
Wait-Free Algorithms for Heaps

�

Greg Barnes

Dept. of Computer Science and Engineering, FR-35

University of Washington

Seattle, WA 98195

February 3, 1992

Abstract

This paper examines algorithms to implement heaps on shared

memory multiprocessors. A natural model for these machines is an

asynchronous parallel machine, in which the processors are subject to

arbitrary delays. On such machines, it is desirable for algorithms to

be wait-free, meaning that each thread makes progress independent

of the other threads executing on the machine. We present a wait-

free algorithm to implement heaps. The algorithms are similar to

the general approach given in [4], with optimizations that allow many

threads to work on the heap simultaneously, while still guaranteeing

a strong serializability property.

1 Introduction

We are interested in designing e�cient data structures and algorithms for

shared memory multiprocessors. Processors on these machines may execute

instructions at a varying rate (due to cache behavior, for example), and are

subject to long delays (e.g. when swapped out by the scheduler, or after a

page fault). Programs are executed by a collection of threads, which are time-

shared among the processors. There may be more threads than processors,

so the user can view a program as running on an arbitrarily large collection

�

E-mail address: greg@cs.washington.edu. Research Supported by NSF Grant CCR-

9002891.

1



of processors subject to arbitrary delays. A natural model to capture this

behavior is the asynchronous parallel machine, where the processors can suf-

fers delays of any length at any time. In such a model, it is desirable for

algorithms to be wait-free. This paper presents a wait-free algorithm to ma-

nipulate heaps. The algorithm uses an approach signi�cantly di�erent from

previous wait-free algorithms for concurrent objects.

The only previously known wait-free algorithm to manipulate heaps arises

from Herlihy's work on a methodology for implementing concurrent objects

[15]. Herlihy's basic methodology requires a thread to check out a pointer

to the object, make and change a copy of the object, and check the object

back in. If another thread has changed the pointer variable since it was

checked out, the check-in fails and the thread must start over. The copying

algorithm for heaps is a more e�cient variant of this procedure that copies

only O(log n) of the n nodes per operation, instead of the entire heap.

Our algorithm achieves theoretical performance similar to the copying

algorithm. Its upper and lower bounds are asymptotically the same, and

it can give similar serializability guarantees on its output. Its approach,

however, is very di�erent. In contrast to the copying algorithm, our algorithm

maintains only one copy of the heap data structure. Threads complete heap

operations by making a series of small changes to this structure. For this

algorithm to work correctly, it is necessary that threads be able to detect and

complete an incomplete series of changes to the structure. Bershad describes

a similar idea for implementing synchronization primitives on machines that

do not support these primitives [6, 7].

This approach o�ers four advantages. First, we expect the algorithm to

achieve better speedup than the copying algorithm. The copying algorithm

must complete one entire heap operation before another can begin, while this

algorithm allows a new operation to begin after an operation has completed

a constant number of steps. Second, our algorithm maintains the random

access nature of the heap by storing it in an array. The copying algorithm

only copiesO(log n) nodes if the heap is stored as a tree using pointers. Third,

we expect the algorithm to repeat less work, because it spreads threads across

the entire structure instead of concentrating them on one pointer. In certain

pathological cases, our algorithm will repeat as much work as the copying

algorithm, because the threads will all work in the same section in the tree.

In most cases, however, we expect the threads will spread out evenly as

they descend the tree. There will be less contention and less unnecessary

2



work the farther a thread progresses away from the root, and therefore less

work overall. Finally, this approach o�ers hope for more e�cient wait-free

implementations of certain data structures. The only known algorithm for

most structures is a copying algorithm derived from Herlihy's methodology,

but it is di�cult to see how a copying algorithm for linear or array-based

objects can avoid copying the entire structure. An algorithm similar to ours

would be more desirable, since it would change only those portions of the

object that are a�ected by a given operation.

2 Background and Previous Work

Typically, concurrent access to shared objects is implemented using critical

sections guarded by locks. Locks are an unattractive solution in asynchronous

models, because the thread holding a lock can be delayed inde�nitely, forcing

the other threads to wait uselessly until the lock is released. It is more de-

sirable if algorithms are non-blocking, that is, they always guarantee at least

one thread will complete an operation in a �nite number of steps. A wait-free

algorithm is a special case of a non-blocking algorithm that guarantees all

threads will complete their work in a �nite number of steps.

Early work on wait-free objects focused on proving the power of vari-

ous synchronization primitives. Herlihy [16] uni�es much of this work by

showing the existence of universal primitives, such as Compare&Swap, which

can be used to implement any wait-free object. Using Load Linked and

Store Conditional, a universal pair of primitives similar to Compare&Swap,

Herlihy [15] describes a methodology for converting synchronous implemen-

tations of data structure algorithms to non-blocking and wait-free imple-

mentations. Alemany and Felten [1] present techniques for improving the

performance of Herlihy's protocol in practice. Anderson and Woll [2] use

Compare&Swap to design e�cient asynchronous algorithms for the Union-

Find problem.

Heaps are often used to implement priority queues. Many researchers

have examined the problem of concurrent access to priority queue structures

such as skew trees, B-trees, or 2-3 trees. Most existing algorithms use locks

to control concurrent access to the structure [5, 8, 11, 13, 18, 22, 26].

Herlihy [15] provides the only previously known wait-free implementation

of heaps. His basic methodology was explained above, in Section 1: make

3



a copy of the object, change it, and try to check in the new copy, using the

synchronization primitives to test whether the variable has been changed in

the interim. Since copying the entire object can be time-consuming, Herlihy

suggests that for large objects the programmer supply a copying algorithm

that copies as little of the structure as possible. If the heap is stored as a tree

using pointers, then for a heap with n nodes, a copying algorithm need only

make new copies of O(log n) of the nodes per operation, the nodes that are

changed by the operation, plus their ancestors.

1

Usually, heaps are stored in

an array, thus allowing random access to the elements, but we see no way for

a copying algorithm to maintain this constant time access without making a

new copy of the array for every operation.

Our algorithm uses the Load Linked and Store Conditional synchronization

primitives. Load Linked acts like a load instruction. Store Conditional is simi-

lar to a store instruction, but it succeeds only if no other thread has written

the variable since the Load Linked instruction. Store Conditional returns a

boolean value indicating whether the write succeeded or failed. Load Linked

and Store Conditional can be e�ciently implemented given a cache-coherent

architecture, and are supported in the MIPS-II architecture [24].

The remainder of the paper is organized as follows. We begin with a

discussion of the basic approach of the algorithm in Section 3. Section 4

presents a high-level sketch of the algorithm, and Section 5 provides a sketch

of the proof of the correctness of the algorithm. Section 6 discusses the

performance of the algorithm, and Section 7 conclude with some notes and

suggestions for future work. A detailed presentation of the code and a proof

of its correctness are omitted in this abstract.

3 Approach

A heap is a balanced binary tree. Each node in the tree has an associated

key. Without loss of generality, we assume that all keys are unique. These

keys obey the heap property: the parent's key is less than the keys of its

children. The insert operation adds a key to the heap, and the delete min

operation removes the minimum key from the heap.

1

Herlihy does not explicitly present this algorithm in his paper, but he does describe

algorithms for heaps and skew heaps, and this algorithm is easily derived from his work.

4



Our algorithm stores the heap as an array of pointers to nodes. Each node

is a record consisting of the key, some 
ags, and a few auxiliary variables.

By using Load Linked and Store Conditional on the pointer to a record, the

algorithm can atomically check in the entire record. A similar strategy is

used by Anderson and Woll [2] in their Union-Find algorithms.

In standard heap algorithms, both the delete min and insert operations

are composed of a series of suboperations | a new leaf is added to the heap,

or the root key is removed and replaced by the key of one of the leaves, and

a series of swaps is performed to restore the heap property to the structure.

In the copying algorithm, these suboperations are transparent to all threads

except the one performing the operation; individual threads execute the sub-

operations on their local copies of the heap, not on the shared copy. In our

algorithm, the suboperations are all performed on one shared heap.

Allowing multiple simultaneous changes to the same data structure in-

troduces some interference problems. Consider Figure 1, depicting the two

types of problems that can arise if multiple operations are allowed on the

same heap. Figure 1(a) shows an incomplete operation. Threads T

1

and T

2

have both begun delete min operations, and are sifting the keys 17 and 15

down the tree, but T

1

has been delayed. If we naively choose to implement

the standard heap algorithms, T

2

could examine the keys of its children, no-

tice that its key is less than both, and decide to stop. This is clearly wrong,

since key 15 belongs below keys 5 and 6. Note that a similar situation can

arise if two threads try to sift keys up the tree.

Figure 1(b) shows an incomplete suboperation. As before, T

1

and T

2

are

trying to complete delete min operations, but this time T

1

was delayed in the

middle of swapping keys 17 and 5. Even if T

2

could detect that something

was amiss, it has no way of knowing the key that was being swapped with

17, and cannot recover from this situation.

Most of these di�culties would be eliminated if all suboperations executed

atomically; incomplete suboperations would never occur, and incomplete op-

erations, while not a trivial problem, are not di�cult to handle. For example,

to solve the problem in Figure 1(a), it is su�cient to store a 
ag with each

node indicating whether the key obeys the heap property. When T

2

reads

n

2

, it will notice that key 17 may not obey the heap property, and realize it

should not stop sifting its key. It cannot, however, simply wait for T

1

to move

its key farther down | T

1

could be delayed for an inde�nite amount of time.

In our algorithm, T

2

executes T

1

's next swap for it. When the suboperation

5



��

��

��

��

��

��

��

��

��

��

��

��

%

%

%

%

J

J

J

J

J

�

�

�

�

-

-

@

@

@

@

16

6 17

17

15

T

2

T

1

n

1

n

2

n

5

n

4

n

3

(b)

��

��

��

��

��

��

��

��

��

��

��

��

%

%

%

%

J

J

J

J

J

�

�

�

�

-

-

@

@

@

@

16

6 5

17

15

T

2

T

1

n

1

n

2

n

5

n

4

n

3

(a)

Figure 1: Two potential problems with multiple threads.

is completed, T

2

can continue with its own task.

Unfortunately, we do not know how to make suboperations atomic. In-

stead, our algorithm makes all suboperations e�ectively atomic.

De�nition 3.1 Let V

S

be the set of variables changed by suboperation S,

and say that S is o�cially begun when the �rst variable in V

S

is changed

by a thread trying to execute S. Then S is e�ectively atomic if, once it is

begun, no other suboperation that changes a variable in V

S

begins until S is

completed.

Guaranteeing e�ective atomicity makes it much easier to reason about the

correctness of the algorithm, since once a suboperation is begun, it might as

well have completed. To guarantee e�ective atomicity, the algorithm uses a

strategy similar to the one used to solve the problem in Figure 1(a): a thread

detects the suboperations that have not been completed by other threads,

and completes them. For example, to solve the problem in Figure 1(b), T

1

stores not only the new key 17 in node n

5

, but the old key 5. T

2

can detect

the incomplete swap by reading n

5

, and use the old key to complete the swap.

6



A thread indicates an incomplete suboperation by marking some or all

of the variables it changes. Marking variables also helps delayed threads

to recover when they are restarted. Before arguing that this strategy is

su�cient, it is necessary to present some details about the algorithm.

4 The Algorithm

In this section, we �rst give a high-level sketch of the algorithms for the two

operations, followed by a brief description of the main data structures and

some important functions.

4.1 High-level sketch

To simplify the following discussion, we will assume the atomicity of sub-

operations. The algorithm supports two operations on the heap, delete min

and insert. delete min takes one argument, a pointer to a location where the

minimum key in the heap is to be stored. insert takes a key as its argument.

Each operation is divided into a preliminary phase, in which a key is added

to or deleted from the structure, and a sifting phase, in which any key that

no longer obeys the heap property because of the preliminary phase is sifted

to its proper location. Only one preliminary phase is executed at a time;

before beginning a heap operation, a thread must successfully change a spe-

cial record that holds all global variables associated with the heap, including

the operation that is currently performing its preliminary phase. After a

thread completes its preliminary phase, it changes the special variable so

that another operation can begin, and begins its sifting phase.

Assuming it encounters no incomplete operations, a delete min operation

proceeds like the standard heap algorithm. The preliminary phase consists

of three steps: the highest active leaf in the tree is marked as inactive, the

key in this leaf is moved to the root, and the old root key is written in the

desired location. In the sifting phase, the new root key is sifted down the

tree by repeatedly swapping it with the lower-valued key among its children

until it reaches a node where its key is less than its children's keys.

An insert operation also sifts a key down from the root, instead of up from

a leaf as in the standard heap algorithm. The key is stored in a leaf, and

is implicitly moved down the tree along the path from the root to this leaf.

7



Again assuming it encounters no incomplete operations, in the preliminary

phase, the new key is stored in the lowest inactive leaf position, along with

a pointer to the root. This pointer indicates the current location of the

key in the sifting phase. The root is also modi�ed to hold a corresponding

pointer to the leaf. In the sifting phase, the leaf always points to one of

its ancestors. If at any time, the key in the leaf is less than the key of the

ancestor where it is pointing, the two keys are swapped. Otherwise, the

appropriate pointers are changed to indicate the key has moved down one

level in the sifting phase. We have developed a version of the algorithm that

mimics the standard algorithm by sifting inserted keys up from a leaf, but

sifting down from the root allows for clean serialization in the algorithm (see

Section 5.1 below), and simpli�es the proof of correctness somewhat, since

all keys are sifted in the same direction.

4.2 Data Structures and Functions

The algorithm uses two main data structures, the heap status record, which

stores all global information about the heap, and the heap entry record,

which contains the information about a node. These records contain the

usual heap variables, as well as extra variables and 
ags to indicate partially

completed operations and suboperations. The heap status record (the \spe-

cial variable" mentioned in Section 4.1 above) contains the size of the heap,

all information about the operation whose preliminary phase is currently be-

ing performed, including the value being inserted (for an insert operation)

or the memory location where the minimum key should be written (for a

delete min), and a counter indicating the number of preliminary phases that

have been performed. This counter provides a unique identi�er for each op-

eration. As mentioned before, the heap itself is stored in an array. Each

entry in the array is a pointer to a heap entry record, which contains a key,

as well as a status �eld and some auxiliary variables. The status �eld is

an enumerated type that can denote nodes that are being sifted down as

the result of delete min or insert operations, nodes that are being swapped,

nodes that have no associated uncompleted work, inactive leaves, etc. There

are three types of auxiliary variables in the heap entry record | variables

that hold old keys (used, for example, to recover from the swap problem in

Figure 1), variables that point to other nodes (used in the sifting phase of

an insert operation), and ID variables, which store the opID of an operation

8



associated with this node. The ID variables help delayed processes detect

their condition when they wake up.

Before any preliminary phase is begun, a thread must successfully change

the heap's heap status record to hold the information about its operation.

The thread loads the record, and if the op �eld indicates another prelimi-

nary phase is in progress, the thread completes that phase and changes the

record to indicate the heap is \free". The thread then tries to change the

status (using the Store Conditional instruction) to hold information about its

operation; if the Store Conditional fails, it must start over. Note that this is

not a fair algorithm, as a thread could continually be prevented from begin-

ning its operation if its timing is particularly bad. Still, assuming a �nite

number of operations are to be performed on the heap, this algorithm is wait-

free. Given an unbounded number of operations, the algorithm as written

is merely non-blocking, but an auxiliary scheduling scheme, such as the one

described by Herlihy [15], would solve this problem. It is not di�cult to show

that this process guarantees that no more than one preliminary phase will

be executed at a time.

The most important function in the algorithm is �x. A thread calls �x

before attempting to change any node. �x returns a clean copy of the node |

it examines the node's status, and �nishes any uncompleted work associated

with it.

5 Correctness

The following paragraphs sketch the main ideas behind the proof of the

algorithm's correctness. The key to proving the correctness of the algorithm

is to prove that it guarantees the e�ective atomicity of suboperations. The

key to proving atomicity is to show that an incomplete suboperation can

be detected before another suboperation that changes one of its variables

is begun | once it is detected, it is not di�cult to see that a thread can

�nish a suboperation begun by another thread using the data structures

described in Section 4.2. In Section 5.1 we will argue that given e�ectively

atomic suboperations, the algorithm performs like a sequential algorithm (in

particular, that a delete min operation always gives the minimum key in the

heap).

Assuming all previous suboperations were e�ectively atomic, a thread, T ,

9



that begins a new suboperation will not have trouble with threads executing

older suboperations. Any old suboperation that changes the same variables

must be completed before T 's suboperation can begin, and any thread still

executing such an suboperation will discover the suboperation has completed

as soon as it reads or tries to Store Conditional a variable.

The only other possible interference comes from threads that try to be-

gin suboperations after T 's suboperation has begun. T can always mark the

variables it changes to guard against interference from these threads, because

all operations and suboperations follow basic patterns. Both operations fol-

low a similar procedure | the root and a leaf are changed, and a key is

sifted down the tree. There are four suboperations: the preliminary phases

of the two operations, the swap in the sifting phase of a delete min, and the

implicit move down in the sifting phase of an insert (the algorithm combines

the possible swap with the move down into one suboperation). All these

suboperations operate on a similar set of nodes (an ancestor node, and a

child of the ancestor and/or one of its descendants). Therefore, T need only

guard against two possibilities: a thread that comes down from above, and a

thread that changes a leaf from below. The ancestor node guards the subop-

eration from above, either because the ancestor itself is marked (as in sifting

operations, where the node's status indicates an incomplete operation), or

because there is nothing above it (as in preliminary phases, when the an-

cestor is the root). To guard against threads that change leaves, T begins

by changing the lowest descendant in the set of variables its suboperation

changes. Once the descendant is successfully changed, any thread that tries

to begin a new suboperation that changes one of the same variables will have

to read either the ancestor or the descendant node before it begins, and will

be able to detect if T 's suboperation is incomplete.

5.1 Serializability of Operations

The standard notion of correctness in asynchronous parallel algorithms is to

assume the atomic instructions of all threads are interleaved in some linear

order; the algorithm is correct if it behaves properly for all such interleav-

ings [17, 21]. In this context, proper behavior is de�ned by the results of the

delete min operations; if the results of the delete min operations correspond

to some serialization of the operations, the algorithm is correct. We can make

a stronger assertion.

10



Theorem 5.1 Let Q = op

1

; op

2

; : : : op

K

be the operations performed by

the algorithm on the heap, in the order that the operations successfully execute

their preliminary phases. Then the results of the delete min operations in this

asynchronous sequence are the same as the results returned by a uniprocessor

heap algorithm given the sequence of operations, Q.

The theorem is proved using the following lemmas.

Lemma 5.2 Any clean node always has a lower-valued key than any of

its clean descendants.

The proof proceeds by induction, based on the fact that none of the

suboperations, if executed atomically, will make the property false if it was

true before.

Lemma 5.3 A delete min operation will always return the minimum key

in the tree.

Proof:[sketch] delete min always calls �x to get a clean copy of the root.

After �x returns, it is possible that all currently uncompleted sifting phases

could be completed before the root's key is deleted. The resulting tree would

have the same key at the root and hold the same keys, and all its nodes would

be clean. Since this is a valid interleaving of instructions, by Lemma 5.2, the

key in the root must be less than all other keys in the tree. 2

Note that Lemma 5.3 would not be true if inserted keys were sifted up

from the leaves.

6 Performance

In recent years, researchers have proposed many di�erent versions of the

asynchronous PRAM, or APRAM (including [9, 10, 12, 25]), most with dif-

fering notions of run-time. We measure the performance of our algorithm

using work, the same measure used in a series of papers on fault-tolerant

PRAMs [20, 19, 23]. The work done by an algorithm is the total number of

steps taken by all threads.

In the absence of other threads, every operation takes O(log n) work,

where n is the maximum number of nodes in the tree. The total amount

11



of work used to perform K operations, then, is O(K log n) plus the amount

of work expended unnecessarily because of multiple threads (two threads

trying to perform the same operation at the same time, an unsuccessful

Store Conditional, etc.). The following lemma gives an upper bound on the

performance of the algorithm, including this unnecessary work.

Lemma 6.1 The algorithm uses no more than O(Kp log n) work to per-

form K heap operations, where n is the maximum number of nodes in the

tree and p the number of threads.

Proof:[sketch] Amortize the work by charging a suboperation for work

done by any thread trying to complete the suboperation. A thread only

performs constant work on a suboperation, and each operation consists of

O(log n) suboperations, so the total work is O(Kp log n). 2

Unfortunately, this bound is not very good, since at best this implies no

speedup at all over the sequential case. Even worse, given a strong adversary

that can impose any ordering on the atomic operations of the threads, this

bound is tight.

Lemma 6.2 The algorithm can use 
(Kp log n) time to perform K heap

operations.

One scenario where the adversary can force this much work is a tree that

has a path from the root to a leaf where none of the nodes obey the heap

property. If 
(p) threads all try to �x the root, and they operate essentially

in lock step, they could end up doing 
(p log n) work to complete 
(log n)

suboperations. The adversary can recreate this situation repeatedly, yielding


(Kp log n) total work.

These bounds are the same as those for the copying algorithm. Intuitively,

the lower bound for both algorithms arises when most of the p threads work

in the same position in the tree most of the time. In practice, we expect the

threads in our algorithm will not concentrate on one area in the tree but will

spread themselves evenly as they travel down the tree. In particular, a key

being sifted down as a result of a delete min operation should swap keys with

the right child about as often as the left child. (The same cannot be said

of insert sifting, since it follows a prede�ned path to a leaf, and successive

insertions take place at neighboring leaves.) If this is true, the amount of

12



work lost due to interfering delete min operations will decrease by at least a

factor of two for every level the node is from the root | about half the keys

at a node will be sifted down to each child, and some keys will not be sifted

at all. Informally, since both algorithms should su�er the same contention at

the root, this means our algorithm will spend a factor of O(log n) less time

than the copying algorithm on lost work due to delete min operations.

We also expect the algorithm to have greater speedup than the copying

algorithm. The copying algorithm only provides sequential access to the

heap. If more than one thread tries to complete an operation simultaneously,

only one can succeed and the rest must begin again after the heap pointer is

changed. In our algorithm, multiple operations can be performed on the heap

simultaneously. After the preliminary phase of an operation is completed, a

new thread can begin an operation while the old thread performs the sifting

phase of its operation. In certain pathological cases, it may take 
(log n)

time before the next operation can begin. In practice, however, we expect

the algorithm to behave more near the best case behavior of constant time

per preliminary phase. Note that constant time per preliminary phase would

yield a speedup within a constant of the optimal speedup of log n.

7 Conclusions and Future Work

This algorithm shows it is possible for multiple asynchronous threads to

simultaneously perform wait-free operations on the same copy of a heap data

structure. An important property of the algorithm is that all suboperations

are e�ectively atomic. The obvious next step is to code this algorithm and

run it on a real machine to see how it performs in practice, particularly in

comparison to the copying algorithm. Some tests should be run to determine

whether the algorithm repeats less work due to contention and provides better

speedup than the copying algorithm, as hypothesized above (Section 6).

The algorithm poses other interesting theoretical and practical questions.

The lower bound given in Section 6 is not very satisfactory. It would be

nice if we could show better bounds in special cases. Anderson and Woll [2]

show that their Union-Find data structure algorithms perform much better if

the threads can choose a request randomly from a large pool of outstanding

requests. The same approach does not seem su�cient for a heap | the

interference is caused more by the location in the tree where a thread works

13



than by the data in the request itself, and this strategy will not change where

the next key is positioned. A better strategy might be to choose a random

leaf location when performing an insert operation, or to move the key of a

random leaf to the root during a delete min operation. With such a strategy,

successive inserts would no longer necessarily operate in the same part of the

tree, and it may be possible to make arguments about the work lost due to

multiple insert operations similar to those made about delete min operations

in Section 6. If such a strategy is devised, we would also want to code it and

see how it performs in practice.

Finally, the general approach of the algorithm could be useful in devising

wait-free algorithms for other data structures. It seems likely that similar

algorithms could be devised for objects that support only a small number

of simple operations. For some objects, particularly those that are array-

based or linear in nature, this approach could yield much more e�cient wait-

free implementations, since the obvious copying algorithm for these objects

requires frequent copying of the entire structure, while an algorithm similar

to ours would change only those portions of the object a�ected by a given

operation. Even for objects for which a copying algorithm is e�cient, one may

prefer an algorithm that uses this approach because it su�ers less contention

and provides better speedup.

8 Acknowledgements

Richard Anderson originally posed this problem, and was helpful in listening

to ideas and answering questions. Juan Alemany and Ed Felten discussed

their paper and pointed out some similar work. Larry Ruzzo and Simon

Kahan gave useful suggestions and comments.

References

[1] J. Alemany and E. W. Felten. Performance issues in non-blocking syn-

chronization on shared-memory multiprocessors. In Proceedings of the

Eleventh Annual ACM Symposium on Principles of Distributed Com-

puting, pages 124{134, Vancouver, B.C., Canada, Aug. 1992.

14



[2] R. J. Anderson and H. Woll. Wait-free parallel algorithms for the union-

�nd problem. Technical Report 91-04-05, University of Washington,

1991. See also [3].

[3] R. J. Anderson and H. Woll. Wait-free parallel algorithms for the union-

�nd problem. In Proceedings of the Twenty-Third Annual ACM Sympo-

sium on Theory of Computing, pages 370{380, New Orleans, LA, May

1991.

[4] G. Barnes. A method for implementing lock-free shared data structures.

In Proceedings of the 1993 ACM Symposium on Parallel Algorithms and

Architectures, pages 261{270, Velen, Germany, June 1993.

[5] R. Bayer and M. Schkolnick. Concurrency of operations on B-trees. Acta

Informatica, 9(1):1{21, 1977.

[6] B. N. Bershad. Mutual exclusion for multiprocessors. Technical Report

CMU-CS-91-116, Carnegie Mellon University, 1991.

[7] B. N. Bershad. Practical considerations for lock-free concurrent objects.

Technical Report CMU-CS-91-183, Carnegie Mellon University, 1991.

[8] J. Biswas and J. C. Browne. Simultaneous update of priority structures.

In International Conference on Parallel Processing, pages 124{131, 1987.

[9] R. Cole and O. Zajicek. The APRAM: Incorporating asynchrony into the

PRAM model. In Proceedings of the 1989 ACM Symposium on Parallel

Algorithms and Architectures, pages 169{178, Santa Fe, NM, June 1989.

[10] R. Cole and O. Zajicek. The expected advantage of asynchrony. In

Proceedings of the 1990 ACM Symposium on Parallel Algorithms and

Architectures, pages 85{94, Crete, Greece, June 1990.

[11] R. Ford and J. Calhoun. Concurrency control mechanisms and the se-

rializability of concurrent tree algorithms. In Proceedings of the Third

Annual ACM Symposium on Principles of Database Systems, pages 51{

60, 1984.

[12] P. B. Gibbons. A more practical PRAM model. In Proceedings of the

1989 ACM Symposium on Parallel Algorithms and Architectures, pages

158{168, Santa Fe, NM, June 1989.

15



[13] L. J. Guibas and R. Sedgewick. A dichromatic framework for balanced

trees. In 19th Annual Symposium on Foundations of Computer Science,

pages 8{21, Ann Arbor, MI, Oct. 1978. IEEE.

[14] M. Herlihy. A methodology for implementing highly concurrent data ob-

jects. In Proceedings of the Second Annual ACM SIGPLAN Symposium

on Principles and Practices of Parallel Programming, pages 197{206,

Mar. 1990.

[15] M. Herlihy. A methodology for implementing highly concurrent data

objects. Technical Report CRL 91/10, DEC Cambridge Research Lab,

Oct. 1991. See also [14].

[16] M. Herlihy. Wait-free synchronization. ACM Transactions on Program-

ming Languages and Systems, 13(1):124{149, 1991.

[17] M. Herlihy and J. Wing. Axioms for concurrent objects. In Confer-

ence Record of the Fourteenth Annual ACM Symposium on Principles

of Programming Languages, pages 13{26, Munich, West Germany, Jan.

1987.

[18] D. W. Jones. Concurrent operations on priority queues. Communica-

tions of the ACM, 32(1):132{137, Jan. 1989.

[19] P. C. Kanellakis and A. Shvartsman. E�cient parallel algorithms can

be made robust. In Proceedings of the Eighth Annual ACM Symposium

on Principles of Distributed Computing, pages 211{222, Edmonton, Al-

berta, Canada, Aug. 1989.

[20] Z. M. Kedem, K. V. Palem, and P. G. Spirakis. E�cient robust parallel

computations. In Proceedings of the Twenty-Second Annual ACM Sym-

posium on Theory of Computing, pages 138{148, Baltimore, MD, May

1990.

[21] L. Lamport. How to make a multiprocessor computer that correctly

executes multiprocessor programs. IEEE Transactions on Computers,

C-28(9):690{691, 1979.

16



[22] P. L. Lehman and S. B. Yao. E�cient locking for concurrent operations

on B-trees. ACM Transactions on Database Systems, 6(3):650{670, Dec.

1981.

[23] C. Martel, R. Subramonian, and A. Park. Asynchronous PRAMs are

(almost) as good as synchronous PRAMs. In Proceedings 31st Annual

Symposium on Foundations of Computer Science, pages 590{599, St.

Louis, MO, Oct. 1990. IEEE.

[24] MIPS Computer Company. The MIPS RISC architecture.

[25] N. Nishimura. Asynchronous shared memory parallel computation. In

Proceedings of the 1990 ACM Symposium on Parallel Algorithms and

Architectures, pages 76{84, Crete, Greece, July 1990.

[26] Y. Sagiv. Concurrent operations on B-trees with overtaking. In Proceed-

ings of the Fourth Annual ACM Symposium on Principles of Database

Systems, pages 28{37, Jan. 1985.

17


