>¥<copy>!<clear>{<save>

<library name> ::= <library prefix><library suffix>

<library prefix> ::= <job number>,}<empty>

<job number> ::= {user account number}

<library suffix> ::= <identifier»>

<copy> ::= CYPY<library name><copy name>

<COpy name> ::= <stored program name>kvariable name>

<stored program name> ::= <identifiers>

<variable name> ::= <identifier>

<clear> ::= CLEAR<library suffix>

<save> ::= SAVE<library suffix><lock option>

<lock option> ::= LQCKi<empty>

<identifier list> ::= <identifier>l<identifier list><space><identifier>

<buffer edit> ::= "<line edit>

<line edit> ::= <search string>"<insert string><guote option>

<search string> ::= <proper string>l<empty>
<insert string> ::= <proper string>[<empty>
<quote option> ::= "<search string>[<empty>
<run parameter> ::= <parameter type><number>lSYNfN¢SYN‘<parameter type>

<parameter type> ::= PRIGIN|WIDTH|DIGITS|SEED|Fuzz

<message>

:= MSG<station><improper string>
<station> ::= <unsigned integer>
<improper string> ::= <improper string element>l<improper string>

<improper string element>

&

90

APPENDIX B (Continued)

<improper string element> ::= <visible string character>["{<space>

<apl statement> ::= <stored program definition>‘<basic statement>

<stored program definition> ::= $<definition entrys<stored program

body>$

<definition entry> ::= <stored program name>1<header>

<header> ::= <stored program options><local variabless<

<stored program opticns> ::= <function specifier><parameter options>

<function specifier> ::= <variable name> := | <empty>

<parameter options> ::= <niladic name>i<monadic name><formal
parameter>{<formal rarameter><dvadic name>
<formal parameter->

<niladic name> ::= <niladic subroutine name>|<niladic function name>

<dyadic name> ::= <dyadic subroutine name>[<dyadic function name>

<monadic name> ::= <monadic subroutine name>[<monadic function names>
<niladic subroutine name> ::= <identifier>

<niladic function name> ::= <identifier>

<dyadic subroutine name> ::= <identifier»>

<dyadic function name> ::= <identifier>

<monadic subroutine name> ::= <identifier>

<monadic function name> ::= <identifier>

<formal parameter> ::= <identifier>

<local variables> ::= <local set>i<empty>

<local set> ::=; <identifier>t<local set>;<identifier>

<stored program body> ::= <stored program statement>‘<stored program
body><«<stored program statements>

<stored program statement> ::= <edit>‘<compound statement>}<empty>

<edit> ::= [<edit command>

<edit command> ::= <display>t<insertion>‘<change>;<delete>

<display> ::= <line option>[]<line option>]

<line option> ::= <line reference>l<empty>

<line reference> ::= <label expression>l<number>

<label expression> ::= <identifier><relative location>

<relative location> ::= <direction><number>l<empty>

"

91

APPENDIX B {(Continued)

i

<direction> ::= +|=-

<insertions ::= <line reference>]<compound statements

<change> ::= <line option>["]<line options.]<line edit>
<delete> ::= <line reference>]<delete options
<delete option> ::= [<line reference>}f<empty>

<compound statement, ::= .label sets><basic statements
<label set> ::= <label>|<label set><label>|<empty>
<label> ::= <identifiers>:

<basic statement> ::= <expressions|<subroutine call>i<transfer

statements>
<gexpression> ::= <operand>‘<assignment statement>‘<left parts>
<exXpression>
<operand> ::= <constant>|<identifiers><subscript option%

(<expression>) <niladic function names>

(1]

<subscript option> ::= [<subscript list>]l<empty>

<subscript list> ::= <subscript>‘<subscript list>;<subscript>

<subscript> ::= <expression>| <empty>

<assignment statement> ::= <assign operand> :=<expression>

<assign operand> ::= <identifier><subscript option>

<left part> ::= <monadic operator>§<operand><dyadic operator>

<monadic operator> ::= <monadic function name>l<monadic scalar
operator>x<monadic mixed operator%

<monadic suboperator>

<monadic scalar operator> ::= +1—!&>% *3L¢G CEIL‘FLR‘ABSEFACT!RNDM?
N@T}CIRCLE

<monadic mixed operators ::= ,IRH@II¢TA3BASVAL]TRANS}EPS

<monadic suboperator> ::= <monadic suboperator type><dimension parts

<monadic suboperator type> ::= <reduction type operator>]PHIl
SPRTUP | SPRTDN
<reduction type operator> ::= <dyadic scalar operator>/i<dyadic
scalar operators\
<dimension part> ::= [<expression>]l<empty>
<dyadic operator> ::= <dyadic function name>§<dyadic scalar operators
<dyadic mixed operator>2<dot operator>| <dyadic

suboveratar>

92

APPENDIX B (Continued)

<dyadic scalar operators> ::= +1—t&{* L@G MAX‘MIN!%!RESD}CQMBE
ANDth{NANDIN¢R§LsleEQ{=[GEQ GTR[
NEQ|CIRCLE

<«dyadic mixed operator> ::= ,;EPSIRHQlIQTAiBASVAL‘REPZRNDM]TAKE[DR%P’;

<dot operator> ::= <dyadic scalar operator>.<dyadic scalar operator>

<dyadic suboperator> ::= <dyadic suboperator type><dimension part>

<dyadic suboperator type> ::= PHI%/‘\

<subroutine call> ::= <operand><dyadic subroutine name><expression>
<monadic subroutine name><expression>|<niladic
subroutine name>

<transfer statement> ::= =:<expression>

APL SYNTAX - CONSTANTS & IDENTIFIERS

<data element> ::= <identifier>‘<constant>

<identifier> ::= <letter>l<identifier><letter>}<identifier><digit>
<letter> ::= a|B|c|p|E[F GlH(I{JiK{L]MiN[Q]p]Q}R}S]T{Ulv]wix}yiz
<digit> ::= 0|1|2|3[4]5]6|7|8|9

<constant> ::= <number>]<string>
<number> ::= <decimal number><exponent part>]<decimal numberﬂ

<eXponent part>

<decimal number> ::= <integer><decimal fraction>l<integer>{<decimal
fraction>
<integer> ::= <unsigned integer>i+<unsigned integer>f#<unsigned
integer>

il

<unsigned integer> <digit>l<unsigned integer><digit»>

<decimal fraction> ::= .<unsigned integer>

<exponent part> ::= <exponent symbol><exponent sign><unsigned
integer>

<exponent symbol> ::= @!E

<exponent sign> ::= #!—t+}<empty>

<empty> ::= {the null string of symbols}

<string> ::= "<proper string>"

<proper string> ::= <string element>|<proper string><string element>

B

Wy

93

APPENDIX B {(Continued)

<string element> ::= <string character>l""

<string character> ::= <visible string character>]<space>
<visible string character> ::= <lett§r>l<digit> <special symbol>
Aelstelela] 1o sl =lel/N] th]-

<space> ::= <single space>§<space><single space>

%

<special symbol> ::= .!(;)

<single space> ::= {a single unit of horizontal spacing which is
blank}

