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the cycle time.

In our circuit graphs, combinational components do not interact with the clock. In CMOS

circuit design, however, there are circuits such as precharged logic gates whose inputs and outputs

are synchronized to the clock. A future topic of research is to represent these types of combina-

tional logic circuits in our circuit graphs so that retiming can be extended to more of the circuits

encountered in practice.

Level-sensitive circuits have long been used for circuits where performance is important. Only

recently, however, have algorithms for analyzing and manipulating these circuits become available.

The potential bene�ts of level-sensitive circuits will make this a very fertile area of CAD research

for some time to come.
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Figure 18: Level-clocked Correlator example and resulting computational schedule when retimed to

a 2-phase clock schedule where T

�

= 10; T

�

1

= 3, and T

�

2

= 7. Input and output signal phases are

the same as in the original circuit. Retiming values are: h4 2 0 0 0 0 1 3i

current sequential synthesis tools and optimal retiming of these circuits will become increasingly

important.

Our next goal is to remove some of the restrictions we have placed on both circuit structure and

clock schedules. Valid clock schedules can be rede�ned to assume a delay greater than zero between

latches of speci�c phases. This introduces two-sided constraints and the manipulation of minimum

delays as well as maximum delays. Work along these lines but in a di�erent context has already

been done by Shenoy [18] and Sakallah [15]. Extending the class of circuits beyond well-formed

circuits places additional constraints on the movement of latches in the circuit. These constraints

depend largely on the clock schedule itself and the implications of removing the ordering constraint

on the correctness constraints.

The idea of retiming has also been used in the area of logic synthesis as a way of exposing

and applying more of the functional relationships in a sequential circuit. Malik, Sentovich and

Brayton [12] describe the technique of peripheral retiming which allows registers in a sequential

circuit to be moved to the periphery of the circuit, thus allowing the global resynthesis of the

combinational logic as an single unit, and Borriello, Bartlett and Raju [1] have explored the use of

localized retiming combined with logic resynthesis to reduce the overall clock period. Our techniques

allow this work to be extended to level-clocked circuits.

Sakallah, Mudge and Olukotun [15] describe a technique whereby the cycle time is minimized

by adjusting the clock schedule instead of the circuit. Typically there is not much freedom in the

design of a clock schedule as it must conform to larger system constraints. However, it would be

interesting to consider simultaneously adjusting the clock schedule and latch placement to minimize
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7.3.5 Cost of Using Bellman-Ford for Unequal-Phase Retiming

The resulting cost of the modi�ed Bellman-Ford algorithm depends on the complexity of the weight-

ing function f(e). When used for unequal-phase retiming, computation of the weight function is

linear; hence the overall algorithm complexity is not increased over equal phase retiming other than

by a constant factor.

7.4 Unequal Phase Retiming of Correlator

Returning to the correlator circuit example as converted to a two-phase, level-clocked circuit, the

circuit may be retimed using the unequal phase retiming techniques described. For example, given

a clock schedule where �

1

= 3 and �

2

= 7, the circuit in Figure 17 is a legal retiming of the circuit

which has interchanged the required phases of the input and output signals. For the same clock

schedule the circuit in Figure 18 is a legal retiming which has not altered the required phases of

input or output signals.
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Figure 17: Level-clocked Correlator example and resulting computational schedule when retimed to

a 2-phase clock schedule where T

�

= 10; T

�

1

= 3, and T

�

2

= 7. Phases of input and output signals

are reversed from the original circuit. Retiming values are: h3 1 0 0 0 0 1 3i

8 Summary and Future Work

We have described an e�cient method for optimally retiming the class of well-formed, multi-phase,

level-clocked circuits using valid clock schedules with arbitrary-length phases. This not only is a

large class of circuits widely used in practice; they are also circuits that can be easily produced by
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If maintaining the phase of input and output signals is important (as it probably is), a more

complex weighting function may be applied to all edges u

e

! v

h

in the constraint graph which

terminate at the host node. This new weight function h(e; d

u

) guarantees that the value of r(v

h

)

is always set to an exact multiple of k and is written:

h(e; d

u

) � k

�

f(e;�d

u

) + d

u

k

�

� d

u

;

where f(e;�d

u

) � f(e; r(u)) � W (e) � L

r(u)

(e) is the previous weighting function used. The

following lemma shows that a constraint graph where h(u! v

h

; d

u

) is used for any constraint edge

terminating at the host node, and where otherwise the edges are weighted with f(e; r(u)), will

satisfy the restriction that subpaths of shortest paths are shortest paths as required by Lemma 14

without any additional restriction on valid clock schedules beyond ordering of enabling edges as

was previously imposed.

Lemma 16: For any path u

p

!! v in a well-formed graph under a k-phase, valid clock schedule

� = f�

1

: : : �

k

g, if T

�

i

+E

i;i+1

� T

�

i+1

, then:

h(u! v

h

; d

u

) � h(u! v

h

; (d

u

+ �)) + �

Proof: By contradiction. We assume that T

�

i

+E

i;i+1

� T

�

i+1

but

h(u! v

h

; d

u

) > h(u! v

h

; (d

u

+ �)) + �:

Using the minimum allowable value of � = 1 and proving the rest of the relationship holds through

induction:

h(u! v

h

; d

u

) > 1 + h(u! v

h

; (d

u

+ 1))

Expanding the functions h(e; d

u

) and f(e;�d

u

), �rst on the right hand side:

h(u! v

h

; d

u

) > 1 + k

$

W (u; v

h

)� L

(r(u)�1)

+ (d

u

+ 1)

k

%

� (d

u

+ 1)

h(u! v

h

; d

u

) > k

$

W (u; v

h

)� L

(r(u)�1)

+ (d

u

+ 1)

k

%

� d

u

:

And now expanding the left hand side:

k

$

W (u; v

h

)� L

r(u)

+ d

u

k

%

� d

u

> k

$

W (u; v

h

) � L

(r(u)�1)

+ (d

u

+ 1)

k

%

� d

u

$

W (u; v

h

)� L

r(u)

+ d

u

k

%

>

$

W (u; v

h

)� L

(r(u)�1)

+ d

u

+ 1

k

%

W (u; v

h

)� L

r(u)

+ d

u

k

>

W (u; v

h

)� L

(r(u)�1)

+ d

u

+ 1

k

�L

i+1

> �L

i

+ 1

However, by Theorem 15 on page 33, if T

�

i

+ E

i;i+1

� T

�

i+1

, then L

i+1

(p) � L

i

(p) � 1. Thus,

�L

i+1

(p) � �L

i

(p) + 1, and the premise is contradicted.
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i
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- -v
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�
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� � �

u

p
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Figure 16: The maximum delay constraint beginning at the �

i

latch is less than the maximum

delay constraint beginning at �

i+1

. Thus, even if L

i+1

(p) + 1 < L

i

(p), paths beginning at a �

i+1

latch are still required to have weight at least L

i

(p)� 1.

illustrated in Figure 15; however, this restriction does not eliminate any previously valid schedules

of interest. For example, assume a particular path p requires L

i+1

(p) < L

i

(p)� 1. In a well-formed

graph every �

i+1

latch is immediately preceded by a �

i

latch; thus the retiming can satisfy the

path beginning with the �

i+1

latch and not satisfy the path beginning with the �

i

latch as shown

in Figure 16. This is clearly an undesirable property of a clock schedule.

7.3.4 Maintaining Input/Output Phase

Under the de�nition of retiming presented in Section 2, the requirement that r(v

h

) = 0 was said to

be trivially satis�ed since for any legal retiming where r(v

h

) 6= 0 there existed an identical retiming

�r(v) where the I/O constraint was satis�ed. The adjusted values for �r(v) could be simply computed

by:

�r(v) = r(v)� r(v

h

):

However, for unequal phase retiming this transformation is no longer necessarily correct; instead,

the phase of latches now have signi�cance to the the retiming process that they did not have

previously.

Speci�cally, if a solution to the retiming problem is found such that (r(v

h

) mod k) 6= 0, then

although the retiming does satisfy all timing constraints on the circuit, the phase of circuit inputs

and outputs will di�er from those in the original circuit. Additionally, if the transformation to �r(v)

such that �r(v

h

) = 0 is performed, the phase of individual latches under �r di�er from the phases

under r(v). Thus the graph under �r(v) may no longer satisfy the timing constraints. Unlike edge-

triggered or equal-phase retiming, unless the retiming value of the host node is an integer multiple

of the number of clock phases, an identical circuit does not exist where r(v

h

) = 0 so that the input

and output phases match those of the original circuit.
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Since r(u) is required to be integer-valued, the minimum increment of � is 1:

f(e

ij

; r(u)) � f(e

ij

; r(u)� 1) + 1 (9)

By induction on �, if the above relationship holds true for � = 1, it must also hold true for any

� > 1.

Unequal phase retiming requires the following constraints to be satis�ed:

r(u)� r(v) �W (u; v)� L

r(u)mod k

(p) for all paths u

p

!! v

The restriction on the variant weight function requires the following condition be satis�ed:

W (p)� L

r(u)mod k

(p) � W (p) � L

(r(u)�1)mod k

(p) + 1

�L

r(u)mod k

(p) � �L

(r(u)�1)mod k

(p) + 1

L

r(u)mod k

(p) � L

(r(u)�1)mod k

(p)� 1

L

i+1

(p) � L

i

(p)� 1

The following theorem shows that the above condition is satis�ed by any valid clock schedule

on a well-formed graph if the enabling edges of the clock phases are ordered in time.

Theorem 15: For any path u

p

!! v in well-formed graph under a k-phase, valid clock schedule

� = f�

1

: : : �

k

g, if T

�

i+1

� T

�

i

+ E

i;i+1

, then L

i+1

(p) � L

i

(p)� 1.

Proof: By Contradiction. Assume that T

�

i

+ E

i;i+1

� T

�

i+1

but L

i+1

(p) < L

i

(p) � 1 for some

phase �

i

. Thus when P

r

(u) = i, L

i+1

(p) + 1 does not satisfy the required weight constraint on the

path p:

d(p) > T

�

i

+

i+L

i+1

(p)+1

X

j=i

E

j;j+1

:

On the other hand, when P

r

(u) = i+ 1, the path weight requirement is satis�ed by L

i+1

(p):

d(p) � T

�

i+1

+

i+1+L

i+1

(p)

X

j=i+1

E

j;j+1

:

Combining the above relationships:

T

�

i

+

i+L

i+1

(p)+1

X

j=i

E

j;j+1

< T

�

i+1

+

i+1+L

i+1

(p)

X

j=i+1

E

j;j+1

T

�

i

+E

i;i+1

+

i+L

i+1

(p)+1

X

j=i+1

E

j;j+1

< T

�

i+1

+

i+1+L

i+1

(p)

X

j=i+1

E

j;j+1

T

�

i

+E

i;i+1

< T

�

i+1

Contradicting the initial assumption.

The result of Theorem 15 shows that the Bellman-Ford algorithm can be used if the valid clock

schedule also meets the constraint that both enabling and latching edges are ordered by phases, as
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2. for i 1 to jV [G]� 1j do f

3. for u! v 2 E[G] do f

4. Relax(u; v; w); gg

5. for u! v 2 E[G] do f

6. if d[v] > d[u] + w(u!!v; d[u]) then return FALSE; g

7. return TRUE;

7.3.2 Applying the Bellman-Ford Algorithm

A constraint set for the unequal-phase retiming problem may be formed using constraints based

either on the phase of the latch preceding the path, r(u)�r(v) �W (u; v)�L

i

(u; v) where the value

L

i

(u; v) is selected based on the value of r(u), or by constraints based on the phase of the latch

following the path, r(u)�r(v) � W (u; v)�

�

L

i

(u; v) where the value

�

L

i

(u; v) is selected based on the

value of r(v). The trade o� between the two constraint sets is the added complexity of inverting

the constraint graph as shown below versus the added complexity of computing

�

L

i

(u; v). We have

chosen to present the former approach because of the simpler formulation of L(u; v) based on the

results of Corollary 11 on Page 24.

We solve the unequal phase retiming problem using constraints of the form r(u)�r(v) � f(r(u)).

A constraint graph is formed with an edge r(u)! r(v) for each constraint and with edge weights:

f(e

uv

; r(u)) � W (u; v)� L

r(u) mod k

(u; v):

We solve the single source shortest path (SSSP) problem beginning from an additional source node

s connected by a zero weight edge to every other node in the circuit graph to guarantee overall

graph connectivity. Following a solution of the SSSP problem on a graph with no negative weight

cycles, there exists a value d

u

for each node u such that for any edge e

uv

in the constraint graph:

d

v

� d

u

+ f(e

uv

;�d

u

):

Setting the values of retiming variables r(u) = �d

u

and r(v) = �d

v

ensures that:

�r(v) � �r(u) + f(e

uv

; r(u))

r(u)� r(v) � f(e

ij

; r(u));

guaranteeing a correct solution to the constraint set.

7.3.3 Restrictions on Clock Schedules

The restriction on the edge weighting function used in Lemma 14 can be written for our graph

formulation as:

f(e

uv

;�d

u

) � f(e

uv

;�(d

u

+ �)) + �:

Substituting the retiming variables r(u) = �d

u

and r(v) = �d

v

leads to:

f(e

ij

; r(u)) � f(e

ij

; (r(u)� �)) + �
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Thus d(v

j

) <

�

d(v

j

), and by Lemma 14, d(v

k

) = d(v

j

)+w(v

j

!!v

k

; d(v

j

)) �

�

d(v

k

), contradicting our

assumption that p

ij

was not a subpath of a shortest path from v

1

to v

k

.

The proof of Corollary 25.2 from [3] must be changed to account for the new method of weighting

edges, although the statement of the corollary itself is only changed to add the required edge weight

restrictions.

Corollary 25.2�: Let G = (V; E) be a weighted directed graph with weight function w : (E; d(u))!R

such that:

w(e; d(u)) � w(e; d(u) + �) + �:

Suppose that a shortest path p from source s to vertex v can be decomposed into s

�p

!! u

e

! v for some

vertex u and path �p. Then the weight of a shortest path from s to v is: �(s; v) = �(s; u)+w(e; �(u)).

Proof: By contradiction. Assume that p is a shortest path but

�(v) = w(�p;0) + w(e;w(�p;0)) < �(u) + w(e; �(u)):

Because the weight of path �p cannot be less than the weight of a shortest path to node u, w(�p; 0) �

�(u). Under the weight restriction:

w(e; �(u)) � w(e; �(u) + (w(�p; 0)� �(u))) + (w(�p; 0)� �(u))

�(u) + w(e; �(u)) � w(�p;0) + w(e;w(�p;0))

Contradicting the assumption.

The Bellman-Ford (and Dijkstra's) algorithm determines a shortest path through the graph

by successive \relaxation" of edges. Because negative weight constraints exist in the constraint

graphs we apply the Bellman-Ford algorithm to �nding a shortest paths solution. The relaxation

subroutine of our modi�ed algorithm is as follows:

Relax(u; v;w)

1. if d[v] > d[u] +w(u!!v; d[u]) then f

2. d[v] d[u] + w(u!!v; d[u]);

3. �[u] u; g

It is necessary to show that the properties of relaxation proven in [3] hold for this new de�nition

of relaxation when used with the variant weight edges in our constraint graphs. Speci�cally, Lemmas

25.3, 25.4, 25.5, 25.7 and Corollaries 25.2 and 25.6 from [3] hold for this new de�nition of relaxation

when used on the variant weight graphs with the restricted weighting function. Because these key

proofs are supported, the Bellman-Ford and Dijkstra's algorithms for �nding shortest paths based

on the relaxation method work using variant weight functions as well as for the standard constraint

weight edges.

Bellman-Ford(G;w; s)

1. Initialize-Single-Source(G;s);

31



Lemma 14: Given a weighted, directed graph G = (V;E) with weight function w : (E; d(u))!R

such that w(e; d(u)) � w(e; d(u) + �) + �, for any path p = hv

0

; v

1

: : : v

k

i, if there are two paths

s

q

!! v

0

and s

�q

!! v

0

such that d(v

0

) �

�

d(v

0

), then the delays d(v

k

) and

�

d(v

k

) of the overall paths

s

q

!! v

0

p

!! v

k

and s

�q

!! v

0

p

!! v

k

are also ordered such that d(v

k

) �

�

d(v

k

).

Proof: By induction on the number of edges in path p.

Basis: Since d(v

0

) �

�

d(v

0

), by the weight restriction:

w(v

0

! v

1

; d(v

0

)) � w(v

0

! v

1

; d(v

0

) + (

�

d(v

0

)� d(v

0

))) +

�

d(v

0

)� d(v

0

);

w(v

0

! v

1

; d(v

0

)) � w(v

0

! v

1

;

�

d(v

0

)) +

�

d(v

0

)� d(v

0

);

d(v

0

) + w(v

0

! v

1

; d(v

0

)) � w(v

0

! v

1

;

�

d(v

0

)) +

�

d(v

0

);

d(v

1

) �

�

d(v

1

):

Induction: Assume d(v

i

) �

�

d(v

i

), then:

w(v

i

! v

i+1

; d(v

i

)) � w(v

i

! v

i+1

;

�

d(v

i

)) +

�

d(v

i

)� d(v

i

)

and d(v

i+1

) �

�

d(v

i+1

).

A modi�cation to Lemma 25.1 from [3] which uses our new de�nition for edge weights provides

the �rst step necessary to apply each of the subsequent proofs for the Bellman-Ford algorithm. The

original lemma stated that all subpaths of any shortest path were also shortest paths. Proving the

same for variant weight constraints would require that weight functions be strictly increasing with

increasing weight of a path to the beginning of an edge, ie. w(e; d(u)) < w(e; d(u) + �) + �: This

stronger limitation would change the result of Lemma 14 such that d(v

k

) <

�

d(v

k

), leading to the

identical formulation of the original Lemma 25.1; however, the shortest path algorithm requires

only that some shortest path from the source to any node be entirely composed of subpaths which

are also shortest paths. The relaxation process identi�es shortest paths with this speci�c property.

Other alternate shortest paths to a node may have subpaths which are not shortest paths. Allowing

these alternative paths to exist allows the edge weight function to be restricted by a less-than-or-

equal relationship as in Lemma 14.

Lemma 25.1�:

Given a weighted, directed graph G = (V; E) with weight function w : (E;d(u))!R such that:

w(e; d(u)) � w(e; d(u) + �) + �;

if there is a path from source v

1

to v

k

then there is a shortest path p = hv

1

; v

2

; : : : ; v

k

i such that

every subpath of p from vertex v

i

to vertex v

j

is a shortest path from v

i

to vertex v

j

.

Proof: By contradiction. Assume two subpaths p

ij

and �p

ij

exist such that w(p; d(v

i

)) <

w(�p; d(v

i

)) but p

ij

is not a subpath of any shortest path to node v

k

. The delay of the corresponding

paths from source s to v

j

are:

d(v

j

) = d(v

1

) + w(p

1j

; d(v

1

)) + w(p

ij

; d(v

i

))

�

d(v

j

) = d(v

1

) + w(p

1j

; d(v

1

)) + w(�p

ij

; d(v

i

)):
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suitable weight functions f . Intuitively, the Bellman-Ford technique holds one of the two variables

in a two variable constraint constant while modifying the other variable such that the constraint is

met. Holding r(u) constant also holds each value of r

i

(u) constant, allowing manipulation of r(v)

to meet the constraint requirement. The restriction on f places constraints on the clock schedules

allowed under retiming; these, however, include all schedules of interest in practice.

7.3.1 Using the Bellman-Ford Algorithm with Variant Weights

We now show how the Bellman-Ford algorithm can be used to solve \variant-weight" constraints

where all constraints are of the form:

x

j

� x

i

� f(x

i

) (7)

or of the form:

x

j

� x

i

� f(x

j

): (8)

The variant weight technique may be used to solve the �rst form of constraint directly; however,

the second form requires reversing the direction of edges in the constraint graph over which the

shortest paths algorithm is to be run. We �rst show that the shortest paths algorithm can be used

to solve constraints of the �rst form and later reverse the constraint graph to allow solution of the

second form.

As in the standard method of using shortest paths algorithms to solve constraints on the di�er-

ence between two variables, we �rst form a graph from the constraint set with a node for each vari-

able x

i

to be constrained and an edge x

i

! x

j

with weight f(x

i

) for each constraint x

j

�x

i

� f(x

i

).

Additionally a single source node s is added and a zero-weight edge from the source node to each

other node in the constraint graph.

Each node u

i

is assigned a value d(u

i

) which is the weight of some path from the source s to

u

i

. The goal of the Bellman-Ford algorithm is to minimize d(u

i

) by �nding the shortest path from

s to u

i

. The resulting shortest path weight �(u

i

) is the solution for x

i

.

Each edge u

e

! v in the graph is assigned a weight function w(e; d(u)) (or w(u! v; d(u)). The

weight of a path p = hv

0

; v

1

; : : : ; v

k

i is:

w(p; d(v

0

)) =

k

X

i=1

w(v

i�1

! v

i

; d(v

i�1

)):

The correctness of the shortest-path algorithm relies on the monotonicity of shortest paths in

the graph. That is, the weight of a shortest path from the source node s to the end of a path u!!v

must increase monotonically with the value of d(u):

if w(s

p

!! u; 0) < w(s

�p

!! u; 0) then d(s

p

!! u!!v) � d(s

�p

!! u!!v):

We show in Lemma 14 that the following property on the edge weight function is su�cient to ensure

monotonicity:

8 edges e 2 E w(e; d(u)) � w(e; d(u) + �) + �;

where � 2 R is any positive value.
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Thus Eqn. 5 becomes:

L

j

(u; v)� L

0

(u; v) + r(u)� r(v) � W (u; v)� L

0

(u; v)

r(u)� r(v) � W (u; v)� L

j

(u; v):

(Only If:) If the constraint set is not satis�ed then for some constraint:

k

X

i=1

r

i

(u)[L

i

(u; v)� L

i�1

(u; v) + 1]� r(v) > W (u; v)� L

0

(u; v):

Using the expansion to Eqn. 5:

k

X

i=1

(r

i

(u)� r

i+1

(u))L

i

(u; v) + r(u)� r(v) > W (u; v)� L

0

(u; v): (6)

Case 1: If (r(u) mod k) = 0, then P

r

(u) = P (u) and r

i

(u) � r

i+1

(u) = 0 for all i. Thus Eqn. 6

becomes:

r(u)� r(v) > W (u; v)� L

0

(u; v)

For a critical path u

p

!! v, w

r

(p) = W (u; v) � r(v) + r(u) < L

0

(u; v): Thus the path weight is

less than the minimum path weight required for correct operation.

Case 2: If (r(u) mod k) = j, then P

r

(u) = P (u) + j and Eqn. 6 becomes:

L

j

(u; v)� L

0

(u; v) + r(u)� r(v) > W (u; v)� L

0

(u; v)

r(u)� r(v) > W (u; v)� L

j

(u; v):

Again, for a critical path u

p

!! v, w

r

(p) =W (u; v)�r(v)+r(u) < L

j

(u; v): And the path weight

in the retimed graph is less than that required for correct operation.

The complete set of constraints that must be met by a retiming of a multi-phase circuit graph

G using a valid k-phase clock schedule is:

I/O: r(v

h

) = 0

Positive Edge Weight: r(u)� r(v) � w(e) for all edges u

e

! v

Phased Variables : r(u)�

P

k

i=1

r

i

(u) = 0

Latch Ordering:

(

r

j

(u)� r

i

(u) � 1

r

i

(u)� r

j

(u) � 0

)

for all j < i

Maximum Path Delay:

P

k

i=1

r

i

(u)[L

i

(u; v)� L

i�1

(u; v) + 1]� r(v) � W (u; v) � L

0

(u; v)

7.3 Retiming Using Variant Weight Constraints

Because L

i

(u; v) is a constant value throughout the retiming process, each of the above equations is

a legal ILP constraint with a summing of variables multiplied by constants on the left hand side and

a constant bound on the right hand side. Additionally, because these constraints can be written

as r(u) � r(v) � f(r(u)), the constraint set may also be solved by the Bellman-Ford algorithm for

28



Thus, l = r(u) mod k, R =

j

r(u)

k

k

and r

i

(u) meets the de�nition above.

(Only If:) Summing the r

i

(u) values results in:

k

X

i=1

r

i

(u) = k �

�

r(u)

k

�

+ r(u) mod k

= r(u):

Let l = r(u) mod k. Then, by de�nition, for all j � l, r

l

(u) � r

j

(u) � 0, and for all j > l,

r

j

(u)� r

l

(u) � 1. Thus the Latch Ordering constraints are true.

7.2.2 Phase Speci�c Constraints

Using the expressions for minimum path weight and phased retiming values, it is now possible to

implement phase speci�c constraints which impose weight restrictions on critical paths between

nodes u and v conditional on the phase of node u.

Theorem 13: A well-formed graph G using a k-phase clock schedule � operates correctly

under a retiming i� for all u and v in V :

k

X

i=1

r

i

(u)[L

i

(u; v)� L

i�1

(u; v) + 1]� r(v) �W (u; v)� L

0

(u; v):

Proof: (If:) We expand the above equation to:

k

X

i=1

r

i

(u)L

i

(u; v)�

k

X

i=1

r

i

(u)L

i�1

(u; v) +

k

X

i=1

r

i

(u) � r(v) � W (u; v)� L

0

(u; v)

k

X

i=1

r

i

(u)L

i

(u; v)�

k�1

X

i=0

r

i+1

(u)L

i

(u; v) + r(u)� r(v) � W (u; v)� L

0

(u; v)

k

X

i=1

(r

i

(u)� r

i+1

(u))L

i

(u; v) + r(u)� r(v) � W (u; v)� L

0

(u; v) (5)

Case 1: If (r(u) mod k) = 0, then P

r

(u) = P (u) and r

i

(u) � r

i+1

(u) = 0 for all i. Thus Eqn. 5

becomes:

r(u)� r(v) �W (u; v)� L

0

(u; v)

as desired.

Case 2: If (r(u) mod k) = j, then P

r

(u) = P (u) + j and

r

i

(u)� r

i+1

(u) =

8

>

<

>

:

1 for i=j

�1 for i=k

0 otherwise
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array is no longer obviously Totally Uni-Modular (TUM) as described in [14], although there is

some evidence that the array may be TUM due to the fact that a modi�cation of the Bellman-Ford

algorithm can solve the constraint array as discussed in Section 7.3. In general, solving an ILP

constraint array which is not TUM is a NP-complete problem.

7.2.1 Phased Retiming Values

We now split each retiming value r(u) into a set hr

1

(u); r

2

(u); : : : ; r

k

(u)i according to the following

de�nition:

r

i

(u) =

8

<

:

j

r(u)

k

k

+ 1 for i � r(u) mod k;

j

r(u)

k

k

for i > r(u) mod k;

Physically, r

i

(u) represents the number of �

P (u)+i

latches moved across vertex u by a retiming.

For notational convenience we will sometimes refer to r

0

which is equivalent to r

k

. In a sense we are

exposing information about the phase of a node under any retiming given knowledge of the well-

formed graph structure. The following lemma makes use of this information to form path-weight

constraints which are speci�c to the current phase of the node beginning the path.

Lemma 12: A set of values hr

1

(u); r

2

(u); : : : ; r

k

(u)i is a set of phased retiming values as

de�ned above i� the following constraints are met:

Phased Variables: r(u) =

P

k

i=1

r

i

(u)

Latch ordering:

(

r

j

(u)� r

i

(u) � 1

r

i

(u) � r

j

(u) � 0

)

for all j < i

Proof: (If:) The two latch ordering constraints can be combined as:

r

i

(u) � r

j

(u) � r

i

(u) + 1 for all j and i; j < i;

In other words, if there is any r

l

(u) greater than r

k

(u), it will be greater by at most 1 and

for all j < l, r

j

(u) = r

l

(u) = r

k

(u) + 1. Thus, under the constraints, all r

i

(u) are equal (Case 1

below) or there exists exactly one value r

l

(u) such that for all j � l, r

l

(u) = r

j

(u) and for all j > l,

r

l

(u) = r

j

(u) + 1 (Case 2 below).

Case 1: All r

i

(u) are equal. Since r(u) =

P

k

i=1

r

i

(u) and by Corollary 3 r(u) mod k = 0 then

r

i

(u) =

j

r(u)

k

k

satisfying the de�nition.

Case 2: The r

i

(u) are not all equal. Therefore for j � l, r

j

= R+ 1, and for j > l, r

j

= R, for

some R and l. Then:

r(u) =

k

X

i=1

r

i

(u)

=

l

X

i=1

(R + 1) +

k

X

i=l+1

(R)

= l(R+ 1) + (k � l)R

= kR + l
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�

w(p)

k

�

T

�

+

w(p)mod k

X

j=0

E

P (u)+j;P (u)+j+1

� d(p)� T

P (u)

Applying (mod T

�

) results in:

0 + [

w(p)mod k

X

j=0

E

P (u)+j;P(u)+j+1

] mod T

�

� [d(p) � T

P (u)

] mod T

�

: (4)

Case 0: If [d(p)� T

P (u)

] mod T

�

� E

P (u);P (u)+1

, then w(p) mod k = 0 and by Eqn. 1 on page 9,

w(p) = k

$

d(p)� T

P (u)

T

�

%

The remaining cases follow similarly.

We de�ne L

i

(u; v) as the minimum number of latches required on a critical path from u to v

when P

r

(u) = P (u)+ i; 0 � i < k, where P

r

(u) � the phase of node u in the retimed graph G

r

. For

notational convenience we will sometimes refer to L

k

which is equivalent to L

0

. Values for L

i

(u; v)

are computed by substitution of D(u; v) in for d(p) in Corollary 11. Note that the identi�cation of

a critical path based on Lemma 8 on 16 is not dependent on the phase of the initial node, P (u).

Thus we can use the same methodology for �nding critical paths in graphs controlled by an unequal

phase clock as we did for equal phase clocks. This technique was provided in Section 5.1.

Now that a set of minimum weight values has been determined, it is necessary to form ILP

constraint sets that require the correct number of latches on a path given the phase of the �rst

node in the path. For example, in a 2-phase system, for any pair of nodes u and v the following

two constraints are required:

r(u)� r(v) � W (u; v)� L

0

(u; v) for P

r

(u) = P (u)

r(u)� r(v) � W (u; v)� L

1

(u; v) for P

r

(u) = P (u) + 1

These two constraints are not in e�ect simultaneously because of the conditional expression on

which each depends. If both were imposed, the minimum value of L

i

(u; v) would be the value

required at all times on critical paths from u to v. Instead we formulate a new set of variables

which encode knowledge of the current phase of node u and form constraints using those variables

such that the correct value of L

i

(u; v) is imposed. The new variables for each node are known as

\phased retiming" variables.

7.2 A General ILP Solution Method

In solving the unequal-phase retiming problem using a general ILP approach, the retiming values

r(u) are �rst split into sets of retiming values r

i

(u), for 1 � i � k. Each \phased retiming" value

r

i

(u) indicates the number of phase P (u) + i latches moved across node u. New constraints are

added to maintain the sequential movement of latches using these phased retiming values. Given

these new variables, \phase speci�c" constraints can be derived which require the correct number of

latches to be placed along any path given any legal combination of phased retiming values. Although

a complete set of ILP constraints may be formed and solved while optimizing a non-trivial cost

function, the solution process may be very ine�cient. In particular, the resulting ILP coe�cient
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�
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�
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w(p) = 0

w(p) = 1

Figure 14: A two-phase underlapped clock schedule. Distances are the maximum time period for a

path of given weight beginning at a vertex preceded by the adjacent clock phase.

in well-formed graphs, the knowledge of what phase latch precedes a given vertex is directly available

from the retiming values.

First, the minimum weight value for a critical path is extended to a set of values L

i

(u; v); 0 �

i < k, indexed relative to the initial arrangement of latches in the circuit graph. Given the new

required weighting dependent on the phase of the latch currently beginning the path, three methods

of solution are available. The �rst is a standard ILP solution. The second method makes use of the

fact that all interesting constraints in the ILP solution may be formed as a constraint involving the

di�erence of two variables and a weight which is a function of one of those variables. A modi�cation

to the Bellman-Ford algorithm can be used to solve this variant weight constraint set e�ciently.

Finally, the third solution method makes use of the modi�cation to the Bellman-Ford algorithm

to solve an asymptotically faster algorithm designed around a Mixed-Integer-Linear programming

problem.

7.1 Minimum Weight Requirements

The result of Corollary 5 on page 14 may be re-written to provide a general equation for the

minimum weight of a path. The equation must be solved on a case by case basis.

Corollary 11: The weight w(p) of any path u

p

!! v in a correctly timed, well-formed circuit

graph G using a valid k-phase clock schedule is bounded by:

w(p) � k

j

d(p)�T

P (u)

T

�

k

+

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

if (d(p)� T

P (u)

) mod T

�

is:

�1 = 0

0 � E

P (u);P (u)+1

1

(

> E

P (u);P (u)+1

� E

P (u);P (u)+2

.

.

.

.

.

.

k � 1 > E

P (u);P (u)+k�1

Proof Sketch: From Corollary 5 we have:

w(p)

X

j=0

E

P (u)+j;P (u)+j+1

� d(p)� T

P (u)
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Correlator T

�

opt

# path T

�

opt

# path

size in nodes Edge-Trig constraints Ideal 2-equal-phase constraints

8 13 5 10 23

10 13 8 10 41

12 14 16 10.286 65

14 14 20 10.286 95

16 14 24 10.5 129

20 14 32 10.5 219

30 14 52 10.5 528

50 14 92 10.5 1546

100 14 192 10.5 6354

Table 1: Comparison of optimal clock periods found for varying sizes of correlator circuits.

# path T

�

opt

for

N constraints Ideal 2-equal-phase

1 142 14.00

2 285 12.74

3 474 11.56

4 658 11.72

5 838 11.72

6 880 11.02

7 1056 10.94

# path T

�

opt

for

N constraints Ideal 2-equal-phase

8 1225 11.17

9 1309 11.02

10 1437 10.78

12 1757 10.78

15 2098 10.78

16 2169 10.70

17 2240 10.50

Table 2: Optimal clock periods found while using restricted constraint sets that allow borrowing over

N latches in the 100 node correlator example.

Maximum path delay: r(u)� r(v) �W (u; v)� L(u; v) for any 0 < L(u; v) < N

Limited path delay: r(u)� r(v) �W (u; v)� (L(u; v)� 1) for any L(u; v) � N

Since long paths are now over-constrained and a greater portion of the path constraints will be

redundant to shorter sub-paths, limiting borrowing in this manner reduces the number of constraints

required to retime the graph at the expense of �nding a less than optimal solution. The experimental

results shown in Table 2 demonstrate that the 100 node correlator example can be retimed to the

optimal clock period with many fewer constraints than those used for the most general case.

The time values in Table 2 were derived using smaller, limited constraint sets. The di�culty

with this heuristic technique is also demonstrated: The optimal time period found does not decrease

monotonically with increasing number of levels. This is due to an interaction of the graph granu-

larity with the level at which paths are over-constrained. This example also shows that borrowing

is in fact done over long paths in the optimally timed circuit.

7 Retiming of Unequal Phase Circuits.

Unlike equal-phase retiming, the minimum weight of a path under an unequal phase clock schedule

depends on the phase controlling the latch at which the path begins. This di�erence is demonstrated

in Figure 14 which shows the maximum length of paths of weight 0 and 1, beginning at a latch

controlled by each phase of a 2-phase clock. Neither the edge-clocked retiming methods from [10, 11]

nor the equal-phase retiming developed in Section 6 can di�erentiate which phase of latch is being

moved across a particular vertex in the graph; however, because latch phases alternate along paths
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Figure 13: The correlator circuit optimally retimed using a 2-phase, equal-period clock where T

�

=

0:4 � T

�

; T

�

opt

= 10:345 units.

step has cost O(jV j

3

) providing theoretical bounds of O

�

jV j

3

log

T

�

opt

T

c

c

�

for Step 3 and O(b � jV j

3

)

for Step 4 where b is the number of bits of accuracy desired.

Example 2: A 2-equal-phase example with phase underlap

Real circuits cannot be designed with an ideal clock schedule as was used in the previous

example. Instead a typical clock schedule might have each active period T

�

= 0:4 � T

�

giving an

underlap between phases of 0:1 � T

�

. In this example we retime the correlator circuit graph using

such a clock schedule.

As in the previous example T

c

c

= 10; however, in this case a retiming to that clock period

cannot be found. A legal retiming is found to T

�

= 20 and the W and D matrices match at 20 and

10. The set of possible time periods C is:

C = f10:0; 10:345; 10:526; 10:833; 11:053; 11:111; 11:25:::g

A binary search over this list �nds the fastest time possible T

�

opt

= 10:345. The circuit retimed to

this clock schedule is shown in Figure 13.

6.3 Reducing the Required Number of Constraints

We do not consider the larger number of constraints required for the level-clocked retiming to be

much of a problem since the overall number of constraints is still limited to jV j

2

. However, it is

true that the expected number of constraints is much greater than for edge-clocked retiming since

long paths usually have a di�erent constraint imposed on them than on their subpaths whereas in

edge-clocked graphs constraints on long paths are usually redundant with a shorter subpath. The

exact relationship between the number of constraints for the two retiming methods is dependent

on the graph structure and on the delay of vertices in the graph relative to the length of the

clock period of interest. The correlator example is again useful here because it may easily be

extended lengthwise and the number of constraints for di�erent-sized graphs compared. Table 1

displays T

�

opt

in relationship to number of nodes in the correlator graph and the number of path

constraints required for each technique to retime to the corresponding optimal clock period.

It is possible to limit the number of constraints required for retiming by limiting the number of

latches through which borrowing is allowed. If borrowing is allowed only through N latches, path

constraints are de�ned as:
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3. Repeatedly multiply the value of T

c

c

by � until a legal retiming is found. Set T

�

opt

+ to the

clock period of the �rst legal retiming. Set T

�

opt

� to

T

�

opt

+

�

.

4. Perform a binary search over (T

�

opt

�; T

�

opt

+] until the desired level of accuracy is reached.

For many cases the critical paths for T

�

opt

� and T

�

opt

+ are the same and so we can determine

an exact set of potential optimum clock periods. As shown in Figure 11 on page 16, the value of

slack for a given path is linear over all clock periods, thus there can be at most one intersection

point between the slack values for two paths. Below this intersection point one path will always

have less slack than the other and above will always have greater slack. Once two clock periods

T

�

opt

� and T

�

opt

+ have been determined for which both W matrices are equivalent for all u, v,

no further computation of critical paths is needed.

The following theorem uses the fact that for an optimal retiming of a level-clocked circuit graph

(for a period greater than the critical cycle period) there will exist some critical path which exactly

meets the minimum weight requirement. If this were not true there would exist a faster clock period

for the same weighting. Assuming a range over the optimal period is found such that the critical

paths do not change, we change the inequality from the minimum path weight result in Corollary 9

to an equality and form a set of possible optimal clock periods. Step 4 of the previous algorithm is

terminated when matching critical paths are found and is followed by a binary search over the set

of potential optimum clock periods.

Theorem 10: The optimal cycle time T

�

opt

of a well-formed circuit graph G clocked by a

k-equal-phase clock is in the set C:

C =

( 

D(u; v)

i+1

k

+ T

d

!

�

�

�

�

�

u; v 2 V ; i 2 f0; 1 : : : ng

)

where: T

d

= duty cycle of each phase =

T

�

T

�

and n is the maximum integer value for which the

resulting clock period computed is greater than the critical cycle period.

Proof: Follows from setting the left and right hand sides of Corollary 9 equal and solving for

T

�

. Because the value T

�

is proportional to T

�

, substitute in duty cycle (T

d

� T

�

) instead which

remains constant for the clock schedule.

Note that real circuit graphs have built-in error due to estimation of combinational logic delays,

and thus the value of generating a set of precise possible optimum clock periods is questionable.

Moreover, large, complex circuits with many combinations of possible path delays and weights have

a densely populated set of possible optimum clock periods. Thus a search for the precise optimum

clock period is of limited utility.

In the worst case, the algorithm stated provides an estimate of the optimal retiming of the

graph to the desired level of accuracy. The complexity of Step 1 is provably O(d � jEj) using the

algorithm by Hartmann et. al. [5]. Although jEj may be as large as jV j

2

, in practice circuit graphs

have jEj = O(jV j). Moreover, Burns' algorithm typically performs in O(jEj) [2]. (Lower worst case

bound algorithms may be found in Lawler [9]; however, in practice, this step is not limiting.) Thus

algorithmic complexity is driven by either Step 3, the number of steps upward required to �nd

T

�

opt

+, or Step 4, the number of steps downward required to �nd the desired result. Each trial
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6.1 Correlator Example Revisited

The correlator shown in Figure 3 on page 4 can be transformed into a well-formed, two-phase,

level-clocked circuit by replacing each register in the edge-clocked circuit with a pair of �

1

; �

2

latches, thereby doubling the weight of each edge. Retiming this example using a two-equal-phase,

non-overlapped clock schedule leads to the circuit graph of Figure 5 on page 4. The W and D

matrices are the same as in the original example except that all values in W are multiplied by two

to re
ect the conversion to latches.

Finding T

c

c

results in a value of 10 units. Several cycles are critical in this particular graph:

Vertices in cycle d(cycle) w(cycle) d/w

v

h

; v

1

; v

7

; v

h

10 2 5

v

h

; v

1

; v

2

; v

6

; v

7

; v

h

20 4 5

v

h

; v

1

; v

2

; v

3

; v

5

; v

6

; v

7

; v

h

30 6 5

Retiming to an ideal two-equal-phase clock schedule with T

�

= 10 (d=w = 5 for any critical

cycle, which requires T

�

= 10 for a 2 phase clock) requires that the following path constraints be

met:

Path # latches D(p)

u!!v req'd

1!!4;1!!6;2!!5 1 > (1 � T

�

)

5!!6;6!!7;7!!2

1!!5;2!!7;3!!6

4!!6;6!!1;7!!3 2 > (1:5 � T

�

)

7!!6

Path # latches D(p)

u!!v req'd

5!!7;6!!3 3 > (2 � T

�

)

7!!5

3!!1;4!!1;5!!2 4 > (2:5 � T

�

)

6!!4;6!!5

4!!3;5!!4 5 > (3 � T

�

)

The above set of constraints when combined with the necessary edge constraints may be solved

successfully to de�ne a set of retiming values resulting in the latch placement in Figure 5.

6.2 Determining Potential Optimum Clock Periods

It is not always possible to retime level-clocked circuits to the lower bound clock period given by

a critical cycle as in the previous example. In an optimal edge-clocked circuit there exists some

critical path of zero weight with delay exactly the value of the clock period and thus it is a simple

matter to make a list of all path delays from the D array and perform a binary search on that list

to determine the optimal T

�

. In level-clocked circuits the critical path may be of non-zero weight,

and the critical path between two vertices may di�er for di�ering clock periods. In general we

cannot identify a set of potential optimum clock periods over which to search, and instead perform

a binary search over a range to the desired accuracy.

We can now de�ne a new algorithm for �nding the optimal retiming of a k-equal-phase, level-

clocked circuit graph:

Algorithm: Optimal k-Equal-Phase Retiming:

1. Determine the critical cycle period T

c

c

= max

n

k

�

d(c)

w(c)

�o

.

2. Attempt to retime to T

c

c

; if successful T

�

opt

= T

c

c

.
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similar to the original Leiserson et. al. methods to perform retiming of level-clocked circuits.

An equal-phase clock schedule is a valid k-phase clock set � = f�

1

; :::; �

k

g where all active phase

periods T

�

i

are equal, and all phase shifts E

i;i+1

=

T

�

k

: Since the length of the active period is the

same for all phases, we use T

�

to refer to the length of the active period of any phase. Note that this

de�nition allows overlapped clock phases under the general constraints on valid clocks. Because the

active periods and phase shift values of the phases of each adjacent pair of latches are equal, the

retiming process can ignore the actual phase of the individual latches. In the identical manner to

edge-clocked circuits, a retiming value r(v) is assigned to each vertex of the circuit graph. However,

a value of r(v) = n now moves n latches across the vertex rather than n registers.

Proofs in [10, 11] for edge-clocked circuit graphs showing that all cycles maintain the same

number of latches and that phase di�erences between paths with common endpoints remain constant

also hold for level-clocked graphs. Additionally, because r(v

h

) � 0, no new latches will be introduced

from or transferred to the outside world. It is not possible to limit path constraints for level-clocked

circuits to the length of zero-weight paths as in edge-clocked circuits. The delay of any latch-

bounded path is a�ected by the paths preceding and following it, requiring constraints for higher

weight paths as well.

Corollaries 5 and 6 provide a basis for retiming level-clocked circuits operating under an k-

equal-phase clock schedule. These constraints take two forms: a minimum possible clock period

based on simple cycles and sets of timing constraints for given clock periods on paths.

The method used to form the required constraint set is to �rst guarantee that the minimum

cycle period constraint imposed by Corollary 6 will be met. Following identi�cation of the minimum

possible clock period based on cycles we combine the result of Corollary 5 with knowledge of an

equal-phase clock to derive L(u; v), the minimum weight for a critical path between u and v. Using

this result a pass is made through the W and D arrays corresponding to the critical paths in G to

form a set of path constraints requiring L(u; v) latches rather than one as in the previous work.

We now restate the maximum delay constraint as a minimum weight constraint which provides

a lower bound on the number of latches on a simple path in terms of the path delay.

Corollary 9: The weight of any simple path p in a correctly operating, well-formed circuit

graph G using a k-equal-phase clock schedule is bounded by:

w(p) �

&

d(p)� T

�

T

�

k

'

� 1

Proof: The result follows directly from Corollary 5 on page 14 using the fact that for k-equal-phase

clock schedule, E

i;i+1

=

T

�

k

and 8

i;j

; T

�

i

= T

�

j

= T

�

= T

P (l

0

)

.

We de�ne L(u; v) =

�

D(u;v)�T

�

T

�

k

�

� 1 as the minimum number of latches required on a critical

path from u to v. This value forms the basis for a set of constraints for retiming well-formed circuit

graphs controlled by a k-equal-phase clock schedules for a given clock period T

�

:

I/O: r(v

h

) = 0

Positive edge weight: r(u) � r(v) � w(e) for all edges u

e

! v

Maximum path delay: r(u)� r(v) �W (u; v)� L(u; v) for all L(u; v) � 1
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Figure 12: Plot of slack vs. clock period for paths p, q and r.

That is, we will use only clock periods such that T

�

� k

�

d(c)

w(c)

�

for all cycles c in G. Thus there can

be no negative weight cycles for clock periods of interest and all critical paths can be determined

e�ciently.

Note that unlike edge-clocked circuits, in general D and W must be recomputed for every

clock period attempted by the retiming; However, returning to Figure 11 we can plot the result

of fw(p)

T

�

k

� d(p)g from Lemma 8 for each path against the clock period T

�

. The resulting plot

is shown in Figure 12. The slack value for each path p is a linear function in clock period with

slope=

w(p)

k

and y-axis intercept at �d(p). At all clock periods greater than the intersection point

between the slack functions for two paths, one of the paths will have less slack than the other and

the other path will have less slack at all clock periods less than the intersection point. For any two

paths of the same weight, the path with greater delay will always have less slack than the other.

Due to these properties, if a particular path is critical for any two clock periods, it will also be

critical for all clock periods in between.

Once two clock periods are found, one above the optimal clock period T

�

opt

+ and one below

the optimal clock period T

�

opt

�, for which W (u; v; T

�

opt

�) = W (u; v; T

�

opt

+) for all values u and

v, then for any clock periods T

�

opt

� � T

�

� T

�

opt

+ the arrays W and D will remain constant

and need not be recomputed. Additionally, because the slope of each slack function is � 0, if

W (u; v; T

�

opt

�) = minfw(p) j u

p

!! vg then W (u; v; T

�

) = W (u; v; T

�

opt

�) for all T

�

� T

�

opt

�.

6 Retiming for Equal Phase Clocks

The theorems in the previous section form the basis for a set of constraints which can be used to

determine whether a retiming exists for a particular clock schedule. In this section we investigate

a simple clock schedule with equal length phases. In Section 7 we extend the capability to more

complex clocks with unequal length phases. The resulting constraint sets can be solved in a manner
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Proof: By Contradiction. The delay constraint of Corollary 5 may be restated as:

T

P (l

0

)

+

w(p)

X

i=0

E

P (l

i

);P (l

i+1

)

� d(p) � 0:

Assume that u

p

!! v is a path where fw(p)

T

�

k

� d(p)g � fw(q)

T

�

k

� d(q)g for all paths u!!v but

p is not a critical path. This implies that there exists some u

q

!! v and a retiming such that:

T

P(l

0

)

+

P

w

r

(p)

i=0

E

P(l

i

);P (l

i+1

)

� d(p) � 0; and T

P (l

0

)

+

P

w

r

(q)

i=0

E

P (l

i

);P (l

i+1

)

� d(q) < 0. That is, the

minimum weight constraint is satis�ed for p but not for q in the retimed circuit. However, since

retiming maintains a constant di�erence in path weight for p and q, and the graph is well formed,

w

r

(q) � w

r

(p) = km = w(q) � w(p) where k = the number of clock phases and m is some integer.

Combining the weight constraint inequalities gives:

T

P (l

0

)

+

w

r

(p)

X

i=0

E

P (l

i

);P (l

i+1

)

� d(p) > T

P (l

0

)

+

w

r

(q)

X

i=0

E

P (l

i

);P (l

i+1

)

� d(q);

w

r

(p)

X

i=0

E

P (l

i

);P (l

i+1

)

� d(p) >

w

r

(p)+km

X

i=0

E

P (l

i

);P (l

i+1

)

� d(q);

�d(p) >

w

r

(p)+km

X

i=w

r

(p)+1

E

P (l

i

);P(l

i+1

)

� d(q)

Using the result from Eqn. 1 on page 9,

P

km

i=1

E

l

i

;l

i+1

= mT

�

. Hence:

�d(p) > mT

�

� d(q);

�d(p) > km

T

�

k

� d(q);

�d(p) > (w(q)� w(p))

T

�

k

� d(q);

w(p)

T

�

k

� d(p) > w(q)

T

�

k

� d(q):

Which contradicts our initial assumption.

We now determine the values in the matrices D(u; v; T

�

) and W (u; v; T

�

) as d(p

c

) and w(p

c

)

for a critical path u

p

c

!! v. This in turn requires identifying the path which minimizes the quantity

fw(p)

T

�

k

�d(p)g over all paths u

p

!! v. We can �nd the paths which minimize this value by running

an all-pairs shortest path algorithm on G using new edge weights ~w(e) = (w(e)

T

�

k

�d(v

2

)) for each

v

1

e

! v

2

.

3

The Floyd-Warshall algorithm may be used to solve the all-pairs shortest path problem since it

will handle the possibly negative weight values of ~w(e) as long as there are no negative weight cycles

in the graph. This requires showing that there is no cycle c for which ~w(c) = w(c)

T

�

k

� d(c) < 0.

As a result of Theorem 7, we can place a lower bound on the clock period used to retime a circuit.

3

The sum of all d(v

2

) in ~w equals d(u

p

!! v)� d(u) rather than d(p). However, because node u is the �rst node in

all paths u

p

!! v, minimization of ~w will minimize fw(p)

T

�

k

� d(p)g as well.
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Figure 11: Critical paths in level-clocked circuits may not be the same as critical paths in edge-

clocked circuits.

5.1 Critical Paths

Now that a lower bound on possible clock periods has been established based on cycles in the

graph, a search process must be performed to determine the minimum clock period above that

bound for which a retiming can be found that satis�es path constraints. To avoid having to

determine constraints for all paths in the circuit which is possibly exponential in number of edges,

a critical path between any two nodes u and v is found such that the minimum weight constraints

for all paths between the nodes can be met by just satisfying the constraints of the critical paths.

We rede�ne a critical path for a circuit to be the path u

p

!! v such that if the minimum weight

constraint is met for p, then it is met for all paths from u to v for any valid retiming. Critical

paths are more di�cult to determine in level-clocked circuits. The reason is that the path limiting

the clock period may not be a zero-weight path as guaranteed for edge-clocked circuits. This is

demonstrated in Figure 11. Three paths exist between nodes u and v, labeled from top to bottom:

path vertices w(p) d(p)

p u! v

2

! v

3

! v 4 9

q u! v

1

! v 2 3

r u! v

4

! v

5

! v 2 5

In an edge-clocked circuit, path r is clearly critical since w(r) = minfw(p); w(q); w(r)g and

d(r) = maxfd(q); d(r)g; However, if we consider this a level-clocked circuit, with 2-equal-phases

and period T

�

= 2, and using the techniques presented in Section 6, the minimum required weight

of path p is 7 while that of path r is 4. If path r were selected as the critical path between u and v,

a retiming which results in w

r

(r) = 4 would be considered successful even though (since retiming

maintains a constant di�erence in path weight between p and r) the resulting w

r

(p) = 6 . Under

the new de�nition, the critical path between u and v is path p for clock period T

�

= 2. Note that

the critical path under the new de�nition will vary with di�ering clock periods. For instance, the

critical path in Figure 11 at T

�

= 10 is r instead of p.

We must now identify the most constraining path from u to v for a given clock period. The

following lemma provides the basis for e�ciently determining a critical path.

Lemma 8: A path u

p

!! v in a well-formed circuit is a critical path if

fw(p)

T

�

k

� d(p)g � fw(q)

T

�

k

� d(q)g for all u

q

!! v:
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Corollary 6: A multi-phase, level-clocked graph G using a valid clock schedule is correctly

timed if and only if the delay of any cycle l

0

c

!! l

n+1

is bounded by:

d(c) �

w(c)�1

X

i=0

E

P (l

i

);P (l

i+1

)

:

Proof: The result follows directly from Theorem 4 by observing that l

0

= l

n+1

and thusA

l

n+1

� D

l

0

.

Additionally, since the weight of a cycle includes all latches placed on the cycle, the weight of a

path l

0

p

!! l

n+1

is w(c)� 1.

Given the result of Corollary 6 we can form a tight lower bound based on cycle delays on

clock periods for which the circuit will operate correctly. Unlike in edge-clocked circuits, this lower

bound may more restrictive in some cases than path based constraints for the same circuit. Hence

the critical cycle period must be found independently of path constraints. The following corollary

derives the lower bound on the clock period of a circuit based on cycles in the graph.

Theorem 7: For any correctly operating, well-formed graph G using a k-phase clock schedule:

8 cycles c 2 G : T

�

� k

�

d(c)

w(c)

�

:

Proof: By Corollary 6:

d(c) �

w(c)�1

X

i=0

E

P (l

i

);P (l

i+1

)

:

In a well formed graph each cycle must contain

w(c)

k

latches of each phase. By Eqn. 1 on page 9,

P

k

i=1

E

i;i+1

= T

�

. Hence:

d(c) �

w(c)

k

X

i=1

T

�

= w(c) �

T

�

k

;

T

�

� k

�

d(c)

w(c)

�

:

In our search for an optimal retiming, we are restricted to clock values greater than k(

d(c)

w(c)

). A

critical cycle, denoted c

c

, is a cycle which maximally restricts the clock period, that is, a cycle for

which

d(c)

w(c)

is maximum. The value of

d(c

c

)

w(c

c

)

for a critical cycle in the graph may be found by setting

the values �(u

e

! v) = d(v) and "(e) = w(e), and solving the maximum-ratio-cycle problem for

�(c)

"(c)

. Polynomial-time algorithms are available to solve this problem from Megiddo [13], Hartmann

et. al. [5] and Burns [2]. In particular, the algorithm by Hartmann has a provable running time

of O(d � jEj) where d is the longest delay of a path with jV j edges. The resulting

d(c

c

)

w(c

c

)

value

provides a fast lower bound on the cycle time of the circuit. Although this clock cycle may not

be realizable due to restrictions of the more general path constraints, it provides a useful starting

point in searching for the optimum cycle time of the circuit.

15



Theorem 4: A multi-phase, level-clocked circuit graph G is correctly timed using a valid clock

schedule if and only if for every simple path l

0

p

!! l

n+1

with weight w(p) = n and latch sequence

s(p) = fl

0

; l

1

; : : : l

n+1

g, the path delay d(p) is bounded by:

d(p) � A

l

n+1

�D

l

0

+

w(p)

X

i=0

E

P (l

i

);P (l

i+1

)

:

Proof: ()) By induction on the weight of a path w(p).

Basis: When w(p) = 0, d(p) = A

l

1

�D

l

0

+E

P (l

0

);P (l

1

)

by Eqn. 3 on page 10.

Induction: Divide p into two paths l

0

p

1

!! l

1

and l

1

p

2

!! l

n+1

. From Eqn. 3, d(p

1

) = A

l

1

�D

l

0

+

E

P(l

0

);P (l

1

)

. By the inductive hypothesis, d(p

2

) � A

l

n+1

�D

l

1

+

P

w(p)

i=1

E

P (l

i

);P(l

i+1

)

. By Eqn. 2 on

page 10 A

l

1

� D

l

1

and for a correctly operating circuit, A

l

1

� T

�

. Thus A

l

1

� D

l

1

� T

�

and so

d(p) = d(p

1

) + d(p

2

) � A

l

n+1

�D

l

0

+

P

w(p)

i=0

E

P (l

i

);P (l

i+1

)

.

(() We show that if d(p) > A

l

n+1

�D

l

0

+

P

w(p)

i=0

E

P (l

i

);P (l

i+1

)

then the constraint on valid timing

de�ned by Eqn. 3 must be violated at some latch.

Case 1: If w(p) = 0: Eqn. 3 is violated directly.

Case 2: If w(p) > 0: We assume that no zero-weight subpath q of p exists such that Eqn. 3

is violated and show by contradiction that this cannot be true. Since d(p) =

P

n

i=0

d(q

i

) where

l

i

q

!! l

i+1

, and from our assumption d(q

i

) � A

l

i+1

�D

l

i

+E

P (l

i

);P (l

i+1

)

, therefore:

n

X

i=0

d(q

i

) �

n

X

i=0

[A

l

i+1

�D

l

i

+E

P (l

i

);P (l

i+1

)

]:

Substituting for d(p) and

P

d(q):

A

l

n+1

�D

l

0

+

w(p)

X

i=0

E

P (l

i

);P (l

i+1

)

> A

l

n+1

�D

l

0

+

w(p)

X

i=0

E

P (l

i

);P (l

i+1

)

;

forming a contradiction.

The following two corollaries use the minimum departure and maximum arrival times of signals

from latches to state the maximum simple path delay and maximum cycle delay in terms of the

clock schedule and path weight.

Corollary 5: A multi-phase, level-clocked graph G using a valid clock schedule is correctly

timed if and only if the delay of any simple path l

0

p

!! l

n+1

is bounded by:

d(p) � T

P (l

0

)

+

w(p)

X

i=0

E

P (l

i

);P (l

i+1

)

:

Proof: The result follows directly from Theorem 4 by observing from Eqn. 2 that the minimum

departure time D

0

= T

�

�T

P(l

0

)

and from constraint L1 that the maximum arrival time A

l

n+1

= T

�

.
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Where �

0

� �

k

.

Proof: r(u) = n is de�ned as the movement of n latches across node u. By the de�nition

of a well-formed graph, P (l

1

) = P (l

0

) + 1 for any l

0

, l

1

connected by a zero-weight path. Thus,

P (l

n

) = [P (l

0

) +n] mod k since there are k-phases in the clock schedule and �

k+1

= �

1

as de�ned.

Under retiming:

P

r

(u) = P (l

r(u)

)

= [P (l

0

) + r(u)] mod k

= [P (u) + r(u)] mod k:

5 Level-Clocked Timing Constraints

This section derives the fundamental Theorem 4 which will provide the basis for ILP path constraint

sets that ensure a valid retiming of a graph G for a given multi-phase clock schedule �. The theorem

provides an upper bound on the delay of an n-weight simple path in a level-clocked graph in terms

of the departure time of a signal at the beginning of the path and the arrival time at the end. The

proof is based on the maximum delay constraint L1 of the previous section extended to paths of

non-zero weight. Figure 10 gives a graphical representation of this theorem.

Theorem 4 provides an exact bound on the maximum possible delay of a path based on the

departure time of signals from the latch preceding the path and the subsequent arrival time of

signals at the latch terminating the path. For retiming purposes we are interested in a maximum

bound on path delay which is presented in Corollary 5. We then show in Corollary 6 that cycles

additionally constrain the clock period and show how an analysis of critical cycles can be used to

derive a lower bound on the clock period.

Finally we demonstrate that the edge-clocked de�nition of a critical path between two nodes is

insu�cient to ensure correct retiming of the nodes at all clock periods. A new de�nition for critical

paths is derived and a method of identifying a critical path between two nodes is presented.

�

i

� � �

�

i+1

� � �

� � �
�

j�1

� � �
�

j

maximum d(u!!v)

� -

�

T

P (l

0

)

-�

E

P (l

0

);P (l

1

)

-�

P

n�1

i=1

E

P (l

i

);P (l

i+1

)

-�

E

P (l

n

);P (l

n+1

)

-

-

l

0

v

�

i

��

��

u

-

l

1

v

�

i+1

� � �

-

l

n

v

�

j�1

��

��

v

-

l

n+1

v

�

j

Figure 10: Graphical representation of the constraint on the simple path delay between two latches

l

0

and l

n+1

in a correctly operating circuit.
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Figure 9: Graphical representation of the constraints on the clock phases that are required for correct

operation of a well-formed level-clocked circuit.

at the next latch before the next latching edge for that latch. The second states that along any

path in the circuit, the signal departing a latch must not arrive at the next latch before the previous

latching edge for that latch. More precisely,

L1. Maximum delay: For any zero-weight path l

p

!!m;A

m

= D

l

�E

P(l);P (m)

+ d(p) � T

�

.

L2. Non-interference: For any zero-weight path l

p

!!m;A

m

= D

l

�E

P (l);P (m)

+ d(p) > 0.

We now want to remove any assumption about minimum delay in a correctly operating level-clocked

circuit. This allows us to avoid two-sided delay constraints and allows retiming to relocate latches

without concern for retaining vertices between latches.

We now de�ne a valid clock schedule and show that any well-formed circuit operated by a

valid clock schedule satis�es the non-interference constraint L2. That is, if a retiming satis�es the

maximum delay constraint, then it results in a correctly operating circuit even with zero delays

between latches.

A clock schedule is valid if it meets the following constraints:

P1. e

i+1

� e

i

, which follows from the de�nition of a clock schedule (constraint a in Figure 9).

P2.

(

e

i

+ T

�

� T

�

i

> e

i+1

for i 6= k

e

i

� T

�

i

> e

0

for i = k

)

(constraint b in the �gure).

Note that these constraints allow for multiple phase clock schedules with overlapping and under-

lapping phases. However, two-phase clocks are required to be non-overlapped.

It follows from constraint P2 that there is no time t where e

i

� T

P (i)

< t < e

i

for i = 1; :::; k.

That is, not all latches can be active simultaneously and thus we avoid race conditions in cycles.

Theorem 2: Any well-formed level-clocked circuit operating with a valid clock schedule meets

the non-interference constraint L2.

Proof: By Eqn. 2 on page 10, D

l

� T

�

� T

�

i

, that is, the departure time from a �

i

latch

must occur at or after the enabling edge. By constraint P2, E

i;i+1

= e

i+1

� e

i

< T

�

� T

�

i

and so

E

i;i+1

< D

l

. Since P (m) = P (l) + 1 for any path l

p

!!m with w(p) = 0 in a well-formed graph,

E

P(l);P (m)

< D

l

and thus D

l

� E

P (l);P (m)

> 0. Thus constraint L2 holds for any d(p) � 0.

Corollary 3: The phase P

r

(u) of a node u in a well-formed, retimed graph G

r

using a k-phase

clock and given P (u) in the initial graph G with r(u) the retiming value of u, is:

P

r

(u) = [P (u) + r(u)] mod k:
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retiming. The resulting \well-formed" circuits form a large and useful class of circuits including

those that are easily produced by automatic synthesis tools. These restrictions can be eased by

placing appropriate additional constraints on the retiming, but this is not addressed in this paper.

A well-formed circuit is one in which the latches occur in clock phase order along any path

through the circuit. More precisely, a circuit graph G is well-formed if:

W1. For every path between latches l

p

!!m in G, if w(p) = 0 then P (m) = P (l) + 1.

W2. For every cycle c in G, w(c) � 1.

The �rst constraint simpli�es equations de�ning the minimum weight along a circuit path by forcing

any two n-weighted paths which end at the same point in the graph to have the identical ordered

latch sequence so that any two paths of equal delay ending at the same vertex require the same

number of latches. The second constraint is necessary to avoid races and is the same as that

required for edge-clocked graphs. Together these two constraints require every cycle to contain a

multiple of k latches for a k-phase clock. In the case of level-clock circuits, this constraint must

be combined with constraints on the clock schedule to ensure that all cycles contain at least one

disabled latch at all times. This will be provided by the valid clock schedules described later in

this section.

If we de�ne the clock phase of a vertex v, denoted P (v), as the phase of the latch immediately

preceding v on any path leading to v then the latch immediately following vertex v on any path

has phase P (v) + 1.

Retiming a level-clocked graph can now be de�ned similarly to retiming a edge-clocked graph.

The de�nition of the retiming value r(v) must be extended to include its e�ect on the latch sequence

of adjacent edges. That is, for any edge, u

e

! v, the relationship w

r

(e) = w(e) + r(v) � r(u) still

holds. In addition, r(v) latches (in phase order) are appended to s(e) and r(u) initial latches are

deleted from s(e) to form s

r

(e). (The case where r is negative is treated symmetrically.)

Well-formed graphs avoid the complexities of identifying when to limit vertex retiming values

to prevent movement of latches of di�ering phases across the vertex. The following lemma assures

us that this will not happen in well-formed graphs. However, because the retiming value of the

host vertex is restricted to 0, we can relax the well-formed de�nition on paths crossing v

h

to allow

circuit inputs and outputs to occur on di�erent clock phases as long as cross-host constraints are

not used when clocking with unequal phase clocks.

Lemma 1: A well-formed circuit graph remains well-formed under a valid retiming.

Proof: Let v be a vertex in the original graph and v

r

the corresponding vertex in the retimed

graph. Let P (v) = �

i

and thus the phase of the latch following v is �

i+1

. A retiming value of

r(v) = 1 removes the �rst latch from the latch sequence of each output edge and appends a latch

of phase i+ 1 to the latch sequence of each input edge. The case for r(v) = �1 is symmetric and

induction provides a proof for any value of r(v). Thus latch ordering (W1) is maintained. That

W2 is maintained for cycles follows from the retiming results for edge-clocked circuits [10].

4.1 Correct Operation of Level-Clocked Circuits

There are two conditions which must be met to ensure the correct operation of a level-clocked

circuit. The �rst states that along any path in the circuit, the signal departing a latch must arrive

11
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1

�
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Figure 8: An illustration of a circuit for which it is not clear what the maximum computational

time available for logic block CL is.

we treat latches as pass gates followed by a non-inverting bu�er of zero delay and in�nite drive

capability. Re�ning this simpli�ed latch model is a topic for further research.

When enabled, the output value of a latch is de�ned to be equal to its input value. When

disabled, the output value remains that of the input at the time of the most recent latching edge.

The �nal parameters of interest are the values for the arrival and departure times of a latch.

The arrival time of a signal at latch l is denoted by A

l

and the departure time is denoted by D

l

in the local time zone. If A

l

> T

�

� T

P(l)

then the latch output is unde�ned over the interval

(T

�

� T

P (l)

;A

l

). The departure time is given by:

D

l

= maxfA

l

; T

�

� T

P (l)

g (2)

and the arrival time at a latch m of a signal from latch l connected by a zero-weight path is:

A

m

= D

l

�E

P (l);P (m)

+ d(p) (3)

Note that this clock model does not provide for clock phases with di�ering periods nor for gated

clock signals.

4 Well-Formed Circuits and Valid Clock Schedules

The goal of the retiming process is one of determining the fastest clock at which latches may be

placed in the circuit graph such that the circuit performs \correctly". Thus a de�nition must exist

of when a retimed graph operates correctly. General de�nitions of correctness for circuits, whether

edge-clocked or level-clocked, are di�cult to form because the timing constraints which are critical

in the initial circuit depend on the designer's intentions of how that circuit is to operate. Given

an initial circuit, the clock period for which the circuit operates as intended by the designer may

only be determined through the use of a restricted de�nition of correctness to which the designer

adhered. For instance in Figure 8 we see a pair of latches with some amount of combinational

logic in between. Without some external knowledge it is not possible to state whether the designer

intended that the maximum delay through the logic block is limited such that a signal departing

from l arrive at m before latching edge a, b or c.

In this paper a de�nition of correctness very similar to that for edge-clocked circuits is used.

We �rst restrict the ordering of latch phases as they occur in the circuit graph to allow a simpli-

�ed de�nition of correctness and for retiming constraints to be written which take advantage of

knowledge about the graph structure and are least restrictive of the movement of latches during

10



phase are enabled during its active interval and disabled during its passive interval. The transitions

into and out of the active interval are called the enabling and latching edges respectively. We refer

to the clock phase controlling latch l by P (l).

Passive Interval

� -

Active Interval

� -

-

0

(T

�

� T

�

i

)
T

�

�

i

@

@R

Enabling Edge

�

�	

Latching Edge

Figure 6: Diagram from Sakallah et. al. showing a clock phase �

i

and its local time zone.

Associated with each phase is a local time zone such that its passive interval starts at t = 0, its

enabling edge occurs at t = T

�

� T

�

i

, and its latching edge occurs at T

�

. The domain of the local

time zone is de�ned to be the interval (0; T

�

] since the start of the current clock cycle coincides

with the end of the previous cycle. Sakallah et. al. additionally introduce an arbitrary global time

reference and the value e

i

which denotes the time relative to the global time reference at which

phase �

i

ends.

Phases are ordered relative to the global time reference so that e

1

� e

2

� � � � � e

k�1

� e

k

. The

global time reference is arbitrarily set such that e

k

� T

�

. The phase sequentially following �

i

in

the clock set is referred to as �

i+1

with phase �

k+1

� �

1

and �

1�1

� �

k

.

Finally a phase shift operator is de�ned:

E

i;j

�

(

(e

j

� e

i

); for i < j

(T

�

+ e

j

� e

i

); for i � j

which takes on positive values in the range [0; T

�

]. When subtracted from a timing variable in the

current local time zone of �

i

; E

ij

changes the frame of reference to the next local time zone of �

j

,

taking into account a possible cycle boundary crossing (see Figure 7). Because because the period

of each clock phase is identical and e

i

� e

i�1

, the sum of the shifts between all successive phases is

T

�

:

k

X

i=1

E

i;i+1

= T

�

: (1)

We assume that the setup, hold and propagation delay times of latches are zero. The timing

characteristics of a given latch may vary as it is moved across combinational logic nodes and thus

�

i

e

i

T

�

i

� -

�

j

e

j

T

�

j

� -

E

i;j

� -

Figure 7: The phase shift operator provides the relative di�erence between times in the local time

zones of di�erent phases.
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resulting circuit operates correctly under our de�nition. The constraints on edge-clocked retiming

are:

I/O: r(v

h

) = 0

Positive edge weight: r(u)� r(v) � w(e) for all edges u

e

! v

Maximum path delay: r(u)� r(v) �W (u; v)� 1 for all (u; v) for which D(u; v) > c

The I/O constraint maintains the I/O behavior under retiming. Although it is not necessary

to require that the host vertex have a retiming value of 0, having the retiming value identi�ed at

a particular node is useful in some solution methods. To show that it is not necessary to require

r(v

h

) = 0, note that changing all node retiming values by any constant amount results in the same

graph. In other words, since the weight of a retimed edge is w

r

(e) = w(e)+r(u)�r(v), if all values

of r(u) are changed by a constant amount to a value �r(u) the resultant edge weight values must be

identical: r(u)� r(v) = �r(u)� �r(v). Thus for any retiming there is exists an identical circuit graph

such that r(v

h

) = 0.

The positive edge weight constraints prevent retiming from assigning negative edge weights

which have no physical meaning.

2

The maximum path delay constraints force proper timing by

placing at least a single register along any path with delay greater than the clock period of inter-

est. Linear programming techniques can be used to solve this constraint set and return a valid

assignment of the retiming variables if one exists. The set of possible optimum clock periods is

derived from the delay of critical paths in the graph and a binary search is performed over that set

to determine the fastest possible clock period to which the circuit may be retimed.

The host vertex v

h

is a zero-delay vertex de�ned as the source of all circuit inputs and the

destination of all circuit outputs. As a result, additional constraints on circuit timing are imposed

along paths which pass through the zero-delay host vertex. These cross-host constraints may over-

constrain the actual design by implying relationships between output and input signals which are

not intended. If such a relationship were intended it should be represented as an explicit edge in

the graph rather than an implicit and unavoidable one.

The Correlator circuit example used in this paper retains constraints through the host vertex to

allow comparison with [10, 11]. The simple circuits in Figures 1 and 2 omit cross-host constraints

and can be thought of as providing implicit registers or latches in the host vertex. Or it may

be thought of as dividing the single host vertex into two parts with no edge between them. The

I/O constraint can be expanded to prevent retiming of any host vertex. Various additional input

and output timing constraints may be represented by placing additional delay vertices on input or

output edges and the appropriate constraint on their retiming value.

3 Clock Model

We have adopted the clock model of Sakallah, Mudge & Olukotun [15] which provides a convenient

way to describe the constraints on multi-phase clocks. A k-phase clock is a set of k periodic signals

� = f�

1

: : : �

k

g where �

i

is referred to as phase i of the clock �. All �

i

have a common cycle time

T

�

. Each phase divides the clock cycle into two intervals as shown in Figure 6: An active interval

of duration T

�

i

and a passive interval of duration (T

�

� T

�

i

). The latches controlled by a clock

2

In some applications negative edge weights can be useful as an intermediate step [12].
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The delay d(p) of a path is the sum of the delays of the vertices along the path: d(p) =

P

k

i=0

d(v

i

). The delay, d(c), of a cycle c = v

0

e

0

! v

1

e

1

! � � �

e

k�1

! v

0

includes the delay of node v

0

only

once, hence d(c) =

P

k�1

i=0

d(v

i

).

2.1 Correct Operation

In order to retime a circuit, whether edge-clocked or level-clocked, a de�nition of correct operation

must exist. This allows an initial circuit graph to have registers moved within it and to able to

determine using the de�nition whether the result is operating correctly with respect to the initial

circuit. For edge-clocked circuits, a simple de�nition of correct operation is used for retiming which

requires that the following conditions be maintained:

� C1. For any path p in G, if d(p) > clock period, then w(p) � 1:

� C2. For any cycle c in G, w(c) � 1.

Retiming a circuit is the process of transforming a circuit graph G into another graph G

r

by

relocating registers (or latches) such that the input/output behaviors of G and G

r

are identical.

Transforming a circuit G into a corresponding retimed circuit G

r

can be viewed as assigning a

retiming (or lag) value r(v) to each of the vertices of G. This retiming value represents the number

of registers (latches) removed from the output edges of vertex v and added to the input edges.

More formally, for any edge u

e

! v, w

r

(e) = w(e) + r(v)� r(u).

The movement of registers in retiming introduces an additional aspect of correctness which is

the relative di�erence in the weight of two paths between the same two vertices. For example,

assume two distinct paths u

p

!! v and u

q

!! v. In order to preserve the logical structure of the

circuit the di�erence in path weight w(p) � w(q) must be preserved during retiming. Leiserson

et. al. show that retiming by assigning retiming values to vertices maintains a constant di�erence

between the weight of paths with the same endpoints and a constant number of registers on any

cycle in the graph. Using the same result, correctness condition C2 is also maintained.

The key retiming result of [10, 11] de�nes a set of constraints which must be met by a legal

retiming of an edge-clocked circuit graph using a clock period c. These constraints are given in

terms of the maximum delay along the critical paths in G. A critical path in an edge-clocked

circuit graph is de�ned as a minimum-weight path of maximum delay from u to v. In reality what

is being identi�ed is a particular path such that if that path is retimed correctly then all other

paths between the same two end-points will also be retimed correctly. Note that some sub-paths

may not be retimed correctly but that fact will be detected independently of the overall path. The

edge-clocked de�nition of critical path is used to de�ne the matrices W and D:

W (u; v) = minfw(p) j u

p

!! vg:

The maximum delay on any critical path from u to v is given by:

D(u; v) = maxfd(p) j u

p

!! v and w(p) = W (u; v)g:

We will show that the above de�nitions for are insu�cient to identify critical paths in level-

clocked circuits and in fact the critical path between two end nodes will vary with the clock period

of interest; However, the above de�nitions are su�cient for edge-clocked circuits and using them

it is possible to generate a set of constraints on retiming of an edge-clocked circuit such that the

7



1.1 Overview of the Paper

We �rst review the work of Leiserson et. al. [10, 11] on which our work is based and present the

underlying circuit graph model. Next we review the clock model we have adopted from the work

of Sakallah, Mudge and Olukotun [15]. We then describe the class of well-formed level-clocked

circuits to which we will be limited and de�ne what it means for a level-clocked circuit to operate

correctly. In Section 5 we then use this model to derive the set of constraints that fully specify

the multi-phase, maximum delay timing restrictions of level-clocked circuits. Section 6 applies

these timing restrictions to circuits using multi-phase clocks with equal phases to form sets of ILP

constraints which restrict the movement of latches through circuit graphs. Finally Section 7 extends

our techniques to handle valid clock schedules with arbitrary length phases.

2 Background

In this section, we brie
y review the terminology and graph model of digital circuits described in

Leiserson et. al. [10, 11] and extend it to handle level-sensitive latches. We then review the basic

retiming results of their paper. The reader is encouraged to read [10, 11] for full details.

A circuit is modeled as a directed multigraph G = hV;E;w; d; si whose vertices V model the

functional elements of the circuit and whose edges E model the interconnections between the

functional elements. Each vertex v is given a delay d(v) that is associated with the corresponding

functional element. A unique host vertex v

h

with d(v

h

) = 0 is used to represent the environment of

the circuit. Each edge is given a weight w(e) which is the number of registers along the connection.

This notion of edge weight is su�cient for edge-clocked circuits which use a single register type, but

must be extended for level-clocked circuits which use latches controlled by di�erent clock phases.

We do this by associating with each edge e the sequence s(e) = (l

1

; l

2

; : : : ; l

w(e)

) of latches along

the connection.

The notation u

e

! v is used to represent an edge e from vertex u to vertex v. A path in the

circuit graph is a sequence of vertices and edges from a vertex u to a vertex v and is denoted by

u

p

!! v. A simple path contains no vertex twice. For level-clocked circuits, we also refer to paths

that begin at a latch l and end at a latch m for which we use the notation l

p

!!m.

The weight w(p) of a vertex terminated path p = v

0

e

0

! v

1

e

1

! � � �

e

k�1

! v

k

is the count of registers

or latches along the path, that is, the sum of the edge weights along the path: w(p) =

P

k

i=0

w(e

i

).

We de�ne the sequence of latches along the path with k edges to be the concatenation of the edge

latch sequences along the path: k

k�1

i=0

s(e

i

). Thus for a vertex terminated path p, w(p) = js(p)j.

For a latch terminated path p =

e

�1

! v

0

e

0

! v

1

e

1

! � � �

e

k�1

! v

k

e

k

! that begins at a latch l 2 s(e

�1

)

and ends at a latchm 2 s(e

k

), the path latch sequence s(p) begins with the tail of s(e

�1

) (beginning

with l) and ends with the head of s(e

k

) (ending with m). Unlike the vertex terminated path, the

weight w(p) of a latch terminated path l

p

!!m is de�ned to be js(p)j � 2; that is, the initial and

�nal latches are not included in the path weight.

The weight of a vertex terminated cycle c = v

0

e

0

! v

1

e

1

! � � �

e

k�1

! v

0

is identical to the weight of

the same sequence of edges and vertices treated as a path. However, in the case of a cycle beginning

and ending at a latch l, the weight of a path w(l

p

!! l) does not include the beginning and ending

latch. Thus w(c) = w(p) + 1 where c is a cycle beginning and ending at latch l and p is the same

cycle treated as a path beginning and ending at latch l.

6



replacing each register with a pair of �

1

, �

2

latches. This circuit can be retimed to the one in

Figure 5 using the retiming techniques described in this paper to achieve an optimal clock period

of 10. The retiming techniques we describe also handle more complex clock schedules with multiple

phases and phase overlap and underlap. For example, retiming the correlator example to a two-

equal-phase clock with 10% underlap between phases achieves a clock period of 10.345. These

techniques can also be extended to clock schedules with unequal length phases through a technique

of adding tightly constrained variables to the system which contain information regarding the

current phase of nodes in the circuit graph.

There are a number of obstacles to level-clocked retiming each of which is explored in this paper.

These include:

� Circuit Correctness: The de�nition of a correctly operating circuit may vary widely depending

on latch phasing and clock schedule. The variety of clocking strategies possible causes a

general retiming technique for level-clocked circuits to be much more complex than required

for typical cases. We restrict the techniques in this paper to common circuit structures and

take corresponding advantage of those structures to simplify the retiming techniques.

� Minimum vs Maximum Delay Constraints: In an issue related to circuit correctness, some

circuit structures combined with particular clock schedules impose minimum as well as max-

imum delay constraints on combinational logic paths. In this work we restrict legal circuits

and clock schedules such that this additional complexity does not arise.

� Identi�cation of Critical Cycles: As demonstrated in Figure 2, time allocated to a combina-

tional logic block may be shared across the active period of a latch. We will show that path

based constraints which allow the 
exibility to share across latches do not su�ciently bound

the computational time available around a cycle. Instead cycles in the circuit graphs form an

independent lower bound on possible clock periods. We provide a technique for identifying

this lower bound initially so that only path-based constraints need be considered above the

Critical Cycle period.

� Identi�cation of Critical Paths: An additional impact of computational time sharing is that

critical paths between two nodes in a circuit graph may di�er from those identi�ed for edge-

clocked retiming. Moreover, critical paths in a level-clocked graph are not the same for all

clock periods. We provide a new de�nition of critical paths necessary for correct retiming of

level-clocked graphs and provide a technique for identifying the critical paths based on that

de�nition.

� Constraints on Higher Weight Paths: Computational time sharing requires constraints on

paths of non-zero weight in the circuit graph which are not redundant to constraints on zero-

weight paths as they were in edge-clocked circuits. Techniques for correctly generating higher

order constraints are provided.

� Constraints Dependent on Phase of Latch Placement: In clock schedules utilizing unequal

phases, the maximum delay constraints for a given computation path may di�er depending

on the phase of latches placed along the path. Techniques for writing constraints that correctly

restrict maximum delay dependent on latch placement are provided as well as modi�cations

of existing algorithms required to e�ciently solve the more complex constraint sets.
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Figure 3: The correlator circuit from Leiserson et. al. in its initial con�guration with registers

shown as solid bars.
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Figure 4: The edge-clocked correlator circuit optimally retimed to a clock period T

�

= 13.
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Figure 5: The correlator circuit optimally retimed using a two-equal-phase clock. Latches are

represented by solid circles and marked with controlling clock phase. The resulting clock cycle

time is 10 units.
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Figure 1: A simple circuit optimally timed using edge-triggered registers and the resulting clock

schedule.
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Figure 2: The simple circuit now timed using level-sensitive latches.

register is R and that of a latch is

R

2

, then the storage element cost for the edge-clocked circuit

is 3R while that of the level-clocked circuit is only 2R. The 
exibility provided by level-sensitive

latches can also be used to reduce cost while meeting a particular clock period. For instance, if the

circuit in Figure 2 is to be retimed with T

�

= 7, the latches on the edges between nodes v

2

and v

3

may be moved to the single edge v

1

! v

2

reducing the storage element cost to R, one-third that of

the slower optimal edge-clocked circuit.

In this paper we show how the retiming techniques developed by Leiserson et. al. for edge-

clocked circuits can be extended to optimize level-clocked circuits. Figure 3 shows the edge-clocked

correlator example from their paper in its original state, which can be retimed to the circuit in

Figure 4 which operates with a clock period of 13. We can convert the circuit of Figure 3 into

an equivalent level-clocked circuit by using a two-equal-phase, non-overlapping clock schedule and
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Abstract

Using level-sensitive latches instead of edge-triggered registers for storage elements in a synchronous

system can lead to faster and less expensive circuit implementations. This advantage derives from

an increased 
exibility in scheduling the computations performed by the circuit. In edge-clocked

circuits the amount of time available for the computation between two registers is precisely the

length of the clock cycle, while in circuits using level-sensitive latches a computation can borrow

time across latches thus reducing the amount of dead time in the clock cycle. In either type of

circuit, achieving maximum performance requires locating the storage elements in such a way as to

spread the computation uniformly across a number of clock cycles.

Retiming is the process of rearranging the storage elements in a circuit to reduce the cycle

time or the number of storage elements without changing the interface behavior of the circuit as

viewed by an outside host. Retiming in e�ect reschedules the circuit computations in time based

on the length of those computations. In this paper, we extend the retiming techniques developed

for edge-clocked circuits by Leiserson, Rose and Saxe to a general class of multi-phase, level-clocked

circuits. We �rst describe this class of well-formed circuits and de�ne what it means for a well-

formed, level-clocked circuit to operate correctly. We then show that a set of constraints can be

e�ciently derived for a circuit which preserve its correctness under retiming. These constraints can

then be used to retime a level-clocked circuit using e�cient integer linear programming techniques

similar to those used for edge-clocked circuits.

1 Introduction

Synchronous circuits rely on clocked storage elements to hold values while computation is performed

on them. The most widely used storage element is the edge-triggered register which samples its

input at the beginning of each clock period, holding that value for the entire clock period. Edge-

triggered registers provide a straightforward way to analyze the minimum clock period of a circuit

by determining the maximum delay between any two registers. This simpli�ed timing analysis leads

to e�cient retiming techniques for adjusting the placement of registers to optimize the cycle time

or the number of registers [10, 11].

Level-clocked circuits are synchronous circuits that use level-sensitive latches. These latches are

clocked storage elements that allow the inputs to 
ow through the latch during the active phase

of the clock, latching the value during the inactive phase. In level-clocked circuits it is less clear

how much time is available to the computation placed between latches because the input values

may arrive early and 
ow through the input latch. This borrowing of time between clock cycles

makes the determination of the constraints on the clock period di�cult. However, the 
exibility

in scheduling the computation provides more opportunity to optimize the clock period than in the

case of edge-clocked circuits.

This di�erence in scheduling is shown by the example circuits in Figures 1 and 2 where the

same computation is implemented using an edge-clocked circuit in the �rst case and a level-clocked

in the second. The circuit of Figure 2 uses a two-equal-phase, non-overlapping clock with each

edge-triggered register replaced by a pair of �

1

, �

2

latches. The edge-clocked circuit of Figure 1

shows an optimal placement of registers which achieves a cycle time of T

�

= 8. By contrast, the

level-clocked circuit of Figure 2 shows an optimal placement of latches that achieves a cycle time

of T

�

= 6. This level-clocked circuit is also cheaper. Assuming that the cost of an edge-triggered
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