
Wrapper Induction for Information Extraction

by

Nicholas Kushmerick

A dissertation submitted in partial ful�llment

of the requirements for the degree of

Doctor of Philosophy

University of Washington

1997

Approved by

(Chairperson of Supervisory Committee)

Program Authorized

to O�er Degree

Date

In presenting this dissertation in partial ful�llment of the requirements for the Doc-

toral degree at the University of Washington, I agree that the Library shall make

its copies freely available for inspection. I further agree that extensive copying of

this dissertation is allowable only for scholarly purposes, consistent with \fair use"

as prescribed in the U.S. Copyright Law. Requests for copying or reproduction of

this dissertation may be referred to University Micro�lms, 1490 Eisenhower Place,

P.O. Box 975, Ann Arbor, MI 48106, to whom the author has granted \the right

to reproduce and sell (a) copies of the manuscript in microform and/or (b) printed

copies of the manuscript made from microform."

Signature

Date

University of Washington

Abstract

Wrapper Induction for Information Extraction

by Nicholas Kushmerick

Chairperson of Supervisory Committee: Professor Daniel S. Weld

Department of Computer Science

and Engineering

The Internet presents numerous sources of useful information|telephone directories,

product catalogs, stock quotes, weather forecasts, etc. Recently, many systems have

been built that automatically gather and manipulate such information on a user's

behalf. However, these resources are usually formatted for use by people (e.g., the

relevant content is embedded in HTML pages), so extracting their content is di�cult.

Wrappers are often used for this purpose. A wrapper is a procedure for extracting

a particular resource's content. Unfortunately, hand-coding wrappers is tedious. We

introduce wrapper induction, a technique for automatically constructing wrappers.

Our techniques can be described in terms of three main contributions.

First, we pose the problem of wrapper construction as one of inductive learning .

Our algorithm learns a resource's wrapper by reasoning about a sample of the re-

source's pages. In our formulation of the learning problem, instances correspond to

the resource's pages, a page's label corresponds to its relevant content, and hypotheses

correspond to wrappers.

Second, we identify several classes of wrappers which are reasonably useful, yet

e�ciently learnable. To assess usefulness, we measured the fraction of Internet re-

sources that can be handled by our techniques. We �nd that our system can learn

wrappers for 70% of the surveyed sites. Learnability is assessed by the asymptotic

complexity of our system's running time; most of our wrapper classes can be learned

in time that grows as a small-degree polynomial.

Third, we describe noise-tolerant techniques for automatically labeling the exam-

ples. Our system takes as input a library of recognizers, domain-speci�c heuristics

for identifying a page's content. We have developed an algorithm for automatically

corroborating the recognizer's evidence. Our algorithm perform well, even when the

recognizers exhibit high levels of noise.

Our learning algorithm has been fully implemented. We have evaluated our system

both analytically (with the PAC learning model) and empirically. Our system requires

2 to 44 examples for e�ective learning, and takes about ten seconds of CPU time for

most sites. We conclude that wrapper induction is a feasible solution to the scaling

problems inherent in the use of wrappers by information-integration systems.

TABLE OF CONTENTS

List of Figures vi

Chapter 1: Introduction 1

1.1 Motivation . 1

1.1.1 Background: Information resources and software agents 1

1.1.2 Our focus: Semi-structured resources 4

1.1.3 An imperfect strategy: Hand-coded wrappers 6

1.2 Overview . 7

1.2.1 Our solution: Automatic wrapper construction 7

1.2.2 Our technique: Inductive learning 9

1.2.3 Evaluation . 13

1.3 Contributions . 15

1.4 Organization . 15

Chapter 2: A formal model of information extraction 17

2.1 Introduction . 17

2.2 The basic idea . 17

2.3 The formalism . 21

2.4 Summary . 24

Chapter 3: Wrapper construction as inductive learning 25

3.1 Introduction . 25

3.2 Inductive learning . 25

3.2.1 The formalism . 26

3.2.2 The Induce algorithm . 27

3.2.3 PAC analysis . 29

3.2.4 Departures from the standard presentation 34

3.3 Wrapper construction as inductive learning 36

3.4 Summary . 38

Chapter 4: The HLRT wrapper class 39

4.1 Introduction . 39

4.2 hlrt wrappers . 39

4.3 The Generalize

hlrt

algorithm . 44

4.3.1 The hlrt consistency constraints 45

4.3.2 Generalize

hlrt

. 52

4.3.3 Example . 55

4.3.4 Formal properties . 56

4.4 E�ciency: The Generalize

�

hlrt

algorithm 57

4.4.1 Complexity analysis of Generalize

hlrt

. 57

4.4.2 Generalize

�

hlrt

. 59

4.4.3 Formal properties . 62

4.4.4 Complexity analysis of Generalize

�

hlrt

. 62

4.5 Heuristic complexity analysis . 63

4.6 PAC analysis . 66

4.7 Summary . 73

Chapter 5: Beyond HLRT: Alternative wrapper classes 75

5.1 Introduction . 75

5.2 Tabular resources . 75

ii

5.2.1 The lr, oclr and hoclrt wrapper classes 76

5.2.2 Segue . 80

5.2.3 Relative expressiveness . 80

5.2.4 Complexity of learning . 83

5.3 Nested resources . 90

5.3.1 The n-lr and n-hlrt wrapper classes 94

5.3.2 Relative expressiveness . 96

5.3.3 Complexity of learning . 98

5.4 Summary . 103

Chapter 6: Corroboration 105

6.1 Introduction . 105

6.2 The issues . 106

6.3 A formal model of corroboration . 115

6.4 The Corrob algorithm . 118

6.4.1 Explanation of Corrob . 119

6.4.2 Formal properties . 126

6.5 Extending Generalize

hlrt

and the PAC model 126

6.5.1 The Generalize

noisy

hlrt

algorithm 129

6.5.2 Extending the PAC model . 133

6.6 Complexity analysis and the Corrob

�

algorithm 139

6.6.1 Additional input: Attribute ordering 140

6.6.2 Greedy heuristic: Strongly-ambiguous instances 141

6.6.3 Domain-speci�c heuristic: Proximity ordering 147

6.6.4 Performance of Corrob

�

. 148

6.7 Recognizers . 149

6.8 Summary . 152

iii

Chapter 7: Empirical Evaluation 153

7.1 Introduction . 153

7.2 Are the six wrapper classes useful? 153

7.3 Can hlrt be learned quickly? . 158

7.4 Evaluating the PAC model . 166

7.5 Verifying Assumption 4.1: Short page fragments 166

7.6 Verifying Assumption 4.2: Few attributes, plentiful data 170

7.7 Measuring �: The PAC model noise parameter (Equation 6.7) 171

7.8 The WIEN application . 173

Chapter 8: Related work 176

8.1 Introduction . 176

8.2 Motivation . 176

8.2.1 Software agents and heterogeneous information sources 176

8.2.2 Legacy systems . 178

8.2.3 Standards . 178

8.3 Applications . 179

8.3.1 Systems that learn wrappers 179

8.3.2 Information extraction . 183

8.3.3 Recognizers . 185

8.3.4 Document analysis . 186

8.4 Formal issues . 187

8.4.1 Grammar induction . 188

8.4.2 PAC model . 188

Chapter 9: Future work and conclusions 192

9.1 Thesis summary . 192

iv

9.2 Future work . 196

9.2.1 Short-to-medium term ideas 196

9.2.2 Medium-to-long term ideas . 199

9.2.3 Theoretical directions . 201

9.3 Conclusions . 202

Appendix A: An example resource and its wrappers 204

Appendix B: Proofs 211

B.1 Proof of Theorem 4.1 . 211

B.2 Proof of Lemma 4.3 . 214

B.3 Proof of Theorem 4.5 . 215

B.4 Proof of Theorem 4.8 . 217

B.5 Proof of Theorem 5.1 (Details) . 225

B.6 Proof of Theorem 5.10 (Details) . 229

B.7 Proof of Theorem 6.1 . 231

Appendix C: String algebra 234

Bibliography 236

v

LIST OF FIGURES

1.1 The \showtimes.hollywood.com" Internet site is an example of a semi-

structured information resource. 4

2.1 (a) A �ctitious Internet site providing information about countries and

their telephone country codes; (b) an example query response; and (c)

the html text from which (b) was rendered. 18

2.2 The ExtractCCs procedure, a wrapper for the country/code resource

shown in Figure 2.1. 21

3.1 The Induce generic inductive learning algorithm (preliminary version;

see Figure 3.3). 28

3.2 Two parameters, � and �, are needed to handle the two types of di�-

culties that may occur while gathering the examples E. 32

3.3 A revised version of Induce; see Figure 3.1. 33

4.1 The hlrt wrapper procedure template: (a), pseudo-code; and (b), details. 41

4.2 A label partitions a page into the attribute values, the head, the tail,

and the inter- and intra-tuple separators. (For brevity, parts of the

page are omitted.) . 47

4.3 The hlrt consistency constraint C

hlrt

is de�ned in terms of three

predicates C1{C3. 48

4.4 The Generalize

hlrt

algorithm. 53

4.5 The space searched by Generalize

hlrt

, for a very simple example. . . 54

vi

4.6 The Generalize

�

hlrt

algorithm is an improved version of

Generalize

hlrt

(Figure 4.4). 61

4.7 Surfaces showing the con�dence that a learned wrapper has error at

most �, as a function of N (the total number of examples pages) and

M

ave

=

M

tot

N

(the average number of tuples per example), for (a) � = 0:1

and (b) � = 0:01. 70

5.1 The relative expressiveness of the lr, hlrt, oclr, and hoclrt wrap-

per classes. 82

5.2 An example of a nested documents information content. 92

5.3 The relative expressivenes of the lr, hlrt, n-lr, and n-hlrt wrapper

classes. 97

6.1 The Corrob algorithm. 120

6.2 The Generalize

noisy

hlrt

algorithm, a modi�cation of Generalize

hlrt

(Fig-

ure 4.6) which can handle noisily labeled examples. 130

6.3 A slightly modi�ed version of the Generalize

hlrt

algorithm; compare

with Figure 4.6. 131

7.1 The information resources that we surveyed to measure wrapper class

coverage. 155

7.2 The results of our coverage survey. 156

7.3 A summary of Figure 7.2. 157

7.4 Average number of example pages needed to learn an hlrt wrapper

that performs perfectly on a suite of test pages, for 21 actual Internet

resources. 161

vii

7.5 Number of examples needed to learn a wrapper that performs perfectly

on test set, as a function of the recognizer noise rate, for the (a) okra,

(b) bigbook, (c) corel and (d) altavista sites. 163

7.6 Average time to learn a wrapper for four Internet resources. 165

7.7 Predicted number of examples needed to learn a wrapper that satis�es

the PAC termination criterion, as a function of the recognizer noise

rate, for the (a) okra, (b) bigbook, (c) corel and (d) altavista

sites. 167

7.8 A scatter-plot of the observed partition fragment lengths F versus page

lengths R, as well as two models of this relationship: F =

3

p

R (the

model demanded by Assumption 4.1), and F =

3:1

p

R (the best-�t model).169

7.9 The measured values of the ratio de�ned in Equation 7.1. 171

7.10 The wien application being used to learn a wrapper for lycos. 174

A.1 Site 4 in the survey (Figure 7.1): (a) the query interface; and (b) an

example query response. 205

B.1 A su�x tree showing that the common proper su�xes of the �ve exam-

ples can be represented as the interval [L; U] = [5; 6]. 221

B.2 An example of learning the integer I from lower bounds fL

1

; : : : ; L

5

g

and upper bounds fU

1

; : : : ; U

5

g. 221

B.3 One point in each of the regions in Figure 5.1. 228

B.4 One point in each of the regions in Figure 5.3. 230

viii

ACKNOWLEDGMENTS

First of all, I thank my family: without your inspiration and support, none of this

would have been possible. Thanks for not asking too many questions, or too few.

The fabulous Marilyn McCune demands special mention. Marilyn did not merely

put up with far too much during the past eight months. Her wit and con�dence in

the face of my gloom, her a�ection in the face of my six o'clock mornings, her verse

and laughter in the face of my equations, and her culinary ingenuity in the face of

my hunger|in these and a thousand other ways, Marilyn carried the day.

Simply put, DanWeld has been a fantastic advisor. I am grateful for the boundless

faith in me he showed, even as I insisted on exploring yet another patently ludicrous

cul-de-sac. And though it was sometimes intimidating, Dan's comprehensive grasp

of the several areas in which we worked was always a helpful source of new ideas.

My colleagues at the University of Washington have provided a fertile environment

for exploring arti�cial intelligence and computer science, not to mention life. Let me

thank in particular Tony Barrett, Paul Barton-Davis, Adam Carlson, Bob Doorenbos,

Denise Draper, Oren Etzioni, Marc Friedman, Keith Golden, Steve Hanks, Anna

Karlin, Neal Lesh, Mike Perkowitz, Ted Romer, Eric Selberg, Stephen Soderland and

Mike Williamson.

Brett Grace provided invaluable assistance in transforming my crude vision into

the wien application. Finally, Boris Bak's assistance with the \search.com" survey

is much appreciated.

This dissertation is dedicated with love to my grandmothers, Mary Nowicki

Knoll and Marie Naglak Kushmerick, who got everything started.

ix

Chapter 1

INTRODUCTION

1.1 Motivation

1.1.1 Background: Information resources and software agents

The much-heralded \information technology age" has delivered a stunning variety of

on-line information resources: telephone directories, airline schedules, retail product

catalogs, weather forecasts, stock market quotations, job listings, event schedules,

scienti�c data repositories, recipe collections, and many more. With widespread

adoption of open standards such as http, and extensive distribution of inexpensive

software such as Netscape Navigator, these resources are becoming ever more widely

available.

As originally envisioned, this infrastructure was intended for use directly by people.

For example, Internet resources often use query mechanisms (e.g., html forms) and

output standards (e.g., html's formatting constructs) that are reasonably well suited

to direct manual interaction.

An alternative to manual manipulation is automatic manipulation: the use of com-

puter programs (rather than people) to interact with information resources. For many,

the information feast has become an information glut. There is a widely-recognized

need for systems that automate the process of managing, collating, collecting, �nding,

�ltering, and redistributing information from the many resources that are available.

Over the last several years, the arti�cial intelligence community has responded to

2

this challenge by developing systems that are loosely allied under the term software

agents. In this thesis, we are mainly motivated by a speci�c variety of such agents:

those which use an array of existing information resources as tools, much as a house-

cleaning robot might use vacuum cleaners and mops. The idea is that the user

speci�es what is to be accomplished; the system �gures out how to use its tools to

accomplish the desired task. Following the University of Washington terminology, we

will call such systems softbots (software robots).

1

To make this discussion concrete, we will focus on one particular system. The ra-

zor (n�ee occam) system [Kwok & Weld 96, Friedman & Weld 97] accepts queries

that describe a particular information need (e.g., \Find reviews of movies show-

ing this week in Seattle by Fellini"). razor then computes and executes a se-

quence of information-gathering actions that will satisfy the query. In the ex-

ample, the actions might involve: querying various movie-information sites (e.g.,

\imdb.com") to obtain a list of Fellini's movies; then, asking theaters' sites (e.g.,

\showtimes.hollywood.com") which of these movies are now showing; and �nally,

passing these movies on to various sites containing reviews (e.g., \siskel-ebert.com").

Softbots are attractive because they promise to relieve users of the tedium of

manually carrying out such operations. For example, for each of the three steps

above, there are many potentially relevant resources. Moreover, information gleaned

at each step must be manually passed on (i.e., read from the browser and typed into

an html form) to each of the resources consulted in the next step.

1

The software agent literature is vast; see [Etzioni et al. 94, Wooldridge & Jennings 95,

Bradshaw 97] or [www.agents.org] for surveys. The softbot paradigm is discussed in detail

in [Etzioni & Weld 94]. Examples of the systems we have in mind include [Etzioni et al. 93,

Chawathe et al. 94, Kirk et al. 95, Carey et al. 95, Krulwich 96, Kwok & Weld 96, Arens et al. 96,

Shakes et al. 97, Doorenbos et al. 97, Selberg & Etzioni 97, Decker et al. 97], as well as commer-

cial products such as Jango [www.jango.com], Junglee [www.junglee.com], Computer ESP [oracle.-

uvision.com/shop], and AlphaCONNECT [www.alphamicro.com]. This short list certainly neglects

many important projects. In Chapter 8 we discuss related work in detail.

3

One might argue that this idea|the automatic manipulation of resources intended

for people|is somewhat misguided. Haven't the distributed databases and software

agents communities developed elaborate protocols for exchanging information across

heterogeneous environments?

2

Why not re-engineer the information resources so that

they provide interfaces that are more conducive to automatic interaction?

This is a reasonable objection. However, organizations might have many reasons

for not wanting to open up their information resources to software agents. An on-line

business might prefer to be visited manually rather than mechanically. Search engines

such as Yahoo!, for example, are in the business of delivering users to advertisers, not

servicing queries as an end in itself. Similarly, a retail store might not want to simplify

the process of automatically comparing prices between vendors. And of course the

cost of re-engineering existing resources might be prohibitive.

For these reasons, if we want to build software agents that access a wide variety

of information resources, the only option might be to build systems that make use

of the existing interfaces that were intended originally for use by people. At the

highest level, this challenge|building systems that can use human-centered

interfaces|constitutes the core motivation of this thesis.

Of course, this challenge is exceedingly di�cult. For example, machines today

can't fully understand the unrestricted natural language text used in on-line newspa-

per or magazine articles. Thus an entirely general-purpose solution to this challenge

is a long way o�. Instead, following standard practice, our approach is to isolate a

relevant yet realistic special case of this di�cult problem.

2

There are many such proposals, each developed under somewhat di�erent motivations. A

representative sample includes corba [www.omg.org], odbc [www.microsoft.com/data/odbc],

xml [www.w3.org/TR/WD-xml], kif [logic.stanford.edu/kif], z39.50, [lcweb.loc.gov/z3950], widl

[www.webmethods.com], shoe [Luke et al. 97], kqml [Finin et al. 94] and the Metacontent Format

[mcf.research.apple.com].

4

+ information extraction

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

h12:30; In & Out; PG-13; Metro Cinemasi;

h12:30; Sunday; NR; Broadway Market Cinemai;

h12:40; Eye of God; NR; Broadway Market Cinemai;

.

.

.

9

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

;

Figure 1.1: The \showtimes.hollywood.com" Internet site is an example of a semi-

structured information resource.

1.1.2 Our focus: Semi-structured resources

Fortunately, many of the information resources we want our software agents to use

do not exhibit the full potential complexity suggested by the challenge just outlined.

For instance, Figure 1.1 illustrates that the resource \showtimes.hollywood.com" does

not contain unrestricted natural language text. Rather, it presents information in a

highly regular and structured fashion.

Speci�cally, \showtimes.hollywood.com" structures its output in the form of a

5

table. The table contains four columns (time, movie, rating and theater), and one

row for each quadruple of information in the document. Now, if we are to build a

software agent that can make use of this resource, then we must provide it with a

procedure which, when invoked on such a document, extracts the document's con-

tent. In the literature, such specialized procedures are commonly called wrappers

[Papakonstantinou et al. 95, Chidlovskii et al. 97, Roth & Schwartz 97]

This thesis is concerned with such semi-structured information resources|those

that exhibit regularity of this nature. This focus in motivated by three concerns:

� Semi-structured resources generally do not employ unrestricted natural language

text, but rather exhibit a fair degree of structure. Thus we are optimistic that

handling semi-structured resources is a realistic goal.

� On the other hand, semi-structured resources contain extraneous elements that

must be ignored, such as advertisements and html formatting constructs. Most

importantly, there is no machine-readable standard explaining how to inter-

act with this site, or how it renders information. Thus extraction from semi-

structured documents is not entirely trivial .

� As discussed in [Doorenbos et al. 97, Perkowitz et al. 97], we hope that a rela-

tively large fraction of actual Internet information resources are semi-structured

in this way, so that our results are reasonably useful .

Besides semi-structured resources, the discussion so far has hinted at our second

main focus: information extraction. Roughly, by the phrase \information extraction"

we refer to the process of identifying and organizing relevant fragments in a document

while discarding extraneous text.

3

Once a resource's information is extracted in this

manner, it can be manipulated in many di�erent ways. Thus while we are strongly

3

Of course, this emphasis of extraction ignores many important issues, such as how software agents

come to discover resources in the �rst place [Bowman et al. 94, Zaiane & Jiawei 95], how they can

learn to query these resources [Doorenbos et al. 97], and which services beyond extraction wrappers

should provide [Papakonstantinou et al. 95, Roth & Schwartz 97]. Also, while the essence is simi-

lar, our use of the phrase information extraction di�ers from other uses [Cowie & Lehnert 96]. In

Chapter 8, we describe this and other related work in detail.

6

motivated by the software agent paradigm, this thesis is not concerned with speci�c

systems or architectures. Rather, we have developed an enabling technology|namely,

techniques for automatically constructing wrappers|that we expect to be relevant

to a wide spectrum of software agent work.

1.1.3 An imperfect strategy: Hand-coded wrappers

To summarize, we have introduced the notion of semi-structured information re-

sources. The hope is that we can construct relatively simple information extraction

procedures (which we'll call wrappers) for semi-structured resources.

For example, it turns out that documents from \showtimes.hollywood.com" can

be parsed using an extremely simple mechanism. For now, we omit all the details,

but the basic idea is that the text fragments to be extracted (show-time, movie title,

etc.) are always surrounded by certain speci�c strings. Note, for example, that the

show-times are consistently rendered in bold face; inspection of the html document

reveals that each show-time is surrounded by the tags � � �.

This observation leads to a very simple parsing procedure: the two strings

and can be used to identify and extract the relevant fragments of the document.

To be sure, this simple mechanism can't handle some important subtleties. For now,

the point is simply that a very simple mechanism can perform this sort of information

extraction task, since the wrappers can exploit fortuitous regularities in a collection

of semi-structured documents.

Given that such wrappers exists, the question becomes: how should designers

of software agents build them? One obvious possibility is to construct an agent's

wrappers by hand ; indeed, nearly all wrappers today are constructed by hand.

Unfortunately, while straightforward in principle, hand-coding wrappers is time-

consuming and error-prone, mainly because accurately determining the appropriate

delimiter strings (e.g. and) is tedious. Note also that a specialized wrapper

must be written for each of the resources in a software agent's arsenal. Moreover,

7

actual Internet sites change their format occasionally, and each such modi�cation

might require that the wrapper be rewritten. To summarize, hand-coding results in

a serious knowledge-engineering bottleneck, and software agents that rely on hand-

coded wrappers face serious scaling problems.

Set against this background, our primary motivation can now be stated quite

succinctly. To alleviate this engineering bottleneck, we seek to automate

the process of constructing wrappers for semi-structured resources.

In the remainder of this chapter, we �rst provide an overview of our approach to

automating the wrapper construction process (Section 1.2). We then summarize our

major contributions (Section 1.3), and describe how the chapters of this thesis are

related and organized (Section 1.4).

1.2 Overview

1.2.1 Our solution: Automatic wrapper construction

Our goal is to automatically construct wrappers. Since a wrapper is simply a com-

puter program, we are essentially trying to do automatic programming. Of course, in

general automatic programming is very di�cult. So, as suggested earlier, we follow

standard practice and proceed by isolating particular classes of programs for which

e�ective automatic techniques can be developed.

For example, the � � � technique introduced earlier for extracting the show-

times from \showtimes.hollywood.com" suggests one simple class of wrappers, which

we call lr (left-right). lr wrappers operate by scanning a document for such delim-

iters, one pair for each attribute to be extracted. An lr wrapper starts by scanning

forward to the �rst occurrence of the left-hand delimiter for the �rst attribute, then

to the right-hand delimiter for the �rst attribute, then to the left-hand delimiter for

the second attribute, then to the right-hand delimiter for the second attribute, and

so forth, until all the \columns" have been extracted from the table's �rst \row".

8

The wrapper then starts over again with the next row; execution halts when all rows

have been extracted.

Admittedly, lr is an extremely simple class of wrappers. Can suitable delimiters

be found for real information resources? According to our recent survey of actual

Internet resources, lr wrappers are su�ciently expressive to handle 53% of the kinds

of resources to which we would like our software agents to have access (see Section 7.2

for details). Moreover, as we discuss next, we have developed e�cient algorithms for

automatically coding lr wrappers. The lr class, therefore, represents a reasonably

useful strategy for alleviating the wrapper construction bottleneck.

While lr is reasonably expressive, by inspecting the 47% of resources that it

can not handle, we have developed a more general wrapper class, which we call hlrt

(head{left{right{tail). hlrt wrappers work like lr wrappers, except that they ignore

distracting material in a document's head (its top-most portion) and tail (bottom).

hlrt is more complicated than lr, but this additional machinery pays modest

dividends: about 57% of the resources we surveyed can be handled by hlrt. More-

over, this extra expressiveness costs little in terms of the complexity of automatic

wrapper construction: just as with lr, we have developed e�cient algorithms for

automatically coding hlrt wrappers.

Since hlrt is more complicated than lr, it exposes more of the subtleties of au-

tomatic construction. Therefore, in this thesis we focus mainly on hlrt; see Chapter

4. However, in Chapter 5, we describe lr as well as four other wrapper classes. All

six classes are based on the idea of using delimiters such as � � � to extract the

attributes. The classes di�er in two ways. First, we developed various techniques to

avoid getting confused by distractions (e.g., advertisements). Second, we developed

wrapper classes for extracting information that is laid out not as a table, but rather

as a hierarchically nested structure (e.g., a book's table of contents).

The main result of this analysis is a comparison of the six wrapper classes on two

bases: relative expressiveness, a measure of the extent to which one wrapper class

9

can \mimic" another; and the computational complexity of automatically constructing

wrappers in each class.

1.2.2 Our technique: Inductive learning

We have developed techniques to automatically construct various types of wrappers.

How does our system work? Our approach is based on inductive learning, a well-

studied paradigm in machine learning; see, for example, [Dietterich & Michalski 83,

Michalski 83] and [Mitchell 97, Chapters 2{3]. Induction is the process of reasoning

from a set of examples to an hypothesis that (in some application-speci�c sense)

generalizes or explains the examples. A inductive learning algorithm, then, takes as

input a set of examples, and produces as output an hypothesis. For example, if told

that `Thai food is spicy ', `Korean food is spicy ' and `German food is not spicy ', an

inductive learner might output `Asian food is spicy '.

Induction is, in principle, very di�cult. The fundamental problem is that many

hypotheses are typically consistent with a set of examples, but the learner has no

basis on which to choose. For example, while we might judge `Asian food is spicy ' as

a reasonable generalization, on what basis do we reject the trivial generalization `Thai

or Korean food is spicy ', formed by simply disjoining the examples? The standard

practice in machine learning is to bias [Mitchell 80] the learning algorithm so that

it considers only hypothesis that meet certain criteria. For example, the learning

algorithm could be biased so that is does not consider disjunctive hypotheses.

Wrapper induction. This thesis was strongly inuenced by two related Uni-

versity of Washington projects: ila [Perkowitz & Etzioni 95] and shopbot

[Doorenbos et al. 97]; see also [Etzioni 96b, Perkowitz et al. 97]. This seminal work

proposed a framework in which softbots use machine learning techniques to learn

about the tools they use. The idea is that during an o�-line learning phase, the

agents interact with these tools, generalizing from the observed behavior. The results

10

of this learning phase are then used on-line to satisfy users' queries.

We can summarize this framework in terms of the following observation: an

e�ective way to learn about an information resource is to reason about a

sample of its behavior. Our work can be posed in terms of this observation as

follows: we are interested in the following wrapper induction problem

input: the examples correspond to samples of the input{output behav-

ior of the wrapper to be constructed;

output: a hypothesis corresponds to a wrapper, and hypothesis biases

correspond to classes of wrappers, such as lr and hlrt.

Under this formulation, an e�ective wrapper induction system is one that rapidly

computes a wrapper that behaves as determined by the input{output sample.

Like all induction algorithms, our system assumes that there exists some target

wrapper which works correctly for the information resource under consideration. The

input to our system is simply a sample of this target wrapper's input{output behavior.

In the \showtimes.hollywood.com" example, this sample might include the input{

output pair shown in Figure 1.1.

The desired output for \showtimes.hollywood.com" is the target wrapper. How

does our learning algorithm reconstruct the target from the input{output samples it

takes as input? The basic idea is that our system considers the set of all wrappers,

rejecting those that are inconsistent with the observed input{output samples.

Initially, any wrapper is potentially consistent. Then, by examining the examples

(such as Figure 1.1), the system eliminates incompatible wrappers. Guided by the

sample input{output behavior of the target, our system examines the text extracted

from the example documents in order to �nd incompatibilities. For instance, when the

system observes that the extracted show-times are always surrounded by � � �,

it can discard all wrappers that do not use these delimiters.

Of course, the set of all wrappers is enormous; in fact it is in�nite. Thus a key

to e�ective wrapper learning is to reason e�ciently over these sets. As described in

11

Chapters 4 and 5, we have built and analyzed the e�ciency of learning algorithms

for six di�erent wrapper classes.

Automatically generating the examples. As the wrapper induction problem

was stated, our learning algorithm takes as input a sample of the behavior of the

very wrapper to be learned. Although this assumption is standard in the inductive

learning community, we must ask whether it is appropriate for our application.

First, note that the apparent contradiction|to learn a wrapper, we have to �rst

sample its behavior|is easily resolved. The input to our learning system need only

be a sample of how the target wrapper would behave, if it were given an example

document from the resource under consideration.

This observation suggests one simple way to gather the required input: ask a

person. Under this approach, we have reduced the task of hand-coding a wrapper to

the task of hand-labeling a set of example documents. In some cases, this reduction

may be quite e�ective at simplifying the person's cognitive load. For instance, less

expertise might be required, since the user can focus on the attributes to be extracted

(show-times, movie titles, etc.), rather than on \implementation details" (verifying

that � � � is a satisfactory pair of delimiters, etc.).

Nevertheless, we seek to automate wrapper construction as much as possible. To

that end, we have developed a set of techniques for automatically labeling example

documents; see Chapter 6. Our labeling algorithm takes as input domain-speci�c

heuristics for recognizing instances of the attributes to be extracted. In the \show-

times.hollywood.com" example, our labeling system would take as input a procedure

for recognizing all of the instances of times (text fragments such as 12:30, 2:50 and

9:07).

The required recognition heuristics might be very primitive|e.g., using the reg-

ular expression 1?[0-9]:[0-9][0-9] to identify show-times. At the other extreme,

recognition might require natural language processing, or the querying of other in-

12

formation resources|e.g., asking an already-wrapped resource to determine whether

a particular text fragment is a movie title. While such recognition heuristics are cer-

tainly very important, this thesis is not concerned with either the theory or practice

of developing these heuristics. Rather, our system simply requires that these heuris-

tics be provided as input, and then treats them as \black boxes" when determining

a resource's structure.

Once the instances of each attribute have been identi�ed, our labeling system

combines the results for the entire page. If the recognition knowledge is perfect, then

this integration step is trivial. However, note that perfect recognition heuristics do not

obviate the need for wrapper induction, because while the heuristic might be perfect,

they might also be very slow and thus be unable to deliver the fast performance

demanded by a software agent's on-line information extraction subsystem.

An important feature of our system is that it can tolerate quite high rates of

\noise" in the recognizer heuristics. For example, the \time" regular expression

above might �nd some text fragments that are not in fact show-times, or it might

mistakenly ignore some of a document's show-times. Our automatic page labeling

algorithm can make use of recognizers even when they make many such mistakes; for

example, we have tested our system using recognizer heuristics that are wrong up to

40% of the time, and found only a modest performance degradation (see Section 7.3).

The intuition for this capability is that while the recognition heuristics might fail for

any particular show-time, they are unlikely to fail repeatedly across several example

documents.

How many examples are enough? We presented a framework, inductive learn-

ing, with which to understand our approach to automatic wrapper construction. We

then went on to describe our technique for solving one problematic aspect of this

approach: the need for samples from the very wrapper to be learned. The basic

inductive learning model also has little to say regarding a second important issue:

13

how many examples must our learning system examine in order to be con�dent that

it will output a satisfactory wrapper?

Computational learning theory , a sub�eld of the machine learning and theoretical

computer science communities, provides a rigorous foundation for investigating the

expected performance of learning systems; see [Angluin 92] for a survey. We have

applied these techniques to our wrapper induction application.

Our results (see Section 4.6) are statistical in nature. We have developed a model

which predicts how many examples our learning algorithm must observe to ensure

that, with high probability, the algorithm's output wrapper makes a mistake (i.e.,

fails when parsing an unseen document) only rarely. This investigation is formalized

in terms of user-speci�ed parameters that de�ne \high probability" and \rarely".

Based on the structure of the wrapper learning task, we use these parameters to

derive a bound on the number of examples needed to satisfy the satisfy the stated

criterion. Thus our wrapper induction system usually outputs a wrapper that rarely

fails; in computational learning theory terminology, our system outputs wrappers

that are probably approximately correct (PAC).

4

1.2.3 Evaluation

Perhaps the most important issues in any research project concern evaluation: how

can one know the extent to which one's results are relevant and important? In

Chapter 7, we take a thoroughly empirical approach to evaluation, measuring the

behavior of our system against actual information resources on the Internet.

Our �rst experiment takes the form of a survey (Section 7.2). We are interested

in whether the wrapper classes we have developed are useful for handling actual

Internet resources. We examined a large pool of such resources, and determined

for each whether it could be handled by one or more of the six wrapper classes

4

The PAC model was proposed �rst in [Valiant 84]; see [Martin & Biggs 92, Kearns & Vazirani 94]

for extensive treatments.

14

developed in this thesis. The results are quite encouraging: 53% of the resources

can be handled by the lr wrapper class, while the hlrt class can handle 57%; the

remaining four wrapper classes have a similar degree of expressiveness. We conclude

that we have identi�ed wrapper classes that are useful for numerous interesting, real-

world information resources.

A second set of experiments tests whether our induction algorithm is too expensive

to be used in practice (Section 7.3). One important resource is time: averaged across

several real domains, our system requires about one minute to learn an hlrt wrapper.

While CPU time is an important measure, recall from our discussion of the PAC

model that another important resource is the required set of examples. Each example

document must be fetched from the resource, and then labeled (either by a person or

with our automatic labeling techniques).

Given these costs, we would prefer that our induction system use few examples.

We �nd that, averaging across several actual domains, our system requires 2{44

examples in order to learn a wrapper that works perfectly against a large suite of test

documents. As a point of comparison, we can relate this result with our theoretical

PAC bound. Our model predicts that 300{1100 examples are required. Thus our

PAC bound is too loose by one to two orders of magnitude; improving this bound is

a challenging direction for future research; see Chapter 9.

Finally, we have developed the wrapper induction environment (wien) application

(Section 7.8). Using a standard Internet browser, a user shows wien an example doc-

ument, and then uses the mouse to indicate the portions of the page to be extracted.

In addition, the user can supply recognizer heuristics which are automatically ap-

plied to the document. wien then tries to learn a wrapper for the resource. When

shown a second example, wien uses the learned wrapper to automatically label the

new example. The user then corrects any mistakes, and wien generalizes from both

examples. This process repeats until the user is satis�ed.

15

1.3 Contributions

As discussed earlier, the primary motivation of this thesis involves enabling software

agents to interact with the human-centric interfaces found at most Internet informa-

tion resources. Since this is a very hard problem, we have focused on a more modest

challenge: the development of techniques for automatically constructing wrappers for

semi-structured resources.

Let us summarize this chapter by explicitly stating what we believe to be our

major contributions towards meeting this challenge.

1. We crisply pose the automatic wrapper construction problem as one of inductive

(i.e., example-driven) learning (Chapters 2 and 3).

2. We identify several classes of wrappers which are expressive enough to han-

dle numerous actual Internet resources, and we develop e�cient algorithms for

automatically learning these classes (Chapters 4 and 5).

3. Finally, we develop a method for automatically labeling the examples required

by our induction algorithm. An important feature of our method is that it is

robust in the face of noise (Chapters 6).

1.4 Organization

The remainder of this thesis is organized as follows.

Chapter 2: A formal model of information extraction.

We begin by stating the kind of information extraction tasks that

concern us.

Chapter 3: Wrapper construction as inductive learning.

We then show how to frame the problem of automatically construct-

ing wrappers as one of inductive learning.

Chapter 4: The HLRT wrapper class.

We then illustrate our approach with one particular wrapper class,

hlrt; our results include an e�cient and formally correct learning

algorithm, and a PAC-theoretic analysis of the number of training

16

examples needed to learn a satisfactory wrapper.

Chapter 5: Beyond HLRT: Alternative wrapper classes.

hlrt is but one of many wrapper classes; in this chapter we explore

�ve more, including classes for extracting information from hierar-

chically nested (rather than tabular) documents.

Chapter 6: Corroboration.

The learning algorithm developed in Chapter 4 requires a set of la-

beled examples as input. In Chapter 6 we describe techniques for

automating this labeling process.

Chapter 7: Empirical evaluation.

We describe several experiments which demonstrate the feasibility of

our approach on actual Internet information resources, and describe

wien, an application which embodies many of the ideas developed

in this thesis.

Chapter 8: Related work.

Our work is motivated by and draws insights from a variety of dif-

ferent research areas.

Chapter 9: Future work and conclusions.

We suggest avenues for future research, and summarize our contri-

butions and conclusions.

Appendix A: An example resource and its wrappers.

We provide the complete html source from an example Internet

information resource, and show a wrapper for this resource for each

of the wrapper classes described in Chapter 5.

Appendix B: Proofs.

We include proofs of the theorems and lemmas asserted in this thesis.

Appendix C: String algebra.

Finally, we provide details of the character string notation used

throughout this thesis.

Enjoy!

Chapter 2

A FORMAL MODEL OF INFORMATION EXTRACTION

2.1 Introduction

This thesis is concerned with learning to extract information from semi-structured

information resources such as Internet sites. In this chapter, we temporarily ignore

issues related to learning, and develop a formal model of the extraction process itself.

This preliminary step is important, because it allows us to state precisely what we

want our system to learn.

We start with a high-level overview of our model (Section 2.2). We then formalize

and provide a precise notation for these intuitions and ideas (Section 2.3).

2.2 The basic idea

Figure 2.1 provides an example of the sort of information resource with which we

are concerned. The �gure shows a �ctitious Internet site that provides information

about countries and their telephone country codes. When the form shown in 2.1(a)

is submitted, the resource responds as shown in 2.1(b), which was rendered from the

html document shown in 2.1(c).

More generally, an information resource is a system that responds to queries,

yielding a query response that is (presumably) appropriate to the query. Usually,

the resource contains a database; incoming queries are posed to the database, and

the results are used to compose the response. However, from the perspective of this

thesis, the information resource is simply a black box, and we will have very little to

say about either the queries or the resource's internal architecture.

18

(a) (b)

(c)

<HTML><TITLE>Some Country Codes</TITLE><BODY>

Some Country Codes<P>

Congo <I>242</I>

Egypt <I>20</I>

Belize <I>501</I>

Spain <I>34</I>

<HR>End</BODY></HTML>

Figure 2.1: (a) A �ctitious Internet site providing information about countries and

their telephone country codes; (b) an example query response; and (c) the html text

from which (b) was rendered.

In the country/code example, the response is presented as an Internet page (to

use the standard jargon). We intend that the results of this thesis apply more broadly

than just to html documents on the Internet. Nevertheless, for the sake of simplicity,

we will use the terms page and query response interchangeably.

The example information resource provides information about two attributes: the

names of the countries, and their telephone country codes. In this thesis, we adopt

a standard relational data model: query responses are treated as providing one or

more tuples of relevant information. Thus, the example response page provides four

hcountry; codei pairs:

fhCongo; 242i; hEgypt; 20i; hBelize; 501i; hSpain; 34ig : (2.1)

Informally then, the information extraction task here is to extract this set of tuples

from the example query response.

19

We use the phrase semi-structured to describe the country/code resource. While

the information to be extracted is a set of fragments that have a regular structure,

the page also contains irrelevant text. Furthermore, this regularity (i.e., displaying

countries in bold face and codes in italic) is not available as a machine-readable

speci�cation, but rather is a fortuitous but idiosyncratic aspect of the country/code

resource. The phrase \semi-structured" is meant merely to guide one's intuitions

about the kinds of information resource in which we are interested, and so we will

not provide a precise de�nition.

To extract the tuples listed in Equation 2.1, the query response must be parsed to

extract the relevant content , while discarding the irrelevant text. That is, the tuples

in Equation 2.1 correspond to the text fragments that are outlined:

<HTML><TITLE>Some Country Codes</TITLE><BODY>

Some Country Codes<P>

 Congo <I> 242 </I>

 Egypt <I> 20 </I>

 Belize <I> 501 </I>

 Spain <I> 34 </I>

<HR>End</BODY></HTML>

Before proceeding, note that this framework is not fully general. The content of

some query responses might not correspond simply to a set of fragments of the text.

For example, if the query responses are natural language texts (e.g., newswire feed),

then, depending on the task, the true content may simply not be describable using

a simple relational model. (The natural language processing community typically

uses the phrase \information extraction" in this richer sense [Cowie & Lehnert 96].)

Alternatively, the extracted strings may need to be post-processed (e.g., to remove

extraneous punctuation). While these problems are important, we focus on informa-

tion resources for which the content can be captured exactly as a set of fragments of

the raw query response.

In this thesis we are concerned mainly with tabular information resources.

20

Roughly, a resource is tabular if the attributes and tuples never overlap, and if the

attributes occur in a consistent order within each tuple. As shown, the country/code

resource is tabular. (While we emphasize tabular layouts, note that in Chapter 5,

we discuss information extraction from pages with a hierarchically nested structure,

such as a book's table of contents.)

Finally, a wrapper is a procedure for extracting information from a particular

resource. Formally, a wrapper takes as input a query response, and returns as output

the set of tuples describing the response's information content.

For example, Figure 2.2 shows the ExtractCCs procedure, a wrapper for the coun-

try/code information resource. The wrapper operates by �rst skipping over the re-

sponse's head (indicated by the string <P>), and then using the strings , , <I>

and </I> to delimit the left and right sides of the country and code values. Speci�-

cally, the tuples are extracted starting at the top of the page; within each tuple the

country is extracted �rst followed by the code. Extraction stops when the tail of the

query response is encountered, indicated by <HR>.

In Chapter 4, we describe ExtractCCs in detail. We explain why it works, and

argue that it is correct; speci�cally, we discuss why the head and tail of the page

must be handled carefully. For now, the point is simply that the ExtractCCs wrapper

can be used to extract the information content of responses to queries posed to the

country/code resource.

To summarize, we have informally described our model of information extraction.

When queried , an information resource returns a response. The information content

of a response is comprised of speci�c literal fragments of the response; the remaining

irrelevant text is discarded during extraction. We adopt a relational model of a

response's information content: the content is taken to be a set of one or more tuples,

where each tuple consists of a value for each of a �xed set of attributes. The objects

in a relational database can be thought of as rows in a table, and so we require

that a page's information content be embedded in the responses in a tabular layout.

21

ExtractCCs(page P)

skip past �rst occurrence of <P> in P

while the next occurrence of is before the next occurrence of <HR> in P

for each h`

k

; r

k

i 2 fh; i; h<I>; </I>ig

extract from P the value of the next instance of the k

th

attribute

between the next occurrence of `

k

and the subsequent occurrence of r

k

return all extracted tuples

Figure 2.2: The ExtractCCs procedure, a wrapper for the country/code resource shown

in Figure 2.1.

Finally, a wrapper is a procedure for extracting the relational content from a page

while discarding the irrelevant text.

2.3 The formalism

Resources, queries, and responses. An information resource S is a function

from a query Q to a response P :

� The query Q describes the desired information, by means of an expression in

some query language Q. For example, Q might be sql [ANSI 92] or kqml

[Finin et al. 94]. For typical Internet resources, the query is represented by the

arguments to a cgi script [hoohoo.ncsa.uiuc.edu/cgi].

� The query response P is the resource's answer to the query. We assume that

the response is encoded as a string over some alphabet �. Typically, � is the

ascii character set, and the responses are html pages or unstructured natural

language text; alternatively, the responses might obey a standard such as kif

[logic.stanford.edu/kif] or xml [www.w3.org/TR/WD-xml].

Information resource S can thus be described formally as a function of the form

S : Q ! �

�

:

query

Q 2 Q

=) information resource S =)

response

P 2 �

�

Given our focus on information extraction, in this thesis we are concerned pri-

marily with responses, rather than the queries. The intent is that our information

22

extraction techniques can be largely decoupled from issues related to queries. For this

reason, in the remainder of this thesis, we ignore the query language Q. Under this

simpli�cation, resource S is equivalent to the set of responses it gives to all queries.

Attributes and tuples. We adopt a standard relational data model. Associated

with every information resource is a set of K distinct attributes, each representing

a column in the relational model. In the country/code example, there are K = 2

attributes.

A tuple is a vector hA

1

; : : : ; A

K

i of K strings; A

k

2 �

�

for each k. The string A

k

is the value of k

th

attribute. Whereas attributes represent columns in the relational

model, tuples represent rows.

Content and labels. The content of a page is the set of tuples it contains. For

example, Equation 2.1 lists the content of the country/code example page. This

notation is adequate, but since pages have unbounded length, we use instead a cleaner

and more concise representation of a page's content. The idea is that, rather than

listing the attribute value fragments explicitly, a page's label represents the content

in terms of a set of indices into the page.

For example, the label for the country/code page in Figure 2.1(c) is:

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

D

h78; 83i; h91; 94i

E

;

D

h106; 111i; h119; 121i

E

;

D

h133; 139i; h147; 150i

E

;

D

h162; 167i; h175; 177i

E

9

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

;

: (2.2)

To understand this label, compare it to Equation 2.1. Equation 2.2 contains four

tuples, each tuple consists of K = 2 attributes values, and each such value is repre-

sented by a pair of integers. Consider the �rst pair, h78; 83i. These integers indicate

that the �rst attribute of the �rst tuple is the substring between positions 78 and

83 (i.e., the string Congo); inspection of Figure 2.1(c) reveals that these integers are

23

correct. Similarly, the last pair, h175; 177i, indicates that the last attribute's country

code occurs between positions 175 and 177 (i.e., the string 34).

More generally, the content of page P is represented as the label

L =

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

D

hb

1;1

; e

1;1

i; : : : ; hb

1;k

; e

1;k

i; : : : ; hb

1;K

; e

1;K

i

E

;

.

.

.

D

hb

m;1

; e

m;1

i; : : : ; hb

m;k

; e

m;k

i; : : : ; hb

m;K

; e

m;K

i

E

;

.

.

.

D

hb

M;1

; e

M;1

i; : : : ; hb

M;k

; e

M;k

i; : : : ; hb

M;K

; e

M;K

i

E

9

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

;

: (2.3)

Label L encodes the content of page P . The page contains M > 0 tuples, each of

which has K > 0 attributes. The integers 1 � k � K are the attributes indices, while

the integers 1 � m � M index tuples within the page. Each pair hb

m;k

; e

m;k

i encodes

a single attribute value. The value b

m;k

is the index in P of the beginning of the k

th

attribute value in the m

th

tuple. Similarly, e

m;k

is end index of the k

th

attribute value

in the m

th

tuple. Thus, the k

th

attribute of the m

th

tuple occurs between positions

b

m;k

and e

m;k

of page P . For example, the pair hb

3;2

; e

3;2

i = h147; 150i in Equation

2.2 encodes the third tuple's second (country code) attribute in the example page.

Note that missing values are not permitted: each tuple must assign exactly one

value to each attribute.

Tabular layout. We are concerned with tabular information resources. This re-

quirement amounts to a set of constraints over the b

m;k

and e

m;k

indices of legal labels.

To be valid, the indices must extract from the page a set of strings that correspond

to a tabular layout of the content within the page. For example, if e

m;k

> b

m;k+1

for

some m and k, then the content of the query response simply can not be arranged

in a tabular manner, because the two values occur out of order. The full details

1

are

conceptually straightforward but uninteresting.

1

For a label to be tabular, the following four conditions must hold. (1) The individual frag-

ments are legitimate: 8

m;k

b

m;k

� e

m;k

. (2) The content consists of disjoint fragments:

24

The symbol L refers to the set of all labels. Again, the details

2

are tedious.

Wrappers. Finally, we are in a position to give a precise de�nition of a wrapper.

Formally, a wrapper (e.g., the ExtractCCs procedure) is a function from a query

response to a label:

query response

P 2 �

�

=) wrapper =)

label

L 2 L

At this level of abstraction, a wrapper is simply an arbitrary procedure. Of course,

in the remainder of this thesis, we devote considerable attention to particular classes

of wrappers.

2.4 Summary

We have presented a simple model of information extraction. Information resources

return pages whose tabular contents can be captured in terms of a label, a structure

using a page's indices to represent the text fragments to be extracted. A wrapper is

simply a procedure that computes a label for a given page.

With this background in place, we can begin our investigation of wrapper induc-

tion. We start in Chapter 3 with a discussion of the inductive learning framework, and

show how it can be applied to the problem of automatically constructing wrappers.

8

m;k

:9

m

0

;k

0

(b

m;k

� b

m

0

;k

0

� e

m;k

) _ (b

m;k

� e

m

0

;k

0

� e

m;k

). (3) All attributes for one tu-

ple precede all attributes for the next: 8

m<M

e

m;K

< b

m+1;1

. (4) Attributes occur sequentially

within each tuple: 8

m;k<K

e

m;k

< b

m;k+1

.

2

L = [

m>0

L

m

, where L

m

is the set of labels containing exactly m tuples. Informally, L

m

= fLj

label L contains m tuples and respects the tabularity conditions in Footnote 1g.

Chapter 3

WRAPPER CONSTRUCTION AS INDUCTIVE

LEARNING

3.1 Introduction

Our goal is to automatically construct wrappers. In the previous chapter, we de-

scribed a model of information extraction, which included the speci�cation of a wrap-

per. Our technique for generating such wrappers is based on inductive learning. We

�rst describe the inductive learning framework (Section 3.2). We then show how to

treat wrapper construction as an induction task (Section 3.3).

As we will see, the input to our wrapper construction system is essentially a

sample of the behavior of the wrapper to be learned. Under this formulation, wrapper

construction becomes a process of reconstructing a wrapper based on a sample of its

behavior.

3.2 Inductive learning

Inductive learning has received considerable attention in the machine learning com-

munity; see [Angluin & Smith 83] or [Mitchell 97, Chapters 2{3] for surveys. At the

highest level, inductive learning is the task of computing, from a set of examples of

some unknown target concept, a generalization that (in some domain-speci�c sense)

explains the observations. The idea is that a generalization is good if it explains the

observed examples and (more importantly) makes accurate predictions when addi-

tional previously-unseen examples are encountered.

For example, suppose an inductive learning system is told that `Thatcher lied ',

26

`Mao lied ', and `Einstein didn't lie'. The learner might then hypothesize that the

general rule underlying the observations is `Politicians lie'. This assertion is reason-

able, because it is consistent with the examples seen so far. If asked `Did Nixon lie?',

the learner would then presumably respond `Yes'.

We proceed by presenting a formal framework for discussing inductive learning

(Section 3.2.1). We then describe Induce, a generic inductive learning algorithm that

can be customized to learn a particular hypothesis class (Section 3.2.2). We go on

to describe the PAC model, a statistical technique for predicting when the learner

has seen enough examples to generate a reliable hypothesis (Section 3.2.3). Finally,

we describe the few minor ways in which our treatment of induction is somewhat

unconventional (Section 3.2.4).

3.2.1 The formalism

An inductive learning task consists of three elements:

� a set I = f: : : ; I; : : :g of instances;

� a set L = f: : : ; L; : : :g of labels; and

� a set H = f: : : ; H; : : :g of hypotheses.

Each hypothesis H 2 H is a function from I to L, with the notation

H(I) = L

indicating that hypothesis H 2 H assigns label L 2 L to instance I 2 I.

In the politician example, the set of instances I captures the set of people about

whom assertions are made, and the label set L indicates whether a particular person

is a liar:

I = fThatcher; Mao; Einstein; Nixon; : : :g

L = fliar; truthfulg

Since hypotheses are functions from I to L, the hypothesis `Men lie' corresponds to

the function that classi�es any male as `liar'.

27

The idea is that the learner wants to identify some unknown target hypothesis

T 2 H. Of course, the learner does not have access to T . Instead, the learner observes

a set E of examples: E = f: : : ; hI; T (I)i; : : :g � 2

I�L

is a sample of the instances,

each paired with its label according to T . The learner's job is to reconstruct the

target T from the sample E .

This notion of a supply of examples of T is formalized in terms of an oracle that

supplies labeled instances. In this simple model of induction, we assume that the

learner has no control over which examples are returned by the oracle. Formally,

an inductive learning algorithm is given access to a function Oracle

T

. Oracle

T

is

a function taking no arguments and returning a pair hI; T (I)i, where I 2 I and

T (I) 2 L. The subscript T on the oracle function emphasizes that the oracle depends

on the target T . The inductive learner calls Oracle

T

repeatedly in order to accumulate

the set E of examples.

3.2.2 The Induce algorithm

An inductive learning algorithm can be characterized as follows: the algorithm takes

as input the oracle function Oracle

T

, and outputs an hypothesis H 2 H. However, in

the remainder of this thesis it will be helpful to open up this \black box" speci�cation,

in order to concentrate on learning algorithms that operate in a speci�c manner.

In particular, Figure 3.1 presents the Induce generic inductive learning algorithm.

Induce takes two inputs:

� the oracle function Oracle

T

; and

� a generalization function Generalize

H

, speci�c to the hypothesis class H being

learned.

Given these two inputs, Induce must output an hypothesis H 2 H.

Note that Induce is a \generic" inductive learning algorithm in the sense that it

can be customized to learn a target T in any hypothesis class H by supplying the al-

gorithm with the appropriate oracle and generalization functions as input. The oracle

28

Oracle

T

=)

Generalize

H

=)

E fg

repeat

hI; Li Oracle

T

()

E E [fhI; Lig

until termination condition is satis�ed

return Generalize

H

(E)

=)

hypothesis

H 2 H

Figure 3.1: The Induce generic inductive learning algorithm (preliminary version; see

Figure 3.3).

function Oracle

T

was just discussed; in the remainder of this section, we describe how

Induce works, which will lead to a description of the second input, the Generalize

H

function.

The Induce algorithm operates as follows. First, Induce uses the Oracle

T

function

to accumulate a set E = f: : : ; hI; Li; : : :g of examples. Unspeci�ed in Figure 3.1 is the

termination condition describing when enough examples have been gathered. As will

be described in Section 3.2.3, this termination condition is important for ensuring

that Induce's output is satisfactory.

After gathering the examples E , Induce then passes E to the Generalize

H

function.

Recall that Generalize

H

is a domain-speci�c function, specialized to the hypothe-

sis class H under consideration. Let us emphasize again that Induce is a generic

learner, with the domain-speci�c \heavy lifting" being done by Generalize

H

. For-

mally, Generalize

H

takes as input a set of examples E , and returns an hypothesis

H 2 H; thus the generalization function has the form Generalize

H

: 2

I�L

!H.

We now illustrate Induce using a generalization of the politician example intro-

duced earlier. Consider learning the hypothesis class corresponding to all conjunctions

of Boolean literals

1

(cbl) composed from N binary features x

1

; x

2

; : : : ; x

N

. The fea-

1

The literals of proposition x are x and its complement �x.

29

tures de�ne the set of instances: I = ftrue; falseg

N

. Instances are classi�ed in just

two ways: L = ftrue; falseg. The hypothesis class H

cbl

consists of conjunctions

of the 2N literals: H

cbl

= fv

1

^ v

2

^ � � � j each v

n

is a literalg. In the politicians

example, x

1

might indicate that a person is a male; x

2

, that they have red hair; and

x

3

, that they are a politician. Each person could then represented by a Boolean as-

signment to each variable, and the label true might indicate that the person doesn't

lie while false indicates the person is a liar.

To use the Induce algorithm to learn H

cbl

, we must provide it with two inputs,

Oracle

T

and Generalize

cbl

. For now, we assume that the oracle function is built

using whatever means are appropriate to the particular learning task; for example, a

person might act as the oracle.

The second input is the generalization function Generalize

cbl

:

Generalize

cbl

(examples E)

H x

1

^ �x

1

^ � � � ^ x

N

^ �x

N

for each example hI; truei 2 E

for each feature x

n

if x

n

= true in instance I, then remove �x

n

from H

else remove x

n

from H

return H

Generalize

cbl

starts with an hypothesis containing every literal, and then eliminates

the literals that are inconsistent with the true instances (false instances are simply

ignored).

Is Generalize

cbl

a \good" generalization function? As we'll see next, the answer

to this question is tightly coupled to Induce's termination condition, left unspeci�ed

in Figure 3.1.

3.2.3 PAC analysis

The Generalize

cbl

function demonstrates how the Induce generic induction algorithm

is customized to a particular hypothesis class, H

cbl

in this case. But so far we

have neglected a crucial question. What reason is there to believe that the stated

30

Generalize

cbl

function ouputs good hypotheses? Why should we believe it will per-

form better than, for example, simply returning the hypothesis that classi�es every

instance as true?

Note that the answer is directly relevant to Induce's termination condition, left

unspeci�ed in Figure 3.1. This termination condition governs how many exam-

ples Induce accumulates into the set E before invoking the generalization function

Generalize

H

. In this section, I describe one particular termination criterion, based on

the probably approximately correct (PAC) model [Valiant 84, Kearns & Vazirani 94,

Martin & Biggs 92].

Ideally, we want the Induce learning algorithm to output the target hypothesis|

i.e., the function actually used to label the examples. However, since the target

hypothesis is unknown, this intuition does not yield a satisfactory evaluation criterion.

A more sophisticated alternative involves estimating the performance of an hy-

pothesis on instances other than the examples. By de�nition, the target will perform

perfectly on future instances; we want Induce to output an hypothesis that is expected

to perform well on future instances too. PAC analysis is a technique for estimating the

expected future performance of an hypothesis; this estimate is based on the examples

from which the hypothesis was generated.

The PAC model adopts a statistical approach to evaluating a learner. PAC analy-

sis starts with the observation that, in many learning tasks, it makes sense to assume

that both the testing and training instances are distributed according to a �xed but

unknown and arbitrary probability distribution. Thus, the extent to which an hy-

pothesis performs well with respect to this distribution can be estimated from its

performance on training data drawn from the same distribution. Speci�cally, the

PAC model uses as a performance measure the probability that the learned hypoth-

esis is correct.

The PAC model is formalized as follows.

� Let the instances I be distributed according to D, a �xed but unknown and

31

arbitrary probability distribution over I. We will be interested in the chance of

drawing an instance with particular properties: the probability of selecting from

an instance I with property q is written D[Ijq(I)].

� The example oracle Oracle

T

is modi�ed so that it returns instances distributed

according to D. We use the notation Oracle

T ;D

to emphasize this dependancy.

� The error E

T ;D

(H) of hypothesis H 2 H is the probability (with respect to D)

that H and T disagree about a single instance drawn randomly from D:

E

T ;D

(H) = D [IjH(I) 6= T (I)]

� Finally, let 0 < � < 1 be a parameter describe the desired accuracy , and 0 <

� < 1 be a second parameter, the desired reliability . The meaning of these two

parameters will be described shortly.

The idea of the PAC model is that the learner Induce invokes Oracle

T ;D

as many

times as needed to be reasonably sure that its hypothesis will have low error . In

general, we expect that the error of the hypotheses generated by Induce will decreases

with the number of training examples. This intuition is formalized statistically as

follows:

PAC termination criterion: An inductive learning algorithm for hy-

pothesis class H should examine as many examples as are needed in order

to ensure that, for any target T 2 H, distribution D, and 0 < �; � < 1,

the algorithm will output an hypothesis H 2 H satisfying E

T ;D

(H) < �,

with probability at least 1� �.

Under this formalization, the parameters � and � de�ne what \low error" and \rea-

sonably sure" (respectively) mean: the learned hypothesis must have error bounded

by �, and this must happen with probability at least 1 � �. Note that the learner

must perform increasingly well as � and � approach zero.

As illustrated in Figure 3.2, the two parameters � and � are needed to handle the

two kinds of di�culties Induce may encounter. The reliability parameter � is required

because the PAC termination criterion does not involve the particular examples in E ,

32

instances needed to discriminate

instances need to produce

instance space

a low-error hypothesis

target from low-error alternatives

B
A

Figure 3.2: Two parameters, � and �, are needed to handle the two types of di�culties

that may occur while gathering the examples E.

and thus Induce could unluckily receive from Oracle

T ;D

an unrepresentative sample of

the instances. In Figure 3.2, the learner may be unlucky and see no instances from

the region marked `A'. In summary, there is always some chance that the error of the

learned hypothesis will be large.

On the other hand, the accuracy parameter � is required because D might be

structured so that there is only a small chance under D of encountering an example

needed to discriminate between the target T and alternative low-error hypotheses. In

Figure 3.2, there is only a small chance of seeing the instances in the region marked

`B'. To summarize, it is unlikely that the error will be exactly zero.

Figure 3.3 illustrates how to incorporate the PAC model into the Induce algorithm.

This revised version of Induce takes as input parameters � and �, and the algorithm

stops gatherings examples when they satisfy the PAC termination criterion.

In general, whether the PAC termination criterion can always be satis�ed de-

pends on the hypothesis class H. If such a guarantee can be made, then (following

[Kearns & Vazirani 94, De�nition 1]) we say that hypothesis classH is PAC-learnable.

De�nition 3.1 (PAC-learnable) Hypothesis class H is PAC-learnable

i� there exists a generalization function Generalize

H

with the following

property: for every target hypothesis T 2 H, for every distribution D over

33

Oracle

T ;D

=)

Generalize

H

=)

PAC parameters

�, �

=)

E fg

repeat

hI; Li Oracle

T;D

()

E E [fhI; Lig

until, with probability at least 1� �,

E

T ;D

(Generalize

H

(E)) < �

return Generalize

H

(E)

=)

hypothesis

H 2 H

Figure 3.3: A revised version of Induce; see Figure 3.1.

the instances I, and for all 0 < � < 1 and 0 < � < 1, if Induce is given

as input Generalize

H

, Oracle

T ;D

, �, and �, then, with probability at least

1� �, Induce will output an hypothesis H 2 H satisfying E

T;D

(H) < �.

If in addition Generalize

H

runs in time polynomial in

1

�

,

1

�

, and the size

of the instances

2

, then we say that H is e�ciently PAC-learnable.

The standard technique for establishing that class H is PAC-learnable is to de-

termine, given values of � and � (but with no knowledge of T or D), the least value

B such that if jEj � B, then the PAC termination criterion will hold. B is a lower

bound on the number of examples needed to satisfy the PAC termination criterion.

In general, B depends on � and �; we write B = B(�; �) to emphasize this relation-

ship. The Induce learning algorithm uses this bound B(�; �) to decide when it has

gathered enough examples; B(�; �) serves that the termination conditions, unspeci�ed

2

We are sweeping a subtlety of the PAC model under the rug here. Recall the class H

cbl

over

instances de�ned by N binary features. We ought to give a learning algorithm more time as N

increases. For example, N is clearly a lower bound on the time to read a single instance, as well

as the time to write out the �nal hypothesis. Thus N captures the \complexity" of learning H

cbl

.

More generally, for any particular learning task, we want to allow the learner algorithm additional

time as the task's natural complexity measure increases. We will return to this issue in Section 4.6,

when we apply the PAC model to the task of learning hlrt wrappers. See [Kearns & Vazirani 94,

Section 1.2.2] for a thorough discussion.

34

in Figure 3.1.

For example, recall the politician example and H

cbl

hypothesis class introduced

earlier. It is straightforward to show [Kearns & Vazirani 94, Theorem 1.2] that for

all �, �, D, and T , if Induce gathers a set of examples E such that

jEj �

2N

�

�

ln 2N + ln

1

�

�

;

(where the instances are de�ned by N binary features) then the PAC termination

criterion is satis�ed. We conclude that H

cbl

is PAC-learnable, because Induce can

use the value B(�; �) =

2N

�

(ln 2N + ln

1

�

) as its termination condition. Furthermore,

note that (1) B(�; �) is polynomial in N ,

1

�

, and

1

�

, and (2) the Generalize

cbl

function

runs in time polynomial in jEj and N ; therefore we conclude that H

cbl

is e�ciently

PAC-learnable.

3.2.4 Departures from the standard presentation

The formal framework for inductive learning presented in this chapter di�ers some-

what from the \standard" presentation usually found in the machine learning lit-

erature (e.g., [Mitchell 97]). Formally speaking, these discrepancies are relatively

unimportant. Throughout, our objective is to simplify as much as possible our no-

tation and formalism. In some cases this objective has lead to describing inductive

learning in more general terms than usual; in other cases we have presented a rela-

tively restricted notion of induction. In this section we briey highlight the di�erences

between the standard presentation and ours.

First, we present the instances simply as a set I, rather than the usual practice

of describing I as the space induced by a given language for representing instances.

Similarly, we de�ne H as a set of functions, rather than as the space induced by an

hypothesis representation language. Of course, in order to actually apply the induc-

tive framework to a particular learning task, one must select representation languages

for the instances and hypotheses, and the key to successful learning is invariably to

35

bias [Mitchell 80] the learning algorithm so that it considers only hypotheses in a

carefully crafted space.

For example, the cbl example was described by specifying that I =

ftrue; falseg

N

(for some �xed N) and H

cbl

= fv

1

^ v

2

^ � � � j each v

n

is a literalg;

we have seen that cbl is e�ciently learnable. However, this thesis is concerned with

information extraction and wrapper induction, and it turns out that the representa-

tion languages that have been examined are not appropriate for our application. In

Chapters 4 and 5, we describe wrapper induction by precisely specifying how to bias

the Induce inductive learning algorithm in order to make wrapper induction feasible.

Second, the standard presentation assumes that the set L of labels has �xed car-

dinality; often, L is simply assumed to be the set of Boolean values ftrue; falseg.

For example, concept learning is a well-studied special case of induction [Mitchell 97,

Chapter 2]; a concept is equated with the set of instances in its extension or (equiva-

lently) the function which maps instances of the concept to true and other instances

to false. In contrast, we permit L to have arbitrary (including in�nite) cardinal-

ity. As we'll see, allowing L to have arbitrary cardinality is essential to formalizing

wrapper construction as an induction task.

Third, we assumed that the learner gains knowledge of the target hypothesis

T only by means of the oracle Oracle

T ;D

. In this thesis we ignore other kinds

of queries to the oracle, such as equivalence and membership queries [Angluin 87,

Angluin & Laird 88]. Furthermore, we have considered only perfect, noise-free

oracles|i.e., invoking Oracle

T ;D

returns exactly hI; T (I)i (for some instance I),

rather than sometimes reporting T (I) incorrectly. We will continue to assume noise-

free oracles until Chapter 6, when we consider extensions to this simple model in the

context of wrapper induction.

Fourth, even assuming simple, noise-free oracles, the Induce algorithm is highly

specialized to the task at hand. Induce simply gathers a set E of examples, and

calls the generalization function Generalize

H

once with input E . In the context of

36

wrapper induction or learning cbl, this simple algorithm is su�cient. But other

strategies might be useful in other learning tasks. For example, boosting algorithms

[Kearns & Vazirani 94, Chapter 4] invoke Generalize

H

several times with di�erent sets

of gathered examples, and output the hypothesis that performs best against additional

examples from Oracle

T ;D

.

Note also that, unlike most descriptions of induction, we explicitly decompose the

learning algorithm into \generic" learner Induce, and a \domain-speci�c" generaliza-

tion function Generalize

H

. We do this because it will be convenient to be able to

simply \plug in" generalization functions for di�erent wrapper classes.

Finally, the de�nition of PAC learnability (De�nition 3.1) is stated in terms of the

Induce algorithm's Generalize

H

input. Usually, PAC learnability is de�ned by saying

that there must exist a learning algorithm with a particular property (namely, that

the PAC termination criterion is satis�ed for any �, �, T , and D). De�nition 3.1

is simply a restricted version of this more general de�nition, specialized to the case

when the learning algorithm is Induce. Clearly, if H is PAC-learnable according to

our De�nition 3.1, then it is PAC-learnable in the more general sense.

3.3 Wrapper construction as inductive learning

This chapter has been concerned with inductive learning in general. With this back-

ground in place, we now show how wrapper induction can be viewed as a problem of

induction.

Recall that an induction task is comprised of (a) a set of instances I; (b) a

set of labels L; and (c) a set of hypotheses H. In our framework, to learn H we

must provide the Induce generic learning algorithm with two inputs: (d) the oracle

function Oracle

T ;D

, and (e) the function Generalize

H

. Finally, need to develop (f) a

PAC model of learning H.

The correspondence between inductive learning and wrapper induction is as fol-

37

lows:

(a) The instances I correspond to query responses from the information resource

under consideration. In the country/code example described in Chapter 2, I

would be a set of html strings similar to Figure 2.1(c).

(b) The labels L correspond to query response labels. For example, the label of the

html document in Figure 2.1(c) is shown in Equation 2.2.

Note that in typical inductive learning tasks, labels are simply category assign-

ments such as `liar' or `truthful', while our labels are complex multi-dimensional

structures. However, a single such structure corresponds to a page's label, just

as the single label `liar' is assigned to Nixon. Let us explicitly state that even

though our labels are structured, we do not assign multiple labels to any in-

stance.

(c) Hypotheses correspond to wrappers, and an hypothesis bias corresponds to a

class of wrappers. For example, the ExtractCCs wrapper shown in Figure 2.2 is

one candidate hypothesis. Note that ExtractCCs satis�es the formal de�nition

of an hypothesis, because it takes as input a query response and outputs a label.

As hinted at in Chapter 1 (and described in detail in Chapter 4) ExtractCCs is a

member of the hlrt wrapper class. In Chapter 5, we identify several additional

classes of wrappers which are learnable under this framework.

(d) The Oracle

T ;D

function produces a labeled example query response for a partic-

ular information resource.

The idea is that associated with each resource is a target wrapper T . Of course,

in our wrapper construction application, T usually does not exist until our

system learns it. Nevertheless, we can treat the oracle as being dependent on

38

T . The function Oracle

T ;D

need only return an example of how the target would

behave; the oracle does not require access to the target itself.

As a simple example, a person might play the role of the oracle. Alternatively,

we describe in Chapter 6 techniques for automatically labeling pages. These

techniques can be used to implement Oracle

T ;D

without requiring access to T .

(e) In Chapter 4, we discuss how to implement the Generalize

hlrt

, the generalization

function for the hlrt wrapper class. Chapter 5 then goes on to de�ne this

function for several more classes.

(f) In Chapter 4, we develop a PAC model of our wrapper learning task.

3.4 Summary

Inductive learning is a well-studied model for analyzing and building systems that

improve over time or generalize from their experience. The framework provides a rich

variety of analytical techniques and algorithmic ideas.

In this chapter, we showed how our wrapper construction task can be viewed as

one of induction. To summarize, query responses correspond to instances, a page's

information content is its label , and wrappers correspond to hypotheses.

Of course, so far we have only sketched out the mapping between wrapper con-

struction and induction. In Chapter 4 we esh out the details for one particular

wrapper class, hlrt, and in Chapter 5 we consider �ve additional wrapper classes.

Chapter 4

THE HLRT WRAPPER CLASS

4.1 Introduction

In Chapter 2, we discussed information extraction in general, and using wrappers

for information extraction in particular. We then discussed inductive learning, our

approach to automatically constructing wrappers. We noted that the key to a suc-

cessful induction algorithm is invariably to bias the algorithm so that it considers

a restricted class of hypotheses [Mitchell 80]. In this chapter, we describe such a

restricted class for our application: the hlrt wrapper class is a generalization of the

ExtractCCs procedure described in Chapter 2.

We proceed as follows. First, we describe the hlrt class (Section 4.2). We then

show how to learn hlrt wrappers, by describing the hlrt-speci�c generalization

function required by the Induce generic learning algorithm. In Section 4.3, we present

a straightforward (though ine�cient) implementation of this function. We then an-

alyze the computational complexity of our algorithm, and use this analysis to build

a more e�cient algorithm (Section 4.4). We then analyze our algorithm heuristically

in order to understand theoretically why our algorithm runs so quickly in practice

(Section 4.5). Finally, in Section 4.6 we develop a PAC model for the hlrt wrapper

class.

4.2 hlrt wrappers

Recall the wrapper ExtractCCs (Figure 2.2) for the example country/code resource

(Figure 2.1). The ExtractCCs wrapper operates by searching for the strings and

40

 in order to locate and extract the countries, and for the strings <I> and </I>

to extract the country codes.

ExtractCCs is somewhat more complicated, because this simple left-right (lr)

strategy fails: the top and the bottom of the page are formatted in such a way that

not all occurrences of � � � indicate a country. However, the string <P> can be

used to distinguish the head of the page from its body. Similarly, <HR> separates the

last tuple from the tail. This more sophisticated head-left-right-tail (hlrt) approach

can be used to extract the content from the country/code resource.

The ExecHLRT procedure. In this thesis we focus on hlrt wrappers|informally,

hlrt wrappers are those that are structurally similar to ExtractCCs. The idea is

that ExtractCCs is one instance of a particular \idiomatic programming style" that

is useful when writing wrappers. Figure 4.1 lists ExecHLRT, a template for writing

wrappers according to this idiomatic style. ExecHLRT generalizes the ExtractCCs

wrapper, by substituting variables in place of the constant strings that are speci�c

to the country/code example, and by allowing K attributes per tuple instead of

exactly two. Note that the hlrt delimiters must be constant strings, rather than

(for example) regular expressions.

Speci�cally, the variable h in ExecHLRT represents the head delimeter; h = <P>

for ExtractCCs. The variable t represents the tail delimiter; t = <HR> in the example.

There are K = 2 attributes in the example. The variable `

1

indicates the string mark-

ing the left-hand side of the �rst attribute (the country); `

1

= in the example. r

1

marks the right-hand side of the �rst attribute; r

1

= in the example. Finally,

`

2

and r

2

mark the left- and right-hand (respectively) sides of the second attribute

(the code); `

2

= <I> and r

2

= </I> in the example.

ExecHLRT operates by skipping over the page's head, marked by the value h. Next,

the tuples are extracted one by one, stopping when the page's tail (indicated by t)

is encountered. The algorithm's outer loop terminates when the tail is encountered.

41

(a)

ExecHLRT(wrapper hh; t; `

1

; r

1

; : : : ; `

K

; r

K

i, page P)

skip past the �rst occurrence of h in P

while the next occurrence of `

1

is before the next occurrence of t in P

for each h`

k

; r

k

i 2 fh`

1

; r

1

i; : : : ; h`

K

; r

K

ig

extract from P the value of the next instance of the k

th

attribute

between the next occurrence of `

k

and subsequent occurrence of r

k

return all extracted tuples

(b)

ExecHLRT(wrapper hh; t; `

1

; r

1

; : : : ; `

K

; r

K

i, page P)

i P#h 4.1(a)

m 0

while jP [i]=tj > jP [i]=`

1

j 4.1(b)

m m+ 1

for each h`

k

; r

k

i 2 fh`

1

; r

1

i; : : : ; h`

K

; r

K

ig

i i + P [i]#`

k

+ j`

k

j 4.1(c)

b

m;k

 i 4.1(d)

i i + P [i]#r

k

4.1(e)

e

m;k

 i� 1 4.1(f)

return label f: : : ; h: : : ; hb

m;k

; e

m;k

i; : : :i; : : :g 4.1(g)

Figure 4.1: The hlrt wrapper procedure template: (a), pseudo-code; and (b), details.

The inner loop extract's each of a tuple's attributes, using the left- (`

k

) and right-hand

(r

k

) delimiter for each attribute in turn.

ExecHLRT is essentially a \template" for writing hlrt wrappers. For instance, if

we instantiate the ExecHLRT template with the values K = 2, h = <P>, t = <HR>,

`

1

= , r

1

= , `

2

= <I>, r

2

= </I>, the result is the ExtractCCs wrapper.

The ExecHLRT procedure: Details. Figure 4.1 presents ExecHLRT at two levels

of detail. In part (a) of the �gure, we provide a high-level pseudo-code description

of the algorithm. In Appendix B, we provide proofs for the theorems and lemmas

stated in this thesis. To do so involves reasoning formally about the behavior of

the ExecHLRT algorithm. Such reasoning involves specifying the algorithm in more

detail than is supplied in Figure 4.1(a); part (b) provides the additional details.

42

Before proceeding, we briey discuss these details.

ExecHLRT operates by incrementing an index i over the input page P . The

variable i is increased by searching for the hlrt delimiters in the page. The attribute's

beginning indices (the b

m;k

) and ending indices (the e

m;k

) are computed based on the

values taken by i as the page is processed.

Figure 4.1(b) makes use of the \=" and \#" string operators. In Appendix C,

we describe our string algebra; here we provide a brief summary. If s and s

0

are

strings, then s=s

0

is the su�x of s starting at the �rst occurrence of s

0

, with s=s

0

= }

indicating that s

0

does not occur in s. For example, abcdecdf=cd = cdecdf, while

abc=xyz = }. While \=" is a string search operator, \#" is a string index operator:

s#s

0

is the position of s

0

in s; for example abcdef#cd = 3.

ExecHLRT proceeds as follows. First (line 4.1(a)), the index i points to the head

delimiter h in the input page P . For each iteration of the outer `while' loop (line

4.1(b)) i points to a position upstream of the start of the next tuple. For each

iteration of the inner `for each' loop, i points �rst (line 4.1(c)) at the beginning of

the m

th

tuple's k

th

attribute. The variable i then (line 4.1(e)) points to one character

beyond the end of the m

th

tuple's k

th

attribute. The values of b

m;k

and e

m;k

are

set using these two indices (lines 4.1(d) and 4.1(f)). The outer loop terminates (line

4.1(b)) when the next occurrence t occurs before the next occurrence of `

1

(if there

is one), indicating that P 's tail has been encountered.

Formal considerations. Note that we deliberately ignore failure in ExecHLRT.

For example, what happens if the head delimiter h does not occur in page P ? From

a practical perspective, these are important issues (though it is trivial to add code to

detect these situations). However, for now this complication need not concern us. As

we'll see, we can ignore failure because our induction system does not actually invoke

wrappers. Rather, it reasons about what would happen if they were to be invoked;

the consistency constraints developed in Section 4.3.1 are a precise characterization

43

of the conditions under which ExecHLRT will fail.

The notation presented in Chapter 2 can be used to formally describe the behavior

of ExecHLRT. Let w be an hlrt wrapper, P be a page, and L be a label. In Chapter 2

we used the notationw(P) = L to indicate that the L is the result of applying wrapper

w to page P . ExecHLRT is simply a procedural description of this relationship:

w(P) = L if and only if L is output as a result of invoking ExecHLRT on w and P .

That is, the notation w(P) = L is an abbreviation for ExecHLRT(w; P) = L.

Note that, given the ExecHLRT procedure, an hlrt wrapper's behavior can be

entirely captured in terms of 2K + 2 strings h, t, `

1

, r

1

, . . . , `

K

and r

K

(where each

tuple consists of K attributes). For example, as described earlier, the six strings

h<P>; <HR>; ; ; <I>; </I>i exactly specify the ExtractCCs wrapper. For this

reason, in the remainder of this thesis we treat a wrapper as simply a vector of

strings; the ExecHLRT procedure itself plays a relatively minor role. Implicit in the

use of the notation hh; t; `

1

; r

1

; : : : ; `

K

; r

K

i is the fact that the ExecHLRT procedure

de�nes such a wrapper's behavior.

De�nition 4.1 (hlrt) An hlrt wrapper is a vector

hh; t; `

1

; r

1

; : : : ; `

K

; r

K

i consisting of 2K + 2 strings, where the pa-

rameter K indicates the number of attributes per tuple. The hlrt

wrapper class H

hlrt

is the set consisting of all hlrt wrappers.

1

This chapter concerns the hlrt wrapper class; when not stated explicitly, any use

of the generic term \wrapper" refers to hlrt wrappers only.

1

Strictly speaking, each integer K induces a di�erent hypothesis set H

hlrt

, and thus H

hlrt

is

in fact a function of K. However, the value of K will always be clear from context and thus for

simplicity we do not explicitly note this dependency.

44

4.3 The Generalize

hlrt

algorithm

We want to use the Induce generic induction algorithm to learn hlrt wrappers. Recall

that Induce takes as input a function Generalize

H

, which is customized to the particular

hypothesis class H being learned. In this section, we describe Generalize

hlrt

, the

generalization function for the H

hlrt

hypothesis class.

Generalize

hlrt

takes as input a set E = fhP

1

; L

1

i; : : : ; hP

N

; L

N

ig of examples.

Each example is a pair hP

n

; L

n

i, where P

n

is a page and L

n

is its label according to the

target wrapper T : L

n

= T (P

n

). When invoked on a set of examples, Generalize

hlrt

returns a wrapper hh; t; `

1

; r

1

; : : : ; `

K

; r

K

i 2 H

hlrt

.

At a theoretical level, what formal properties should Generalize

hlrt

exhibit? In

an inductive learning setting, we generally can not insist that the learner be perfect|

i.e., that it always output the target hypothesis. The reason is simply that, by

de�nition, induction involves drawing inferences that may be invalid. (Of course,

the hope is that the inferences will be appropriate if based on a signi�cant amount

of training examples.) Rather than perfect, we want our learner to be consistent|

i.e., it always outputs an hypothesis that is correct with respect to the training

examples. As we'll see, consistency is an important formal property not only because

it is intuitively reasonable, but also because our PAC analysis of hlrt requires that

Generalize

hlrt

(E) be consistent.

We therefore begin our description of Generalize

hlrt

by describing the conditions

under which an hlrt wrapper is consistent with a set of examples. These conditions,

which we call the hlrt consistency constraints, are used throughout this thesis to

understand the nature of hlrt wrapper induction.

The section is organized as follows.

� In Section 4.3.1, we present the hlrt consistency constraints.

� In Section 4.3.2, we present Generalize

hlrt

, a special-purpose constraint-

satisfaction engine, customized to the hlrt consistency constraints.

� In Section 4.3.3, we illustrate Generalize

hlrt

by walking through an example.

45

� Finally, in Section 4.3.4, we prove that Generalize

hlrt

is consistent.

4.3.1 The hlrt consistency constraints

We begin with a de�nition of consistency. Though more general de�nitions are possi-

ble, we will specialize our de�nition to the use of the Induce generic learning algorithm.

De�nition 4.2 (Consistency) Let H be an hypothesis class.

Generalize

H

is consistent i�, for every set of examples E, we have

that H(I) = L for every hI; Li 2 E, where H = Generalize

H

(E) is the

hypothesis returned by Generalize

H

when given input E.

To reason about the consistency of Generalize

hlrt

, we must apply this de�nition

to the H

hlrt

wrapper class. What conditions must hold for wrapper w to be con-

sistent with a particular example hP; Li? The hlrt consistency constraints provide

the answer to this question. By examining the ExecHLRT procedure in detail, we can

de�ne a predicate C

hlrt

(w; hP; Li) which ensures that ExecHLRT computes L given

w and P . That is, C

hlrt

(w; hP; Li) provides the necessary and su�cient conditions

under which w(P) = L.

A precise description of C

hlrt

requires a signi�cant amount of notation. Before

tackling these details, we'll illustrate the basic idea using the country/code example

(Figure 2.1).

Example. Why does the ExtractCCs wrapper work? Consider a (relatively simple)

aspect of this question: Why is a satisfactory value for r

1

in the hlrt encoding

of the ExtractCCs wrapper? To answer this question, we must examine the ExecHLRT

procedure (Figure 4.1).

The variable r

k

takes on tihe value r

1

= in the �rst iteration of the inner `for

each' loop. ExecHLRT scans the input page, extracting each attribute value in turn.

In particular, for each tuple, ExecHLRT looks for r

1

immediately after the location

46

where it found `

1

; the �rst attribute is extracted between these two indices. Thus

r

1

must satisfy two properties: r

1

must occur immediately after each instance of the

�rst attribute in each tuple, and r

1

must not occur in any of the instances of the

�rst attribute itself (otherwise, r

1

would occur \upstream", before the true end of

the attribute). We can see that satis�es both properties: is a pre�x of the

strings occurring after the countries (in this case, each is the string <I>), and

 is also not a substring of any of the attribute values (Congo, Egypt, Belize,

Spain).

On the other hand, consider the delimiter r

1

= go. This delimiter clearly doesn't

work; but why not exactly? The reason is that the string go satis�es neither of the

two properties just described: go is not a pre�x of any of the <I> strings that

occur after the countries, and it also is a substring of one of the countries (Congo).

This simple example illustrates the constraints that the delimiter r

1

must obey.

We can concisely state the constraints on r

1

by introducing some auxiliary ter-

minology. The idea is that we can simplify the speci�cation of the hlrt consistency

constraints by assigning \names" to particular \pieces" of the input page. Figure 4.2

2

illustrates that the example page begins with a head ; each tuple is composed of a set

of attribute values; values within a single tuple are separated by the intra-tuple sep-

arators; tuples are separated from one another by the inter-tuple separators; �nally,

the page ends with a tail . Note that these various \pieces" constitute a partition of

the page; exactly how a page is partitioned depends on its label.

Using this terminology, we can say that is a satisfactory value for r

1

because

 is a pre�x of the intra-tuple separators between the �rst and second attribute

(labeled S

m;1

in Figure 4.2), yet does not occur in any �rst attribute's instances

(labeled A

m;1

).

The r

1

constraint just described involves only the intra-tuple separators and the

2

In the �gure, the symbol \+" indicates a carriage return character; see Appendix C.

47

<HTML> � � �<P>+

| {z }

h

e

a

d

(

S

0

;

K

)

Congo

| {z }

v

a

l

u

e

o

f

1

s

t

t

u

p

l

e

'

s

1

s

t

a

t

t

r

i

b

u

t

e

(

A

1

;

1

)

 <I>

| {z }

i

n

t

r

a

-

t

u

p

l

e

s

e

p

a

r

a

t

o

r

b

e

t

w

e

e

n

1

s

t

t

u

p

l

e

'

s

1

s

t

&

2

n

d

a

t

t

r

i

b

u

t

e

s

(

S

1

;

1

)

242

|{z}

v

a

l

u

e

o

f

1

s

t

t

u

p

l

e

'

s

2

n

d

a

t

t

r

i

b

u

t

e

(

A

1

;

2

)

</I>
+

| {z }

i

n

t

e

r

-

t

u

p

l

e

s

e

p

a

r

a

t

o

r

b

e

t

w

e

e

n

1

s

t

&

2

n

d

t

u

p

l

e

s

(

S

1

;

2

)

Egypt

| {z }

v

a

l

u

e

o

f

2

n

d

t

u

p

l

e

'

s

1

s

t

a

t

t

r

i

b

u

t

e

(

A

2

;

1

)

 </I> � � � Spain

| {z }

v

a

l

u

e

o

f

4

t

h

t

u

p

l

e

'

s

1

s

t

a

t

t

r

i

b

u

t

e

(

A

4

;

1

)

 <I>

| {z }

i

n

t

r

a

-

t

u

p

l

e

s

e

p

a

r

a

t

o

r

b

e

t

w

e

e

n

4

t

h

t

u

p

l

e

'

s

1

s

t

&

2

n

d

a

t

t

r

i

b

u

t

e

s

(

S

4

;

1

)

34

|{z}

v

a

l

u

e

o

f

4

t

h

t

u

p

l

e

'

s

2

n

d

a

t

t

r

i

b

u

t

e

(

A

4

;

2

)

</I>
+<HR> � � �</HTML>

| {z }

t

a

i

l

(

S

4

;

2

)

Figure 4.2: A label partitions a page into the attribute values, the head, the tail, and

the inter- and intra-tuple separators. (For brevity, parts of the page are omitted.)

attribute values. As we'll see, the other parts of the page's partition are required for

the full speci�cation of the hlrt consistency constraints.

The de�nition of C

hlrt

. De�nition 4.3 below states the predicate C

hlrt

. As we'll

see in Section 4.3.2, computing Generalize

hlrt

(E) is a matter of �nding a wrapper w

such that C

hlrt

(w; hP; Li) for every hP; Li 2 E .

De�nition 4.3 (hlrt consistency constraints) Let w =

hh; t; `

1

; r

1

; : : : ; `

K

; r

K

i be an hlrt wrapper, and hP; Li be an ex-

ample. w and hP; Li satisfy the hlrt consistency constraints|written

C

hlrt

(w; hP; Li)|if and only if the predicates C1{C3 de�ned in Figure

4.3 hold:

C

hlrt

(w; hP; Li) ()

^

1�k�K

C1(r

k

; hP; Li)

^

^

1<k�K

C2(`

k

; hP; Li)

^ C3(h; t; `

1

; hP; Li):

48

C1: constraints on the r

k

. Every r

k

must (i) be a pre�x of the subsequent

intra-tuple separators; and (ii) must not occur within any of the corresponding

attribute values:

C1(r

k

; hP; Li) () 8

1�m�M

S

m;k

=r

k

= S

m;k

(i)

^ A

m;k

=r

k

= }: (ii)

C2: constraints on the `

k

. Every `

k

(except `

1

) must be a proper su�x of the

preceding intra-tuple separators:

C2(`

k

; hP; Li) () 8

1�m�M

S

m;k�1

=`

k

= `

k

:

C3: constraints on h, t, and `

1

. (i) `

1

must be a proper su�x of the substring

of the page's head following h; (ii) t must not occur following h but before `

1

in

the page's head; (iii) `

1

must not precede t in the page's tail; (iv) `

1

must be a

proper su�x of each of the inter-tuple separators; and (v) t must never precede `

1

in any inter-tuple separator:

C3(h; t; `

1

; hP; Li) () (S

0;K

=h)=`

1

= `

1

(i)

^ j(P=h)=tj > j(P=h)=`

1

j (ii)

^ jS

M;K

=`

1

j > jS

M;K

=tj (iii)

^ 8

1�m<M

�

S

m;K

=`

1

= `

1

(iv)

^ jS

�

m;K

=tj > jS

�

m;K

=`

1

j

�

: (v)

Figure 4.3: The hlrt consistency constraint C

hlrt

is de�ned in terms of three pred-

icates C1{C3.

The notation C

hlrt

(w; E) is a shorthand for 8

hP;Li2E

C

hlrt

(w; hP; Li).

Figure 4.3 lists the three predicates C1{C3 in terms of which C

hlrt

is de�ned.

C1{C3 are a convenient way to decompose the predicate C

hlrt

into more easily

digested parts. Each predicate governs a particular aspect of consistency. Speci�cally,

C1 ensures that each delimiter r

k

is correct; C2 governs the `

k

(for k > 1); and

C3 that h, t, and `

1

are correct. (As we'll see in Section 4.4, the fact that C1{

C3 each constrain di�erent hlrt components is the key to designing an e�cient

Generalize

hlrt

algorithm.)

49

In the remainder of this section we describe the predicates C1{C3. The casual

reader might prefer to skip directly to Section 4.3.2 on page 52.

String algebra. The speci�cation of C1{C3 in Figure 4.3 makes use of the string

operator \=", de�ned in Appendix C.

The partition variables A

m;k

and S

m;k

. Figure 4.3 refers to the variables S

m;k

and A

m;k

. Earlier in this section, Figure 4.2 illustrated how a page is partitioned by

its label. The variables S

m;k

and A

m;k

occur in the de�nitions of predicates C1{C3

in order to precisely refer to the parts of this partition.

For example, we saw that the value of r

1

is constrained by the values of the �rst

attribute (referred to with the variables A

m;1

, for each 1 � m � M) as well as the

text occurring between these attributes values and the next (the S

m;1

). From Figure

4.3, we can recognize this constraint on r

1

as the predicate C1.

More formally, suppose P 's label L indicates that P contains M = jLj tuples

(each consisting of K attributes):

L =

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

D

hb

1;1

; e

1;1

i; : : : ; hb

1;k

; e

1;k

i; : : : ; hb

1;K

; e

1;K

i

E

.

.

.

D

hb

m;1

; e

m;1

i; : : : ; hb

m;k

; e

m;k

i; : : : ; hb

m;K

; e

m;K

i

E

.

.

.

D

hb

M;1

; e

M;1

i; : : : ; hb

M;k

; e

M;k

i; : : : ; hb

M;K

; e

M;K

i

E

9

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

;

:

Observe that P is partitioned by L into 2MK + 1 substrings:

P =

S

0;K

A

1;1

S

1;1

A

1;2

S

1;2

� � � S

1;K�1

A

1;K

S

1;K

.

.

.

A

m;1

S

m;1

A

m;2

S

m;2

� � �S

m;K�1

A

m;K

S

m;K

.

.

.

A

M;1

S

M;1

A

M;2

S

M;2

� � �S

M;K�1

A

M;K

S

M;K

:

(4.1)

50

This partition of P is de�ned in terms of MK values of A

m;k

and MK + 1 values of

S

m;k

. These variables are de�ned as follows:

� The A

m;k

are the values of each attribute in each of page P 's tuples. Speci�cally,

A

m;k

is the value of the k

th

attribute of the m

th

tuple on page P . In terms of

the indices in label L:

3

A

m;k

= P

h

b

m;k

; e

m;k

i

:

The A

m;k

, of course, are simply the text fragments to be extracted from page

P .

� The S

m;k

are the separators between these attribute values. There are four

kinds of separators:

� Page P 's head , denoted S

0;K

, is the substring of the page prior to the �rst

attribute of the �rst tuple:

S

0;K

= P [0; b

1;1

] :

� Page P 's tail , denoted by S

M;K

, is the substring of the page following the

last attribute of the last tuple:

S

M;K

= P

h

e

M;K

; jP j

i

:

� The intra-tuple separators separate attributes within a single tuple. Specif-

ically, S

m;k

(for all 1 � k < K) is the separator between the k

th

and (k+1)

st

attribute of the m

th

tuple in page P :

S

m;k

= P

h

e

m;k

; b

m;k+1

i

:

� The inter-tuple separators separate consecutive tuples. Speci�cally, S

m;K

is the separator between the m

th

and (m + 1)

st

tuple on page P , for 1 �

m < M :

S

m;K

= P

h

e

m;K

; b

m+1;1

i

:

3

Recall from Appendix C that the notation s[b; e] is the substring of s from position b to position

e.

51

Note that the subscripts on the head (S

0;K

) and tail (S

M;K

) generalize the

inter-tuple separators: the head \separates" the \zeroth" and �rst tuples,

and the tail \separates" the last and \post-ultimate" tuples.

Note that the A

m;k

and S

m;k

do in fact partition P , because collectively they cover

the entire string P .

Finally, the notation S

�

m;k

refers to the concatenation of S

m;k

with all subsequent

partition elements. More precisely,

S

�

m;k

= S

m;k

A

m;k+1

S

m;k+1

� � �A

m;K

S

m;K

A

m+1;1

S

m+1;1

� � �A

M;K

S

M;K

:

For example, under this notation, page P can be written as P = S

�

0;K

, because a

page consists of its head (S

0;K

) followed by the rest of the page. Note also that

S

M;K

= S

�

M;K

, because nothing follows a page's tail.

Before proceeding, let us clarify that the notation A

m;k

and S

m;k

obscures an

important point: the value of each partition variable obviously depends on the page

being partitioned. For example, given a set of pages P

1

; : : : ; P

N

, it is ambiguous to

which page the variables A

m;k

or S

m;k

refer. Rather than further complicate the

notation (e.g., by noting the relationship with a superscript: A

n

m;k

) we will always

explicitly mention the page under consideration.

Explanation of C3(iv-v). The predicates C1{C3 are tersely presented in Table

4.3. The details are required only for the proofs in Appendix B. The casual reader

need not comprehend C1{C3 at such depth; the English-language descriptions given

in Figure 4.3 should su�ce. Nevertheless, let us now explain part of the notation in

order to motivate and explain C1{C3. Predicate C3 is relatively complex, and so

exploring just C3(iv-v) in detail will illuminate the rest.

Predicate C3(iv-v) ensures that `

1

and t are satisfactory with regard to a page's

body. The `8

1�m<M

' quanti�er states that C3(iv-v) must hold for each tuple m

except the �rst and last (which are handled by C3(i{ii) and C3(iii), respectively).

52

C3(iv), S

m;K

=`

1

= `

1

, ensures that `

1

is a proper pre�x of every S

m;K

. To see

this, note that for any strings s and s

0

, s=s

0

= s

0

i� s

0

is a proper su�x of s.

C3(v), jS

�

m;K

=tj > jS

�

m;K

=`

1

j, ensures that the tail delimiter t must always occur

after `

1

in the m

th

inter-tuple separator. To see this, note that js=s

0

j is the position

of s

0

in s; therefore js=s

0

j > js=s

00

j i� s

0

occurs after s

00

in s.

C

hlrt

is correct. We have de�ned a predicate C

hlrt

and claimed that it ex-

actly captures the conditions under which a wrapper is consistent with a particular

example. We now formalize this claim.

Theorem 4.1 (C

hlrt

is correct) For every hlrt wrapper w, page P ,

and label L, C

hlrt

(w; hP; Li) () ExecHLRT(w; P) = L.

See Appendix B for the proof.

Summary. In this section we have de�ned the hlrt consistency constraints, the

conditions under which a wrapper is consistent with a given example. Speci�cally, we

have introduced the predicate C

hlrt

(w; hP; Li), which holds if and only if w(P) =

L|i.e., just in case hlrt wrapper w generates label L for page P .

C

hlrt

is speci�ed in terms of a complicated set of notation. C

hlrt

is de�ned

in terms of a conjunction of more primitive predicates, C1{C3. In turn, C1{C3

are de�ned in terms of the variables A

m;k

and S

m;k

, which indicate the way that L

partitions P into a set of attribute values and the separators occurring between them.

4.3.2 Generalize

hlrt

We introduced the hlrt consistency constraint predicate C

hlrt

because it pro-

vides a straightfoward way to describe the Generalize

hlrt

algorithm: Generalize

hlrt

is a special-purpose constraint-satisfaction engine that takes as input a set E =

hhP

1

; L

1

i; : : : ; hP

N

; L

N

ii, and that solves problems of the following form:

53

Generalize

hlrt

(examples E = fhP

1

; L

1

i; : : : ; hP

N

; L

N

ig)

for r

1

 each pre�x of P

1

's intra-tuple separator for S

1;1

4.4(a)

.

.

.

for r

K

 each pre�x of P

1

's intra-tuple separator S

1;K

4.4(b)

for `

1

 each su�x of P

1

's head S

0;K

4.4(c)

for `

2

 each su�x of P

1

's intra-tuple separator S

1;1

4.4(d)

.

.

.

for `

K

 each su�x of P

1

's intra-tuple separator S

1;K�1

4.4(e)

for h each substring of P

1

's head S

0;K

4.4(f)

for t each substring of P

1

's tail S

M;K

4.4(g)

w hh; t; `

1

; r

1

; : : : ; `

K

; r

K

i 4.4(h)

if C

hlrt

(w; E), then 4.4(i)

return w 4.4(j)

Figure 4.4: The Generalize

hlrt

algorithm.

Variables: h, t, `

1

, r

1

, . . . , `

K

, r

K

Domains: each variable can be an arbitrary character string

Constraints: C

hlrt

(w; E), where w = hh; t; `

1

; r

1

; : : : ; `

K

; r

K

i

The algorithm. Figure 4.4 presents Generalize

hlrt

, an algorithm that solves

constraint-satisfaction problems of this form.

Generalize

hlrt

is a simple generate-and-test algorithm. Given input E ,

Generalize

hlrt

operates by searching the space of hlrt wrappers for a wrapper w

that satis�es C

hlrt

with respect to each example. Generalize

hlrt

employs a depth-

�rst search strategy: the algorithm considers all candidate values for r

1

; for each

such r

1

, it then considers all candidate values for r

2

; for each such r

1

and r

2

, it then

considers all candidate values for r

3

; and so on. The result is a loop control structure

nested 2K + 2 levels deep.

What candidates values should be considered for each of the 2K+2 hlrt compo-

nents? An implementation of Generalize

hlrt

that does not restrict these candidate

sets is infeasible, because the hlrt space is in�nite and thus a depth-�rst search

might never terminate.

54

r1a

l1a

ha hb hb

ta tb tbtb ta ta tb ta ta Candidates for tta tb ta tb

ha

l1b

tb

XX X X X X XX

r1b Candidates for r1

l1a l1b Candidates for l1

ha hb ha hb Candidates for h

ta tb

Figure 4.5: The space searched by Generalize

hlrt

, for a very simple example.

However, on the basis of just a single example, the number of candidates for each

of the 2K + 2 components becomes �nite. For example, the head delimiter h must

be a substring of the head of each page P

n

. Thus line 4.4(f) uses as candidates for

h, not all possible strings, but rather only those that are subtrings of page P

1

's head

S

0;K

. Similar constraints apply to each hlrt component.

Wrapper induction as search. In Section 4.4 we will perform a detailed com-

plexity analysis of Generalize

hlrt

; the bottom line is that Generalize

hlrt

examines

a �nite search space. This means that we can describe the algorithm in very simple

terms: Generalize

hlrt

searches the �nite space of potentially-consistent hlrt wrap-

pers in a depth-�rst fashion, stopping when it encounters a wrapper w that obeys

C

hlrt

.

Figure 4.5 illustrates the space searched by Generalize

hlrt

, for a very simple

example in which there is just K = 1 attribute per tuple, and where there are exactly

two candidates for each of the 2K + 2 = 4 wrapper components. In the Figure, the

two candidates for h are denoted \ha" and \hb". Similarly, for t the candidates are

\ta" and \tb"; for `

1

, \l1a" and \l1b"; and for r

1

, \r1a" and \r1b". Figure 4.5 shows

the space as a binary tree. In general, the tree is not binary: the branching factor at

each level captures the number of candidates considered by the corresponding line of

55

Generalize

hlrt

(in this case, line 4.4(a) for the �rst level, 4.4(c) for the second, 4.4(f)

for the third, and 4.4(g) for the fourth).

The search space is a tree. Leaves represent wrappers, and interior nodes indicate

the selection of a candidate for a speci�c wrapper component. Some of the leaves are

labeled `X', indicating that the corresponding wrapper does not satify C

hlrt

(these

leaves are chosen arbitrarily merely for the sake of illustration). For example, the

right-most leaf in the tree represents the wrapper hhb; tb; l1b; r1bi.

Using these ideas, we can now succinctly describe our algorithm: Generalize

hlrt

does an exhaustive depth-�rst search of the tree for a leaf not labeled `X'. Since the

out-degree of each interior node and the tree's depth are �nite, such a search process

is guaranteed to terminate.

4.3.3 Example

Before describing the formal properties of Generalize

hlrt

, we illustrate how the al-

gorithm operates using the country/code example.

Suppose Generalize

hlrt

is given just a single example, the html page in Figure

2.1(c) (call it page P

cc

) together with its label, Equation 2.2 (call it L

cc

). The following

\partial evaluation" of Generalize

hlrt

illustrates how this example is processed:

Generalize

hlrt

(example fhP

cc

; L

cc

ig)

for r

1

 each pre�x of <I> y

for r

2

 each pre�x of </I>+

for `

1

 each su�x of <HTML><TITLE>� � �<P>+

for `

2

 each su�x of <I>

for h each substring of <HTML><TITLE>� � �<P>+

for t each substring of </I>
+<HR>� � �</HTML>

w hh; t; `

1

; r

1

; `

2

; r

2

i

if C

hlrt

(w; hP; Li), then return w

Consider the �rst line of this code fragment, marked \y". As speci�ed in Figure 4.4,

this line lists the candidates for hlrt component r

1

: the pre�xes of <I>. To

56

see that these are the candidates, note that <I> is the string occuring after the

�rst attribute of the �rst tuple in the example hP

cc

; L

cc

i. That is, S

1;1

= <I>

for page P

cc

. Similarly, the candidates for r

2

are the pre�xes of </I>+ because

S

1;2

= </I>+, and so forth for the remaining hlrt components.

Generalize

hlrt

operates by iterating over all possible combinations of the can-

didates. Each such combination corresponds to a wrapper hh; t; `

1

; r

1

; `

2

; r

2

i. Each

wrapper is tested to see whether it satis�es C

hlrt

; if so, Generalize

hlrt

terminates

and the wrapper is returned. In this particular example, eventually the wrapper

h<P>; <HR>; ; ; <I>; </I>i is encountered, and Generalize

hlrt

halts.

4

4.3.4 Formal properties

As described in De�nition 4.2, we want the function Generalize

hlrt

to be consistent|

i.e., Generalize

hlrt

should output only wrappers w that are correct for the input

examples. In this section, we formalize this claim.

Theorem 4.2 Generalize

hlrt

is consistent.

Proof of Theorem 4.2: From lines 4.4(h{j), we know that if Generalize

hlrt

re-

turns a wrapper w, then w will satisfy C

hlrt

for every example. Theorem 4.1 states

C

hlrt

(w; hP; Li)) w(P) = L. Thus establishing Lemma 4.3 completes the proof.

2 (Proof of Theorem 4.2)

Lemma 4.3 (Generalize

hlrt

is complete) For any set E of examples,

if there exists an hlrt wrapper obeying C

hlrt

for each member of E, then

Generalize

hlrt

(E) will return such a wrapper.

4

Actually, exhaustive enumeration reveals that there are more than 250 million hlrt wrappers

that are consistent with hP

cc

; L

cc

i; the wrapper hSome;+<HR>;+; <I>; <I>; </I>+i is

one example. Since we have not speci�ed the order in which the candidates are examined, we can

not be certain which wrapper will be returned. These subtle search-control issues are in interesting

direction of future research; see Chapter 9.

57

The proof of Lemma 4.3 essentially involves establishing that Generalize

hlrt

con-

siders enough candidates for each hlrt component. For example, when choosing a

value for h, we need to show that satisfactory values for h are always substrings of

page P

1

's head, and thus Generalize

hlrt

will always �nd a satisfactory value even

though it restricts its search to such substrings. See Appendix B.2 for the details.

4.4 E�ciency: The Generalize

�

hlrt

algorithm

Though very simple and exhibiting nice formal properties, the Generalize

hlrt

al-

gorithm as described in Section 4.3.2 is very ine�cient. In this section we analyze

the algorithm's computational complexity, and describe several e�ciency improve-

ments. The result is the algorithm Generalize

�

hlrt

, which|like Generalize

hlrt

|is

consistent, but which is much faster.

4.4.1 Complexity analysis of Generalize

hlrt

What is the computational complexity of Generalize

hlrt

? The algorithm consists

of 2K + 2 nested loop. We can bound the total running time of Generalize

hlrt

by

multiplying the number of times line 4.4(i) is executed (i.e., the total number of

iterations of the 2K + 2 nested loops) by the time to execute line 4.4(i) once.

How many times does each nested loop iterate? Each substring of page P

1

's head

is a candidate value for h. How many such substrings are there? Without loss of

generality, and to obtain the tightest bound, we can assume that Generalize

hlrt

enumerates the substrings of the shortest page's head|i.e., Figure 4.4 assumes that

P

1

is the shortest page. Note that page P

1

's jS

0;K

j grows with jP

1

j in the worst case.

Thus we can use R = jP

1

j to bound the number of candidates for h. Speci�cally,

since there are

R(R�1)

2

substrings of a string of length R, Generalize

hlrt

must con-

sider O

�

R

2

�

candidates for h. A similar argument applies to the tail delimiter t:

Generalize

hlrt

must examine O

�

R

2

�

candidates for t.

58

The number of candidates for the r

k

and l

k

are constrained more tightly. For

example, r

1

must be a pre�x of each S

m;1

, the intra-tuple separators between the �rst

and second attributes on each page. Thus the candidates for r

1

can be enumerated

by simply considering all pre�xes of the shortest value of S

m;k

. At this point the

analysis proceeds as with the page heads and tails: jS

m;k

j is at most R, and there

are R pre�xes of a string of length R, and therefore Generalize

hlrt

must consider

O (R) candidates for r

1

. A similiar argument applies to, and the same bound can be

derived for, each r

k

and `

k

.

Multiplying these bounds together, we have that Generalize

hlrt

must execute

line 4.4(i) for

O

�

R

2

�

�O

�

R

2

�

�O(R)� � � � � O(R)

| {z }

2K terms

= O

�

R

2K

�

(4.2)

for di�erent wrappers.

How long does it take to evaluate C

hlrt

for a single wrapper|i.e., how long does

it take to execute line 4.4(i)? Computing C

hlrt

essentially consists of a sequence of

string-search operations (written as `s=s

0

') over pairs of strings that, in the worst case,

each have length R. Using e�cient techniques, (e.g., [Knuth et al. 77]), each such

operation takes time O (R). Thus, bounding the time to compute C

hlrt

amounts to

multiplying the total number of invocations of the string-search operator by the time

per invocation, O (R).

The total number of such invocations can be computed by summing the num-

ber of invocations required by each of the three predicates C1{C3. We must test

each predicate against each of the N examples. Predicates C1 and C2 are in-

voked O (K) times, once per attribute. Each such evaluation requires examining

each of the tuples of each page. We can bound the number of tuples on a single

page as M

max

= max

n

M

n

, where M

n

= jL

n

j is the number of tuples on page P

n

.

Thus the time to evaluate C1 and C2 for a single page is O (KM

max

). Evaluat-

ing C3 involves a constant number of string search operations for each tuple across

59

all of the pages. Thus, testing C3 on a single page involves O (M

max

) primitive

string-search operations. Therefore, the time to test C1{C3 on a single example

is O (KM

max

) + O (KM

max

) + O (M

max

) = O (KM

max

). Therefore, the time to test

C1{C3 against all the examples is O (KM

max

) � O(N) = O (KM

max

N). Since the

time to perform a single string-search operator is O (R), the total time to compute

C

hlrt

for a single wrapper is

O (KM

max

N)�O(R) = O (KM

max

NR) :

Multiplying this bound by the number of wrappers for which C

hlrt

must be

evaluated (Equation 4.2) reveals that the total running time of Generalize

hlrt

is

O (KM

max

NR)� O

�

R

2K

�

= O

�

M

max

NR

2K+1

�

:

To summarize, we have established the following theorem.

Theorem 4.4 (Generalize

hlrt

complexity) The Generalize

hlrt

algo-

rithm runs in time O

�

M

max

NR

2K+1

�

, where K is the number of attributes

per tuple, N = jEj is the number of examples, M

max

= max

n

M

n

is the

maximum number of tuples on any single page, M

n

= jL

n

j is the num-

ber of tuples on page P

n

, and R = min

n

jP

n

j is the length of the shortest

example page.

4.4.2 Generalize

�

hlrt

As the preceding complexity analysis indicates, Generalize

hlrt

is a relatively na��ve al-

gorithm for solving the constraint-satisfaction problem of �nding a wrapper consistent

with a set of examples. In this section, we improve the performance of Generalize

hlrt

by describing several optimizations.

The basic idea is that Generalize

hlrt

can be improved by decomposing the prob-

lem of �nding the entire wrapper w into the problem of �nding each of w's 2K + 2

component delimiters (h, t, `

1

, r

1

, etc.). The key insight is that (for the most part)

60

the predicates C1{C3 do not interact, and thus we can �nd each delimiter with (in

most cases) no regard for the others.

For example, consider the variable r

2

. Inspecting predicate C1 for k = 2,

C1(r

2

; P; L) () 8

1�m�M

�

S

m;k

=r

2

= S

m;k

�

^

�

A

m;k

=r

2

= }

�

;

it is apparent that constraint C1 governs only r

2

. Furthermore, the other predicates

(C2{3) do not mention r

2

. Therefore, we can assign a value to r

2

without regard to

assignments to any of the other 2K� 1 variables. This observation suggests that the

complexity of �nding r

2

is considerably simpler than indicated by the bound derived

for Generalize

hlrt

.

To generalize, rather than solving the overall constraint-satisfaction problem of

�nding a wrapper w obeying C

hlrt

, we can instead solve for the 2K+2 components

of w as follows.

� Each variable r

k

(for 1 � k � K) is independent of the remaining 2K + 1

variables, since each r

k

is governed only by predicate C1.

� Similarly, each variable `

k

(for 1 < k � K) is independent of the remaining

2K + 1 variables, since each `

k

is governed only by predicate C2.

� The remaining three variables, h, t, and `

1

, mutually constrain each other, but

assignments to these three variables are independent of assignments to the other

2K � 1 variables. To see this, note that predicate C3 mentions h, t, and `

1

, but

neither of the other two predicates mention either of these variables.

The algorithm. Figure 4.6 lists Generalize

�

hlrt

, an improved version of

Generalize

hlrt

that makes use of these improvements. Generalize

�

hlrt

operates by

solving for each r

k

, then for each `

k

(k > 1), and �nally for the three values `

1

,

h and t. In a nutshell, Generalize

�

hlrt

is much faster than Generalize

hlrt

because

Generalize

�

hlrt

's iteration constructs are in series rather than nested.

Fast wrapper induction as search. Recall Figure 4.5, which illustrates the space

searched by the Generalize

hlrt

algorithm. Notice that the choice of r

1

is represented

61

Generalize

�

hlrt

(examples E = fhP

1

; L

1

i; : : : ; hP

N

; L

N

ig)

for each 1 � k � K 4.6(a)

for r

k

 each pre�x of P

1

's intra-tuple separator for S

1;k

4.6(b)

accept r

k

if C1 holds of r

k

and every hP

n

; L

n

i 2 E 4.6(c)

for each 1 < k � K 4.6(d)

for `

k

 each su�x of P

1

's intra-tuple separator S

1;k�1

4.6(e)

accept `

k

if C2 holds of `

k

and every hP

n

; L

n

i 2 E 4.6(f)

for `

1

 each su�x of P

1

's head S

0;K

4.6(g)

for h each substring of P

1

's head S

0;K

4.6(h)

for t each substring of P

1

's tail S

M;K

4.6(i)

accept `

1

, h, and t if C3 holds of `

1

, h, t and every hP

n

; L

n

i 2 E 4.6(j)

return hh; t; `

1

; r

1

; : : : ; `

K

; r

K

i 4.6(k)

Figure 4.6: The Generalize

�

hlrt

algorithm is an improved version of Generalize

hlrt

(Figure 4.4).

as the tree's root. Similarly, the choice for `

1

is represented by the �rst layer of nodes;

the choice of h, the second layer; and the choice for t, the third layer. This ordering

derives directly from the fact that in the original Generalize

hlrt

(Figure 4.4), the

outer-most loop iterates over candidates for r

1

, the next loop iterates over candidates

for r

2

, and so forth, ending with the inner-most loop iterating over candidates for t.

Given this observation, we can describe the improved Generalize

�

hlrt

algorithm in

very simple terms. Like Generalize

hlrt

, Generalize

�

hlrt

searches the tree in Figure

4.5 in a depth-�rst fashion. However, Generalize

�

hlrt

backtracks only over the bottom

three node layers|i.e., the nodes representing choices for `

1

, h and t. The algorithm

does not backtrack over the nodes from the root down to the fourth layer from the

bottom|i.e., the nodes representing choices for r

1

, . . . , r

K

, `

2

, . . . , `

K

.

Generalize

�

hlrt

's consistency proof (presented next) mainly involves showing that

this greedy search never fails to �nd a consistent wrapper if one exists. The basic

idea is that while Generalize

hlrt

uses the \global" evaluation function C

hlrt

to

determine whether a leaf is labeled `X' (i.e., the corresponding wrapper is consistent),

Generalize

�

hlrt

uses the \local" evaluation functions C1{C3.

62

4.4.3 Formal properties

In attempting to improve Generalize

hlrt

, have we sacri�ced any formal properties?

First of all, note that if there are several hlrt wrappers consistent with a given set

of examples, then the two algorithms might return di�erent wrappers. So in general

we can not say that Generalize

hlrt

(E) = Generalize

�

hlrt

(E) for a set of examples E .

However, like Generalize

hlrt

(Theorem 4.2), Generalize

�

hlrt

is consistent:

Theorem 4.5 Generalize

�

hlrt

is consistent.

See Appendix B.3 for the proof.

4.4.4 Complexity analysis of Generalize

�

hlrt

What is the complexity of Generalize

�

hlrt

? To perform this analysis, we determine a

bound on the running time of each of the three outer loops, lines 4.6(a{c), 4.6(d{f)

and 4.6(g{j). As before, we assume that each primitive string search operation takes

time O (R), where R = min

n

jP

n

j is the length of the shortest example page.

The �rst loop (lines 4.6(a{c)) iterates K times, and each iteration requires

O (M

max

N) string-search operations (where K is the number of attributes per tuple,

N is the number of examples, and M

tot

is the total number of tuples in the exam-

ples). Thus the total running time of lines 4.6(a{c) is O (K)�O(M

max

N)�O(R) =

O (KM

max

NR). A similar analysis reveals that lines 4.6(d{f) also run in time

O (KM

max

NR).

The �nal loop construct, lines 4.6(g{j), is more interesting. This triply-nested

loop construct considers all combinations of values for `

1

, h and t. As before, there

are O (R) candidates for `

1

and O

�

R

2

�

each for h and t, for a total of O

�

R

5

�

evaluations of predicate C3. Each such evaluation involves O (M

max

N) invocations of

the string-search operator. Thus, lines 4.6(g{j) run in time

O

�

R

5

�

� O(M

max

N)�O(R) = O

�

M

max

NR

6

�

: (4.3)

63

Summing these three bounds, we have that Generalize

�

hlrt

is bounded by

O (KM

max

NR) + O (KM

max

NR) + O

�

M

max

NR

6

�

= O

�

KM

max

NR

6

�

;

which provides a proof of the following theorem.

Theorem 4.6 (Generalize

�

hlrt

complexity) The Generalize

�

hlrt

algo-

rithm runs in time O

�

KM

max

NR

6

�

.

Generalize

�

hlrt

is therefore signi�cantly more e�cient than Generalize

hlrt

, which

runs in time O

�

M

max

NR

2K+1

�

(Theorem 4.4). This improvement derives from the

observation that each variable r

k

and `

k

(except `

1

) can be learned independently of

the remaining three variables.

Since Generalize

�

hlrt

is demonstrably superior to Generalize

hlrt

, we will hence-

forth drop the `�' annotation; unless explicitly noted, the notation Generalize

hlrt

will refer to the more e�cient generalization algorithm.

4.5 Heuristic complexity analysis

The O

�

KM

max

NR

6

�

worst-case running time bound derived for Generalize

�

hlrt

represents a substantial improvement over the O

�

M

max

NR

2K+1

�

bound for

Generalize

hlrt

. Unfortunately, even if R were relatively small, a degree-six poly-

nomial is unlikely to be useful in practice. Moreover, R is not relatively small: for

the Internet resources examined in Chapter 7, R ranges from 1,000{30,000 characters.

Fortunately, it turns out that the worst-case assumptions are extremely pessimistic.

By being only slightly more optimistic, we can obtain a much better bound.

We make the worst-case analysis less pessimistic on the basis of the following ob-

servation. Recall that for each wrapper component, we try all candidate substrings of

some particular partition fragments of the �rst page P

1

(S

0;K

for h, S

1;4

for r

4

, etc.|

see lines 4.6(b,e,g{i) of the Generalize

�

hlrt

algorithm for details). Our complexity

bound was derived in part by counting the number of such candidates for each hlrt

64

component. And these counts depend on the length of these partition fragments. So

far, we assumed that these lengths are bounded by the length of the shortest page,

R = min

n

jP

n

j. But in practice, any individual partition fragment constitutes only a

small fraction of page P

n

's total length: jS

m;k

j � jP

n

j and jA

m;k

j � jP

n

j, for every

n, k and m.

Why should the individual A

m;k

and S

m;k

be much shorter than the pages them-

selves? First of all, since the A

m;k

and S

m;k

form a partition of the page, on average

the partition elements simply can't have length approximately R. And from a more

empirical perspective, we have observed that the bulk of an information resource's

query responses consist of formatting commands, advertisements, and other irrelevant

text; the extracted content of the page is usually quite small.

The idea of the heuristic complexity analysis is to formalize and exploit this in-

tuition. Speci�cally, our heuristic analysis rests on the following assumption:

Assumption 4.1 (Short page fragments) On average, page P

n

's par-

tition elements S

m;k

and A

m;k

all have length approximately

3

p

R (rather

than R).

(The speci�c function

3

p

R was chosen to simplify the following analysis. However,

as we will see in Section 7.5, this function is very close to what is observed empirically

at actual Internet sites.)

What does Assumption 4.1 buy us? In the remainder of this Section, we perform

a \heuristic-case" analysis of Generalize

hlrt

's running time. Like an average-case

analysis, this heuristic-case analysis provides a better estimate of the running-time

of our algorithm. While an average-case analysis assumes a speci�c probability dis-

tribution over the algorithm's inputs, our heuristic-case analysis relies on particular

properties of these inputs (namely, our analysis rests on Assumption 4.1).

As indicated in Equation 4.3, the triply-nested loop structure (lines 4.6(g{j)),

which runs in time O

�

M

max

NR

6

�

, dominates Generalize

hlrt

's running time:

65

for `

1

 each su�x of P

1

's head S

0;K

4.6(g)

for h each substring of P

1

's head S

0;K

4.6(h)

for t each substring of P

1

's tail S

M;K

4.6(i)

accept `

1

, h, and t if C3 holds of `

1

, h, t and every hP

n

; L

n

i 2 E 4.6(j)

Walking through lines 4.6(g{j), we can compute a new, tighter bound on the

basis of Assumption 4.1, as follows. Since there are O

�

3

p

R

�

su�xes of a string of

length

3

p

R, line 4.6(g) enumerates O

�

3

p

R

�

candidates for `

1

, instead of O(R) as

in the worst-case analysis. Similarly, lines 4.6(h{i) enumerate the O

�

3

p

R�

3

p

R

�

=

O

�

R

2

3

�

candidates for each of h and t. Thus there are a total of

O

�

3

p

R

�

� O

�

R

2

3

�

� O

�

R

2

3

�

= O

�

R

5

3

�

(4.4)

combinations of candidates for which C3 must be evaluated. As before, evaluating

C3 involves O (M

max

N) invocations of the string-search operator. But each such

invocation now involves pairs of strings with lengths bounded by

3

p

R, and thus the

total time to evaluate C3 once is O

�

M

max

N

3

p

R

�

. Combining these results, we obtain

the following heuristic-case bound for the running time lines 4.6(g{j)

O

�

R

5

3

�

� O

�

M

max

N

3

p

R

�

= O

�

M

max

NR

2

�

:

As in the worst-case analysis, the rest of Generalize

hlrt

runs in time bounded by

lower-order polynomials of R and so these terms can be largely ignored. However,

the rest of the algorithm introduces a linear dependency on K. Thus we have proved

the following theorem.

Theorem 4.7 (Generalize

�

hlrt

heuristic-case complexity)

Under Assumption 4.1, the Generalize

�

hlrt

algorithm runs in time

O

�

KM

max

NR

2

�

.

Of course, the validity of this bound rests on Assumption 4.1. In Section 7.5,

we demonstrate empirically that Assumption 4.1 does in fact hold in practice. We

66

examined several actual Internet information resources, and found that the best-�t

predictor of the partition element lengths is R

0:32

=

3:1

p

R. Thus Assumption 4.1 is

validated by empirical evidence.

4.6 PAC analysis

In this section we apply the PAC model introduced in Section 3.2.3 to the problem

of learning hlrt wrappers.

Following the PAC model, we assume that each example page P is drawn from

a �xed but arbitrary and unknown probability distribution D. Wrapper induction

involves �nding an approximation to the target hlrt wrapper T . The Induce learn-

ing algorithm sees only T 's behavior on the examples: the learner gathers a set

E = f: : : ; hP; T (P)i; : : :g of examples. Induce might not be able to isolate the tar-

get exactly, and therefore we require only that, with high probability, the learning

algorithm �nd a good approximation to T . The quality of an approximation to T

is measured in terms of its error: E

T ;D

(w) is the chance (with respect to D) that

wrapper w makes a mistake (with respect to T) on a single instance:

E

T ;D

(w) = D [P jw(P) 6= T (P)]

The user supplies two numeric parameters: an accuracy parameter 0 < � < 1 and

a reliability parameter 0 < � < 1. The basic question we want to answer is: How

many examples does the Generalize

hlrt

induction algorithm need to see so that, with

probability at least 1� �, it outputs a wrapper w that obeys E

T ;D

(w) < �?

Formal result. This question is answered by the following theorem.

Theorem 4.8 (hlrt is PAC-learnable) Provided that Assumption

4.1 holds, the following property holds for any 0 < �; � < 1, target wrapper

T 2 H

hlrt

, and page distribution D. Suppose Generalize

hlrt

is given

as input a set E = fhP

1

; L

1

i; : : : ; hP

N

; L

N

ig of example pages, each drawn

67

independently according to distribution D and then labeled according to

target T . If

	(K)

1�

�

	(K)

!

M

tot

+ �(R)

�

1�

�

2

�

N

< �; (4.5)

then E

T;D

(w) < � with probability at least 1 � �. The parameters are as

follows: E consists of N = jEj examples,M

tot

=

P

n

M

n

is the total number

of tuples in E, page P

n

contains M

n

= jL

n

j tuples, each tuple consists of

K attributes, the shortest example page has length R = min

n

jP

n

j,

	(K) = 4K � 2; (4.6)

and

�(R) =

1

4

�

R

5

3

� 2R

4

3

+R

�

: (4.7)

The proof of Theorem 4.8 appears in Appendix B.4. In the remainder of this section,

we interpret and evaluate this result.

Interpretation. We begin by applying Theorem 4.8 to an example. Consider an

information resource presenting K = 4 attributes per tuple, an average of �ve tuples

per example page (i.e.,

M

tot

N

= 5), and where the shortest page is R = 5000 characters

long. For the parameters � = � = 0:1, Theorem 4.8 states that Generalize

hlrt

must examine at least N � 295 example pages to satisfy the PAC criteria, while for

� = � = 0:01, the bound grows to N � 3476.

Equation 4.5 can be understood as follows. The left-hand side is an upper bound

on the chance that the examples will yield a wrapper with excessive error, while the

right-hand side is the desired reliability level. Thus, requiring that the right-hand

side be less than the left-hand side ensures that the PAC termination criterion is

satis�ed.

In standard PAC analyses, such an inequality is usually solved for the variable

over which the learner has control, the number of examples N = jEj. In Equation 4.5,

68

there are three such variables: N , M

tot

, and R. To understand why our result has

this form, recall the fundamental point of PAC analysis. The goal is to examine the

examples E and determine|on the basis of just N|whether the PAC termination

criteria is satis�ed. As the proof of Theorem 4.8 shows, it turns out that we need to

examine E in more detail. That is, we simply can't be sure that the PAC termination

criteria will be satis�ed merely on the basis of N . Rather, we must also take into

account the total number of tuples (M

tot

) and the length of shortest example (R).

In more detail, the �rst term of the left-hand side of Equation 4.5,

	(K)

1�

�

	(K)

!

M

tot

; (4.8)

is a bound on the chance that the 2K � 1 left and right delimiters (the `

k

and r

k

,

except for l

1

) have been learned incorrectly. The second term,

�(R)

�

1�

�

2

�

N

; (4.9)

is a bound on the chance that the remaining three delimiters (h, t, and `

1

) have been

learned incorrectly. The overall chance that the wrapper is wrong is just the chance

of the disjunction of these two events, and so the chance of learning the wrapper

incorrectly is at most the sum of these two terms. The proof of Theorem 4.8 mainly

involves deriving these two terms.

How the model behaves. To help visualize Equation 4.5, Figure 4.7 shows two

projections of the multi-dimensional surface it describes. We have plotted the chance

of successful learning as a function of the number of examples. More precisely, the

graphs display the con�dence that the learned wrapper has error at most �|computed

as one minus the left-hand side of Equation 4.5

5

|as a function of two variables: N ,

5

Actually, recall that the left-hand side of Equation 4.5 (call this quantity c(N;M

tot

)) is only an

approximation to the true con�dence. As N andM

tot

approach zero, the approximation degrades, so

that eventually the \probability" c(N;M

tot

) exceeds one. Therefore, rather than plot 1�c(N;M

tot

),

we have plotted 1�min(1; c(N;M

tot

)).

69

the number of example pages, and M

ave

=

M

tot

N

, the average number of tuples per

example. (The surface is plotted using M

ave

rather than M

tot

because in practice, the

average number of tuples per page is more meaningful than the total.) The remaining

domain characteristics are set as in the earlier example: K is held constant at four

attributes per tuple, and R is held constant at 5000 characters.

Figure 4.7(a) illustrates the surface for � = 0:1, and (b) illustrates the surface for

� = 0:01. In each case, as N and M

ave

increase, the PAC con�dence asymptotically

approaches one. We have also indicated the con�dence level 0.9; points above this

threshold correspond to learning trials in which the PAC termination criterion is

satis�ed for the reliability parameter � = 0:1 Earlier, we reported that a learner must

examine at least N � 295 examples for � = � = 0:1 and N � 3476 examples for

� = � = 0:01; these graphs show that these values are correct.

Evaluation. The PAC model is just that|a model|and thus an important issue

is whether Theorem 4.8 provides an e�ective termination condition. Informally, we

want to know whether the PAC model terminates the learning process too soon

(meaning that more examples ought to be considered before stopping) or too late

(fewer examples are su�cient for a high-quality wrapper).

More precisely, the PAC model would terminate the learning algorithm too soon

if its con�dence were too high. This could happen because the proof of Theorem

4.8 relies on the assumption that the examples are drawn independently from the

distribution D. If this assumption does not hold, then the model is overcon�dent,

because the observed examples are not in fact representative of D.

On the other hand, the PAC model would terminate the learning algorithm too

late if its con�dence were too low. This could happen because Theorem 4.8 makes no

assumptions about the instance distribution D. Indeed, the PAC model is essentially

a worst-case analysis of D. It is assumed, for example, that the chance of learning

r

1

in no way e�ects the chance of learning r

2

. But it might be the case that two

70

(a) � = 0:1

100 200 300 400 500
1

2

3

4

0

0.5

0.9
1

number of pages

ave tuples/page

confidence

(b) � = 0:01

1000 2000 3000 4000 5000
1

2

3

4

0

0.5

0.9
1

number of pages

ave tuples/page

confidence

Figure 4.7: Surfaces showing the con�dence that a learned wrapper has error at most

�, as a function of N (the total number of examples pages) and M

ave

=

M

tot

N

(the

average number of tuples per example), for (a) � = 0:1 and (b) � = 0:01.

events are in fact probabilistically dependent under D. For example, there may be

a set of \pedagogically useful" instances such that the learner will succeed if it sees

any one. In summary, it may be the case that the distributions actually encountered

in practice are substantially easier to learn from than the worst case.

Though analytic techniques could in principle be applied to determine how well

71

the PAC model �ts the actual learning task, we have taken an empirical approach to

validating the model. Section 7.4 demonstrates that for several real hlrt learning

tasks, the PAC model stops the induction process substantially later than is actually

necessary, even with relatively weak reliability and accuracy parameters levels of

� = � = 0:1. Tightening this prediction is a challenging direction for future research.

A simpler PAC model. As described earlier, the left-hand side of the Equation

4.5 is the sum of two terms, listed above as Equations 4.8 and 4.9:

	(K)

1�

�

	(K)

!

M

tot

+ �(R)

�

1�

�

2

�

N

:

We now show that this sum tends to be dominated by the second term, so that the

PAC model reduces to a much simpler form, which in turn leads to an interesting

theoretical result.

Note that typically 	(K) � �(R), since K � R; for instance if K = 4 and

R = 5000, then 	(K) = 14 while 	(R) > 10

5

. Moreover, the di�erence between

1 �

�

2

and 1 �

�

�(K)

is usually small; for example, with K = 4 and � = 0:1, these

terms di�er by about 4%. Finally, typically each example page has many tuples and

therefore M

tot

� N , so that for any 0 < � < 1, �

M

tot

� �

N

.

Putting these observations together, we can reason informally as follows:

	(K)

1�

�

	(K)

!

M

tot

+ �(R)

�

1�

�

2

�

N

� small

1�

�

	(K)

!

M

tot

+ �(R)

�

1�

�

2

�

N

� small

�

1�

�

2

�

M

tot

+ �(R)

�

1�

�

2

�

N

� small � small + �(R)

�

1�

�

2

�

N

� �(R)

�

1�

�

2

�

N

:

To summarize, if 	(K)� �(R) and N �M

tot

, then our PAC model (Equation 4.5)

72

simpli�es to

�(R)

�

1�

�

2

�

N

< �: (4.10)

For example, using K = 4, R = 5000, � = 0:1, M

ave

= 5, and N = 200, the original

PAC con�dence and this approximation di�er by less 0.5%.

This simpli�ed model yields an interesting theoretical result, and thus we state

the assumptions behind it explicitly.

Assumption 4.2 (Few attributes, plentiful data) For any set of ex-

amples E = f: : : ; hP

n

; L

n

i; : : :g, we have that

	(K)

1�

�

	(K)

!

M

tot

� �(R)

�

1�

�

2

�

N

where N = jEj, each tuple has K attributes, R = min

n

jP

n

j is the length

of the shortest page, the examples together have M

tot

tuples, and 	(K)

and �(R) are as de�ned in Theorem 4.8.

We can now solve Equation 4.10 for N . Doing so gives us a bound on the number

of examples needed to ensure that a the learned wrapper is PAC. Using the inequality

(1� x) � e

�x

, we have that

N >

2

�

log

�(R)

�

: (4.11)

Since (1) N is polynomial in

1

�

and

1

�

in Equation 4.11, and (2) Generalize

hlrt

runs

in quadratic time (Theorem 4.7) we have therefore established the following result.

6

Theorem 4.9 Wrapper class H

hlrt

is e�ciently PAC-learnable under

Assumption 4.2.

This simpler PAC model makes intuitive sense. The bottleneck when learning

hlrt wrappers is an adequate supply of page heads and tails; each example provides

just one of each. In contrast, the body of a page typically contains several tuples and

6

Recall Footnote 2 on page 33. Here R plays the role of the natural complexity measure of the

hlrt hypothesis class; notice that N is polynomial in R as well.

73

thus several opportunities for learning the r

k

and `

k

delimiters. Therefore, if we can

count on each page to provide several tuples, then collectively the examples provide

many more tuples than page heads or tails. Thus the part of the PAC model related

to learning from the page bodies (Equation 4.8) is insigni�cant compared to the part

of the model related to learning from the page heads and tails (Equation 4.9).

Of course, Theorem 4.9 holds only if Assumption 4.2 is realistic. In Section 7.6,

we take an empirical approach to verifying Assumption 4.2. We demonstrate that,

for several actual experiments, the deviation between the simpli�ed and original PAC

models is small.

Finally, notice that the variable K does not occur in Equation 4.11. Therefore,

under Assumption 4.2, the number of examples required to satisfy the PAC criteria

is independent of K. This is an interesting theoretical result, since it suggests that

the techniques developed in this thesis can be applied to information resources that

contain arbitrarily many attributes.

4.7 Summary

In this chapter we have seen our �rst complete instance of how to learn a wrapper

class. Conceptually, this was quite straightforward: we de�ned the hlrt wrapper

class; developed Generalize

hlrt

, the generalization function input to the Induce al-

gorithm; and designed a PAC-theoretic model of the hlrt wrapper class.

Along the way, we examined many technical details. Our straightforward imple-

mentation of Generalize

hlrt

is extremely slow, so we developed a substantially more

e�cient variant, Generalize

�

hlrt

. We were able to reason about these algorithms be-

cause we explicitly wrote down the constraint C

hlrt

governing when a wrapper is

consistent with an example. We then went on to perform an heuristic-case analysis

of our learning algorithm, which reveals that our algorithm runs in time quadratic in

the relevant parameters.

74

We then developed a PAC model. Since hlrt wrappers have quite a complex

structure, the PAC bound is necessarily rather complex as well. Interestingly, our

model reduces to a very simple form under conditions that are easily satis�ed by

actual Internet resources. Speci�cally, we have found that, under reasonable assump-

tions, the number of examples required to learn an hlrt wrapper does not depend

on the number of attributes (K), and that our induction algorithm requires only a

polynomial-sized collection of examples in order to learn e�ectively.

hlrt is just one of many possible wrapper classes. For example, we have already

mentioned a simpli�cation of hlrt, which we call lr. In Chapter 5, we discuss the

automatic induction of lr and four other wrapper classes.

Chapter 5

BEYOND HLRT: ALTERNATIVE WRAPPER CLASSES

5.1 Introduction

So far, we have been concerned exclusively with the hlrt wrapper class. This suggests

a natural question: what about other wrapper classes? In the extreme, wrappers

can be unrestricted programs in a fully general programming language. Of course

automatically learning such wrappers would be di�cult.

In this chapter we describe �ve additional wrapper classes for which we have found

e�cient learning algorithms. Like hlrt, all are based on the idea of using delimiters

that mark the left- and right-hand side of the text fragments to be extracted. The

classes di�er from hlrt in two ways. First, we developed various techniques to avoid

getting confused by distractions such as advertisements (Section 5.2). Second, we

developed wrapper classes for extracting information that is laid out not as a table

(the structure assumed by hlrt), but rather as a hierarchically nested structure (e.g.,

a book's table of contents) (Section 5.3).

5.2 Tabular resources

We �rst consider alternatives to hlrt. As discussed in Chapter 4, the hlrt wrapper

class corresponds to one particular \programming idiom" for writing wrappers. In

this section we consider alternatives.

76

5.2.1 The lr, oclr and hoclrt wrapper classes

The hlrt wrapper class. We begin by quickly reviewing the hlrt wrapper class.

hlrt wrappers use one component (h) to skip over a page's head, and a second (t)

indicates a page's tail. In the page's body, a pair of left- and right-hand delimiters

(`

k

and r

k

) is used to extract each of the K attribute values for each tuple.

We have seen that we can encapsulate the behavior of an hlrt wrapper for a

domain with K attributes as a vector hh; t; `

1

; r

1

; : : : ; `

K

; r

K

i of 2K + 2 strings. The

meaning of these strings is de�ned by the ExecHLRT procedure, which executes an

hlrt wrapper on a given page; see Figure 4.1.

The lr wrapper class. The lr wrapper class is a simpli�cation of hlrt. In a

nutshell, lr is simply hlrt without the \h" or \t". In pseudo-code, lr execution

proceeds as follows:

ExecLR(wrapper h`

1

; r

1

; : : : ; `

K

; r

K

i, page P)

while there is a next occurrence of `

1

in P

for each h`

k

; r

k

i 2 fh`

1

; r

1

i; : : : ; h`

K

; r

K

ig

extract from P the value of the next instance of the k

th

attribute

between the next occurrence of `

k

and the subsequent occurrence of r

k

return all extracted tuples

More precisely, we de�ne the execution of an lr wrapper as follows:

ExecLR(wrapper h`

1

; `

K

; : : : ; `

K

; r

K

i, page P)

i 0

m 0

while P [i]=`

1

6= } (a)

m m+ 1

for each h`

k

; r

k

i 2 fh`

1

; r

1

i; : : : ; h`

K

; r

K

ig

i i + P [i]#`

k

+ j`

k

j (b)

b

m;k

 i

i i + P [i]#r

k

e

m;k

 i� 1

return label f: : : ; h: : : ; hb

m;k

; e

m;k

i; : : :i; : : :g

Just as an hlrt wrapper can be described exactly as a vector of 2K + 2 strings, the

behavior of an lr wrapper can be encapsulated entirely as a vector of 2K strings

77

h`

1

; r

1

; : : : ; `

K

; r

K

i.

For example, consider the following page (arti�cially produced for the sake of

illustration):

ho[A11](A12)co[A21](A22)co[A31](A32)ct

The task is to label this page so as to extract the three tuples of two attributes,

fhA11; A12i; hA21; A22i; hA31; A32ig

The hlrt wrapper hh; t; [;]; (;)i as well as the lr wrapper h[;]; (;)i both are

consistent with|i.e., extract the given information from|this example page.

1

The oclr wrapper class. hlrt employs the delimiters h and t to prevent in-

correct extraction from a page's head and tail. The oclr wrapper class provides a

di�erent mechanism for handling a similar problem.

Rather than treating a page as \head plus body plus tail", the oclr wrapper

treats the page as a sequence of tuples separated by irrelevant text. oclr is de-

signed to avoid distracting irrelevant text in these inter-tuple regions (just as hlrt

is designed to avoid distracting text in the head and tail).

oclr uses two strings, one (denoted o) that marks the beginning or opening of

each tuple, and a second (denoted c) that marks then end or closing of each tuple.

oclr uses o and c to indicate the opening and closing of each tuple, much as hlrt

and lr use `

k

and r

k

mark the beginning and end of the k

th

attribute.

As with lr and hlrt, we can describe the behavior of an oclr wrapper using

a vector ho; c; `

1

; r

1

; : : : ; `

K

; r

K

i of 2K + 2 strings. To make the meaning of these

strings precise, we must describe the ExecOCLR procedure. ExecOCLR prescribes the

meaning of an oclr wrapper ho; c; `

1

; r

1

; : : : ; `

K

; r

K

i, just as ExecHLRT de�nes hlrt

wrappers, and ExecLR de�nes lr wrappers. In pseudo-code:

1

Note that we use a fixed-width font to indicate the actual fragments of a page such as \h", while

italics indicates hlrt wrapper components such as \h".

78

ExecOCLR(wrapper ho; c; `

1

; r

1

; : : : ; `

K

; r

K

i, page P)

while there is a next occurrence of o in P

skip to the next occurrence of o in P

for each h`

k

; r

k

i 2 fh`

1

; r

1

i; : : : ; h`

K

; r

K

ig

extract from P the value of the next instance of the k

th

attribute

between the next occurrence of `

k

and the subsequent occurrence of r

k

skip past the next occurrence of c in P

return all extracted tuples

More precisely, we de�ne the execution of an oclr wrapper as follows:

ExecOCLR(wrapper ho; c; `

1

; r

1

; : : : ; `

K

; r

K

i, page P)

i 0

m 0

while P [i]=o 6= } (a)

m m+ 1

i i+ P [i]#o

for each h`

k

; r

k

i 2 fh`

1

; r

1

i; : : : ; h`

K

; r

K

ig

i i + P [i]#`

k

+ j`

k

j (b)

b

m;k

 i

i i + P [i]#r

k

e

m;k

 i� 1

i i + P [i]#c (c)

return label f: : : ; h: : : ; hb

m;k

; e

m;k

i; : : :i; : : :g

To illustrate oclr, suppose that the following html page was produced by a

resource similar to the original country/code example (Figure 2.1):

<HTML><TITLE>Some Country Codes</TITLE><BODY>

1 Congo <I>242</I>

2 Egypt <I>20</I>

3 Belize <I>501</I>

4 Spain <I>34</I>

</BODY></HTML>

In the original example, every lr wrapper will get confused, because distracting text

in the page's head and tail is incorrectly extracted as a country. Here, the problem

is that text between the tuples is marked up using the same tags as are used for

countries. One way to avoid this problem is to use an oclr wrapper with o =

and c =
. When the oclr wrapper h;
; ; ; <I>; </I>i is given

to ExecOCLR, these c and o tags force the irrelevant parts of the page to be skipped.

2

2

It is true that there exists an lr wrapper that can handle this modi�cation to the country/code

79

As a second illustration of an oclr wrapper, consider again the example page

ho[A11](A12)co[A21](A22)co[A31](A32)ct. Along with the lr and hlrt wrap-

pers mentioned earlier, the oclr wrapper ho; c; [;]; (;)i is consistent with this page.

The hoclrt wrapper class. As the ExecHOCLRT procedure pseudo-code illus-

trates, the hoclrt wrapper class combines the functionality of oclr and hlrt:

ExecHOCLRT(wrapper hh; t; o; c; `

1

; r

1

; : : : ; `

K

; r

K

i, page P)

skip past the �rst occurrence of h in P

while the next occurrence of o is before the next occurrence of t in P

skip to the next occurrence of o in P

for each h`

k

; r

k

i 2 fh`

1

; r

1

i; : : : ; h`

K

; r

K

ig

extract from P the value of the next instance of the k

th

attribute

between the next occurrence of `

k

and the subsequent occurrence of r

k

skip past the next occurrence of c in P

return all extracted tuples

More precisely:

ExecHOCLRT(wrapper hh; t; o; c; `

1

; r

1

; : : : ; `

K

; r

K

i, page P)

i P#h

m 0

while jP [i]=tj > jP [i]=oj (a)

m m+ 1

i i+ P [i]#o

for each h`

k

; r

k

i 2 fh`

1

; r

1

i; : : : ; h`

K

; r

K

ig

i i+ P [i]#`

k

+ j`

k

j (b)

b

m;k

 i

i i+ P [i]#r

k

e

m;k

 i� 1

i i+ P [i]#c (c)

return label f: : : ; h: : : ; hb

m;k

; e

m;k

i; : : :i; : : :g

We can use the example page ho[A11](A12)co[A21](A22)co[A31](A32)ct men-

tioned earlier to illustrate hoclrt: wrapper hh; t; o; c; [;]; (;)i is consistent with

this page.

example; namely, h ; ; <I>; </I>i. However, as we'll see in Section 5.2.3, there are pages

that can be wrapped by oclr but not lr. The purpose of this example is simply to illustrate oclr,

not to establish its superiority to lr.

80

5.2.2 Segue

Having introduced four wrapper classes, a natural question arises: on what basis can

they be compared? In the next two sections, we provide two such bases: relative

expressiveness, which measures the extent to which the funtionality of one wrap-

per class can be mimicked by another, and learning complexity , which measures the

computational complexity of learning wrappers within each class.

5.2.3 Relative expressiveness

A key issue when comparing lr, hlrt, oclr and hoclrt concerns their relative ex-

pressiveness: which information resources can be handled by certain wrapper classes

but not by others? For example, we have observed that the page

ho[A11](A12)co[A21](A22)co[A31](A32)ct

can be handled by all four wrapper classes. On the other hand, the country/code

example (Figure 2.1) can be wrapped by hlrt but not by lr.

To formalize this investigation, let � = f: : : ; hP; Li; : : :g be the resource space, the

set of all page/label pairs hP; Li. Conceptually, � includes pages from all information

resources, whether regularly structured or unstructured, tabular or not, and so forth.

For each such information resource, � contains all of the resource's pages, and each

page P included in � is paired with its label L. Note that a particular information

resource is equivalent to a subset of �; namely, the particular page/label pairs the

resource contains.

More importantly from the perspective of relative expressiveness, note that a

wrapper class can be identi�ed with a subset of �: a class corresponds to those

page/label pairs for which a consistent wrapper exists in the class. IfW is a wrapper

class, then we use the notation �(W) to indicate the subset of � which can be handled

by W.

81

De�nition 5.1 (�, �(W)) The resource space � is de�ned to be the set

of all hP; Li page/label pairs.

The subset of � that is wrappable by a particular wrapper class W, writ-

ten �(W), is de�ned as the set of pairs hP; Li 2 � such that a wrapper

consistent with hP; Li exists in class W:

�(W) = fhP; Li 2 � j 9

w2H

W

w(P) = Lg:

Note that �(W) provides a natural way to compare the relative expressiveness of

wrapper classes. For example, let W

1

and W

2

be two wrapper classes. If �(W

1

) �

�(W

2

), then W

2

is more expressive than W

1

, in the sense that any page that can be

wrapped by W

1

can also be wrapped by W

2

.

Figure 5.1 and Theorem 5.1 capture our results concerning the relative expres-

siveness of the four wrapper classes discussed in this section.

Theorem 5.1 (Relative expressiveness of lr, hlrt, oclr and hoclrt)

The relationships between �(lr), �(hlrt), �(oclr) and �(hoclrt)

are as indicated in Figure 5.1.

Proof of Theorem 5.1 (Sketch): To establish these relationships, it su�ces to

show that:

1. There exists at least one pair hP; Li 2 � in each of the regions marked (A), (B),

(C), . . . ,(I) in Figure 5.1;

2. oclr subsumes lr: �(lr) � �(oclr); and

3. hoclrt subsumes hlrt: �(hlrt) � �(hoclrt).

Note that these three assertions jointly imply that the four wrapper classes are related

as claimed.

Consider each assertion in turn.

1. In Appendix B.5 we identify one hP; Li pair in each of the regions (A), (B), etc.

82

(A) (B) (D) (E)

(I)

(F) (G) (H)(C)

Π
(HOCLRT)Π (OCLR)Π

(HLRT)Π (LR)Π

Figure 5.1: The relative expressiveness of the lr, hlrt, oclr, and hoclrt wrapper

classes.

2. The idea is that an oclr wrapper can always be constructed from an lr wrapper

for any particular page. Speci�cally, suppose there exists a pair hP; Li 2 �(lr)|

i.e., there exists a wrapper w = h`

1

; r

1

; : : : ; `

K

; r

K

i 2 H

lr

such that w(P) = L.

Then oclr wrapper w

0

= h`

1

; �; `

1

; r

1

; : : : ; `

K

; r

K

i satis�es w

0

(P) = L, and

therefore hP; Li 2 �(oclr).

3

3. The same idea applies to the classes hlrt and hoclrt. Suppose there

exists a pair hP; Li 2 �(hlrt)|i.e., there exists a wrapper w =

hh; t; `

1

; r

1

; : : : ; `

K

; r

K

i 2 H

hlrt

such that w(P) = L. Then hoclrt wrap-

per w

0

= hh; t; `

1

; �; `

1

; r

1

; : : : ; `

K

; r

K

i satis�es w

0

(P) = L, and therefore

hP; Li 2 �(hoclrt).

See Appendix B.5 for complete details.

2 (Proof of Theorem 5.1 (Sketch))

3

As described in Appendix C, the symbol `�' denotes the empty string.

83

One possibly counterintuitive implication of Theorem 5.1 is that the lr class is

not subsumed by the hlrt class. One might expect that an hlrt wrapper can always

be constructed to mimic the behavior of any given lr wrapper. To do so, the head

delimiter can simply be set to the empty string: h = �. However, the tail delimiter

t must be set some non-empty page fragment. In general such a delimiter might not

exist. For similar reasons, the oclr wrapper class is not subsumed by the hoclrt

class.

5.2.4 Complexity of learning

The previous section illustrated that the four wrapper classes under consideration

cover di�erent parts of the resource space �. For example, lr covers strictly less of �

than oclr. Thus a natural basis for comparing wrapper classes is the computational

tradeo�s of these coverage di�erences. Since this thesis concerns learning wrappers,

we are interested in the computational complexity of learning wrappers from the

wrapper classes.

We will concentrate on the following scenario. Suppose we are given a set E =

f: : : ; hP

n

; L

n

i; : : :g of examples. Let N = jEj be the number of examples. Suppose

each tuple consists of K attributes, and let M

max

= max

n

M

n

be the maximum

number of tuples on any single page, where M

n

= jL

n

j is the number of tuples on

page P

n

. Finally, suppose that the shortest example has length R = min

n

jP

n

j. For

each wrapper class W, recall that Generalize

W

function is the input to the Induce

learning algorithm when learning wrapper class W. To measure the complexity of

learning a particular class W, we will be interested in the heuristic-case (de�ned by

Assumption 4.1) running time of the function call Generalize

W

(E).

The hlrt wrapper class. We have already established (Theorem 4.7) that, under

Assumption 4.1, the Generalize

hlrt

function runs in time O

�

KM

max

NR

2

�

.

84

The lr wrapper class. The lr generalization function, Generalize

lr

, is similar

to Generalize

hlrt

, except that a di�erent consistency constraint|C

lr

instead of

C

hlrt

|must be satis�ed.

The consistency constraints for the lr wrapper class is the predicate C

lr

. Let

w = h`

1

; r

1

; : : : ; `

K

; r

K

i be an lr wrapper, and hP; Li be a pair/label pair. We de�ne

C

lr

as follows:

C

lr

(w; hP; Li) ()

^

1�k�K

C1(r

k

; hP; Li)

^

^

1�k�K

C2(`

k

; hP; Li):

The di�erence between hlrt and lr is mirrored in the di�erence between C

hlrt

and C

lr

. While hlrt wrappers must satisfy constraint C3 for the h, t, and `

1

components, lr wrappers can entirely ignore this constraint. Instead, lr requires

simply that, like the other (K � 1) `

k

components, `

1

must satisfy C2. In particular,

notice that the \1 < k � K" quanti�er in the C2 conjunct of C

hlrt

is replaced by

the quanti�er \1 � k � K" in C

lr

.

As with hlrt, we proceed by establishing that C

lr

is correct:

Theorem 5.2 (C

lr

is correct) For every lr wrapper w, page P , and

label L, C

lr

(w; hP; Li) () ExecLR(w; P) = L.

The proof is similar (though simpler) than that of Theorem 4.1. The details are

omitted.

Given C

lr

, the generalization function Generalize

lr

is as follows:

Generalize

lr

(examples E = fhP

1

; L

1

i; : : : ; hP

N

; L

N

ig)

for each 1 � k � K

for r

k

 each pre�x of P

1

's intra-tuple separator for S

1;k

accept r

k

if C1 holds of r

k

and every hP

n

; L

n

i 2 E (i)

for each 1 � k � K

for `

k

 each su�x of P

1

's intra-tuple separator S

1;k�1

(S

1;K

when k = 1)

accept `

k

if C2 holds of `

k

and every hP

n

; L

n

i 2 E (ii)

return h`

1

; r

1

; : : : ; `

K

; r

K

i

85

To see that Generalize

lr

is correct, recall that predicates C1 and C2 are indepen-

dent, in that each r

k

is constrained only by C1, while each `

k

depends only on C2.

Thus Generalize

lr

is complete even though it does not consider all possible combi-

nations for all values of the 2K r

k

and `

k

components. Thus we have given a proof

sketch for the following:

Theorem 5.3 Generalize

lr

is consistent.

(This result is analogous to Theorem 4.2 for the hlrt wrapper class.)

What is the complexity of Generalize

lr

? The analysis is similar to that for The-

orem 4.7. Lines (i) and (ii) of Generalize

lr

are each executed O

�

K

3

p

R

�

times.

Predicates C1 and C2 each require the same amount of time: O

�

M

max

N

3

p

R

�

. Thus

the total time to execute Generalize

lr

is

2�O

�

K

3

p

R

�

� O

�

M

max

N

3

p

R

�

= O

�

KM

max

NR

2

3

�

:

Thus we have established the following theorem:

Theorem 5.4 (Generalize

lr

heuristic-case complexity) Under As-

sumption 4.1, the Generalize

lr

algorithm runs in time O

�

KM

max

NR

2

3

�

.

The oclr wrapper class. In the hlrt wrapper class, the three components h, t

and `

1

interact , in that they are jointly governed by the predicate C3. Similarly, in

oclr, the three components o, c, and `

1

interact.

The oclr consistency constraint predicate for wrapper w =

ho; c; `

1

; r

1

; : : : ; `

K

; r

K

i and example hP; Li is de�ned as follows:

C

oclr

(w; hP; Li) ()

^

1�k�K

C1(r

k

; hP; Li)

^

^

1<k�K

C2(`

k

; hP; Li)

^ C4(o; c; `

1

; hP; Li):

86

Notice that, like hlrt but unlike lr, the C2 conjunct of C

oclr

is quanti�ed by

\1 < k � K", since `

1

is governed by C4 rather than C2.

Predicate C4 governs the interaction between o, c, and `

1

for the oclr wrapper

class, just as C3 governs h, t, and `

1

for hlrt. For o, c, and `

1

to satisfy C4 for

a particular example, it must be the case that: (i) in the page's head, o must skip

over any potentially confusing material, so that `

1

indicates the beginning of the �rst

attribute of the �rst tuple; (ii) in the page's tail, c must mark the end of the last

tuple and there must be no o present indicating a subsequent tuple; and (iii) between

each tuple, c and o must together skip over any potentially confusing material so that

`

1

indicates the beginning of the �rst attribute of the next tuple. More formally:

C4(o; c; `

1

; hP; Li) () (S

0;K

=o)=`

1

= `

1

(i)

^ S

M;K

=c 6= } ^ (S

M;K

=c)=o = } (ii)

^ 8

1�m<M

((S

m;K

=c)=o)=`

1

= `

1

: (iii)

As with hlrt and lr, before proceeding we must establish the following theorem:

Theorem 5.5 (C

oclr

is correct) For every oclr wrapper w, page P ,

and label L, C

oclr

(w; hP; Li) () ExecOCLR(w; P) = L.

The proof is similar to that of Theorems 4.1 and 5.2: we show that under no cir-

cumstances can ExecOCLR produce the wrong answer if C

oclr

is satis�ed, and fur-

thermore that if the wrapper is correct, then C

oclr

must hold. The details are

omitted.

To analyze the complexity of learning oclr, we must state its generalization

function:

87

Generalize

oclr

(examples E = fhP

1

; L

1

i; : : : ; hP

N

; L

N

ig)

for each 1 � k � K

for r

k

 each pre�x of P

1

's intra-tuple separator for S

1;k

accept r

k

if C1 holds of r

k

and every hP

n

; L

n

i 2 E (i)

for each 1 < k � K

for `

k

 each su�x of P

1

's intra-tuple separator S

1;k�1

(S

1;K

when k = 1)

accept `

k

if C2 holds of `

k

and every hP

n

; L

n

i 2 E (ii)

for `

1

 each su�x of P

1

's head S

0;K

for o each substring of P

1

's head S

0;K

for c each substring of P

1

's tail S

M;K

accept o, c and `

1

if C4 holds of o, c and `

1

and every hP

n

; L

n

i 2 E (iii)

return ho; c; `

1

; r

1

; : : : ; `

K

; r

K

i

To see that Generalize

oclr

is consistent, note that the algorithm is correct with

respect to the r

k

and `

k

(for k > 1), because C1 and C2 are independent. To see

that the algorithm is correct with respect to o, c and `

1

, note that the algorithm

eventually considers all combinations of \sensible" values for each component, just

as Generalize

hlrt

considers all combinations of sensible values for h, t, and `

1

. Thus

we have given a proof sketch for the following:

Theorem 5.6 Generalize

oclr

is consistent.

We are now in a position to analyze the complexity of Generalize

oclr

. As with

Generalize

hlrt

, the bottleneck of the algorithm is line (iii). Line (iii) is executed

O

�

R

5

3

�

times, once for each combination of o, c, and `

1

, and thus predicate C4

must be evaluated O

�

NR

5

3

�

times, once for each page. Each such evaluation involves

O (M

max

) primitive string-search operations over strings of length O

�

3

p

R

�

. Therefore,

we must execute line (iii)

O

�

NR

5

3

�

� O(M

max

)� O

�

3

p

R

�

= O

�

M

max

NR

2

�

times. Furthermore, lines (i) and (ii) of the algorithm requires time O (K). (Since

line (iii) dominates the running time, we can safely neglect the dependency on the

other parameters.) Thus the total execution time of Generalize

oclr

is bounded by

O

�

KM

max

NR

2

�

. To summarize:

88

Theorem 5.7 (Generalize

oclr

heuristic-case complexity)

Under Assumption 4.1, the Generalize

oclr

algorithm runs in time

O

�

KM

max

NR

2

�

.

The hoclrt wrapper class. Learning the lr wrapper class is very simple because

all 2K components can be learned independently. However, in hlrt and oclr the

choice of `

1

depends on two other components: h and t for hlrt, or o and c for

oclr. As we saw, these dependencies result in the fact that learning hlrt or oclr

is computationally more intensive than learning lr. Since hoclrt combines the

functionality of hlrt and oclr, learning hoclrt is in turn computationally more

expensive than both hlrt and oclr.

As usual, we begin with the hoclrt consistency constraints. hoclrt wrapper

w = hh; t; o; c; `

1

; r

1

; : : : ; `

K

; r

K

i is consistent with example hP; Li if and only if pred-

icates C1, C2 and C5 all hold:

C

hoclrt

(w; hP; Li) ()

^

1�k�K

C1(r

k

; hP; Li)

^

^

1<k�K

C2(`

k

; hP; Li)

^ C5(h; t; o; c; `

1

; hP; Li):

Predicate C5 governs the �ve components h, t, o, c and `

1

. C5 requires that: (i-

ii) h, t, o and `

1

are satisfactory for the page's head; (iii) o, c, and t are satisfactory

for the page's tail; and (iv-v) o, c, t and `

1

are satisfactory for the page's body. More

formally:

C5(h; t; o; c; `

1

; hP; Li) ()

((S

0;K

=h)=o)=`

1

= `

1

(i)

^ j((P=h)=o)=tj > j((P=h)=o)=`

1

j (ii)

^ S

M;K

=c 6= } ^ j(S

M;K

=c)=oj > j(S

M;K

=c)=tj (iii)

^ 8

1�m<M

�

((S

m;K

=c)=o)=`

1

= `

1

(iv)

^ j((S

�

m;K

=c)=o)=tj > j((S

�

m;K

=c)=o)=`

1

j

�

: (v)

89

As usual, we demand that C

hoclrt

be correct:

Theorem 5.8 (C

hoclrt

is correct.) For every hoclrt wrapper w,

page P , and label L, C

hoclrt

(w; hP; Li) () ExecHOCLRT(w; P) = L.

The proof is omitted; it is similar to that of Theorems 4.1, 5.2 and 5.5.

We are now in a position to state the hoclrt generalization function:

Generalize

hoclrt

(examples E = fhP

1

; L

1

i; : : : ; hP

N

; L

N

ig)

for each 1 � k � K

for r

k

 each pre�x of P

1

's intra-tuple separator for S

1;k

accept r

k

if C1 holds of r

k

and every hP

n

; L

n

i 2 E

for each 1 < k � K

for `

k

 each su�x of P

1

's intra-tuple separator S

1;k�1

(or S

1;K

when k = 1)

accept `

k

if C2 holds of `

k

and every hP

n

; L

n

i 2 E

for `

1

 each su�x of P

1

's head S

0;K

for o each substring of P

1

's head S

0;K

for c each substring of P

1

's tail S

M;K

for h each substring of P

1

's head S

0;K

for t each substring of P

1

's tail S

M;K

accept h, t, o, c and `

1

if C5 holds of them and every hP

n

; L

n

i 2 E (i)

return hh; t; o; c; `

1

; r

1

; : : : ; `

K

; r

K

i

The algorithm Generalize

hoclrt

follows the same pattern as established by hlrt

and oclr: the values of r

k

and `

K

(for k < 1) can be learned independently, but line

(i) indicates that values for the remaining components (h, t, o, c, and `

1

in this case)

can be selected only by enumerating all combinations of candidates for each.

As with hlrt and oclr, a complexity analysis of Generalize

hoclrt

reveals that

line (i) is the bottleneck. Speci�cally, we must test predicate C5 against O

�

3

p

R

�

�

O

�

R

2

3

�

� O

�

R

2

3

�

� O

�

R

2

3

�

� O

�

R

2

3

�

= O

�

R

3

�

di�erent combinations of h, t,

o, c and `

1

. Each evaluation of predicate C5 involves O (NM

max

) invocations of the

primitive string search operation, which has cost O

�

3

p

R

�

. Furthermore, the rest of

the algorithm requires time O (K). Combining these bounds, we have that the total

90

running time is:

O (K)� O(NM

max

)� O

�

R

3

�

� O

�

3

p

R

�

= O

�

KNM

max

R

10

3

�

:

To summarize:

Theorem 5.9 (Generalize

hoclrt

heuristic-case complexity)

Under Assumption 4.1, the Generalize

hoclrt

algorithm runs in time

O

�

KNM

max

R

10

3

�

.

5.3 Nested resources

The preceding section was concerned with alternatives to hlrt for information re-

sources that render data in a tabular format. In this section we explore one particular

style of non-tabular formatting, which we call nested structure.

While a rectangular table is the prototypical example of a document exhibiting

tabular structure, a \table of contents" is the prototype of nested structure:

Part I: Introduction to CMOS Technology

Chapter 1: Introduction to CMOS Circuits

1.1 A Brief History

1.2 MOS Transistors

1.3 CMOS Logic

1.3.1 The Inverter

1.3.2 Combinatorial Logic

1.4 Circuit and System Representation

1.4.1 Behavioral Representation

1.4.2 Structural Representation

1.5 Summary

Chapter 2: MOS Transistor Theory

2.1 Introduction

2.1.1 nMOS Enhancement Transistor

2.1.2 pMOS Enhancement Transistor

2.2 MOS Device Design Equations

2.2.1 Basic DC Equations

2.2.2 Second Order E�ects

2.2.2.1 Threshold Voltage|Body E�ect

2.2.2.2 Subthreshold Region

91

2.2.2.3 Channel Length Modulation

2.2.3 MOS Models

2.3 The Complementary CMOS Inverter|DC Characteristics

.

.

.

Part II: System Design and Design Methods

Chapter 6: CMOS Design Methods

6.1 Introduction

.

.

.

In a document with nested structure, values for a set ofK attributes are presented,

with the information organized hierarchically. The information residing \below" at-

tribute k can be thought of as details about attribute k. Moreover, for each attribute,

there may be any number (zero, one, or more) of values for the given attribute. The

only constraint is that values can be provided for attribute k only if values are also

provided for attributes 1 to k � 1.

In the earlier table-of-contents example, there are K = 5 attributes: the titles of

the book's parts, chapters, sections, subsections, and sub-subsections. The constraint

that each attribute can have any number of values corresponds to the idea that a book

can have any number of parts, a part can have any number of chapters, a chapter can

have any number of sections, and so on. The constraint that attribute k can have a

value only if attributes 1 to k � 1 have values means that there can be no \oating"

sub-subsection without an enclosing subsection, no \oating" subsections without an

enclosing section, and so forth.

With a tabular format, there is a natural de�nition of a page's information con-

tent; namely, the substrings of the source document corresponding to the attribute

values for each tuple. For nested documents, we extend this idea in a straightforward

manner. The information content of a nested document is a tree of depth of most K.

The nodes of the tree group together related attribute values, while the edges encode

the attribute values themselves.

For example, the information content of the table-of-contents example is repre-

92

Introduction to CMOS Technology
Introduction to CMOS Circuits

A Brief History
MOS Transistors
CMOS Logic

The Inverter
Combinatorial Logic

Circuit and System Representation
Behavioral Representation
Structural Representation

Summary
MOS Transistor Theory

Introduction
nMOS Enhancement Transistor
pMOS Enhancement Transistor

MOS Device Design Equations
Basic DC Equations
Second Order Effects

Threshold Voltage—Body Effect
Subthreshold Region
Channel Length Modulation

MOS Models
The Complementary CMOS Inverter—DC Characteristics

....
System Design and Design Methods

CMOS Design Methods
Introduction

...

Figure 5.2: An example of a nested documents information content.

sented as following tree shown in Figure 5.2. (The ellipses indicate parts of the tree

that were omitted in the example; naturally, the information content of an actual

document does not contain ellipses.)

Note that tabular formatting is actually a special case of a nested formatting, in

which the tree's root has zero or more children, all interior nodes have exactly one

child, and every leaf is at depth exactly K.

For tabular formatting, we formalized the notion of information content in terms

of a label L of the form

L =

8

>

>

>

>

>

<

>

>

>

>

>

:

D

hb

1;1

; e

1;1

i; : : : ; hb

1;k

; e

1;k

i; : : : ; hb

1;K

; e

1;K

i

E

.

.

.

D

hb

M;1

; e

M;1

i; : : : ; hb

M;k

; e

M;k

i; : : : ; hb

M;K

; e

M;K

i

E

9

>

>

>

>

>

=

>

>

>

>

>

;

:

To precisely discuss wrappers for documents with nested structure, we must generalize

this formalization of a label.

93

Since we must represent trees with arbitrary depth, we employ a recursive de�ni-

tion to describe a nested-structure label L:

L) label

label) f: : : ; node; : : :g

node) hhb; ei; labeli:

That is, L is a label structure, where a label is a set of zero or more node structures,

and a node is a pair consisting of an interval hb; ei and a label structure. A node's

interval hb; ei indicates the indices of the string used to label the edge between the

node and its parent. A node's label represents its children.

For example, consider the following example page:

h[A11i][A11ii](A12)[A21](A22)[A31](A32)t

The task is to extract the following nested structure:

A12 A22 A32

!

!

!

!

!

!

!

!

!

!

!

!

!

!

A11i

%

%

%

%

%

%

A11ii

e

e

e

e

e

e

A21

a

a

a

a

a

a

a

a

a

a

a

a

a

a

A32

The following label structure L represents this tree:

L =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

hh3; 6i; fgi ;

hh9; 13i; fhh16; 18i; fgigi ;

hh21; 23i; fhh26; 28i; fgigi ;

hh31; 33i; fhh36; 38i; fgigi

9

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

;

For instance, A22 is substring [26; 28] of the example page. Since A22 is the value

of the second attribute under the third value of the �rst attribute, the pair [26; 28]

occupies the corresponding location in the label.

94

Recall that when we de�ned a tabular label, we placed constraints on indices

which ensure that the layout is in fact tabular; see Footnote 1 on page 24. A similar

requirement must be satis�ed by the indices in a nested-structure label. Speci�-

cally, the indices must in fact correspond to a tree-like decomposition of the original

document.

Finally, note that since tabular formatting is a special case of nested format-

ting, we will overload the symbol L to mean either a tabular or a nested label; the

interpretation will be clear from context.

5.3.1 The n-lr and n-hlrt wrapper classes

In this section we elaborate on the idea of nested structure by developing wrapper

classes, n-lr and n-hlrt, that can be used to extract such structure. Both wrapper

classes are similar to the tabular wrapper classes: associated with each of the K

attributes is a left-hand delimiter `

k

and a right-hand delimiter r

k

. In the tabular

wrappers, after extracting the value of the k

th

attribute for some particular tuple,

then the wrapper extracts the (k + 1)

st

attribute value (or the �rst, in the case of

k = K). Nested-structure wrappers generalize this procedure: after extracting the k

th

attribute, the next extracted value could belong to attributes k + 1, k, k � 1, k � 2,

. . . , 2 or 1. The n-lr and n-hlrt wrappers use the position of the `

k

delimiters

to indicate how the page should be interpreted: the next value to be extracted is

indicated by which `

k

delimiters occurs next. For example, if we have currently

extracted a page's content through index 1350 and there is a subsection title starting

at position 1450, a chapter title starting at position 1400, and a sub-subsection title

starting at position 1500, then we will extract the chapter title next.

The n-lr wrapper class. The n-lrwrapper class is very similar to the lr wrapper

class, except that the execution of the wrapper searchers for the delimiters in a

di�erent way. Speci�cally, after extracting a value for the k

th

attribute, the ExecN-LR

95

determines which attribute occurs next. As just mentioned, after attribute k, the

next attribute could be at attributes 1 to k + 1. (Of course, at attribute K the next

attribute can not be at k = K+1, and the �rst extracted attribute must be at k = 1.)

To determine which attribute occurs next, the positions of the left delimiter `

k

0

are

compared, for each possible next attributes k

0

.

ExecN-LR(wrapper h`

1

; r

1

; : : : ; `

K

; r

K

i, page P)

i 0

k 0

loop

k argmin

k

0

2[1;min(1+k;K)]

P [i]#`

k

0

(i)

exit loop if no such k exists (ii)

i i+ P [i]#`

k

+ j`

k

j

b i

i i+ P [i]#r

k

e i� 1

insert hb; ei as indices of next value of k

th

attribute

return label structure

Line (i) is the key to the operation of ExecN-LR. The algorithm determines which

(among the k + 1 possibilities) attribute k

0

occurs next, by �nding the minimum

value of P [i]#`

k

0

. If line (i) were replaced by \k if k = K then 1 else 1 + k", then

ExecN-LR would reduce to ExecLR. The termination condition (line (ii)) is satis�ed

whenever none of the `

k

0

occur|i.e., when the wrapper has reached the end of the

page.

We illustrate n-lr with two simple examples. First, recall the arti�cial exam-

ple ho[A11](A12)co[A21](A22)co[A31](A32)ct. The n-lr wrapper h[;]; (;)i is

consistent with this example page.

Of course, this example is tabular rather than nested. This example illustrates

that tabular formatting is a special case of nested formatting. To illustrate the

additional functionality of n-lr, recall the example page introduced earlier,

h[A11i][A11ii](A12)[A21](A22)[A31](A32)t

The n-lr wrapper h[;]; (;)i correctly extracts this structure from the example page.

96

The n-hlrt wrapper class. The n-hlrt wrapper class combines the functionality

of n-lr and hlrt. The execution of an n-hlrt wrapper hh; t; `

1

; r

1

; : : : ; `

K

; r

K

i is

de�ned as follows.

ExecN-HLRT(wrapper hh; t; `

1

; r

1

; : : : ; `

K

; r

K

i, page P)

i P#h

k 0

loop

k argmin

k

0

2[1;min(1+k;K)]

P [i]#`

k

0

exit loop if no such k exists or jP [i]=`

k

j � jP [i]=tj

i i + P [i]#`

k

+ j`

k

j

b i

i i + P [i]#r

k

e i� 1

insert hb; ei as indices of next value of k

th

attribute

return label structure

This procedure operates just like ExecN-LR except that additional mechanisms

(similar to those in ExecHLRT) are needed to handle the h and t components.

As expected, the n-hlrt wrapper hh; t; [;]; (;)i is consistent with the example

pages mentioned earlier,

ho[A11](A12)co[A21](A22)co[A31](A32)ct

and

h[A11i][A11ii](A12)[A21](A22)[A31](A32)t

5.3.2 Relative expressiveness

As with the four tabular wrapper classes, we are interested in comparing the relative

expressiveness of n-lr and n-hlrt. With six wrapper classes, there are potentially

2

6

regions that must be examined in a Venn diagram (such as Figure 5.1) illustrating

the relative expressiveness of the classes. Therefore, for brevity we will compare only

lr, hlrt, n-lr and n-hlrt.

Figure 5.3 and Theorem 5.10 capture our results concerning the relative expres-

siveness of these four wrapper classes.

97

(K)

(M)(L) (N) (O) (P)

(J)

(R) (S) (T)(Q)

(U)

(HLRT)

(LR)

Π

Π
(N-HLRT)Π

(N-LR)Π

Π

Figure 5.3: The relative expressivenes of the lr, hlrt, n-lr, and n-hlrt wrapper

classes.

Theorem 5.10 (Relative expressiveness of lr, hlrt, n-lr and n-hlrt)

The relationships between �(lr), �(hlrt), �(n-lr) and �(n-hlrt) are

as indicated in Figure 5.3.

Proof of Theorem 5.10 (Sketch): To see that these relationships hold, it su�ces

to show that:

1. There exists at least one pair hP; Li 2 � in each of the regions marked (J), (K),

(L), . . . , (U) in Figure 5.3;

2. Every pair in n-lr and hlrt is also in lr: (�(n-lr) \ �(hlrt)) � �(lr).

3. Every pair in n-hlrt and lr is also in hlrt: (�(n-hlrt)\�(lr)) � �(hlrt).

Note that these three assertions jointly imply that the four wrapper classes are related

as claimed.

Consider each assertion in turn.

1. In Appendix B.6 we identify one hP; Li pair in each of the regions (J), (K), etc.

98

2. Consider a pair hP; Li claimed to be a member of n-lr and hlrt but not lr.

Since hP; Li 2 �(hlrt), hP; Li must have a tabular structure. It is straightfor-

ward to show that if hP; Li 2 �(n-lr) and hP; Li is tabular, then hP; Li 2 �(lr).

But this contradicts the assumption that hP; Li 62 �(lr).

3. Consider a pair hP; Li claimed to be a member of lr and n-hlrt but not hlrt.

Since hP; Li 2 �(lr), hP; Li must have a tabular structure. It is straightforward

to show that if hP; Li 2 �(n-hlrt) and hP; Li is tabular, then hP; Li 2 �(hlrt).

But this contradicts the assumption that hP; Li 62 �(hlrt).

See Appendix B.6 for details.

2 (Proof of Theorem 5.10 (Sketch))

5.3.3 Complexity of learning

To perform a complexity analysis of learning lr, hlrt, oclr and hoclrt wrappers,

we stated the consistency constraints that must hold if a wrapper is to be consistent

with a particular example. We then described the Induce generalization function for a

particular wrapper class as a special-purpose constraint-satis�er for the corresponding

consistency constraints. More precisely, when generalizing from a set E of examples,

the consistency constraint C

W

for wrapper class W tells us whether some wrapper

w 2 H

W

obeys w(P) = L for each hP; Li 2 E .

An alternative is to use the wrapper execution procedure ExecW directly. For

instance, rather than testing whether some wrapper w 2 H

hlrt

obeys C

hlrt

, we

could have used the ExecHLRT procedure to verify that w is consistent with each

example.

The reason we did not pursue this path is computational: by explicitly stating

the constraint C

hlrt

, we can then decompose the constraint into C1{C3, show that

these predicates are independent, and thereby search for consistent wrappers much

more e�ciently. For the hlrt class, the original ine�cient Generalize

hlrt

algorithm

tries to satisfy C

hlrt

directly, while the improved Generalize

�

hlrt

algorithm exploits

99

the independence of C1{C3. A similar strategy was applied to the lr, oclr, and

hoclrt classes.

Two problems arise when applying this methodology to the n-lr and n-hlrt

wrapper classes. First of all, the consistency constraints C

n-lr

and C

n-hlrt

would

be quite complicated, requiring substantial additional notation beyond the variables

S

m;K

and A

m;k

.

Further consideration of this �rst di�culty leads to the second problem. To un-

derstand why these constraints are so complicated, consider attribute k. What values

are satisfactory for `

k

(the left-hand delimiter for the k

th

attribute)? Recall that after

extracting a value for the k

th

attribute, ExecN-LR and ExecN-HLRT might extract a

value for attribute k + 1, k, k � 1, . . . , 2, or 1, depending on which value `

k

0

occurs

�rst amongst the k

0

2 [1; k+1]. Thus `

k

must occur �rst when attribute k should be

extracted, but it must not occur �rst when some other attribute k + 1, k � 1, k � 2

. . . , 2, or 1 are to be extracted. To summarize, whether a candidate value for `

k

is

satisfactory depends on the choices of up to k other left-hand delimiters.

4

This discussion reveals the second problem with trying to decompose the consis-

tency constraints C

n-lr

or C

n-hlrt

: we conjecture that these constraints simply can

not be decomposed in a way that simpli�es learning wrappers from these classes. Since

we can see no advantage in explicitly stating the constraints C

n-lr

and C

n-hlrt

, we

will not do so. Fortunately, once we've committed to this decision, the analysis of

the complexity of learning n-lr and n-hlrt is greatly simpli�ed.

The n-lr wrapper class. The previous discussion suggests the following n-lr

generalization function:

4

Throughout this discussion we ignore the fact that attribute K is special case, because this com-

plication does not greatly change the computational burden of learning n-lr and n-hlrt wrappers.

100

Generalize

n-lr

(examples E = fhP

1

; L

1

i; : : : ; hP

N

; L

N

ig)

for r

1

 each pre�x of the text following some instance of attribute 1

.

.

.

for r

K

 each pre�x of the text following some instance of attribute K

for `

1

 each su�x of the text preceding some instance of attribute 1

.

.

.

for `

K

 each su�x of the text preceding some instance of attribute K

w h`

1

; r

1

; : : : ; `

K

; r

K

i

if ExecN-LR(w; P

n

) = L

n

for every hP

n

; L

n

i 2 E , then (i)

return w

As indicated, note that line (i) of the algorithm simply uses the ExecN-LR proce-

dure to determine whether a candidate wrapper is consistent. The following theorem

follows immediately:

Theorem 5.11 Generalize

n-lr

is consistent.

Before proceeding with the complexity analysis, let us describe Generalize

n-lr

in

more detail. Note that the candidates for the r

k

and `

k

are speci�ed di�erently from

Generalize

n-lr

than for the four wrapper classes discussed earlier. In Generalize

lr

, for

example, the candidates for r

k

are the pre�xes of the intra-tuple separator for S

1;k

for

page P

1

. However, we have not yet de�ned the notation S

m;k

for n-lr. (The reason

for not de�ning S

m;k

for n-lr was just mentioned: there is no advantage|either

computational or to simplify the presentation|to explicitly stating the consistency

constraint C

n-lr

and thus there was no need to de�ne S

m;k

and A

m;k

for nested

resources.) Rather than invent a formal notation, we will describe the candidates

informally. For example, the candidates for r

k

in the n-lr and lr classes are similar:

we look for some occurrence of the k

th

attribute, and then the candidates for r

k

are

the pre�xes of the text between this attribute and the next. It does not matter which

such occurrence is considered, though for e�ciency we assume that the algorithm

considers the occurrence that minimizes the number of candidates for r

k

.

101

We now provide a complexity analysis for the Generalize

n-lr

algorithm. As usual,

there are O

�

3

p

R

�

candidates for each of r

k

and `

k

, and thus we must evaluate line

(i) O

�

R

2K

3

�

times. Each execution of line (i) required N invocations of the ExecN-

LR function. ExecN-LR runs in time linear in the length of the page. Let R

max

=

max

n

jP

n

j be the length of the longest example page. Combining these bounds,

we have that the total running time of Generalize

n-lr

is bounded by O

�

R

2K

3

�

�

O(N) � O(R

max

) = O

�

R

2K

3

NR

max

�

. To simplify this expression at the cost of

a somewhat looser bound, we can make use of the fact that R � R

max

, and thus

O

�

R

2K

3

NR

max

�

= O

�

NR

1+

2K

3

max

�

= O

�

NR

2K+3

3

max

�

. Thus we have a proof for the

following theorem:

Theorem 5.12 (Generalize

n-lr

heuristic-case complexity)

Under Assumption 4.1, the Generalize

n-lr

algorithm runs in time

O

�

NR

2K+3

3

max

�

.

The n-hlrt wrapper class. We just observed that a discussion of the disad-

vantages of explicitly stating C

n-lr

resulted in the straightforward Generalize

n-lr

algorithm. Similarly, there is no point in explicitly stating the consistency con-

straint C

n-hlrt

, and thus the generalization function Generalize

n-hlrt

is also rather

straightforward:

102

Generalize

n-hlrt

(examples E = fhP

1

; L

1

i; : : : ; hP

N

; L

N

ig)

for r

1

 each pre�x of the text following some instance of attribute 1

.

.

.

for r

K

 each pre�x of the text following some instance of attribute K

for `

1

 each su�x of the text preceding some instance of attribute 1

.

.

.

for `

K

 each su�x of the text preceding some instance of attribute K

for h each substring of the text preceding the �rst attribute

for t each substring of the text following the last attribute

w hh; t; `

1

; r

1

; : : : ; `

K

; r

K

i

if ExecN-HLRT(w; P

n

) = L

n

for every hP

n

; L

n

i 2 E , then (i)

return w

The di�erence between Generalize

n-hlrt

and Generalize

hlrt

is similar to the

di�erence between Generalize

lr

and Generalize

n-lr

. The main di�erence is that line

(i) of the algorithm uses ExecN-HLRT rather than C

n-hlrt

to verify wrappers.

As usual, we begin by observing that Generalize

n-hlrt

behaves correctly (like

that of Theorem 5.11, the proof follows immediately from line (i).)

Theorem 5.13 Generalize

n-lr

is consistent.

The complexity analysis of Generalize

n-hlrt

follows that of Generalize

n-lr

. The

di�erence is that we must invoke line (i) of the algorithm O

�

R

2K+4

3

�

times rather

than O

�

R

2K

3

�

times. (The extra \4" in the exponent arises from the fact that

we must examine O

�

R

2

3

�

candidates for each of h and t.) From this point the

analysis proceeds as before, and we have that the complexity of Generalize

n-hlrt

O

�

R

2K+4

3

NR

max

�

= O

�

NR

1+

2K+4

3

max

�

= O

�

NR

2K+7

3

max

�

. We can summarize these

observations with the following theorem.

Theorem 5.14 (Generalize

n-hlrt

heuristic-case complexity)

Under Assumption 4.1, the Generalize

n-hlrt

algorithm runs in time

O

�

NR

2K+7

3

max

�

.

103

5.4 Summary

In this chapter, we have described several wrapper classes. First, we examined the lr,

oclr and hoclrt wrapper classes. Like hlrt, these three classes are designed for

extracting data from resources exhibiting a tabular structure. Second, we examined

two wrapper classes|n-lr and n-hlrt|that are designed for extracting information

from resources that exhibite a more general nested structure.

Our formal results are summarized in the following table:

wrapper class

heuristic-case

learning complexity

strictly more

expressive than

lr O

�

KM

max

NR

2

3

�

�

hlrt O

�

KM

max

NR

2

�

�

oclr O

�

KM

max

NR

2

�

lr

hoclrt O

�

KNM

max

R

10

3

�

hlrt

n-lr O

�

NR

2K+3

3

max

�

�

n-hlrt O

�

NR

2K+7

3

max

�

�

The �rst column indicates the six wrapper classes we have investigated:

lr, the simplest wrapper class for tabular resources, consist-

ing of just left- and right-hand attribute delimiters;

hlrt, the wrapper class discussed extensively in Chapter 4;

oclr, a wrapper class consisting of left- and right-hand at-

tribute delimiters as well as an opening and closing de-

limiter for each tuple;

hoclrt, a wrapper class that combined the functionality of hlrt

and oclr;

n-lr, the simplest wrapper class for nested resources, consist-

ing of just left- and right-hand attribute delimiters; and

n-hlrt, the straightforward extension of hlrt to nested re-

sources.

104

The second column in the table provides a way to compare the di�culty of au-

tomatically earning wrappers within each class: we have analyzed the heuristic-case

(de�ned by Assumption 4.1) running-time of the function Generalize

W

, for each wrap-

per class W. The analysis in provided in terms of the following parameters, which

characterize the set of examples:

K, the number of attributes per tuple;

N , the number of examples;

M

tot

, the total number of tuples in the example pages;

R, the length of the shortest example page; and

R

max

, the length of the longest example page.

The third column in the table provides a brief summary of the relative expres-

siveness of the six wrapper classes. Relative expressiveness captures the extent to

which wrappers from one class can mimic the behavior of wrappers from another. As

Theorems 5.1 and 5.10 and Figures 5.1 and 5.3 indicate, this summary is very crude

indeed; the full analysis reveals that the classes are interrelated in a substantially

richer manner.

These theoretical results are important and interesting, but of course the bottom

line is the extent to which these six wrapper classes are useful for real information

resources. In Section 7.2, we demonstrate that indeed these wrapper classes are

quite useful: collectively they can handle 70% of a recently-surveyed sample of actual

Internet resources, with the individual classes handling between 13% and 57%.

Chapter 6

CORROBORATION

6.1 Introduction

Our discussion of automatic wrapper construction has focused on inductive learning.

One input to the Induce generic learning algorithm is the oracle function Oracle

T ;D

(See Figure 3.3). The oracle supplies Induce with a stream of labeled examples from

the resource under consideration. So far, we have taken Oracle

T ;D

to be provided as

input. And indeed, this supervised approach is standard practice in many applications

of machine learning.

Unfortunately, assuming Oracle

T ;D

as an input usually means that a person must

play the role of the oracle, painstakingly gathering and examining a collection of

example query responses. Since our goal is automatic wrapper construction, requiring

a person to be \in the loop" in this way is regrettable.

Therefore, in this chapter we focus on automating the Oracle

T ;D

function.

(Throughout, we discuss only the hlrt wrapper class; analogous results could be

obtained for the other wrapper classes.) Conceptually, oracles perform two functions:

gathering pages, and labeling them. Our e�ort is directed only at the second step (see

[Doorenbos et al. 97] for work on the �rst). We introduce corroboration, a technique

for automatically labeling a page. Though in this thesis we do not reach our goal

of entirely automatic wrapper construction, we think that corroboration represents a

signi�cant step in that direction.

Corroboration assumes a library of domain-speci�c attribute recognizers. Each

recognizer reports the instances present in the page for a particular attribute. For

106

example, one recognizer might tell the corroboration system the location of all the

countries, while a second recognizer locates the country codes. Corroboration is the

process of sifting through the evidence provided by the recognizers.

If the recognizers do not make mistakes, then corroboration is very simple. Most

of this chapter is concerned with the complications that arise due to the recogniz-

ers' mistakes. However, we note that even if the recognizers were perfect, wrapper

induction would still be important, because the recognizers might run slowly, while

wrappers are used on-line and therefore should be very fast.

We begin with a high-level description of the issues related to corroboration (Sec-

tion 6.2). We then provide a formal speci�cation of the corroboration process (Section

6.3). Third, we describe an algorithm, Corrob, that solves an interesting special case

of the general problem (Section 6.4). Fourth, we show how to use the output of

Corrob to implement the Oracle

T ;D

function; there turn out to be several wrinkles

(Section 6.5). While clean and elegant, Corrob is extremely slow, and so in Section

6.6 we describe several heuristics and simpli�cations that result in a usable algorithm,

called Corrob

�

. Finally, we step back and discuss the concept of recognizers, asking

whether they represent a realistic approach to labeling pages (Section 6.7).

6.2 The issues

We begin with an example that illustrates at a fairly high level the basic issues that

are involved. Consider a simple extension of the country/code example (Figure 2.1)

that has three (rather than two) attributes: country, country code, and capital city.

In this section we will abbreviate these attributes ctry, code and cap, respectively.

Recognizers. The labeling problem under consideration is to take as input a page

from the country/code/capital resource, and to produce as output a label for the

page. In this chapter we explore one strategy for automatically solving the labeling

problem. We assume we have a library of recognizers, one for each attribute. A

107

recognizer examines the page to be labeled, and identi�es all instances of a particular

attribute. For example, a recognizer for the ctry attribute would scan a page and

return a list of the page fragments that the recognizer \believes" to be values of the

ctry attribute.

More formally, a recognizer is a function taking as input a page, and producing

as output a set of subsequences of the page. Each such subsequence is called an in-

stance of the recognized attribute. The symbol R indicates a recognizer; for example,

R

ctry

is the country recognizer.

Note that the recognizer library does not specify the order in which the attributes

are rendered by the information resource under consideration. Our intent is to make

the wrapper construction system as general as possible. For example, ideally we

would like to provide our system with example pages from any site that provides

country/code/capital information; we want the system to learn that at one resource

the tuples are formatted as hctry;code;capi, while at another they are formatted

as hcode;cap;ctryi.

Corroborating perfect recognizers. As mentioned, R

ctry

is a recognizer for

countries, R

code

recognizes country codes, and so forth. Ideally, each recognizer will

behave perfectly : every instance returned by the recognizer is in fact a true instance

of the attribute, and the recognizer never fails to output an instance of an attribute

that is present in the input.

If every recognizer is perfect, then the labeling problem is trivial: we can simply

compute the (unique) attribute ordering consistent with the recognized instances,

and then gather the instances into an overall label for the page.

For example, suppose that all three recognizers R

ctry

, R

code

and R

cap

are

perfect. And suppose that when we apply these recognizes to some page, we obtain

the following output:

108

R

cap

perfect

h29; 34i

h49; 54i

h69; 74i

R

ctry

perfect

h15; 20i

h35; 40i

h55; 60i

R

code

perfect

h22; 27i

h42; 47i

h62; 67i

First of all, note that the indices in this table are completely arti�cial; they bear no

resemblance to the html code displayed in Figure 2.1.

Each table contains a set of indices, each of the form hb; ei, indicating the beginning

and end indices (respectively) of the instance. The second table above, for example,

indicates that there are country attributes in the input page at positions 15{20, 35{40,

and 55{60.

Since each recognizer is perfect, note that there is a unique ordering consistent

with the recognized instances. In this case, the ordering is hctry;code;capi.

Given this ordering, it is now trivial to compose the sets of recognized instances

into a label for the overall page. In this example, we obtain the following label:

8

>

>

>

>

>

<

>

>

>

>

>

:

hh15; 20i; h22; 27i; h29; 34ii;

hh35; 40i; h42; 47i; h49; 54ii;

hh55; 60i; h62; 67i; h69; 74ii

9

>

>

>

>

>

=

>

>

>

>

>

;

:

In the remainder of this chapter, to simplify the notation and to allow for complica-

tions that will arise, we will use the following equivalent notation:

ctry code cap

h15; 20i h22; 27i h29; 34i

h35; 40i h42; 47i h49; 54i

h55; 60i h62; 67i h69; 74i

(6.1)

Before proceeding, let us note that even if one has perfect attribute recognizers,

automatic wrapper construction is still important. The reason is that, while perfect,

the recognizers may run slowly. However, a software agent needs its information

extraction subsystem to run quickly; ideally, it should respond in real time to users'

commands. Wrapper construction o�ers the prospect of o�-line caching of the smart-

but-slow recognizer's output in a form that can be used quickly on-line.

109

Imperfect recognizers. This example was so simple because each recognizer is

perfect. Of course, we want to accomodate recognizers that make mistakes. There

are two kinds of mistakes: false positives and false negatives. An instance returned

by a recognizer is a false positive if it does not correspond to an actual value of the

attribute. An actual value of the attribute is a false negative if it is not included

among the instances returned by the recognizer. In general, an imperfect recognizer

might either exhibit false positives, false negatives, or both. Thus with respect to

mistakes, there are four possible kinds of recognizers:

perfect , neither false positives nor false negatives;

incomplete, false negatives but no false positives;

unsound , false positives but no false negatives; and

unreliable, both false positives and false negatives.

We now return to the example to see how these di�erent kinds of recognizers e�ect

the labeling problem.

Corroborating incomplete recognizers. Consider �rst incomplete recognizers,

those that exhibit false negatives but not false positives. Suppose R

ctry

and R

cap

are incomplete while, as before, R

code

is perfect. Suppose further that when given

the example page, the recognizers respond as follows:

R

cap

incomplete

h29; 34i

h69; 74i

R

ctry

incomplete

h35; 40i

R

code

perfect

h22; 27i

h42; 47i

h62; 67i

(6.2)

Note that several of the instances that were originally reported are now missing.

These missing instances are the false negatives that were incorrectly ignored.

The labeling problem is now more complicated. We must corroborate the output

of the recognizers in an attempt to compensate for the imperfect information we

110

receive about the label. This corroboration process produces the following label:

ctry code cap

? h22; 27i h29; 34i

h35; 40i h42; 47i ?

? h62; 67i h69; 74i

(6.3)

We �rst explain this label, and then describe corroboration. Compare this label with

the label listed at Equation 6.1, generated from three perfect recognizers. Note that

the only di�erence is the \?" symbols. As before, each \cell" in the label indicates a

single attribute value. The \?" symbol indicates that the label conveys no information

about the instance in the given cell. For example, the second row of the label shows

that the ctry attribute occurs at position 35{40 and the code attribute occurs at

position 42{47, but no information is known about the cap attribute.

Earlier we saw that corroboration of perfect recognizers is very simple. Corrob-

oration of incomplete recognizers is nearly as easy, so long as at least one recognizer

is perfect . (We will formalize, motivate and exploit this assumption throughout this

chapter.) The basic idea is that this perfectly-recognized attribute can be used to

anchor the other instances.

Thus in the example, given the recognized instances, we know that (as before) the

attribute ordering must be hctry;code;capi. Therefore, by comparing the indices,

it is a simple matter to \align" each ctry and cap instance with the correct code

instance. For example, with which code instance does the ctry instance h35; 40i

belong? To see why it is aligned with code instance h32; 37i, we need only note that:

(1) 27 < 35 and therefore ctry h35; 40i belongs to either the second or third code

instances; and (2) 40 < 42 and therefore ctry h35; 40i must belong to either the �rst

or second code instances. Performing such analysis for each ctry and cap instance

yields the label listed above.

These \pesudo-labels" that contain \?" symbols will be referred to as partial

labels. Section 6.5 discusses how to extend the induction system to handle partially-

labeled pages.

111

Multiple orderings. We have neglected an important complication: with imper-

fect recognizers, there might be more than one attribute ordering that is consistent

with the recognized instances. For example, suppose that a library of two incomplete

and one perfect recognizer output the following instances:

R

cap

incomplete

h49; 54i

R

ctry

incomplete

h35; 40i

R

code

perfect

h22; 27i

h42; 47i

h62; 67i

In this situation, the original ordering hctry;code;capi as well as

hcap;code;ctryi are both consistent with the recognized instances. To see

this, note that each of the following labels would constitute a valid corroboration of

the recognized instances:

ctry code cap

? h22; 27i ?

h35; 40i h42; 47i h49; 54i

? h62; 67i ?

cap code ctry

? h22; 27i h35; 40i

? h42; 47i ?

h49; 54i h62; 67i ?

Without additional information or constraints, the corroboration process has no

basis for preferring one of these two labels over the other. On the other hand, the

wrapper induction process that invokes the corroboration process might well be able

to decide which is correct. Speci�cally, we'll see that it is extremely unlikely that there

is a wrapper consistent with more than one of the orderings. Therefore, we will treat

corroboration as a process that takes as input the recognizer library, and produces as

output a set of partial labels, one for each consistent ordering. Corroboration returns

all consistent partial labels; the induction system then tries to select the correct label

(see Section 6.5 for details).

In this example, we want corroboration to compute the following set:

8

>

>

>

<

>

>

>

:

ctry code cap

? h22; 27i ?

h35; 40i h42; 47i h49; 54i

? h62; 67i ?

;

cap code ctry

? h22; 27i h35; 40i

? h42; 47i ?

h49; 54i h62; 67i ?

9

>

>

>

=

>

>

>

;

:

112

Corroborating unsound recognizers. The corroboration of incomplete recog-

nizers required introducing the notion of partial labels and the \?" symbol, as

well as machinery for handling multiple consistent attribute orderings. Unsound

recognizers|those that exhibit false positives but not false negatives|involve addi-

tional modi�cations to the basic corroboration process.

Suppose R

ctry

is unsound whileR

code

andR

cap

are perfect. Suppose further

that when given the example page, the recognizers respond as follows:

R

cap

perfect

h29; 34i

h49; 54i

h69; 74i

R

ctry

unsound

h5; 10i

h15; 20i

h21; 25i

h35; 40i

h55; 60i

R

code

perfect

h22; 27i

h42; 47i

h62; 67i

Note that the cap and code instances are unchanged from the �rst (perfect) example,

while there are two additional ctry instances, h5; 10i and h21; 25i.

Corroboration proceeds as follows. As before, there is just one consistent ordering,

hctry;code;capi. Given this constraint, we can immediately insert the perfectly-

recognized code and cap instances into the output label. We can thus write down

the following portion of the label:

code cap

h22; 27i h29; 34i

h42; 47i h49; 54i

h62; 67i h69; 74i

We now discuss what to �ll in for the ctry column.

How are the remaining �ve ctry instances handled? As before, we can conclude

that the fourth and �fth instances, h35; 40i and h55; 60i, belong to the second and

third (respectively) code and cap instances:

ctry code cap

h22; 27i h29; 34i

h35; 40i h42; 47i h49; 54i

h55; 60i h62; 67i h69; 74i

113

All that remains is to �ll in the top-left cell of the label. The remaining three

ctry instances|h5; 10i, h15; 20i and h21; 25i|are all (and the only) candidates for

this cell. We know that exactly one of them is correct, but we don't yet know which.

We can make some progress by discarding h21; 25i: this instance overlaps with the

code instance h22; 27i; since R

code

is perfect, we know that the code instances

are correct, so h21; 25i defers to h22; 27i.

Unfortunately, there is a no way for corroboration to decide between these two

choices. We handle this situation by splitting the label into two, one for each possi-

bility:

8

>

>

>

<

>

>

>

:

ctry code cap

h5; 10i h22; 27i h29; 34i

h35; 40i h42; 47i h49; 54i

h55; 60i h62; 67i h69; 74i

;

ctry code cap

h15; 20i h22; 27i h29; 34i

h35; 40i h42; 47i h49; 54i

h55; 60i h62; 67i h69; 74i

9

>

>

>

=

>

>

>

;

Note that these two labels are identical except for the contents of the top-left cell.

To summarize, some of the instances returned by an unsound recognizer might be

false positives. In general, the corroboration system has no basis on which to decide

which are false and which are true positives. Therefore, corroboration produces one

label for each way to make a choice about which of the instances are false positives

and which are true positives. In this light, corroboration amounts to guaranteeing

that one of the returned labels corresponds to the correct choice.

Recall that in the earlier discussion of multiple consistent orderings, we mentioned

that the induction system is responsible for deciding which ordering is correct. Simi-

larly, the result of corroborating unsound recognizers is a set of labels; the induction

system is responsible for deciding which is correct. We discuss these details in Section

6.5.

Corroborating perfect, unsound, and incomplete recognizers. We have seen

examples of corroborating perfect and unsound recognizers, and perfect and incom-

plete recognizers. We now discuss corroboration when the recognizer library contains

114

recognizers of all three types. As might be expected, in the general case there might

be:

� multiple consistent attribute orderings, due to false negatives;

� partial labels, due to false negatives; and

� multiple labels for any given attribute ordering, due to ambiguous false positives.

For example, suppose that R

code

is perfect, R

ctry

is incomplete, and R

cap

is unsound, and that these recognizers output the following instances:

R

cap

unsound

h5; 10i

h29; 34i

h40; 41i

h49; 54i

h55; 60i

h69; 74i

R

ctry

incomplete

h35; 40i

R

code

perfect

h22; 27i

h42; 47i

h62; 67i

First consider the ctry and code|the attribute that are recognized by perfect and

incomplete recognizers. These following two labels are consistent with these instances:

8

>

>

>

<

>

>

>

:

ctry code

? h22; 27i

h35; 40i h42; 47i

? h62; 67i

;

code ctry

h22; 27i h35; 40i

h42; 47i ?

h62; 67i ?

9

>

>

>

=

>

>

>

;

: (6.4)

Now consider the cap attribute. When we combine the cap instances with the

�rst label, we see that cap must occur as the third column; in this position, there

are two subsets of the cap instances that are consistent with the rest of the label:

ctry code cap

? h22; 27i h29; 34i

h35; 40i h42; 47i h49; 54i

? h62; 67i h69; 74i

ctry code cap

? h22; 27i h29; 34i

h35; 40i h42; 47i h55; 60i

? h62; 67i h69; 74i

Note that these labels are the same except for the middle-right cell. Consider the �rst

label. Note that all of the other cap instances|h29; 34i, h49; 54i and h69; 74i|either

overlap with instances already installed in the label (which must be true positives since

they were reported by incomplete or perfect recognizers) or are inconsistent with cap

being the third attribute. The second label is derived by similar reasoning.

115

Next, we expand the second label in Equation 6.4, which produces the following

two labels:

cap code ctry

h5; 10i h22; 27i h35; 40i

h40; 41i h42; 47i ?

h49; 54i h62; 67i ?

cap code ctry

h5; 10i h22; 27i h35; 40i

h40; 41i h42; 47i ?

h55; 60i h62; 67i ?

Thus the �nal result of corroboration is the following set of four partial labels:

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ctry code cap

? h22; 27i h29; 34i

h35; 40i h42; 47i h49; 54i

? h62; 67i h69; 74i

;

ctry code cap

? h22; 27i h29; 34i

h35; 40i h42; 47i h55; 60i

? h62; 67i h69; 74i

;

cap code ctry

h5; 10i h22; 27i h35; 40i

h40; 41i h42; 47i ?

h49; 54i h62; 67i ?

;

cap code ctry

h5; 10i h22; 27i h35; 40i

h40; 41i h42; 47i ?

h55; 60i h62; 67i ?

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

:

Unreliable recognizers. So far, we have ignored unreliable recognizers|those

that exhibit both false positives and false negatives. The corroboration process is

similar to what we have seen so far. However, recall that the induction system must

iterate over all partial labels consistent with the recognized instances (see Section

6.5 for details). An important consideration, therefore, is the number of such labels

produced by the corroboration process.

Unfortunately, we have observed in practice that this number becomes very large

with unreliable recognizers, even when the rate at which mistakes are made is small.

Therefore, in this chapter we largely ignore unreliable recognizers.

6.3 A formal model of corroboration

In the preceding section, we describe the major issues that must be tackled when

using noisy attribute recognizers to solve the labeling problem. In this section we

provide a formal model of these ideas and intuitions.

116

� We assume a set of attribute identi�ers fF

1

; : : : ; F

K

g, where there are K at-

tributes per tuple. In the example discussed in the previous section, K = 3 and

the attribute identi�ers were fctry;code;capg.

� An instance is a pair of non-negative integers hb; ei such that b � e. When not

clear from context, the alternative notation hb; e; F

k

i emphasizes that hb; ei is

an instance of attribute F

k

.

� A recognizer R is a function from a page to a set of instances:

R : �

�

! 2

[1;1]�[1;1]

;

where �

�

is the set of all strings (see Appendix C). The notation R(P) =

f: : : ; hb; ei; : : :g indicates that the result of applying recognizer R to page P is

the indicated set of instances.

� The recognizer library is a set of recognizers � = fR

F

1

; : : : ;R

F

K

g, exactly one

per attribute.

� For a given page P and attribute F

k

, let R

�

F

k

(P) be the set of true instances

of F

k

in P . To be sure, neither the induction system nor the recognizers have

access to the true instances. However, we introduce this notion to make precise

the kinds of mistakes a recognizer makes. Note that in this chapter we are

concerned only with pages that are formatted according to a tabular layout.

Thus for example, we have that jR

�

F

1

(P)j = jR

�

F

2

(P)j = � � � = jR

�

F

K

(P)j; for

details see Footnote 1 on page 24.

� Recognizer R

F

k

is perfect if, for every page P , R

�

F

k

(P) = R

F

k

(P). We abbre-

viate the assertion that R

F

k

is perfect as perf(R

F

k

).

� Recognizer R

F

k

is incomplete if, for every page P , R

F

k

(P) � R

�

F

k

(P). The

notation incom(R

F

k

) means that R

F

k

is incomplete.

117

� Recognizer R

F

k

is unsound if, for every page P , R

�

F

k

(P) � R

F

k

(P). The

notation unsnd(R

F

k

) means that R

F

k

is unsound.

� Recognizer R

F

k

is unreliable if it is not perfect, incomplete or unsound. As

mentioned earlier, unreliable recognizers make corroboration more complicated,

and so we largely ignore them in this chapter.

� An attribute ordering \�" is a total order over a set of attribute identi�ers.

� A label is an array with K columns andM rows, with each cell in the label con-

taining an instance. The headings in the ruled-table notation|e.g., see Equa-

tion 6.1|emphasize the ordering over the attributes|e.g., hctry;code;capi

in Equation 6.1. Note that we use this tabular notation rather than the set

notation introduced in Equation 2.3 (Chapter 2) just for convenience; the two

notations are equivalent.

� The true label for a given page P is simply the result of appending the true

instances for each attribute together into a label, with the attributes selected

according to the unique valid ordering. For instance, in the following example,

the three sets of true instances on the left give rise to the true label on the right:

R

�

code

h22; 27i

h42; 47i

h62; 67i

,

R

�

ctry

h15; 20i

h35; 40i

h55; 60i

,

R

�

cap

h29; 34i

h49; 54i

h69; 74i

)

ctry code cap

h15; 20i h22; 27i h29; 34i

h35; 40i h42; 47i h49; 54i

h55; 60i h62; 67i h69; 74i

� A partial label is a label, except that each cell contains either an instance or

the special symbol \?".

� The labeling problem is the following: given as input a page P and a library

of recognizers fR

F

1

; : : : ;R

F

K

g, output a set fL

1

; L

2

; : : :g of possibly-partial

labels. The notation hP;�i indicates a particular labeling problem.

118

� Let L

�

be the true label for page P . A set of partial labels is a solution to a

given labeling problem if there exists an L

j

2 fL

1

; L

2

; : : :g such that L

j

matches

L

�

.

Informally, partial label L

j

matches true label L

�

if L

j

is identical to L

�

for

attributes recognized perfectly or unsoundly, but \holes" (indicated by \?")

can occur in the incompletely-recognized columns, so long as none of the

incompletely-recognized instances are discarded. For example, consider the

labeling problem described by Equation 6.2, and assume that the true label is

as shown in Equation 6.1. The partial label shown in Equation 6.3 matches

the true label, because they are identical except for the three missing instances,

and none of the \?" symbols were introduced spuriously.

More precisely, partial label L

j

matches true label L

�

i�: (1) the attributes

in L

j

are ordered the same way as the attributes in L

�

, and (2) L

j

and L

�

are identical except that a cell in column F

k

can be the special symbol \?" i�

incom(R

F

k

); and (3) for each F

k

such that incom(R

F

k

), the set of non-\?"

instances in column F

k

must equal R

F

k

(P).

6.4 The Corrob algorithm

In the previous section, we formally speci�ed the labeling problem. In this section,

we describe Corrob, an algorithm that correctly solves the labeling problem for the

following special case:

Assumption 6.1 (Reasonable recognizers) The recognizer library �

contains at least one perfect recognizer, and no unreliable recognizers.

(We defer until Section 6.7 further discussion and justi�cation of Assumption 6.1.)

Figure 6.1 lists the Corrob algorithm. In the remainder of this section, we �rst

describe the algorithm in more detail by walking through an example, and then

119

describing its formal properties.

6.4.1 Explanation of Corrob

As motivated in Section 6.2, the Corrob corroboration algorithm involves exploring a

combinatorial space of all possible ways to combine the evidence from the recognizer

library.

Perfect and incomplete recognizers are straightforward: since we allow partial

labels, and since such recognizers never include false positives, we can simply incor-

porate the instances provided by these recognizers directly into every label output by

Corrob. One important wrinkle is that incomplete recognizers give rise to an ambigu-

ity over the ordering of attributes with the label, and so each possible ordering must

be considered.

Unsound recognizers are somewhat more complicated: since any particular in-

stance they report might be a false positive, we must in general allow for throwing

away an arbitrary portion of the recognized instances. However, since unsound rec-

ognizers never exhibit false negatives, we know that the instances recognized by an

unsound recognizer must contain all the true positives. Therefore, we must consider

all ways of selecting exactly one recognized instance for each tuple, for each attribute

recognized by an unsound recognizer.

The example. To describe the Corrob algorithm, we show its operation on the last

example in Section 6.2. To repeat, there are three attributes, and the recognizer

library � = fR

ctry

;R

cap

;R

code

g responds to an example page P as follows:

R

cap

unsound

h5; 10i

h29; 34i

h40; 41i

h49; 54i

h55; 60i

h69; 74i

R

ctry

incomplete

h35; 40i

R

code

perfect

h22; 27i

h42; 47i

h62; 67i

120

Corrob(page P , recognizer library � = fR

F

1

; : : : ;R

F

K

g)

L fg

NTPSet NTPSet(P;�) 6.1(a)

for each PTPSet 2 PTPSets(P;�) 6.1(b)

for each \�" 2 Orders(fF

1

; : : : ; F

K

g) 6.1(c)

if Consistent?(\�";NTPSet [PTPSet) then 6.1(d)

L L+MakeLabel(\�";NTPSet [PTPSet) 6.1(e)

return L

NTPSet(page P , recognizer library �)

Return the annotated instances from the perfect or incomplete recognizers:

S

R

F

k

::unsnd(R

F

k

)

Invoke(P;R

F

k

(P))

PTPSets(page P , recognizer library �)

Let M be the number of tuples in P 's true label:

M = jR

F

k

(P)j for some R

F

k

2 � such that perf(R

F

k

).

Let �(s; n) be the set of all subsets of set s having of size n:

�(s; n) = fs

0

2 2

s

j js

0

j = ng.

Return the set of ways to choose M instances from each unsound recognizer:

Q

R

F

k

:unsnd(R

F

k

)

�(Invoke(P;R

F

k

);M)

Invoke(page P , recognizer R

F

k

)

Return the set of recognized instances, annotated with the attribute identifer:

n

hb; e; F

k

i j hb; ei 2 R

F

k

(P)

o

Orders(attribute identi�ers fF

1

; : : : ; F

K

g)

Return the set of all total orders \�" over the set fF

1

; : : : ; F

K

g

Consistent?(ordering \�", annotated instances f: : : ; hb; e; F

k

i; : : :g)

Return true i� there exists some label with attribute ordering \�"

that contains every instances hb; e; F

k

i.

MakeLabel(ordering \�", annotated instances f: : : ; hb; e; F

k

i; : : :g)

Assuming that Consistent?(\�"; f: : : ; hb; e; F

k

i; : : :g) = true, return

the label to which these inputs correspond.

Figure 6.1: The Corrob algorithm.

121

We now step through the execution of Corrob(P;�).

Line 6.1(a): Necessarily true-positive instances. Corrob starts by invoking the

perfect and incomplete recognizers|R

ctry

and R

code

|on page P . The NTPSet

subroutine computes this set of necessarily true positive (NTP) instances. (The in-

stances output by R

ctry

and R

code

|or more generally, all instances except those

recognized unsoundly|are necessarily true positive instances, because incomplete

and perfect recognizers never produce false positives.)

For book-keeping purposes that will become important at lines 6.1(d{e), we must

keep track of the attribute to which each instance belongs. In the example, line 6.1(a)

computes the following set of NTP instances:

NTPSet fh35; 40;ctryi; h22; 27;codei; h42; 47;codei; h62; 67;codeig :

Line 6.1(b): Possibly true-positive instances. Corrob next collects and reasons

about the instances recognized by the unsound recognizers|in this case, R

cap

. We

know that some subset of the instancesR

cap

(P) are true positives and the remainder

are false positives. Moreover, we know that there must be exactly three true positives,

and therefore remaining jR

cap

(P)j � 3 instances are false positives. More generally,

for each unsound recognizer, we know that M of the recognized instances are true

positives and the remainder are false positives, where M is the number of instances

in P 's true label (note that we can determine M by consulting one of the perfect

recognizers).

However, as discussed in Section 6.2, Corrob does not know which are correct

and which are incorrect, and so it must try each way to select M choices from each

unsound recognizer's set of instances. In this example, we must consider each of the

122

following subsets:

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

fh5; 10i; h29; 34i; h40; 41ig; fh5; 10i; h29; 34i; h49; 54ig; fh5; 10i; h29; 34i; h55; 60ig;

fh5; 10i; h29; 34i; h69; 74ig; fh5; 10i; h40; 41i; h49; 54ig; fh5; 10i; h40; 41i; h55; 60ig;

fh5; 10i; h40; 41i; h69; 74ig; fh5; 10i; h49; 54i; h55; 60ig; fh5; 10i; h49; 54i; h69; 74ig;

fh5; 10i; h55; 60i; h69; 74ig; fh29; 34i; h40; 41i; h49; 54ig; fh29; 34i; h40; 41i; h55; 60ig;

fh29; 34i; h40; 41i; h69; 74ig; fh29; 34i; h49; 54i; h55; 60ig; fh29; 34i; h49; 54i; h69; 74ig;

fh29; 34i; h55; 60i; h69; 74ig; fh40; 41i; h49; 54i; h55; 60ig; fh40; 41i; h49; 54i; h69; 74ig;

fh40; 41i; h55; 60i; h69; 74ig; fh49; 54i; h55; 60i; h69; 74ig

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

:

Notice that we have listed here the

6!

3!�(6�3)!

= 20 ways to select M = 3 elements

from the jR

cap

(P)j = 6 recognized cap instances.

Each of these sets represents a collection of possibly true-positive (PTP)

instances|i.e., each set corresponds to a collection of instances that might be, though

are not necessarily, true positives. The function PTPSets is invoked by line 6.1(b) to

compute these PTP sets.

Speci�cally, PTPSets uses the function � to generate all ways to chooseM elements

from each unsound instance set, and then takes the cross product over all such sets-

of-sets. In this example, PTPSets returns the above set of twenty sets (though for

brevity we did not include the attribute annotations post-pended to each instance by

the Invoke function).

digression. This example is fairly simple, because there is only one unsound rec-

ognizer, and so the cross-product is trivial. However, in general there might be

multiple unsound recognizers. For example, consider the following example involving

two unsound recognizers, R

F

1

and R

F

2

:

R

F

1

unsound

h15; 20i

h35; 40i

h55; 60i

h75; 80i

R

F

2

unsound

h25; 30i

h45; 50i

h65; 70i

h85; 90i

123

Suppose that there are M = 2 tuples in the true label. In this case we have that

PTPSets returns the thirty-six member set

8

>

>

>

>

<

>

>

>

>

:

fh15; 20; F

1

i; h35; 40; F

1

ig; fh15; 20; F

1

i; h55; 60; F

1

ig;

fh15; 20; F

1

i; h75; 80; F

1

ig; fh35; 40; F

1

i; h55; 60; F

1

ig;

fh35; 40; F

1

i; h75; 80; F

1

ig; fh55; 60; F

1

i; h75; 80; F

1

ig

9

>

>

>

>

=

>

>

>

>

;

�

8

>

>

>

>

<

>

>

>

>

:

fh25; 30; F

2

i; h45; 50; F

2

ig; fh25; 30; F

2

i; h65; 70; F

2

ig;

fh25; 30; F

2

i; h85; 90; F

2

ig; fh45; 50; F

2

i; h65; 70; F

2

ig;

fh45; 50; F

2

i; h85; 90; F

2

ig; fh65; 70; F

2

i; h85; 90; F

2

ig

9

>

>

>

>

=

>

>

>

>

;

:

Note that each such PTP set contains two instances for F

1

and two instances for F

2

,

as required. end of digression.

Line 6.1(c): Attribute orderings. Corrob iterates over all choices for possibly

true positive instances, as computed by PTPSets. Now, Corrob must also determine

how the attributes are ordered. The function Orders returns the set of all K! total

orders over the attribute identi�ers. In the example, we have:

Orders(fctry;code;capg) =

8

>

>

>

>

>

<

>

>

>

>

>

:

hctry;code;capi; hctry;cap;codei;

hcode;ctry;capi; hcode;cap;ctryi;

hcap;ctry;codei; hcap;code;ctryi

9

>

>

>

>

>

=

>

>

>

>

>

;

:

In Figure 6.1, we use the notation \�" to refer to some element of this set. We

write F

k

� F

k

0

to mean that F

k

precedes F

k

0

in the output of Orders to which \�"

corresponds. For example, if \�" = hcap;code;ctryi, then cap � ctry because

cap precedes ctry in hcap;code;ctryi.

Line 6.1(d): Enumerating all combinations. As this point, the Corrob algo-

rithm has gathered:

� the set NTPSet of necessarily true-positive instances;

� the set PTPSets, each member of which is a set of possible true-positive instances;

and

124

� the set Orders(fctry;code;capg) all possible attribute orderings.

The nested loop at lines 6.1(b-c) cause Corrob to iterate over the cross product of

PTPSets and Orders(fctry;code;capg). When coupled with NTPSet, each such

combination of PTPSet 2 PTPSets and \�" 2 Orders(fctry;code;capg) corre-

sponds to a complete guess for P 's true label. In the example, there are 20� 6 = 120

such combinations.

To verify each such guess, Corrob invokes the Consistent? function. Consistent?

determines whether a given set of instances and a given attribute ordering can in

fact be arranged in a tabular format. The basic idea is that an instance hb; e; F

k

i

conicts with the remaining instances if it can not be inserted into a label with the

given attribute ordering.

In the example, we must evaluate Consistent? against the 120 PTP/ordering pairs.

For example, consider

Consistent?

0

B

B

B

B

B

B

B

B

@

hctry;code;capi;

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

h35; 40;ctryi;

h22; 27;codei;

h42; 47;codei;

h62; 67;codei

9

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

;

[

8

>

>

>

>

>

<

>

>

>

>

>

:

h5; 10;capi;

h29; 34;capi;

h40; 41;capi

9

>

>

>

>

>

=

>

>

>

>

>

;

1

C

C

C

C

C

C

C

C

A

:

| {z }

1

st

elt. of Orders

| {z }

NTPSet

| {z }

1

st

elt. of PTPSets

In this case Consistent? returns false. To see this, note that instance h5; 10;capi

must occur in the same tuple as h22; 27;codei (because there are no earlier code

instances), and therefore cap � code because h5; 10i precedes h22; 27i. However,

the ordering hctry;code;capi requires that code � cap.

125

We will not illustrate Consistent? for the remaining 119 PTP/orderings combina-

tions. Instead we simply assert only the following four pairs satisfy Consistent?:

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

hhctry;code;capi; fh29; 34;capi; h49; 54;capi; h69; 74;capigi ;

hhctry;code;capi; fh29; 34;capi; h55; 60;capi; h69; 74;capigi ;

hhcap;code;ctryi; fh5; 10;capi; h40; 41;capi; h49; 54;capigi ;

hhcap;code;ctryi; fh5; 10;capi; h40; 41;capi; h55; 60;capigi

9

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

;

:

Line 6.1(e): Building the labels. Finally, the MakeLabel function is invoked for

every PTP/ordering combination that satis�es Consistent?. In the example, we invoke

MakeLabel four times:

MakeLabel

0

B

B

B

B

B

B

B

B

@

hctry;code;capi;

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

h35; 40;ctryi; h22; 27;codei;

h42; 47;codei; h62; 67;codei;

h29; 34;capi; h49; 54;capi;

h69; 74;capi

9

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

;

1

C

C

C

C

C

C

C

C

A

;

MakeLabel

0

B

B

B

B

B

B

B

B

@

hctry;code;capi;

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

h35; 40;ctryi; h22; 27;codei;

h42; 47;codei; h62; 67;codei;

h29; 34;capi; h55; 60;capi;

h69; 74;capi

9

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

;

1

C

C

C

C

C

C

C

C

A

;

MakeLabel

0

B

B

B

B

B

B

B

B

@

hcap;code;ctryi;

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

h35; 40;ctryi; h22; 27;codei;

h42; 47;codei; h62; 67;codei;

h5; 10;capi; h40; 41;capi;

h49; 54;capi

9

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

;

1

C

C

C

C

C

C

C

C

A

;

and

MakeLabel

0

B

B

B

B

B

B

B

B

@

hcap;code;ctryi;

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

h35; 40;ctryi; h22; 27;codei;

h42; 47;codei; h62; 67;codei;

h5; 10;capi; h40; 41;capi;

h55; 60;capi

9

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

;

1

C

C

C

C

C

C

C

C

A

:

126

Each such invocation is straightforward: MakeLabel simply use the given attribute

ordering and instances to construct an M �K array. Since MakeLabel is called only

if the arguments satisfy Consistent?, we know that such an array is well de�ned. In

the example, the invocations of MakeLabel result in the following four partial labels:

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ctry code cap

? h22; 27i h29; 34i

h35; 40i h42; 47i h49; 54i

? h62; 67i h69; 74i

;

ctry code cap

? h22; 27i h29; 34i

h35; 40i h42; 47i h55; 60i

? h62; 67i h69; 74i

;

cap code ctry

h5; 10i h22; 27i h35; 40i

h40; 41i h42; 47i ?

h49; 54i h62; 67i ?

;

cap code ctry

h5; 10i h22; 27i h35; 40i

h40; 41i h42; 47i ?

h55; 60i h62; 67i ?

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

:

This set is then returned by the Corrob algorithm as the output given inputs P and

�.

6.4.2 Formal properties

In Section 6.3, we formally de�ned the labeling problem as well as what constitutes

a solution. In Appendix B.7, we prove that Corrob always generates solutions:

Theorem 6.1 (Corrob is correct) For every recognizer library � and

page P , if Corrob(P;�) = L, then L is a solution to the labeling prob-

lem hP;�i, provided that Assumption 6.1 holds of �.

6.5 Extending Generalize

hlrt

and the PAC model

Ideally, the Induce inductive learning system would make use of the Corrob algorithm

to label a set of example pages, and then provide these labeled pages to the general-

ization function Generalize

hlrt

. Unfortunately, Generalize

hlrt

wants, and the PAC

model assumes, perfectly labeled examples. In contrast:

� In general, Corrob produces multiple labels per example page, and guarantees

only that one is correct.

127

� Moreover, incomplete recognizers mean that the resulting labels might be partial.

These di�erences mean that Corrob can not be used directly to label example pages

for Generalize

hlrt

, and the PAC model of wrapper induction is not immediately

applicable. Fortunately, only relatively minor extensions to the Generalize

hlrt

algo-

rithm and the PAC model are needed to accomodate Corrob's noisy labels. In this

section we describe these enhancements.

To illustrate the basic idea, recall the country/code example in Figure 2.1. Sup-

pose that instead of producing the correct label:

<HTML><TITLE>Some Country Codes</TITLE><BODY>

Some Country Codes<P>

 Congo <I> 242 </I>

 Egypt <I> 20 </I>

 Belize <I> 501 </I>

 Spain <I> 34 </I>

<HR>End</BODY></HTML>

the corroboration algorithm Corrob produces the following incorrect label:

<HTML><TITLE>Some Country Codes</TITLE><BODY>

Some Country Codes<P>

< B>Con go <I> 242 </I>

 Egypt <I> 20 </I>

 Belize <I> 501 </I>

 Spain</ B> <I> 34 </I>

<HR>End</BODY></HTML>

Note that two of the countries are labeled incorrectly. For example, this label might

result from using an unsound country attribute recognizer.

What happens when we invoke Generalize

hlrt

on this example? Generalize

hlrt

certainly can not return some wrapper w = hh; t; `

1

; r

1

; `

2

; r

2

i, because no such wrap-

per exists. For instance, there is no valid value for `

1

, because the �rst country

instance B>Con is preceded by the string \<" while the other three country instances

are preceded by \", and \<" and \" share no common su�x. Moreover, note

128

that due to the fourth country instance, Spain</, there is no acceptable value for r

1

.

In short, the given labeled page simply can not be wrapped by hlrt.

This example illustrates that even though Corrob alone can not decide which of

its outputs labels are correct, a modi�ed version of Generalize

hlrt

algorithm can

decide, by checking to see whether a wrapper exists. If no wrapper exists, then

the label must be incorrect, and Generalize

hlrt

can try the next label suggested by

Corrob. Since Corrob is correct (Theorem 6.1), this simple strategy works, because

eventually Generalize

hlrt

will encounter the correct label.

However, note that there is always some chance that this strategy will fail: it might

be the case the some of the labels are incorrect, yet a consistent wrapper does indeed

exists. This would cause the learning algorithm system to think it has succeeded

when in fact it has learned the wrong wrapper. Later in this section we describe how

to modify PAC model to account for the (ideally, very small) chance that a wrapper

can be found that is consistent with an set of examples that are incorrectly labeled.

Note that we have good reason to be optimistic: as the example illustrates, in the

context of wrapper induction, mislabeling a page even slightly will very likely result

in an unwrappable page.

So far, we have discussed the di�culties that result from unsound recognizers.

Suppose that instead of being unsound, the country recognizer were incomplete. This

might result in the following partial label:

<HTML><TITLE>Some Country Codes</TITLE><BODY>

Some Country Codes<P>

 Congo <I> 242 </I>

Egypt <I> 20 </I>

Belize <I> 501 </I>

 Spain <I> 34 </I>

<HR>End</BODY></HTML>

In this case, so long as Generalize

hlrt

is somewhat careful in the way it pro-

cesses this example, the induction algorithm can still produce the wrapper w =

129

h<P>; <HR>; ; ; <I>; </I>i. The only problem is that the algorithm is general-

izing on the basis of fewer \examples" of `

1

and r

1

|but this is essentially the same

scenario as if the original example contained only two tuples instead of four.

This second example illustrates that partial labels|the \?" symbols in a partial

label|are easily handled by Generalize

hlrt

. Induction must simply rely on fewer

examples of each hlrt component. Similarly, the PAC model must be extended so

that the chance of learning each individual component is tailored on the basis of the

evidence available about that speci�c component.

In the remainder of this section, we describe these extensions to Generalize

hlrt

,

and then discuss the modi�ed PAC model.

6.5.1 The Generalize

noisy

hlrt

algorithm

Generalize

noisy

hlrt

is the name of our extension to Generalize

hlrt

. While Generalize

hlrt

takes as input a set

fhP

1

; L

1

i; : : : ; hP

N

; L

N

ig

of perfectly-labeled examples, Generalize

noisy

hlrt

takes as input a set

n

hP

1

; fL

1

1

; L

2

1

; : : :gi; : : : ; hP

N

; fL

1

N

; L

2

N

; : : :gi

o

of noisily-labeled examples. The intent is that the L

j

n

are produced by Corrob: for

each n,

fL

1

n

; L

2

n

; : : :g = Corrob(P

n

;�):

The algorithm. The Generalize

noisy

hlrt

algorithm is shown in Figure 6.2.

Generalize

noisy

hlrt

operates by repeatedly invoking the original Generalize

hlrt

algo-

rithm, once for each way to select one of the possible labels for each of the pages.

The algorithm terminates when such a labeling yields a consistent wrapper.

130

Generalize

noisy

hlrt

(noisy examples E = fhP

1

; fL

1

1

; L

2

1

; : : :gi; : : : ; hP

N

; fL

1

N

; L

2

N

; : : :gig

for each vector hL

j

1

1

; : : : ; L

j

N

N

i 2 fL

1

1

; L

2

1

; : : :g � � � � � fL

1

N

; L

2

N

; : : :g 6.2(a)

w Generalize

hlrt

(fhP

1

; L

j

1

1

i; : : : ; hP

N

; L

j

N

N

ig)

if w 6= false then return w

Note that the Generalize

hlrt

algorithm has been slightly modi�ed from Figure

4.6; see the text and Figure 6.3 for details.

Figure 6.2: The Generalize

noisy

hlrt

algorithm, a modi�cation of Generalize

hlrt

(Figure

4.6) which can handle noisily labeled examples.

Modi�cations to Generalize

hlrt

. As indicated in Figure 6.2, Generalize

noisy

hlrt

relies

on two minor modi�cations to the original Generalize

hlrt

algorithm

1

|see Figure 6.3.

First, as described in Figure 4.6, Generalize

hlrt

assumes that there exists a wrap-

per consistent with the input examples, and so the only termination condition ex-

plicitly speci�ed involves �nding such a wrapper. In contrast, Generalize

noisy

hlrt

re-

quires that Generalize

hlrt

be modi�ed so that it terminates and returns false if no

such consistent wrapper can be found. Implementing this change is very simple: we

need only insert the three lines marked \y" in Figure 6.3. These lines ensure that

the loops at lines 6.3(a), 6.3(d) and 6.3(g) terminated successfully. If any of these

loops terminate without �nding a legitimate value for the hlrt component, then

Generalize

hlrt

simply stops immediately and returns false. Note that this modi�-

cation to Generalize

hlrt

has no bearing on the analysis and discussion of its behavior

that we have presented.

1

Recall that in Chapter 4, we actually de�ned two di�erent hlrt generalization functions: the

slower Generalize

hlrt

algorithm (Figure 4.4), and the faster Generalize

�

hlrt

algorithm (Figure 4.6).

Then, since Generalize

�

hlrt

dominates Generalize

hlrt

, we dropped the \�" annotation and used

the symbol Generalize

hlrt

to refer only to faster algorithm. The modi�cations to Generalize

hlrt

proposed in this section apply in principle to either algorithm. However, we provide details only for

the faster algorithm, since there is no point in worrying about the slower algorithm.

131

Generalize

�

hlrt

(examples E = fhP

1

; L

1

i; : : : ; hP

N

; L

N

ig)

for each 1 � k � K 6.3(a)

for r

k

 each pre�x of some P

n

's intra-tuple separator for S

m;k

6.3(b)

accept r

k

if C1 holds of r

k

and every hP

n

; L

n

i 2 E 6.3(c)

return false if no candidate satis�es C1 y

for each 1 < k � K 6.3(d)

for `

k

 each su�x of some P

n

's intra-tuple separator S

m;k�1

6.3(e)

accept `

k

if C2 holds of `

k

and every hP

n

; L

n

i 2 E 6.3(f)

return false if no candidate satis�es C2 y

for `

1

 each su�x of some P

n

's head S

0;K

6.3(g)

for h each substring of some P

n

's head S

0;K

6.3(h)

for t each substring of some P

n

's tail S

M;K

6.3(i)

accept `

1

, h, and t if C3 holds of `

1

, h, t and every hP

n

; L

n

i 2 E 6.3(j)

return false if no triplet of candidates satis�es C3 y

return hh; t; `

1

; r

1

; : : : ; `

K

; r

K

i 6.3(k)

Figure 6.3: A slightly modi�ed version of the Generalize

hlrt

algorithm; compare with

Figure 4.6.

Second, we must modify Generalize

hlrt

so that it correctly processes labels con-

taining \?" symbols. The discussion earlier gave the basic idea: rather than assum-

ing that each label provides exactly one value for each attribute within each tuple,

Generalize

hlrt

must reason only about those parts of the page about which the labels

provides information.

Consider an example noisily-labeled page

<HTML><TITLE>Some Country Codes</TITLE><BODY>

Some Country Codes<P>

Congo <I> 242 </I>

 Egypt <I> 20 </I>

Belize <I> 501 </I>

 Spain <I> 34 </I>

<HR>End</BODY></HTML>

This page's label contains two \?" symbols, one for each missing country. Now

recall lines 4.6(a{c) of the Generalize

hlrt

algorithm (Figure 4.4). At this stage the

algorithm is �nding a value for each r

k

, for 1 � k � K. To do so the algorithm:

132

1. gathers a suitable set of candidates for r

k

(namely, the pre�xes of page P

1

's

intra-tuple separator for S

1;k

); and then

2. tests each such candidate to see whether is satis�es predicate C1.

To extend Generalize

hlrt

so that it can handle partial labels, these two steps are

modi�ed as follows:

1. The candidate set for r

k

contains the pre�xes of some page P

n

's intra-tuple sep-

arator for S

m;k

. If (as is the case in the example above) page P

1

's label is missing

the �rst attribute of the �rst tuple, then algorithm simply uses any other page P

n

instead of always using P

1

, or any other tuplem instead of always the �rst tuple.

Note that these choices do not matter|any such S

m;k

provides a satisfactory

set of candidates for r

k

. In the example, if we are trying to learn r

1

(i.e., k = 1)

then we can use as the candidates for r

1

all pre�xes of the page's S

2;1

value

 <I>, because S

1;1

is unde�ned (since hb

1;1

; e

1;1

i is missing from the page's

label).

2. Recall predicate C1 from Figure 4.3:

C1(r

k

; hP; Li) () 8

1�m�M

�

S

m;k

=r

k

= S

m;k

^ F

m;k

=r

k

= }

�

:

Rather than checking all 1 � m � M , we must check only those m such that

instance hb

m;k

; e

m;k

i is present in the label. In the example, when learning r

1

,

the modi�ed version of Generalize

hlrt

tests only m = 2 and m = 4; m = 1 and

m = 3 are ignored because instances hb

1;1

; e

1;1

i and hb

3;1

; e

3;1

i are missing in the

page's label.

This second modi�cation to Generalize

hlrt

can be summarized as follows. As

we've seen, Generalize

hlrt

assumes that labels contained no \?" symbols, and thus

the algorithm was described in very simple terms. But we have shown how, for

the learning of r

k

, it is very simple to generalize the speci�cation of the algorithm

so that \?" symbols are handled properly. A similar set of changes are made for

Generalize

hlrt

's other steps.

Summary. In Chapter 4 and this section, we have described several di�erent ver-

sions of the hlrt generalization algorithm. As Footnote 1 suggests, these di�erent

133

versions can be somewhat confusing. Therefore, we summarize this discussion by

listing the four algorithms:

Generalize

hlrt

(Figure 4.4)|the original hlrt generalization function. While con-

ceptually elegant, this algorithm is extremely ine�cient.

Generalize

�

hlrt

(Figure 4.6)|a re-implementation of Generalize

hlrt

that is sub-

stantially more e�cient. Since Generalize

�

hlrt

so clearly dominates

Generalize

hlrt

, we largely ignore the straw-man algorithm, and use the symbol

Generalize

hlrt

to refer to the improved version.

Generalize

noisy

hlrt

(Figure 6.2)|the hlrt generalization function that handles the

noisy labels generated by Corrob by calling (a modi�ed version of)

Generalize

hlrt

as a subroutine.

Modi�ed Generalize

hlrt

(Figure 6.3)|two small changes to the Generalize

hlrt

algorithm (Generalize

�

hlrt

to be precise) that were just described. Since these

modi�cations are so minor, we did not dignify them by introducing a new symbol.

6.5.2 Extending the PAC model

We have just described Generalize

noisy

hlrt

, which repeatedly invokes the Generalize

hlrt

algorithm described in Chapter 4, thereby enabling wrapper induction in the face of

noisy example labels. We now show how to extend the PAC, developed in Section

4.6, to handle noisy labels.

PAC analysis provides an answer to a fundamental question in inductive learning:

how many examples must a learner see before its output hypothesis is to be trusted?

As discussed earlier, there are two main problems with directly applying the PAC

model developed earlier, both of which derive from the fact that the model assumes

correct labels.

First, the fact that the noisy labels might be partial|i.e., include \?" symbols|

means that we must be careful when calculating the chance that a wrapper has low

error, since these \?" symbols e�ectively mask parts of the page from the learner's

attempt to determine a wrapper. Without special care, the PAC model will overes-

134

timate the reliability of a learned wrapper.

The second problem is that unsound recognizers might return false-positive in-

stances, which might then be incorrectly inserted into a page's label. What if, by

chance, a wrapper consistent with these incorrectly labeled pages can be found? The

result is an incorrect wrapper|for the examples (and possibly other pages as well)

the wrapper extracts the wrong information content (namely, the text indicated by

the incorrect labels). To deal with this situation, we must extend the PAC model so

that it does not overestimate the reliability of a learned wrapper by ignoring the fact

that the wrapper might have been learned on the basis of noisy labels.

Handling partial labels. The solution to the problem of partial labels is straight-

forward. We must do some additional bookkeeping to ensure that we count the actual

number of examples of each delimiter. Recall the original PAC model (Equation 4.5):

	(K)

1�

�

	(K)

!

M

tot

+ �(R)

�

1�

�

2

�

N

< �;

where the set of examples E = f: : : ; hP

n

; L

n

i; : : :g consists of N = jEj examples,

M

tot

=

P

n

M

n

is the total number of tuples in E , page P

n

contains M

n

= jL

n

j

tuples, each tuple consists of K attributes, and the shortest example page has length

R = min

n

jP

n

j), and 	(K) and �(R) are de�ned by Equations 4.6 and 4.7 on page

67.

In this original model, the parameter N indicates the number of observations

from which the head (h), tail (t) and `

1

hlrt components are learned. Similarly,

M

tot

counts the number of observations from which the remaining components (`

2

,

. . . , `

K

, r

1

, . . . , r

K

) are learned. Accommodating partial labels is a matter of re�ning

these counts to reect the partial labels' incomplete information.

We �rst walk through an example, and then provide the details. Consider the

following noisily-labeled page:

135

<HTML><TITLE>Some Country Codes</TITLE><BODY>

Some Country Codes<P>

Congo <I> 242 </I>

 Egypt <I> 20 </I>

Belize <I> 501 </I>

 Spain <I> 34 </I>

<HR>End</BODY></HTML>

What can we learn from this example? The four intact code instances provide evi-

dence for `

2

and r

2

, the left- and right-hand delimiters for the second attribute, the

country code in this example. Speci�cally, for each of these two delimiters, we have

four example strings from which to generalize.

However, note that we have less evidence about `

1

and r

1

, the left- and right-hand

delimiters for the country attribute. Since just two of the instances are present, the

example provides only two example strings from which to generalize `

1

and r

1

.

Finally, consider the head delimiter h and the tail delimiter t. Since the �nal

(in this example, second) attribute of the last tuple is not missing, this example

provides us with a complete example of a page's tail region, which provides evidence

for determining t. In contrast, since the �rst attribute of the �rst tuple is missing,

the example does not provide evidence for a page's head, and so we can learn nothing

about the value of h.

We can summarize these observation as follows. This example illustrates that it

is not correct to assume that the examples provide exactly N observations of page

heads, N observations of page tails, and M

tot

observations of each attribute.

Instead, we proceed as follows. In the new PAC analysis, we are interested in a

set

E =

�

hP

1

; L

j

1

1

i; : : : ; hP

N

; L

j

N

N

i

�

of examples, where each L

j

n

n

is a (possibly partial) label:

136

F

1

F

2

F

K

hb

1;1

; e

1;1

i hb

1;2

; e

1;2

i hb

1;K

; e

1;K

i

.

.

.

.

.

. � � �

.

.

.

hb

M

n

;1

; e

M

n

;1

i hb

M

n

;2

; e

M

n

;2

i hb

M

n

;K

; e

M

n

;K

i

(Importantly, note that, though not shown explicitly, since each L

j

n

n

might be partial,

some of the hb

m;k

; e

m;k

i might be missing, with the symbol \?" occurring instead.)

The extended PAC model is stated in terms of the following parameters of E :

M

k

n

= the number of non-missing instances of attribute k on page P

n

M

k

tot

=

X

n

M

k

n

N

�

n

=

8

>

<

>

:

0 if hb

1;1

; e

1;1

i or hb

M

n

;K

; e

M

n

;K

i is missing on page P

n

1 otherwise

N

�

=

X

n

N

�

n

These new parameters are interpreted as follows:

� M

k

n

is the number of instances of attribute F

k

on page P

n

. The K variablesM

k

n

thus generalize the role of the single variable M

n

in the original model. If label

L

j

n

n

is not partial, then all the M

k

n

's are equal: M

1

n

= � � � =M

K

n

=M

n

.

� The K values ofM

k

tot

generalize the role ofM

tot

. If none of the labels are partial,

then M

1

tot

= � � � =M

K

tot

=M

tot

.

� N

�

n

indicates whether page P

n

's head and tail can both be identi�ed. With no

partial labels, the head and tail can always be identi�ed: N

�

n

= 1.

� N

�

generalize the role of N in the original model. With no partial labels,

N

�

= N .

In the country/code example mentioned earlier, if we call the example page P

1

,

then we have M

1

= 4 while M

1

1

= 2 and M

2

1

= 4, and N

�

1

= 0. If the set of examples

consists only of page P

1

, then we have M

tot

= 4 while M

1

tot

= 2 and M

2

tot

= 4, and

N = 1 while N

�

= 0.

These new parameters are then incorporated into the PAC model as follows. First,

137

the �rst term in the left-hand side of Equation 4.5 changes as follows:

	(K)

1�

�

	(K)

!

M

tot

=) 2

0

B

@

1�

�

	(K)

!

M

1

tot

+ 2

K

X

k=2

1�

�

	(K)

!

M

k

tot

1

C

A

(recall from Equation 4.6 that 	(K) = 4K � 2).

This change implements the more sophisticated bookkeeping that is needed to

handle partial labels. Speci�cally, if we examine the proof of Theorem 4.8 (Section

B.4), we �nd that Theorem 4.8 assumed that M

1

n

= � � � = M

K

n

= M

n

for each

n; the described change generalizes the PAC model. Note that, as expected, if the

recognizers are perfect, then M

1

n

= � � � =M

K

n

=M

n

, and the change has no e�ect.

Next, the second term in the left-hand side of Equation 4.5 is changed as follows:

�(R)

�

1�

�

2

�

N

=) �(R)

�

1�

�

2

�

N

�

Again, if the recognizers are perfect, then N

�

= N , and this change has no e�ect.

Putting these two modi�cations together, we arrive at the following equation:

0

B

B

B

B

B

B

B

B

@

2

0

B

@

1�

�

	(K)

!

M

1

tot

+ 2

K

X

k=2

1�

�

	(K)

!

M

k

tot

1

C

A

+

�(R)

�

1�

�

2

�

N

�

1

C

C

C

C

C

C

C

C

A

< � (6.5)

To summarize, the new PAC model (Equation 6.5) generalizes the original model

(Equation 4.5) so that the PAC analysis correctly handles partially labeled pages.

Handling false positives. Recall that, from a PAC-theoretic perspective, the dif-

�culty with false positives is that there is no guarantee that there does not exist some

wrapper that happens to be consistent with a set of incorrectly-labeled examples.

However, suppose that we have a bound � on the chance that there exists a

wrapper consistent with a set of incorrectly labeled examples. More formally, suppose

138

that, for any set E = fhP

1

; L

j

1

1

i; : : : ; hP

N

; L

j

N

N

ig of examples, if E contains at least

one incorrectly labeled example, then

Pr

�

9

w2H

hlrt

8

hP

n

;L

j

n

n

i

w(P

n

) = L

j

n

n

�

� �: (6.6)

The bound � provides the PAC model with some measure of how \dangerous"

false positives are in a particular domain. In this Chapter, we have provided examples

meant to motivate the claim that � is relatively small in the html applications with

which this thesis is concerned. In the Section 7.7, we return to this claim, and �nd

that � is extremely close to zero; for now, we simply assume that � is provided as an

additional parameter for the PAC model.

2

Before proceeding, note that � is not the chance that a label is wrong. As we

have seen, Generalize

noisy

hlrt

assumes that a consistent wrapper can be found only for

correctly labeled pages; � is a measure of how risky this assumption is. For example,

our recognizers library � might make many mistakes, so that nearly all the labels

returned by Corrob

�

contain errors. Nevertheless, � can be close to zero, if the infor-

mation resource under consideration is su�ciently structured so that incorrect labels

are usually discovered.

Incorporating � into the model is straightforward. As discussed in Section 4.8,

the terms on the left-hand side of Equations 4.5 and 6.5 account for di�erent ways

in which the induction process might fail to generate a high-quality wrapper. We

simply must introduce � as an additional term:

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

2

0

B

@

1�

�

	(K)

!

M

1

tot

+ 2

K

X

k=2

1�

�

	(K)

!

M

k

tot

1

C

A

+

�(R)

�

1�

�

2

�

N

�

+

�

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

< � (6.7)

2

In Chapter 8, we describe how this model of noise is related to others in the PAC literature.

139

Note that if there is no chance that an incorrect label will yield a consistent wrapper,

then � = 0 and the new PAC model (Equation 6.7) reduces to the previous model

(Equation 6.5).

In summary, Equation 6.7 de�nes the generalized PAC model, which correctly

accounts for both incomplete and unsound recognizers.

6.6 Complexity analysis and the Corrob

�

algorithm

The Generalize

noisy

hlrt

algorithm described above is a relatively clean extension of the

originalGeneralize

hlrt

algorithm so that it handles pages that are incorrectly labeled.

However, a simple analysis reveals that it is computationally very expensive. In this

section we point out these computational costs, and describe a modi�ed version of

Corrob, called Corrob

�

, which overcomes these costs.

The Generalize

noisy

hlrt

takes as input a set

�

hP

1

; fL

1

1

; : : : ; L

J

1

1

gi; : : : ; hP

N

; fL

1

N

; : : : ; L

J

N

N

gi

�

of noisily labeled pages generated by the Corrob algorithm, and invokes the original

Generalize

hlrt

algorithm once for each of the

Q

n

J

n

ways to choose one of the candi-

date labels for each page, where (as indicated above) page Corrob returns J

n

possible

labels for page P

n

.

How large can each J

n

be? Examination of the Corrob algorithm (Figure 6.1)

provides the following bounds. Line 6.1(c) indicates that each of the J

n

labels for

page P

n

potentially corresponds to a di�erent ordering of the K attributes, and

there are K! such orderings. Furthermore, suppose that there are U (< K) unsound

recognizers in the library � provided to Corrob. Suppose further that each unsound

recognizer has a false-positive rate of �|i.e., on average, each unsound recognizer

outputs about �M

n

false-positives (in addition to the M

n

true-positives instances).

In this case, there are

((1+�)M

n

)!

(�M

n

)!M

n

!

ways to choose M

n

instances from the (1 + �)M

n

that were recognized by each of the U unsound recognizers. Therefore, across all

140

recognizers, the PTPSets function call at line 6.1(b) produces a set containing about

�

((1+�)M

n

)!

(�M

n

)!M

n

!

�

U

members. Multiplying these two bounds together, we have that:

J

n

� K!

((1 + �)M

n

)!

(�M

n

)!M

n

!

!

U

: (6.8)

In summary, J

n

(and hence

Q

n

J

n

) is potentially enormous. For example, if each

recognizer has a false positive rate of 10% (i.e., � = 0:1), there are 10 tuples per

page (M = 10) and 4 unsoundly-recognized attributes (U = 4), then

Q

n

J

n

= 14641

possible labels must be considered.

3

We conclude that a straightforward implementation of Corrob is impractical be-

cause its output contains so many labels. Therefore, we implemented a modi�ed

version of Corrob, which for clarity we will refer to as Corrob

�

. The two algorithms

di�er in three major ways, which can be characterized as follows:

1. The �rst modi�cation is to provide additional input to the algorithm, to make

the problem easier.

2. The second modi�cation involves using greedy heuristics, yielding outputs that

are (strictly speaking) incorrect, though (as our experiments demonstrate) useful

anyway.

3. The third modi�cation involves using domain-speci�c heuristics.

6.6.1 Additional input: Attribute ordering

Recall that Corrob determines which attribute orderings \�" are consistent with

the recognized instances, and returns labels corresponding to each such consistent

ordering.

Our �rst simpli�cation is to provide Corrob

�

with the correct attribute ordering

\�" as an additional input. As the complexity analysis above indicates, enumerating

all K! possible orderings is expensive; see Corrob's line 6.1(c). Therefore, we decided

to eliminate this (admittedly interesting) aspect of Corrob's functionality. In terms

3

Note that the parameter � is introduced only to simplify this complexity analysis; � plays no role

in the Corrob algorithm.

141

of the analysis above, this simpli�cation removes the K! term from the estimate of

each J

n

value.

6.6.2 Greedy heuristic: Strongly-ambiguous instances

Corrob's enumeration of all attribute orderings is one reason it performs poorly. The

second source of di�culty is that the algorithm's PTPSets subroutine enumerates all

possible subsets of the instances recognized by unsound recognizers; see Corrob's line

6.1(b).

However, we can improve this aspect of Corrob by categorizing the unsoundly-

recognized instances into three groups: those that are unambiguous, those that are

weakly ambiguous, and those that are strongly ambiguous. For example, consider a

library of three recognizers which respond as follows:

R

ctry

perfect

h15; 20i

h35; 40i

h55; 60i

R

code

unsound

h22; 27i U

h42; 47i W

h41; 46i W

h62; 67i S

h65; 70i S

R

cap

unsound

h29; 34i U

h49; 54i U

h69; 74i S

h72; 78i S

We have annotated the unsoundly-recognized instances (i.e., the code and cap in-

stances) as follows: \U" indicates that the instance is unambiguous; \W", weakly

ambiguous; and \S", strongly ambiguous.

142

To understand these annotations, consider the output of Corrob:

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ctry code cap

h15; 20i h22; 27i h29; 34i

h35; 40i h42; 47i h49; 54i

h55; 60i h62; 67i h69; 74i

;

ctry code cap

h15; 20i h22; 27i h29; 34i

h35; 40i h41; 46i h49; 54i

h55; 60i h62; 67i h69; 74i

;

ctry code cap

h15; 20i h22; 27i h29; 34i

h35; 40i h42; 47i h49; 54i

h55; 60i h62; 67i h72; 78i

;

ctry code cap

h15; 20i h22; 27i h29; 34i

h35; 40i h41; 46i h49; 54i

h55; 60i h62; 67i h72; 78i

;

ctry code cap

h15; 20i h22; 27i h29; 34i

h35; 40i h42; 47i h49; 54i

h55; 60i h65; 70i h72; 78i

;

ctry code cap

h15; 20i h22; 27i h29; 34i

h35; 40i h41; 46i h49; 54i

h55; 60i h65; 70i h72; 78i

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

: (6.9)

We begin by observing that these six labels are in fact the output of Corrob, because

they are the only labels that satisfy Consistent? among the

5!

3!2!

!

| {z }

jR

code

(P)j=5

�

4!

3!1!

!

| {z }

jR

cap

(P)j=4

= 40

possibilities considered (i.e., among the ways to choose M = 3 instances each from

the sets R

code

(P) and R

cap

(P)). (We omit the details.)

These annotations can be understood as follows:

� Note that the code instance h22; 27i occurs in every label in Equation 6.9.

Instance h22; 27i is unambiguous because, though it was recognized by an un-

sound recognizer, h22; 27i is necessarily a true-positive, by virtue of the other

instances. Similarly, the cap instances h29; 34i and h49; 54i are also unambigu-

ous.

In summary, an unsoundly-recognized instance is unambiguous if and only if it

occurs in every label output by Corrob.

143

� Now consider the code instance h65; 70i. It occurs in some but not all of the

labels in Equation 6.9, so h65; 70i is not unambiguous. But if we look more

carefully, we discover a relationship between the code attribute h65; 70i and

instances of the cap attribute: h65; 70i occurs in a given label only when the

cap instance h72; 78i occurs in the same label. We say that h65; 70i is strongly

ambiguous, because whether it is included in a label depends on the instances

are selected for other attributes. The word \strongly" is meant to stress that

resolving the ambiguity requires examining a (potentially large) portion of the

label.

Of course, since h65; 70;codei

4

depends on h72; 78;capi, then h72; 78;capi

depends on h65; 70;codei, and so cap's instance h72; 78i is strongly ambiguous

as well.

Moreover, note that h65; 70;codei \competes with" instance h62; 67;codei, in

that both \belong to" the same cell of the label. In the true label there is ex-

actly one instance per cell, and thus these two instances are mutually exclusive.

And since h65; 70;codei is strongly ambiguous, we say that h62; 67;codei is

strongly ambiguous too. By similar reasoning we have that h69; 74;capi is

strongly ambiguous, because it is mutually exclusive with the strongly ambigu-

ous instance h72; 78;capi.

More precisely, an instance is strongly ambiguous if it interacts with another

unsoundly-recognized attribute in the sense just discussed, or if it mutually

excludes a strongly ambiguous instance.

Finally, note that the fact that strong ambiguity propagates from one instance to

another means that strong ambiguity induces a partition on a label's strongly

ambiguous instances: two strongly ambiguous instances belong to the same

4

Recall that to emphasize the attribute to which an instance belongs, we use the notation hb; e; F

k

i

to indicate that hb; ei is an instance of attribute F

k

.

144

partition element i� they are connected by a chain of strongly ambiguous rela-

tionships. We call each such partition element a cluster of strongly ambiguous

instances. In the example, the clustering is trivial, with all of the strongly

ambiguous instances belonging to the single cluster

fh65; 70;codei; h62; 67;codei; h69; 74;capi; h72; 78;capig :

In general, each cluster contains one or more instances from each of several

attributes.

� Finally, note that h42; 47;codei and h41; 46;codei are neither unambiguous

nor strongly ambiguous. These two instances are mutually exclusive, but the

choice of including one or the other in a particular label can be made in-

dependently from choices for the other attributes. Therefore, we say that

h42; 47;codei and h41; 46;codei are weakly ambiguous.

To summarize, an instance is weakly ambiguous if it is neither unambiguous

nor strongly ambiguous.

We are now �nally in a position to describe Corrob

�

's greedy heuristic. Whereas

Corrob includes all unsoundly-recognized instances, Corrob

�

outputs all unambiguous

and weakly ambiguous instances, but only some of the strongly ambiguous instances.

Speci�cally, for each cluster of strongly ambiguous instances, Corrob

�

arbitrarily

selects one attribute from the cluster's instances, and then discards all instances in

the cluster except those of the selected attribute. Note that by discarding all but

one attribute's instances, that attribute's instances are rendered weakly (rather than

strongly) ambiguous.

In the example, Corrob

�

would create a set of labels based on the following in-

stances:

145

necessarily true-positives: h15; 20;ctryi, h35; 40;ctryi, h55; 60;ctryi

unambiguous instances: h22; 27;codei, h29; 34;capi, h49; 54;capi

weakly ambiguous instances: h42; 47;codei, h41; 46;codei

strongly ambiguous instances: either h62; 67;codei, h65; 70;codei y

or h69; 74;capi, h72; 78;capi

The �rst three items listed have already been discussed; the fourth item illustrates

Corrob

�

's greediness. In the �rst case (marked \y"), the instances h69; 74;capi and

h72; 78;capi are simply discarded from further consideration. In the second case

h62; 67;codei, h65; 70;codei are discarded. Let us emphasize that Corrob

�

's choice

of which attribute's instances to select is made arbitrarily (on no principled basis),

and greedily (once the choice is made it is never reconsidered).

Suppose Corrob

�

chooses the �rst set of strongly ambiguous instances, marked \y"

above. In this case, Corrob

�

produces the following four labels as output:

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ctry code cap

h15; 20i h22; 27i h29; 34i

h35; 40i h42; 47i h49; 54i

h55; 60i h62; 67i ?

;

ctry code cap

h15; 20i h22; 27i h29; 34i

h35; 40i h41; 46i h49; 54i

h55; 60i h62; 67i ?

;

ctry code cap

h15; 20i h22; 27i h29; 34i

h35; 40i h42; 47i h49; 54i

h55; 60i h65; 70i ?

;

ctry code cap

h15; 20i h22; 27i h29; 34i

h35; 40i h41; 46i h49; 54i

h55; 60i h65; 70i ?

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

: (6.10)

Note that since the instances that were to have occupied the bottom-left cell have

been discarded, Corrob

�

must �ll this cell with \?" in each label. This \?" symbol

demonstrates that Corrob

�

's greedy discarding of strongly ambiguous instances means

that it loses information about a page's true label.

However, this loss is repaid with a substantial computational gain. Speci�cally,

note that we can compactly represent the entire set in Equation 6.10 by the following

structure:

ctry code cap

h15; 20i h22; 27i h29; 34i

h35; 40i h41; 46i � h42; 47i h49; 54i

h55; 60i h62; 67i � h65; 70i ?

(6.11)

146

The exclusive-or \�" symbols indicate that exactly one instance in these cells can

occur in any given label. This structure is a compact representation of Equation 6.10

because there are four ways to choose one of the two elements in each of the two \�"

cells; each combination corresponds to a member of the set in Equation 6.10.

Note that Corrob

�

can always represent its set of output labels using such a com-

pact representation. This property holds because, with no strongly ambiguous in-

stances, decisions about how to resolve any remaining ambiguity (i.e., how to choose

one instance from each weakly ambiguous set) can always be made regardless of how

decisions are made in unrelated parts of the label.

We can summarize this second simpli�cation in the faster implementation Corrob

�

of the slow Corrob algorithm as follows. First, we showed how to categorize unsoundly-

recognized instances as either unambiguous, weakly ambiguous, or strongly ambigu-

ous. We then suggested a simple technique|discarding all but one attribute's in-

stances from each cluster of strongly ambiguous instances|which always permits a

compact representation of the entire set of Corrob

�

's output labels. In essence, Corrob

�

treats unsound recognizers as if they were incomplete whenever the instances they

output are strongly ambiguous, by \pretending" it never observed the instances in

the �rst place.

Of course this modi�cation to Corrob means that Corrob

�

is not formally correct

(according to the initial de�nition of the labeling problem). Speci�cally, Corrob

�

's

output might contain \?" symbols in cells that ought to be occupied. However, just as

Generalize

noisy

hlrt

can learn in the face of incomplete recognizers, so too can it learn when

some of the strongly ambiguous instances have been discarded. While not formally

correct, Corrob

�

's output is \good enough" that it can be used by Generalize

noisy

hlrt

anyway.

To review, the �rst simpli�cation to Corrob is to provide the ordering \�" in

addition to the page P and the recognizer library �. This second modi�cation means

that the output of the function call Corrob

�

(P;�; \�") is a compact label structure,

147

such as in Equation 6.11. As before, Generalize

noisy

hlrt

now must iterate over all the

ways to resolve the remaining ambiguities|i.e., all ways to choose one instance from

each \�" group. The advantage of the compact representation now becomes clear:

we can save time by enumerating labels only as they are needed by Generalize

noisy

hlrt

.

However, in which order should Generalize

noisy

hlrt

examine these labels (see line 6.2(a)

of the algorithm)? The third modi�cation to Corrob addresses this question.

6.6.3 Domain-speci�c heuristic: Proximity ordering

In the example developed in this section, Generalize

noisy

hlrt

's line 6.2(a) eventually might

examine all four labels to which the compact representation in Equation 6.11 is equiv-

alent. Ideally, we want the true label to be examined �rst, so that Generalize

noisy

hlrt

can ignore the rest. How should Generalize

noisy

hlrt

select among the 4! possible orders

in which to examine these four labels?

To answer this question, Corrob

�

employs a simple heuristic, which we call prox-

imity ordering . Consider the second row of the compact representation listed in

Equation 6.11. We need to choose one instance from h41; 46i � h42; 47i. Note that

instance h41; 46i is closer to the interval h35; 40i than h42; 47i|i.e., 40 < 41 < 42.

Proximity ordering simply involves trying h41; 46i before h42; 47i on the basis of this

distance relationship.

5

Similarly, in the choice of one instance from h62; 67i�h65; 70i, proximity ordering

tries h62; 67i before h65; 70i, because 60 < 62 < 65.

Of course, when Generalize

noisy

hlrt

queries this compact representation for a label,

the result must involve a selection of one instance from each of the \�" groups.

Proximity ordering in this more general sense states that the labels are to be visited

in order of decreasing total proximity.

For example, when applied to the representation in Equation 6.11, the proximity

5

To be more accurate, we should refer to this heuristic as left-proximity ordering , because it ignores

proximity to instances on the right.

148

ordering heuristic suggests visiting in the following order the four labels listed in

Equation 6.10:

1:

ctry code cap

h15; 20i h22; 27i h29; 34i

h35; 40i h41; 46i h49; 54i

h55; 60i h62; 67i ?

2:

ctry code cap

h15; 20i h22; 27i h29; 34i

h35; 40i h41; 46i h49; 54i

h55; 60i h65; 70i ?

3:

ctry code cap

h15; 20i h22; 27i h29; 34i

h35; 40i h42; 47i h49; 54i

h55; 60i h62; 67i ?

4:

ctry code cap

h15; 20i h22; 27i h29; 34i

h35; 40i h42; 47i h49; 54i

h55; 60i h65; 70i ?

(Note that proximity is a relative rather than metric: the proximity ordering heuristic

is indi�erent to the order between the second and third labels.)

Proximity ordering is clearly a domain-speci�c heuristic. As such, it might behave

well (i.e., force early consideration of a label matching the true label) for some labeling

problems, and poorly for others. In Chapter 7, we demonstrate that this heuristic

works surprisingly well for several actual Internet information resources.

6.6.4 Performance of Corrob

�

At this point, the natural questions to ask are: what is the performance of the Corrob

�

algorithm, and how large is the improvement over Corrob?

Analytical answers (e.g., asymptotic complexity bound) to these questions would

be very interesting. Unfortunately, such bounds are di�cult to derive. The problem

is that the number of labels consistent with any given example (the main parameter

governing the algorithm's running time) depends on the speci�c mistakes made by

the recognizer library.

Therefore, we have taken an empirical approach to verifying whether Corrob

�

runs quickly. Section 7.3 reports that, for several actual Internet resources, Corrob

�

represents a small fraction of the overall running time of our wrapper construction

system.

149

6.7 Recognizers

This chapter has made extensive use of the notion of recognizers. We have assumed

that a library of possibly-noisy recognizers is provided as input, discussed techniques

for corrobating the evidence provided by such recognizers, and shown how to extend

the algorithms and analysis from Chapter 4 to robustly learn hlrt wrappers in the

face of the incorrectly labeled pages.

However, we have not actually discussed recognizers per se. The reason is simply

that this thesis is concerned with wrapper induction, rather than with the details

of any particular class of recognizer. Nevertheless, in this section we address several

important issues related to recognizers.

Multiple recognizers. First, recall that the recognizer library is assumed to con-

tain exactly one recognizer per attribute. In fact this is an unimportant restriction.

The algorithms, analysis, and technqiues discussed in this chapter can all be extended

to handle multiple recognizers per attribute. Importantly, this holds even when the

recognizers make di�erent kinds of mistakes. For example, the Corrob algorithm can

easily be extended so that two country recognizers can be provided, one unsound and

the other incomplete.

Perfect recognizers? Assumption 6.1's requirement that the recognizer library

contains at least one perfect recognizer might seem too strong. However, we believe

there are two reasons to be optimistic.

First, many of the attributes which we want to be able to extract can be recognized

perfectly. For example, regular expressions can be used to perfectly match attributes

such as electronic mail addresses, URLs, ISBN numbers, Internet IP addresses, credit

card numbers, and US telephone numbers, ZIP codes and states. It is certainly true

that an adversary can usually defeat such a simple mechanism. However, note that

a recognizer claiming to be \perfect" need only behave perfectly with respect to the

150

information resources to which it is applied, and such resources are unlikely to engage

in a conspiracy with the recognizer's adversary.

Second, though this thesis has largely concentrated on automatic wrapper con-

struction, the techniques developed are compatible with a related (though more mod-

est) goal: semi-automatic wrapper construction. Therefore, if a perfect recognizer is

needed for a particular attribute, then there is always the possibility of asking a

person, who (presumably) always give the correct answer.

Unreliable recognizers? Assumption 6.1 also prohibits unreliable recognizers.

Corrob requires this stipulation for two reasons. First, specifying the operation of Cor-

rob for unrealiable recognizers is possible but somewhat more complicated. Therefore,

in the interest of simplicity, we ignored unrealiable recognizers.

However, unreliable recognizers also introduce a tremendous complexity blowup

into the corroboration process. The basic problem is that every instance returned by

an unsound recognizer is suspect. (In contrast, none of an incomplete recognizer's

instances, and all but M

n

of an unsound recognizer's instances, are suspect.) In

concrete terms, this means that with unsound recognizers the PTPSets subroutine

in Figure 6.1 returns vastly more sets of possibly true-positive instances, compared

to libraries without unsound recognizers. To use the notation introduced earlier, the

problem with unreliable recognizers is that they greatly increase J

n

(the number of

labels Corrob

�

outputs for page P

n

; see Equation 6.8).

Of course, we have seen that even without unreliable recognizers, the Corrob al-

gorithm has a high computational complexity. However, the techniques mentioned

in Section 6.6 to alleviate these problems rely on the assumption of no unreliable

recognizers. We leave as open the issues related to e�cient corroboration algorithms

that do not require Assumption 6.1.

151

One-sided error? Since we essentially disallow unreliable recognizers, our recog-

nizer noise model requires that recognizers make one-sided error|i.e., either false

positives, or false negatives, but not both. How realistic is this restriction? Let us

mention several reasons for being optimistic.

First of all, many techniques for implementing recognizers (see below for more de-

tails) naturally give rise to one-sided errors. For example, if one needs a recognizer for

company names, then an index of companies (from the Fortune 500 list, for example)

can be used to implement an incomplete company-name recognizer. On the other

hand, consider a regular-expression{based US ZIP+4 recognizer that searches for the

pattern [0-9][0-9][0-9][0-9][0-9]-[0-9][0-9][0-9][0-9]. This recognizer is

most likely unsound, since it might recognize non-ZIP+4 instances (e.g., fragments

of credit-card numbers). On the other hand, this recognizer will never incorrectly

miss a ZIP+4 code.

Second, we note that in some cases, it might be feasible to decompose a recognizer

that gives two-sided errors|i.e., an unreliable recognizer|into two recognizers, each

having one-sided error: one that is incomplete, and another that is unsound. If

this decomposition is possible, then we will have e�ectively included an unreliable

recognizer into the library without su�ering the expected computational cost.

O�-the-shelf recognition technology. Finally, let us briey describe several ex-

isting technologies that might be useful for implementing recognizers.

First, simple regular-expression mechanisms can be surpisingly powerful for im-

plementing recognizers, even for relatively structured and complicated attributes. For

example, using lists of abbreviations obtained from the US Postal Service and related

knowledge, we have designed a regular expression that does a very good job of recog-

nizing US street addresses; the patten is about 15,000 characters long. While regular

expressions are certainly simple, they should not be understated.

Second, there is a large body of research in the natural-language processing com-

152

munity concerned with identifying classes of entities in free text. For example, the

\Named Entity" task at the MUC-6 conference [ARPA 95] involves locating peo-

ple's names, company names, dates, times, locations, and so forth. This research

has matured to the point that high-quality commercial people-name recognizers

are now available|examples include the Carnegie Group's \NameFinder" system

[www.cgi.com], and \SSA-NAME" [www.searchsoftware.com].

Third, many di�erent entities|government agencies, companies, etc.|are in-

volved with compiling specialized databases, indices, encylopedias, dictionaries, cata-

logs, surveys and so forth; examples include \Books in Print" and \www.imdb.com".

Consider the following simple example: a telephone directory is essentially a list of

people and businesses, and their addresses and telephone numbers; an incomplete

address recognizer or name recognizer can be readily built by consulting such a list.

Of course, extracting the content from such resources for the purpose of build-

ing recognizers leads to a \meta wrapper induction" problem. This idea leads to a

fourth strategy for building recognizers. Once a single information resource has been

successfully \wrapped", the resource can be \mined" [Etzioni 96b] for additional in-

formation that can subsequently be used to build recognizers for other resources. For

example, once one telephone directory has been wrapped (with assistance from a per-

son, perhaps) then the resource can be queried when learning a wrapper for a second

telephone directory. This \bootstrapping" approach might prove useful as more and

more sites providing information related to any particular topic come online.

6.8 Summary

In this chapter we introduced corroboration, a technique for labeling the example

pages need by the Induce generic inductive learning algorithm. The main results of

this chapter are a precise statement of the labeling problem, an algorithm Corrob for

solving an interesting special case of this problem.

Chapter 7

EMPIRICAL EVALUATION

7.1 Introduction

In this thesis we have proposed a collection of related techniques|wrapper induction

for several wrapper classes, PAC analysis, and corroboration|designed to address

the problem of automatically constructing wrappers for semi-structured information

resources. How well do our techniques work? Our approach to evaluation is thor-

oughly empirical. In this chapter we describe several experiments that measure our

system's performance on actual Internet resources

7.2 Are the six wrapper classes useful?

In Chapters 4 and 5, we identi�ed six wrapper classes: lr, hlrt, oclr, hoclrt,

n-lr and n-hlrt. Learnability aside, an important issue is whether these classes are

useful for handling the actual information resources we would like our software agents

to use. That is, before addressing how to learn wrappers, we must ask whether we

should bother to do so. Our approach to answering this question was to conduct a

survey. In a nutshell, we examined a large collection of resources, and found that the

majority (70% in total) of the resources can be covered by our six wrapper classes.

To maintain objectivity, we selected the resources from an independently col-

lected index. The Internet site \www.search.com" maintains an index of 448 Inter-

net resources. A wide variety of topics are included: from the Abele Owners' Net-

work [www.owner.com] (\over 30,000 properties nationwide; the national resource for

homes sold by owner") to Zipper [www.voxpop.org/zipper] (\�nd the name of your

154

representative or senator, along with the address, phone number, email, and Web

page").

1

While the Internet obviously contains more than 448 sites, we expect that

this index is representative of sites that software agents might use.

To perform the survey, we �rst randomly selected 30 resources (i.e.,

30

448

= 6:7%)

from www.search.com's index; Figure 7.1 lists the surveyed sites. The �gure also

shows the number of attributes (K) extracted from each; K ranges from two to

eighteen.

Next, for each of the thirty sites, we gathered the responses to ten sample queries.

The queries were chosen by hand. We choose queries that were appropriate to the

resource in question. For example, for the �rst site in Figure 7.1 (a computer hardware

vendor), the sample queries were \pentium pro", \newton", \hard disk", \cache

memory", \macintosh", \server", \mainframe", \zip", \backup" and \monitor". Our

intent was to solicit normal responses, rather than unusual responses (e.g., error

responses, pages containing no data, etc.).

2

To complete the survey, we determined how to �ll in the thirty-by-six matrix,

indicating for each resource whether it can be handled by each of the wrapper classes.

To �ll in this matrix, we labeled the examples by hand, and then used the Generalize

W

algorithm to try to learn a wrapper in class W that is consistent with the resource's

ten examples. Note that (as discussed in Section 6.5.1 for the hlrt class) it is trivial

to modify Generalize

W

so that it detects if no consistent wrapper exists in class W.

Our results are listed in Figure 7.2; \

p

" indicates that the given resource can be

wrapped by the given wrapper class, while \�" indicates that there does not exist a

wrapper in the class consistent with the collected examples.

Figure 7.3 shows a table summarizing Figure 7.2. Each line in the table indicates

1

The site www.search.com is constantly updating its index. Our survey was conducted in July

1997; naturally, some of the sites might have disappeared or changed signi�cantly since then.

2

While learning to handle such exceptional situations is important, our work does not address this

problem; see [Doorenbos et al. 97] for some interesting progress in this area.

1
5
5

resource URL K

1 Computer ESP http://www.computeresp.com 4

2 CNN/Time AllPolitics Search http://allpolitics.com/ 4

3 Film.com Search http://www.film.com/admin/search.htm 6

4 Yahoo People Search: Telephone/Address http://www.yahoo.com/search/people/ 4

5 Cinemachine: The Movie Review Search Engine http://www.cinemachine.com/ 2

6 PharmWeb's World Wide List of Pharmacy Schools http://www.pharmweb.net/ 13

7 TravelData's Bed and Breakfast Search http://www.ultranet.com/biz/inns/search-form.html 4

8 NEWS.COM http://www.news.com/ 3

9 Internet Travel Network http://www.itn.net/ 13

10 Time World Wide http://pathfinder.com/time/ 4

11 Internet Address Finder http://www.iaf.net/ 6

12 Expedia World Guide http://www.expedia.com/pub/genfts.dll 2

13 thrive@path�nder http://pathfinder.com/thrive/index.html 4

14 Monster Job Newsgroups http://www.monster.com/ 3

15 NewJour: Electronic Journals & Newsletters http://gort.ucsd.edu/newjour/ 2

16 Zipper http://www.voxpop.org/zipper/ 11

17 Coolware Classi�eds Electronic Job Guide http://www.jobsjobsjobs.com 2

18 Ultimate Band List http://ubl.com 2

19 Shops.Net http://shops.net/ 5

20 Democratic Party Online http://www.democrats.org/ 6

21 Complete Works of William Shakespeare http://the-tech.mit.edu/Shakespeare/works.html 5

22 Bible (Revised Standard Version) http://etext.virginia.edu/rsv.browse.html 3

23 Virtual Garden http://pathfinder.com/vg/ 3

24 Foreign Languages for Travelers Site Search http://www.travlang.com/ 4

25 U.S. Tax Code On-Line http://www.fourmilab.ch/ustax/ustax.html 2

26 CD Club Web Server http://www.cd-clubs.com/ 5

27 Expedia Currency Converter http://www.expedia.com/pub/curcnvt.ddll 6

28 Cyberider Cycling WWW Site http://blueridge.infomkt.ibm.com/bikes/ 3

29 Security APL Quote Server http://qs.secapl.com/ 18

30 Congressional Quarterly's On The Job http://voter96.cqalert.com/cq_job.htm 8

Figure 7.1: The information resources that we surveyed to measure wrapper class coverage.

1
5
6

resource

lr hlrt oclr hoclrt n-lr n-hlrt

region in

Fig. 5.1

region in

Fig. 5.3

1

p p p p

� � (E) (S)

2 � � � � � � (A) (J)

3

p p p p

� � (E) (S)

4

p p p p p p

(E) (T)

5

p p p p

�

p

(E) (N)

6 � � � � � � (A) (J)

7 � � � � �

p

(A) (P)

8

p p p p

�

p

(E) (N)

9 � � � � � � (A) (J)

10

p p p p

� � (E) (M)

11 � � � � � � (A) (J)

12 �

p

�

p

�

p

(C) (O)

13

p p p p

� � (E) (M)

14 �

p

�

p

�

p

(C) (O)

15

p p p p

�

p

(E) (N)

16 � � � � � � (A) (J)

17 � � � � �

p

(A) (P)

18 � � � � �

p

(A) (P)

19

p p p p p p

(E) (T)

20

p p p p p p

(E) (T)

21 � � � � � � (A) (J)

22

p p p p

�

p

(E) (N)

23

p p p p

�

p

(E) (N)

24 � � � � � � (A) (J)

25

p p p p

�

p

(E) (N)

26 � � � � � � (A) (J)

27

p p p p

�

p

(E) (N)

28

p

�

p

�

p

� (G) (R)

29 � � � � � � (A) (J)

30

p p p p

� � (E) (M)

total 16 17 16 17 4 15

Figure 7.2: The results of our coverage survey.

157

wrapper class(es) coverage (%)

lr [hlrt [oclr [hoclrt [n-lr [n-hlrt 70

lr [hlrt [oclr [hoclrt 60

lr [oclr 53

lr 53

oclr 53

hlrt [hoclrt 57

hlrt 57

hoclrt 57

n-lr [n-hlrt 53

n-lr 13

n-hlrt 50

n-lr [n-hlrt when not lr [hlrt [oclr [hoclrt 25

Figure 7.3: A summary of Figure 7.2.

the coverage of one or more wrapper classes. For example, the �rst line indicates that

21

30

= 70% of the surveyed sites can be handled by one or more of the six wrapper

classes.

Figure 7.3 reports the coverage for several groups of wrapper classes. The groups

are organized hierarchically: �rst we distinguish between wrappers for tabular and

nested resources; we then partition the tabular wrapper classes according to the

relative expressiveness results described by Theorem 5.1 (Section 5.2.3). We conclude

that, with the exception of n-lr, the wrapper classes we have identi�ed are indeed

useful for handling actual Internet resources.

Notice that the worst performing wrapper classes are n-lr and n-hlrt. Recall

that we introduced the n-lr and n-hlrt wrapper classes in order to handle the

158

resources whose content exhibited a nested rather than tabular structure. The last

line of the table above measures how successful we were: we �nd that n-lr and

n-hlrt cover 25% of the resources that the other four classes can not handle. We

conclude that, despite their relatively poor showing overall, n-lr and n-hlrt do

indeed provide expressiveness not available with the other four classes.

Finally, recall from Chapter 5 the discussion of relative expressiveness, the extent

to which wrappers in one class can mimic those in another. We described the ways

that the six classes are related: Figure 5.1 and Theorem 5.1 for lr, hlrt, oclr and

hoclrt; and Figure 5.3 and Theorem 5.10 for lr, hlrt, n-lr and n-hlrt.

Figure 7.2 indicates the regions in Figures 5.1 and 5.3 to which each of the sur-

veyed resources belongs. For the tabular classes (for lr, hlrt, oclr and hoclrt),

the surveyed sites are located in several of the regions in Figure 5.1, though the

surveyed sites do not show the expressiveness di�erences between lr and oclr, or

between hlrt and hoclrt. For the nested classes (n-lr and n-hlrt), the surveyed

sites are distributed in most of the regions in Figure 5.1. We conclude that our theo-

retical results concerning relative expressiveness reect reasonably well the di�erences

observed among actual Internet resources.

7.3 Can hlrt be learned quickly?

In the previous section, we saw that it would be useful to learn wrappers in the six

classes described in this thesis, because these six classes can in fact wrap numerous

actual Internet resources. We now go on to ask: how well does our automatic learning

system work? To answer this question, we measured the performance of our system

when learning the hlrt wrapper class.

We tested our hlrt learning algorithm on 21 actual Internet resources. Seventeen

of the surveyed resources listed in Figure 7.1 were chosen; namely, those resources

that can be handled by hlrt (i.e., whose second column is marked `

p

' in Figure

159

7.2): sites 1, 3, 4, 5, 8, 10, 12, 13, 14, 15, 19, 20, 22, 23, 25, 27 and 30.

Four additional resources were examined:

okra [okra.ucr.edu], an email address locator service.

3

The query is a person's name;

K = 4 attributes are extracted: name, email address, database entry date, and

con�dence score. Responses to 252 queries were collected; the queries were ran-

domly selected from a collection of people's last names gathered from newsgroup

posts (e.g., \Bruss", \Melese", \Bhavanasi", \Kuloe", \Izabel", \Beaume",

\Liberopoulos").

bigbook [www.bigbook.com], a yellow pages telephone directory. The query is a

yellow pages category; K = 6 attributes are extracted: company name, street

address, city, state, area code, and local phone number. Responses to 235 queries

were collected; the queries were standard yellow pages categories (e.g., \Automo-

tive", \Business Services", \Communications", \Computers", \Entertainment

and Hobbies", \Fashion and Personal Care").

corel [corel.digitalriver.com], a searchable stock photography archive. They query

is a series of keywords; K = 3 attributes are extracted: image URL, image name,

and image category. Responses to 200 queries were collected; the queries were

hand-selected from an English dictionary (e.g.\artichoke", \africa", \basket",

\industry", \instruments", \israel", \japan", \juice").

altavista [www.altavista.digital.com], a search engine. The query is a series of key-

words; K = 3 attributes are extracted: URL, document title, and document

summary. Responses to 300 queries were collected; the queries were randomly

selected from an English dictionary (e.g., \usurer", \farm", \budgetary", \won-

derland", \peanut").

The okra resource was used to test and debug our implementation, and thus it is

possible that we inadvertently tuned our system to this resource. To ensure impar-

tiality, we therefore made no changes to the system when running it with the other

resources.

We generated the labels for each example page by using a wrapper constructed

3

The okra service was discontinued after this experiment was conducted.

160

by hand. These wrappers (one per resource) were used only to label the pages; the

induction algorithm did not have access to them.

Figure 7.4 provides one measure of the performance of our system: the number of

examples required for the induction algorithm to learn a wrapper that works perfectly

on a suite of test problems. On each trial, we randomly split the collected examples

into two halves: a training set, and a test set. We ran our system by providing it

with the training set. Our methodology was to give the system just one training

example, then two, then three, and so forth, until our system learned a wrapper that

performed perfectly on the test set. Each such trial was repeated 30 times. Our

results demonstrate that, for the sites we examined, only a handful of examples are

needed to learn a high-quality wrapper.

Of course, these results assume a perfect recognizer library. Therefore, for four of

the sites (okra, bigbook, corel and altavista), we performed a more detailed

analysis involving imperfect recognizers.

Speci�cally, after generating the correct labels, the labels were subjected to a

mutation process, in order to simulate imperfect recognizers. We tested our system

by varying which attributes were imperfectly recognized, as well as the rate at which

these mistakes were made. The result was a set of trials, each corresponding to a

di�erent level of mistakes made in the recognition of di�erent attributes.

Choosing the number of attributes to mutate. Speci�cally, to generate the tri-

als, we �rst varied the number G of such imperfect recognizers from zero up to

K � 1. (Recall that our Corrob

�

algorithm requires that at least one attribute

must be recognized perfectly; see Assumption 6.1.) For example, with bigbook,

we mutated between zero and �ve of the six attributes.

Choosing the attributes to mutate. Next, we enumerated the

K!

G!(K�G)!

ways to

select which G attributes to mutate from the K total. For example, when

mutating two (G = 2) of bigbook's attributes, there are

6!

2!(6�2)!

= 15 ways to

choose two attributes out of six.

Assigning unsound and incomplete recognizers. Next, for a given set of G at-

161

resource examples needed

okra 3.5

bigbook 15.0

corel 2.0

altavista 2.0

survey site 1 4.5

survey site 3 2.2

survey site 4 2.2

survey site 5 2.0

survey site 8 2.0

survey site 10 2.1

survey site 12 2.0

survey site 13 2.0

survey site 14 4.8

survey site 15 2.0

survey site 19 2.0

survey site 20 2.0

survey site 22 2.0

survey site 23 2.0

survey site 25 2.0

survey site 27 2.0

survey site 30 3.1

average 3.0

Figure 7.4: Average number of example pages needed to learn an hlrt wrapper that

performs perfectly on a suite of test pages, for 21 actual Internet resources.

tributes to be mutated, we enumerated all combinations of ways to introduce

either false positives (simulating an unsound recognizer) or false negatives (sim-

ulating an incomplete recognizer). (Recall that our Corrob

�

algorithm can not

handle recognizers that exhibit both false positives and false negatives; see As-

sumption 6.1.) For example, if we decide to mutate G = 2 attributes, and then

select the URL and title attributes, then there are four possibilities: both have

false positives, both have false negatives, title has false positives and URL has

false negatives, and URL has false positives and title has false negatives.

Varying the mutation rate. Once the speci�c kinds of mutations are chosen, we

then varied the rate � at which these errors are introduced. We use the �ve rates

� 2 f0; 0:1; 0:2; 0:3; 0:4g. (Of course, � = 0 corresponds to a perfect recognizer.)

162

Performing the mutations. Finally, the selected attributes were mutated in the

selected way, at the selected rate.

To introduce a false negative rate of � , a fraction � of the correct instances

were simply discarded from the set of recognized instances. For example, with

� = 0:2, if there are �ve correct instances, then we randomly select and discard

one of them.

To introduce a false positive rate of � , we introduced an additional

�

1��

W ran-

domly constructed instances, where W is the number of correct instances of the

selected attribute. These false positives were constructed by randomly selecting

an integer b 2 [1; jP j], where jP j is the length of the page whose label is being

mutated. We then randomly select a second integer l 2 [���; �+�]. Finally, we

add the pair hb; b+ li into the set recognized instances. As desired, after adding

these extra instances, a fraction � of the entire collection are false positives. In

the experiments we used � = 10 and � = 5, so that the inserted instances have

length between 5 and 15 characters, typical values for these resources.

One iteration of this �ve-step process corresponds to a single trial. Note that the

number of trials is a function of K and thus there are di�erent numbers of trials for

the di�erent resources in this experiment. Since randomness is introduced at several

points, each trial was repeated several times. There are 257 trials for okra, and we

ran each trial 10 times; there are 2657 trials for bigbook, and we ran 5 iterations of

each; and there are 73 trials for corel and altavista, and we ran 10 iterations of

each.

As before, our methodology was to randomly split the collected examples into

a training set and a test set, and then determine the minimum number of training

examples required to learn a wrapper that performs perfectly on the test set.

We use this experimental setup to measure two statistics: the number of examples

and the CPU time needed to perform perfectly on the test set, as a function of the

level of recognizer errors (i.e., the number of imperfectly recognized attributes, and

the rate at which mistakes were made).

163

(a)

3

5

7

9

perfect 10% 20% 30% 40%

pa
ge

s
ne

ed
ed

 fo
r

10
0%

 a
cc

ur
ac

y

3 imperfect recognizers
2 imperfect recognizers
1 imperfect recognizer

(b)

15

25

35

45

perfect 10% 20% 30% 40%

pa
ge

s
ne

ed
ed

 fo
r

10
0%

 a
cc

ur
ac

y

5 imperfect recognizers
4 imperfect recognizers
3 imperfect recognizers
2 imperfect recognizers
1 imperfect recognizer

(c)

2

2.5

3

3.5

4

4.5

perfect 10% 20% 30% 40%

pa
ge

s
ne

ed
ed

 fo
r

10
0%

 a
cc

ur
ac

y

2 imperfect recognizers
1 imperfect recognizer

(d)

2

3

4

5

perfect 10% 20% 30% 40%

pa
ge

s
ne

ed
ed

 fo
r

10
0%

 a
cc

ur
ac

y

error rate of each recognizer

2 imperfect recognizers
1 imperfect recognizer

Figure 7.5: Number of examples needed to learn a wrapper that performs perfectly on

test set, as a function of the recognizer noise rate, for the (a) okra, (b) bigbook,

(c) corel and (d) altavista sites.

164

Figure 7.5 shows our results for the �rst statistic, the number of examples needed

to achieve perfect performance on the test set. Figure 7.5(a) shows our results for the

okra resource; Figure 7.5(b), for bigbook; Figure 7.5(c), for corel; and Figure

7.5(d), for altavista.

Within each graph, the di�erent curves indicate di�erent numbers of imperfect

attribute recognizers (di�erent values for G in the above discussion). For simplicity,

each curve is the average across the various trials for the given value of G. The

abscissa measures the noise rate (� above) for each curve.

For example, in Figure 7.5(a), the top-most curve, marked \3 imperfect recogniz-

ers", represents all trials in which three of okra's attributes were recognized with a

certain level of noise. The right-most point on this curve, marked \error rate of each

recognizer 40%", indicates that in these trials the 3 imperfect recognizers made errors

with noise rate � = 0:4. Notice that this top-right-most point represents 32 distinct

trials: there are

4!

3!(4�3)!

ways to choose three out of four attributes to mutate, times

2

3

ways to assign unsound or incomplete recognizers to the mutated attributes.

From Figure 7.5, we can see that our hlrt induction system requires between

2 and 44 example pages to learn a wrapper that performs perfectly on the test set,

depending on the domain and the level of noise made by the recognizers. We conclude

that wrapper induction requires a relatively modest sample of training examples to

perform well.

Of course the total running time is at least as important as the required number

of examples. Averaging across all the trials for each resource, our system performs as

shown in Figure 7.6.

4

We conclude that our induction system does indeed run quite

quickly|under ten seconds for three domains, and well under two minutes for the

fourth.

5

4

All experiments were run on SPARC-10 and SGI Indy workstations; our system is implemented

in Allegro Common Lisp.

5

Let us emphasize that (in contrast to wrapper execution) wrapper induction is an o�-line process|

165

Internet

resource

total CPU

time (sec.)

CPU time per

example (sec.)

okra 5.02 1.57

bigbook 83.5 4.49

corel 1.28 0.56

altavista 7.15 3.13

Figure 7.6: Average time to learn a wrapper for four Internet resources.

The reported CPU time is consumed by the two main algorithms developed in

this thesis, Generalize

hlrt

(Chapter 4) and Corrob

�

(Chapter 6). Of the two, Corrob

�

is much faster: averaging across all resources and all conditions, Corrob

�

takes only

about 0.5% of the CPU time; the remaining 95.5% is consumed by Generalize

hlrt

.

Why does bigbook take so much longer than the other resources? Inspection of

the query responses reveals that bigbook's responses are much longer (about 25,000

characters per response, compared to about 10,000). As our complexity analysis

shows (Theorem 4.7), our induction algorithm runs in time that is polynomial in the

length of the examples. Thus the di�erence in time per example is explained by the

di�erence in response length.

However, processing time per example does not completely explain the di�erence:

bigbook also requires many more examples than the other resources. For instance,

Figure 7.5 shows that bigbook requires about 15 examples with perfect recogniz-

ers, while the other resources require only 2{4 examples. The di�culty is due to

advertisements. The heads of the bigbook responses contain one of several di�erent

advertisements. To learn the head delimiter h, examples with di�erent advertisements

must be observed. But since there are relatively few advertisements, the chance of

perhaps fresh wrappers are learned each Sunday evening for an agent's on-line use during the week|

and thus we consider even several minutes to be quite reasonable.

166

observing pages with the same advertisement is relatively high.

7.4 Evaluating the PAC model

We now turn to an evaluation of the PAC model. As discussed at the end of Section

4.6, our approach to evaluating the PAC model is enpirical rather than analytical.

The PAC model predicts how many examples are required to learn a high-quality

wrapper; in this section we compare this prediction with the numbers measured in

the previous section.

We use the same methodology and resources as in Section 7.3. The PAC param-

eters were set rather loosely: we used the value � = 0:1 for the accuracy parameter,

� = 0:1 for the reliability parameter. Our results are shown in Figure 7.7.

As Figure 7.7 shows, we found the PAC model predicts that between 251 and

1131 examples are needed to satisfy the PAC termination condition, depending on

the domain and the level of noise made by the recognizers.

In constrast, earlier we saw that in fact only 2{44 examples are needed to learn

a satisfactory wrapper. We conclude that our PAC model is too loose by one to two

orders of magnitude. Moreover, note that the experiment in Section 7.3 involved

learning wrappers that perform perfectly on large test suites, which (presumably)

corresponds to tighter � and � values than the relatively loose parameters chosen

here.

7.5 Verifying Assumption 4.1: Short page fragments

In Section 4.5 and throughout Chapter 5, we appealed to Assumption 4.1 as a basis

for a heuristic-case analysis of the running time of the Generalize

W

function, for each

wrapper class W. In this section we empirically validate this assumption.

We begin by reviewing Assumption 4.1. Our Generalize

W

algorithms perform

many string operations: searching for one string in another, and enumerating various

167

(a)

300

500

700

900

1100

perfect 10% 20% 30% 40%

pa
ge

s
ne

ed
ed

 fo
r

P
A

C
 b

ou
nd

3 imperfect recognizers
2 imperfect recognizers
1 imperfect recognizer

(b)

300

500

700

900

1100

perfect 10% 20% 30% 40%

pa
ge

s
ne

ed
ed

 fo
r

P
A

C
 b

ou
nd

5 imperfect recognizers
4 imperfect recognizers
3 imperfect recognizers
2 imperfect recognizers
1 imperfect recognizer

(c)

300

400

500

600

700

800

perfect 10% 20% 30% 40%

pa
ge

s
ne

ed
ed

 fo
r

P
A

C
 b

ou
nd

2 imperfect recognizers
1 imperfect recognizer

(d)

300

400

500

600

700

800

perfect 10% 20% 30% 40%

pa
ge

s
ne

ed
ed

 fo
r

P
A

C
 b

ou
nd

error rate of each recognizer

2 imperfect recognizers
1 imperfect recognizer

Figure 7.7: Predicted number of examples needed to learn a wrapper that satis�es

the PAC termination criterion, as a function of the recognizer noise rate, for the (a)

okra, (b) bigbook, (c) corel and (d) altavista sites.

168

strings' substrings, su�xes, and pre�xes. Our complexity analysis requires bounding

the running time of these operations. To do so, we need to bound the length F of

the strings over which these operations occur.

In our worst-case analysis, we bounded F by using the length R = min

n

jP

n

j, the

length of the shortest example page. Speci�cally, we simply used the bound F = R.

It is di�cult to improve this bound using only analytical techniques. We there-

fore performed an heuristic-case analysis by asssuming that the relevant strings have

lengths bounded by F =

3

p

R rather than F = R. In Section 4.5, we codi�ed this

approach as Assumption 4.1. We then used this assumption to derive tighter bounds

on the running time of our functions Generalize

W

(e.g., Theorem 4.7 in Section 4.5

for the hlrt wrapper class).

Of course the validity of these tighter bounds depends on the validity of Assump-

tion 4.1. In order to verify Assumption 4.1, we simply compared the actual lengths

with the assumed lengths.

Speci�cally, we examined the example pages collected for the four example re-

sources described earlier in this chapter. We compared the length R of these examples

pages with the actual length F of the A

m;k

and S

m;k

partition elements. (Note that

these partition elements are exactly the strings discussed above whose lengths we

want to bound.) Figure 7.8 shows a scatter-plot of the 121,868 hF;Ri pairs collected

from the example document, as well as the function F =

3

p

R.

Since the data are so noisy, it is di�cult to tell the extent to which Assumption

4.1 holds. We measured this support in three ways. First, we �t the data to a

model of the form F =

�

p

R. We found that the value � = 3:1 minimizes the least{

squared-error between the model and the data. Figure 7.8 also shows the best-�t

model F =

3:1

p

R. Note that if � > 3, then Assumption 4.1 is con�rmed, because it

overestimates the page fragment lengths.

As a second technique for demonstrating that the assumption holds, we measured

the fraction of the data that lies below the curve F = 4

3

p

R. We �nd that more

1
6
9

5

15

25

35

0 5000 10000 15000 20000 25000 30000

fr
ag

m
en

t l
en

gt
h

F

page length R

Assumption 4.1: F = R^(1/3)
Best-fit: F = R^(1/3.1)

Figure 7.8: A scatter-plot of the observed partition fragment lengths F versus page lengths R, as well as two models of

this relationship: F =

3

p

R (the model demanded by Assumption 4.1), and F =

3:1

p

R (the best-�t model).

170

than 80% of the data lie below this curve. Thus while the data contain points that

violate Assumption 4.1, the majority of the data is within a small constant factor of

assumption's predictions.

Finally, we randomly selected 50,000 of the hF;Ri pairs, and measured the ra-

tio

jF�

3

p

Rj

R

, which indicates the closeness of the predicated and observed lengths.

Assumption 4.1 is validated to the extent that this ratio is zero. We �nd that the

average value of this ratio is 0.7%.

Based on these three ways of comparing the predicted and observed page fragment

lengths, we conclude that the data drawn from our actual Internet resources validate

Assumption 4.1.

7.6 Verifying Assumption 4.2: Few attributes, plentiful data

In Chapter 4, we developed a PAC model for learning the hlrt wrapper class:

	(K)

1�

�

	(K)

!

M

tot

+ �(R)

�

1�

�

2

�

N

< �

(see Section 4.6 for details). Assumption 4.2 states that the sum on the left side of

this inequality is dominated by its second term:

	(K)

1�

�

	(K)

!

M

tot

� �(R)

�

1�

�

2

�

N

In this section we empirically verify whether this assumption does in fact hold.

Speci�cally, for each of the four resources introduced earlier in this chapter, we mea-

sured the ratio

	(K)

�

1�

�

	(K)

�

M

tot

�(R)

�

1�

�

2

�

N

: (7.1)

(As before, for this experiment, we set � = 0:1.) Clearly, Assumption 4.2 is validated

to the extent that this ratio is equal to zero.

Our experiment was designed as follows. For each of the four resources, we iterated

the following process 5000 times. First, we selected a random integer N between 100

171

Internet

resource

average

ratio

maximum

ratio

okra 7� 10

�7

2� 10

�4

bigbook 2� 10

�7

4� 10

�6

corel < 10

�7

< 10

�7

altavista < 10

�7

< 10

�7

Figure 7.9: The measured values of the ratio de�ned in Equation 7.1.

and 400. We then randomly selected N examples pages,

6

and computed the ratio

listed in Equation 7.1.

Figure 7.9 summarizes our results. For each resource, we report the average

and maximum values of the ratio de�ned in Equation 7.1, over the 5000 trials. We

conclude that Assumption 4.2 is strongly validated for the four resources we examined.

7.7 Measuring �: The PAC model noise parameter (Equation 6.7)

Recall from Chapter 6 that if the recognizer library � contains imperfect recognizers,

then the Corrob

�

algorithmmight output more than one label for a given page, because

the labels might all be consistent with the evidence provided by the recognizers. Of

course, only one such label is correct, and if a page is incorrectly labeled, then the

induction system might output the wrong wrapper.

Without additional input, Corrob

�

has no basis for preferring one label over an-

other. As described in Chapter 6, our strategy for dealing with this problem is very

simple: Generalize

noisy

hlrt

tries to generalize from the noisy labels; we can only hope

6

Note that Figure 7.7 indicates that, with perfect recognizer, the four resources require about 300

pages to satisfy the PAC termination criterion. Therefore, evaluating Assumption 4.2 for either

very few, or very many, examples is unnecessary: in both case both the original PAC model and the

approximation agree. Therefore, the most signi�cant test for Assumption 4.2 involves N near 300.

172

that no consistent wrapper will exist, so that Generalize

noisy

hlrt

's line 6.2(a) will try the

next combination of labels. Since Generalize

noisy

hlrt

tries all such combinations, eventu-

ally the correct combination of labels will be tried, and Generalize

noisy

hlrt

will �nd and

return the correct wrapper.

Unfortunately, as described in Chapter 6.5.2, this strategy ruins our PAC anal-

ysis, because there is always chance that we will inadvertently encounter a set of

examples that are incorrectly labeled yet for which there exists a consistent wrapper.

We extended our PAC model by introducing a noise rate �, which quanti�es this

chance (Equation 6.6). We want � to be small, because (as Equation 6.7 shows) as

� approaches zero, the PAC model requires fewer examples.

So far, we have given only an informal argument that � is small. If our system is

trying to learn how to extract the country from a page containing � � �Congo� � �,

but the page's label extracts the string B>Con instead of Congo, then it is quite likely

that no consistent wrapper will be found.

We now provide empirical evidence that � is indeed very small. We repeated the

following process 5000 times for each of the four information resources introduced

earlier in this chapter. First, we randomly selected 15 example pages. We then

mutated a small fraction of these pages' true labels. Speci�cally, we examined each

pair hb; ei. One percent of the time, we replaced this pair with a di�erent pair, either

hb+ �; ei or hb; e+ �i. The choice of whether to change b or e is random. In each

case � is randomly selected from the range [�4; 4]. The e�ect is that 1% of the hb; ei

pairs are slightly \jiggled", in an attempt to simulate labels that are correct except

for a few minor errors. We then passed these mutated labels to Generalize

hlrt

, which

(as usual) tries to �nd a wrapper that is consistent with the examples.

Our results are as follows. Across all twenty thousand trials, we observed no

cases for which there exists a consistent hlrt wrapper. Recall that the noise rate �

measures the chance of such a case, and so we conclude that for the Internet resources

we examined, � is extremely close to zero.

173

7.8 The WIEN application

As an additional attempt to validate the techniques proposed in this thesis, we have

developed wien, a wrapper induction environment application; see Figure 7.10.

7

Us-

ing a standard Internet browser, a user shows wien an example document (a page

from lycos in this example). Then with a mouse the user indicates the fragments of

the page to be extracted (e.g., the document URL, title, and summary). wien then

tries to learn a wrapper for the resource. When shown a second example, wien uses

the learned wrapper to automatically label the new example. The user then corrects

any mistakes, and wien generalizes from both examples. This process repeats until

the user is satis�ed.

In terms of the techniques developed in this thesis, wien provides a complete

implementation of the Generalize

hlrt

algorithm, with the user playing the role of

the example oracle Oracle

T ;D

.

The current version of wien does not implement the Corrob

�

algorithm. However,

as shown in Figure 7.10(a), we have provided an extensible facility for applying rec-

ognizers to the pages. When wien starts, it dynamically loads from a repository a

library of recognizers. The user selects which recognizers are to be applied, and then

manually corrects any mistakes. Thus while the user plays the role of the Corrob

�

algorithm, its input recognizer library � is applied automatically.

In addition to this basic functionality, wien provides several facilities designed to

simplify the process of automatic wrapper construction. Figure 7.10(b) shows wien's

mechanism for editing the set of attributes to be extracted. Each attribute is assigned

a color, which is used to highlight the extracted text in the browser window (7.10(d)).

Since it is easy to make minor mistakes when marking up the pages, a facility is

provided for reviewing and editing the extracted fragments (7.10(c)). Finally, since

some extracted attributes might not appear when the page is rendered (e.g., the URL

7

wien is pronounced like \Vienna".

1
7
4

(a) (b) (c)

(d) (e)

Figure 7.10: The wien application being used to learn a wrapper for lycos.

175

attribute), we have provided a facility for examining and marking up the raw html

(7.10(e)).

Finally, we have extended wien in several ways not discussed elsewhere in this

thesis. The most interesting extension is aggressive learning . If the user is willing to

correct its mistakes, then he can invoke the learning algorithm before the example

pages are completely labeled, and Generalize

hlrt

will do its best. Speci�cally, when

invoked with incompletely labeled pages, Generalize

hlrt

might be able to �nd a

wrapper that is consistent with all the examples. If such a wrapper can be found, it

is then applied to the examples and any new extracted text fragments are identi�ed.

The user can then correct any mistakes, and invoke the regular learning algorithm

on the resulting perfect labels. As Section 7.3 shows, relatively few examples are

usually su�cient for e�ective learning, and so this aggressive learning mechanism

considerably simpli�es the wrapper construction process.

We have not conducted user studies with wien, although anecdotally it appears

to be a useful tool for helping to automate the wrapper construction process.

Chapter 8

RELATED WORK

8.1 Introduction

Our approach to automatic wrapper construction draws on ideas from many di�erent

research areas. In this chapter we review this related literature by considering three

kinds of work. First, we describe work related to the motivation and background

of this thesis (Section 8.2). Second, we describe several projects that are concerned

with similar applications (Section 8.3). Finally, we describe work that is related at a

formal or theoretical level (Section 8.4).

8.2 Motivation

The systems that motivate our focus on wrapper induction are mainly concerned with

the integration of heterogeneous information resources (Section 8.2.1). In addition,

research on supporting legacy systems is also relevant (Section 8.2.2), as is work on

the development of standard information exchange protocols (Section 8.2.3)

8.2.1 Software agents and heterogeneous information sources

As described in Section 1.1, our concern with wrapper induction can be traced to the

pressing need for systems that interact with information resources that were designed

to be used by people rather than machines. The hope is that such capabilities will

relieve users of the tedium of directly using the growing plethora of on-line resources.

There are two distinct sub-communities working in this area. The �rst involves

arti�cial intelligence researchers interested in software agents; see [Etzioni et al. 94,

177

Wooldridge & Jennings 95, Bradshaw 97] for surveys. The second consists of

database and information systems researchers working on the integration of hetero-

geneous databases; see [Gupta 89] for a survey.

We were strongly inuenced by the University of Washington \softbot"

projects [Etzioni et al. 93, Etzioni 93, Etzioni & Weld 94, Perkowitz & Etzioni 95,

Selberg & Etzioni 95, Etzioni 96a, Kwok & Weld 96, Selberg & Etzioni 97,

Doorenbos et al. 97, Friedman & Weld 97, Shakes et al. 97]. Related projects

at other institutions include carnot [Collet et al. 91], disco [Florescu et al. 95],

garlic [Carey et al. 95], hermes [Adali et al. 96], the Information Manifold

[Levy et al. 96], sims [Arens et al. 96], tsimmis [Chawathe et al. 94], fusion

[Smeaton & Crimmins 97], BargainFinder [Krulwich 96], and the Knowledge Broker

[Andreoli et al. 96, Chidlovskii et al. 97].

While these systems are primarily research prototypes, there is substantial com-

mercial interest in software agents and heterogeneous database integration products.

Examples include Jango [www.jango.com], Junglee [www.junglee.com], AlphaCON-

NECT [www.alphamicro.com], BidFind [www.vsn.net/af], LiveAgent [www.agent-

soft.com], Computer ESP [oracle.uvision.com/shop], the Shopping Explorer [shop-

pingexplorer.com], and Texis [thunderstone.com].

The details of these projects vary widely, but all share a common need for a layer

of wrappers between the integration system and the information resources it accesses.

For example, the Ahoy! system [Shakes et al. 97] searches for people's home pages

by querying email address locator services, search engines, etc., while Junglee [www.-

junglee.com] integrates across multiple sources of apartment or job listings. Currently,

each relies on hand-crafted wrappers to interact with the resources it needs.

Finally, let us mention that wrapper construction touches on subtle issues re-

lated to copyright protection in the information age. Does the owner of an on-line

newspaper or magazine have the right to dictate that its pages can not be automat-

ically parsed and re-assembled (e.g., to remove advertisements) without permission?

178

Clearly, these so-called \digital law" issues are well beyond the scope of this thesis;

see [infolawalert.com] for further information.

8.2.2 Legacy systems

While we are primarily motivated by the task of integrating heterogeneous infor-

mation resources, our work is also related to the management of so-called legacy

systems [Aiken 95, Brodie & Stonebraker 95]. For various economic and engineering

reasons, many information repositories are buried under layers of outdated, complex

or poorly-documented code.

Of particular relevance are legacy databases. One common strategy is to en-

capsulate the entire legacy database in a software layer that provides a standard

interface. There is substantial e�ort are building such wrappers; see, for example,

[Shklar et al. 94, Shklar et al. 95, Roth & Schwartz 97].

It remains an open question whether the techniques we have developed in this

thesis can be applied to legacy systems. Certainly, few of these systems use html

formatting. But we conjecture that the formatting conventions used do exhibit suf-

�cient regularity that our techniques can be applied. For example, a system was

recently developed to automatically execute queries against the University of Wash-

ington legacy \telnet" interface to the library catalog [Draper 97]. The system uses

vt-100 escape sequences to format the requested content. Like the wrapper classes

described in this thesis, the system uses constant strings such as ESC[2j or Title:

to identify and extract the relevant content.

8.2.3 Standards

Finally, in Section 1.1.1 we described one objection to the very idea of wrappers: why

not simply adopt standard protocols to facilitate communication between the informa-

tion providers and consumers? A wide variety of such standards have been developed

179

for various purposes; examples include corba [www.omg.org], odbc [www.micro-

soft.com/data/odbc], xml [www.w3.org/TR/WD-xml], kif [logic.stanford.edu/kif],

z39.50, [lcweb.loc.gov/z3950], widl [www.webmethods.com], shoe [Luke et al. 97]

and kqml [Finin et al. 94].

The main problem with all such standards is that they must be enforced. Un-

fortunately, despite the clear bene�ts, there are many reasons|economic, technical,

and social|why adherance is not always universal. For example, on-line businesses

might prefer to be visited manually rather than mechanically, and refusing to adhere

to a standard is one way to discourage automatic browsing. Search engines such as

Yahoo!, for example, are in the business of delivering users to advertisers, not servic-

ing queries as an end in itself. Similarly, a retail store might not want to simplify the

process of automatically comparing prices between vendors. And of course the cost

of re-engineering existing resources might be prohibitive.

As with the earlier discussion of digital law, these issues are complex and beyond

the scope of this thesis. The bottom line, though, is that certainly automatic wrapper

construction will become less compelling if standards become entrenched.

8.3 Applications

We now turn to research that is focused on applications that are similar to our work

on wrapper construction and information extraction.

8.3.1 Systems that learn wrappers

We know of three systems that are involved with learning wrappers: ila, shopbot,

and ariadne.

ila. The ila system [Perkowitz & Etzioni 95, Perkowitz et al. 97] was proposed as

an instance of the idea of a softbot learning how to use its tools. ila takes as

180

input a set of pre-parsed query responses; its task is to determine the semantics of

the extracted text fragments. For example, when learning about the country/code

resource, ila is given the information content

fhCongo; 242i; hEgypt; 20i; hBelize; 501i; hSpain; 34ig

(Note that ila would not directly manipulate the raw html (e.g. Figure 2.1(c)).)

ila then compares these values with a collection of facts such as:

name(c

1

) = Congo country-code(c

1

) = 242 capital(c

1

) = Brazzaville

name(c

2

) = Ireland country-code(c

2

) = 353 capital(c

2

) = Dublin

name(c

3

) = Spain country-code(c

3

) = 34 capital(c

3

) = Madrid

On the basis of this background knowledge, ila hypothesizes that the �rst attribute is

the name of the country, while the second is its telephone country code (rather than,

for example, its capital city). Thus ila has learned that the country/code resource

returns pairs of the form hname(c); country-code(c)i.

This example is very simple. For more complicated resources, ila searches the

space of functional relationships between the attribute values. For example, ilamight

discover that some resource returns pairs consisting of a country and the address of

the mayor of its capital city: hname(c); address(mayor(capital(c)))i. Moreover, if

necessary ila asks focused queries to disambiguate the observed examples.

ila and our wrapper construction techniques thus provide complementary func-

tionality. ila requires that the input examples be pre-parsed, but uses knowledge-

based techniques for determining a resource's semantics. In contrast, our system uses

a relatively primitive model of semantics (recognizers and the corroboration process),

but learns how to parse documents. Clearly, integrating the two approaches is an

interesting direction for future work.

shopbot. A second system that learns wrappers is shopbot [Doorenbos et al. 97,

Perkowitz et al. 97]. In many ways, shopbot is much more ambitious than our work.

181

As a full-edged autonomous shopping agent, shopbot not only learns how to extract

a vendor's content, but also how to query the vendors, and how to identify unusual

conditions (e.g., a vendor not stocking some particular product). In this comparison,

we focus exclusively on shopbot's techniques for learning to parse a vendor's query

responses.

shopbot operates by looking for patterns in the html source of the example

document. shopbot �rst partitions the example pages into a sequence of logical

records; the system assumes that these records are separated by visually salient html

constructs such as <HR>, , or
. Each record is then abstracted by removing

non-html characters, generating a signature for each record. For example, when

examining the country/code response in Figure 2.1(c), shopbot would generate the

following six signatures:

<HTML><TITLE>text</TITLE>+<BODY>text<P>

text <I>text</I>

text <I>text</I>

text <I>text</I>

text <I>text</I>

<HR>text</BODY></HTML>

shopbot then ranks these signatures by the fraction of the pages each accounts for.

In the example, the �rst and last signatures each account for one-sixth of the page,

while the middle four identical signatures together account for four-sixths of the page.

On this basis, shopbot decides to ignore the parts of the page corresponding to the

�rst and last signatures, and extracts from the country/code resource only those

records that match the signature text <I>text</I>
.

shopbot also uses domain-speci�c heuristics to rank these signatures. For ex-

ample, in shopping tasks, the presence of a price suggests that a signature is correct.

Moreover, these heuristics are used to extract some information from each record. For

example, shopbot attempts to extract prices from each record, so that its results

can be sorted.

182

At this point we can compare shopbot and our wrapper induction system. shop-

bot uses html-speci�c heuristics to identify records. In contrast, our system learns

to exploit|but does not depend on|html or any other particular formatting con-

vention. Moreover, although shopbot does partially extract the content of the indi-

vidual records using domain-speci�c heuristics, it does not learn to fully parse each

record. Thus shopbot uses wrappers from a class that we might call hoct: shop-

bot learns to ignore pages' heads and tails and extract each tuple as a whole, but it

does not learn to extract the individual attributes within each tuple.

ariadne. Finally, ariadne is a semi-automatic system for constructing wrappers

[Ashish & Knoblock 97a, Ashish & Knoblock 97b]. ariadne is targeted at hierar-

chically structured documents, similar to those we discussed in Section 5.3.

ariadne employs powerful (though html- and domain-speci�c) heuristics for

guessing the structure of pages. For instance, relative font size is a usually good

clue for determining when an attribute ends and subordinate attributes begin. For

example, given the following page:

Introduction to CMOS Circuits

CMOS Logic

The Inverter

MOS Transistor Theory

ariadne would hypothesize that Introduction � � � Circuits and MOS � � � Theory

are instances of the highest-level headings, while CMOS Logic is a subheading and

The Inverter is a sub-subheading. In addition to font sizes, ariadne attends to

the use of bold or italics fonts, sequences of alphanumeric characters ending with a

colon (e.g., Title:), relative indentation, and several other heuristics.

Once the hierarchically nested structure of such a document is determined, ari-

adne generates a grammar consistent with the observed structure. Finally, a parser

is generated that accepts \sentences" (i.e., pages) in the learned grammar. Of course

since the heuristics used to guide these processes are imperfect, the user must correct

183

ariadne's guesses. Ashish and Knoblock report that only a handful of corrections

are needed in practice.

ariadne's grammars are similar to the n-lr wrappers de�ned in Section 5.3.

The di�erence is that, in n-lr the `

k

and r

k

delimiters must be constant strings,

while they can be regular expressions in ariadne's wrappers. (Note, though, that

ariadne does not learn these regular expressions, but rather imports them from the

heuristics used to �nd the page's structure.)

8.3.2 Information extraction

At the highest level, this thesis is concerned with information extraction (IE). This

�eld has a rich literature; see [Hobbs 92, Cowie & Lehnert 96] for surveys. Although

similar in spirit|traditional IE is the task of identifying literal fragments of an input

text that instantiate some relation or concept|our use of the phrase \information

extraction" di�ers in �ve ways.

The �rst di�erence concerns our focus on extra-linguistic regularity to guide ex-

traction. In contrast, with its roots in natural language processing (NLP), much

other IE work is designed to exploit the rich linguistic structure of the sources doc-

uments. While such approaches are useful in many applications, we have found that

the Internet resources which motivate us often do not exhibit this linguistic structure.

A second di�erence is that many knowledge-intensive approaches to IE are slow

and thus best suited to o�-line extraction, while a software agent's wrappers must

execute on-line and therefore quickly.

A third di�erence is that we take a rather rigid approach to information extraction,

demanding that the text to be extracted is reliably delimited by constant strings (the

r

k

and `

k

in our various wrapper classes). In contrast, NLP-based IE systems begin

by segmenting the text, in e�ect inserting invisible delimiters around noun phrases,

direct objects, etc. Our approach could in principle operate on unstructured text once

it has been annotated with such syntactic delimiters; e.g., adding <NP> and </NP>

184

around noun phrases, <DOBJ> and </DOBJ> around the direct objects, etc..

A fourth di�erence is that most IE systems employ rules that extract relevant

text fragments. A separate post-processing phase is usually employed to group these

fragments together into a coherent summarization of the document. For instance,

this post-processing phase is responsible for handling anaphora (e.g., resolving pro-

noun referents) or merging fragments that were extracted twice by di�erent rules. In

contrast, our approach to information extraction is to identify the entire content of

the page at once. Of course, this approach is successful only because the documents

in which we are interested have certain kinds of regular structure.

Finally, given our goal of eliminating the engineering bottleneck caused by con-

structing wrappers by hand, we are interested in automatic learning techniques. In

contrast, many IE systems are hand-crafted. The two notable exceptions are au-

toslog and crystal.

autoslog [Rilo� 93] learns information extraction rules. The system uses heuris-

tics to identify speci�c words that trigger extraction. For example, when learning to

extract medical symptoms not experienced by patients, autoslog would learn that

the word \denies. . . " indicates such symptoms, based on example sentences such

as \The patient denies any episodes of nausea." While there are many important

di�erences, it is apparent that this learned rule is similar to our wrappers in that a

speci�c literal string is used to delimit the desired text.

Like autoslog, crystal [Soderland et al. 95, Soderland 97b] and its descendant

webfoot [Soderland 97c] learn information extraction rules. crystal takes as input

a set of labeled example documents and a set of features describing these documents.

As originally envisioned, crystal used linguistic features such as part-of-speech tags,

and it learned rules that are triggered by these linguistic features. webfoot extends

crystal to handle non-linguistic Internet-based documents. webfoot provides the

crystal rule-learning algorithm with a set of features that are useful for informa-

tion extraction from Internet-based (rather than free natural language) documents.

185

Speci�cally, a set of html-speci�c heuristics are used to identify the text fragments

to be extracted; the heuristics are similar to those used by shopbot and ariadne.

Similar ideas are explored in [Freitag 96, Freitag 97]. Using as a test domain

relatively unstructured departmental talk announcements, Freitag demonstrates that

di�erent machine learning techniques can be combined to improve the precision with

which various information extraction tasks can be performed.

These three systems|autoslog, crystal/webfoot, and Freitag's work|

suggest promising directions for future research. Drawing on techniques from both

NLP and machine learning, they point to an integration of NLP-based techniques

and our extra-linguistic techniques; see Section 9.2 for details.

8.3.3 Recognizers

Chapter 6 describes techniques for automating the process of labeling the example

pages. Central to these techniques is a library of recognizers, domain-speci�c proce-

dures for identifying instances of particular attributes.

Recognizers for speci�c attributes have received much attention in the text pro-

cessing communities. For example, the Sixth Message Understanding Conference's

\Named Entity" task [ARPA 95, ftp.muc.saic.com/pub/MUC/MUC6-guidelines/ne-

task-def.v2.1.ps.Z] involves identifying particular kinds of information such as people

and company names, dates, locations, and so forth.

Certain highly valuable attributes such as company and people's names

have received substantial attention [Rau 91, Borgman & Siegfried 92, Paik et al. 93,

Hayes 94]. This research has matured to the point that high-quality commercial name

recognizers are now available|examples include the Carnegie Group's \NameFinder"

system [www.cgi.com], and \SSA-NAME" [www.searchsoftware.com]. Our recogniz-

ers are also similar to Apple Computer's Data Detectors [applescript.apple.com/da-

ta detectors].

Others have taken machine learning approaches to constructing recognizers for

186

particular kinds of attributes. The wil system [Goan et al. 96] uses novel grammar

induction techniques to learn regular expressions from examples of the attribute's

values; they demonstrate that their techniques are e�ective for learning attributes

such as telephone numbers and US Library of Congress Call Numbers. [Freitag 96]

presents similar results for the domain of academic talk announcements.

Finally, the \�eld matching" problem [Monge & Elkan 96] is relevant to building

recognizers. Field matching involves determining whether two character strings, such

as \Dept. Comput. Sci. & Eng." and \Department of Computer Science and Engi-

neering", do in fact designate the same entity. Monge and Elkan propose heuristics

that are e�ective at solving the �eld matching problem in the domain of aligning

academic department names and addresses. In Section 6.7, we suggested that one

technique for building recognizers is to exploit existing indices|e.g., constructing a

company name recognizer from the Fortune 500 list. Such recognizers will probably

perform poorly unless they solve the �eld matching problem.

8.3.4 Document analysis

Our approach to information extraction exploits the structure of the information

resource's query responses. For example, the lr, hlrt, oclr, and hoclrt wrapper

classes exploit the fact that the page is formatted with a tabular layout, while the

n-lr and n-hlrt classes assume a hierarchically nested layout.

There is a wide variety of research concerned with recovering a document's struc-

ture. Of particular relevance to our work is the recovery of structured informa-

tion such as tables of tables-of-contents. [Douglas et al. 95, Douglas & Hurst 96]

discuss techniques for identifying the tabular structured in plain text documents.

[Green & Krishnamoorthy 95] solve a similar problem, except that their system takes

as input scanned images of documents.

More ambitiously, [Rus & Subramanian 97] provide a theoretical characterization

of information capture and access, a novel approach to the development of systems

187

that integrate heterogeneous information sources. The idea is to formalize the notion

of a document segmenter , which identi�es possibly-relevant fragments of the docu-

ment. These candidates are then examined by structure detectors, which look for

patterns among the segments. This work is interesting because many di�erent kinds

of heuristic techniques for identifying document structure can be modeled using their

formalism. For example, when trying to identify a document's tabular structure, a

segmenter might look for rectangular areas of white-space, and then a structure de-

tector would try to locate repetitive arrangements of these regions that indicate a

table.

Rus and Subramanian demonstrate that their techniques e�ectively identify the

tabular structure of plain text documents such as retail product catalogs. They

also demonstrate techniques for automatically extracting and combining informa-

tion from heterogeneous sources. For example, they have developed an agent that

scans various sources of stock price listings to generate graphs of performance over

time. Unfortunately, this system relies on hand-coded heuristics to help it determine

the semantics of the extracted information. Integrating these techniques with ila

[Perkowitz & Etzioni 95, Perkowitz et al. 97] would be an interesting direction for

future work.

8.4 Formal issues

So far, we have described the related projects at a relatively shallow level of detail.

The reason is simply that while our wrapper induction work is motivated by or ad-

dresses similar issues as other work, the nuts-and-bolts technical details are actually

very di�erent. However, there are two research areas which call for a more detailed

comparison. First, we �rst briey describe the connection between wrapper induction

and grammar induction learning (Section 8.4.1). Second, we describe the relationship

between our PAC model and others in the literature (Section 8.4.2).

188

8.4.1 Grammar induction

For each wrapper classW, the ExecW procedure uses a �nite amount of state to scan

and parse the input page, augmented with additional book-keeping state for keeping

track of the extracted information. Although unbounded, this book-keeping state is

entirely unrelated to the state used for parsing, and thus our wrappers are formally

equivalent to regular grammars. It is thus natural to compare our inductive learning

algorithms with the rich literature in regular grammar induction; see for example

[Biermann & Feldman 72, Gold 78, Angluin & Smith 83, Angluin 87].

We did not employ o�-the-shelf grammar induction algorithms. To understand

why, recall the purpose of wrappers: they are used for parsing , not simply classi�-

cation. That is, our wrappers can not simply examine a query response and con�rm

that it came from a particular information resource. Rather, a speci�c sort of exam-

ination must occur; namely, one that involves scanning the page in such a way as to

identify the text fragments to be extracted.

Therefore, we require that the �nite-state automaton to which the learned gram-

mar corresponds have a speci�c state topology. E�cient induction algorithms have

been developed for several classes of regular grammars (e.g., reversible [Angluin 82]

and strictly regular [Tanida & Yokomori 92] grammars). The di�culty is simply that

we do not know of any such results that deliver the particular state topology we re-

quire. Therefore, we have developed novel induction algorithms targeted speci�cally

at our wrapper classes.

8.4.2 PAC model

Our PAC model (Equation 4.5 in Section 4.6) appears to be more complicated than

most results in the literature.

The reason for this complexity is simply that we are learning relatively compli-

cated hypotheses. Our proofs rely on elaborate constructions, such as our use of a

189

disjunction of 2K terms to capture the ways that a wrapper's error can exceed �

(pages 217{219), or our use of an interval [L; U] to represent the set of proper su�xes

common to a given set of strings (pages 219{224).

However, once these constructions are in place, we make use of well-known proof

techniques. Our proof of Lemma B.1's parts (1{2) is a simpli�ed version of the well-

known proof that axis-aligned rectangles are PAC-learnable [Kearns & Vazirani 94,

pp 1{6], and our proof of part Lemma B.1 part (3) is so basic as to be published in

AI textbooks (e.g., [Russell & Norvig 95, pp 553{5]).

However, there are two areas of related work which must be addressed: a com-

parison of our results with the use of the Vapnik-Cherv�onenkis (VC) dimension, and

our model of label noise.

The VC dimension. The VC dimension of a hypothesis class is a combi-

natorial measure of the inherent di�culty of learning hypotheses in the class

[Vapnik & Cherv�onenkis 71]. The VC dimension of hypothesis class H is de�ned

as the cardinality of the largest set I of instances for which there exists hypotheses

in H that can classify I's members in all 2

jIj

possible ways.

For example, suppose we treat the intervals of the real number line as a hypothesis

class, where an interval classi�es as true those points enclosed in the interval. No

matter how we pick any two real numbers, we can always �nd an interval that:

contains both points, contains neither point, contains one point but not the other,

and vice versa. Therefore, the VC dimension of the real interval hypothesis space is

at least two. However, this property does not hold for any set of three real numbers:

there is no interval that includes the two extreme points yet excludes the middle

point. Therefore, the VC dimension of the real interval hypothesis space is exactly

two.

The VC dimension is useful because PAC bounds for hypothesis classes with �nite

VC dimension have been developed [Haussler 88, Blumer et al. 89].

190

Analyzing the VC dimension of the hlrt wrapper class is somewhat complicated.

We can easily analyze the VC dimension of the r

k

and `

k

(k > 1) delimiters in

isolation. Since we reduce the problem of learning the r

k

and the `

k

(for k > 1) to

the problem of learning an interval over the integers (see the proof of Lemma B.1

parts (1{2) is Section B.4) we know that the VC dimension of each of these 2K � 1

components is two. However, what is the VC dimension of the \h, t, `

1

" subspace

of the hlrt class? We conjecture that this VC dimension is in�nite: since pages

and the hlrt delimiters are all strings of unbounded length, there are essentially an

unbounded number of degrees of freedom in the system. If this conjecture holds, then

the bounds reported in [Haussler 88, Blumer et al. 89] are inapplicable. In summary,

we speculate that the PAC bounds we report for hlrt are tighter than obtainable

using VC-theoretic analysis.

Label noise. Finally, let us elaborate on the model of noise assumed in our exten-

sions of the PAC model to handle corroboration (Section 6.5.2).

Recall that we use an extremely simple model of noise: Equation 6.6 de�nes

the parameter �, which measures the \danger" associated with labels' noise. The

Generalize

noisy

hlrt

algorithm simply assumes that wrappers can be found only for pages

that are labeled correctly; � measures how risky this assumption is.

Note that � does not measure the chance that any particular label is wrong, that

any particular set of labels are wrong, etc. Instead, � plays the following role. The

Generalize

noisy

hlrt

algorithm (Figure 6.2) assumes that a consistent wrapper exists only

for correctly labeled pages; � is a measure of how likely Generalize

noisy

hlrt

is to make

a mistake by following this procedure. For example, a recognizers library � might

make many mistakes, so that nearly all the labels returned by Corrob

�

(and therefore

tried by Generalize

noisy

hlrt

) contain errors. Nevertheless, � might be close to zero, if the

information resource under consideration is structured so that incorrect labels can be

discovered by the Generalize

hlrt

algorithm.

191

This approach to handling noise appears to be novel. The PAC literature (e.g.

[Angluin & Laird 88, Kearns 93, Decatur & Gennaro 95]) covers a wide variety of

noise models and strategies for coping with this noise.

The basic idea is that when the learning algorithm asks the Oracle

T ;D

for any

example, the oracle returns the correct example hI; T (I)i with probability 1� �, and

returns a defective example hI; L

0

i with probability �, where L

0

is a mutated version

of T (I) (e.g., if the labels are binary, then L

0

= :T (I)), and 0 � � � 1 is the chance

that the oracle is wrong. Under these circumstances, reliable learning is a matter of

obtaining enough examples (how many depends on �) to compensate for the fact that

any particular label might be wrong.

In summary, standard approaches to learning from noise examples involve extra

sampling, in the hope that the noise will wash out. In contrast, we assume an oracle

that provides not one but several labels for each example, and we use self-correction

mechanism to verify that the observed labels are correct. Our experiments in Section

7.7 con�rm that this self-correction mechanism is highly reliable (i.e. � � 0) for the

Internet resources we have examined.

Chapter 9

FUTURE WORK AND CONCLUSIONS

9.1 Thesis summary

Let us review this thesis by discussing our three main contributions.

Contribution 1: Automatic wrapper construction as inductive learning.

We began with a description of the kinds of information extraction tasks in which

we are interested (Chapter 2): an information resource responds to queries with a

response (e.g., an html page) containing the content we are looking for. We focus on

pages that are semi-structured , in that while they might contain advertisements and

other extraneous information, the content itself obeys rigid (though arbitrary and

unknown) formatting conventions. Speci�cally, we focus on resources whose content

is formatted in either a tabular or hierarchically nested manner. A wrapper is simply a

procedure, customized to a particular information resource, for extracting the content

from such pages.

We then described inductive learning , our approach to automatically learning

wrappers (Chapter 3). Induction is the process of reasoning from a set of examples

to some hypothesis that (in some application-speci�c sense) explains or generalizes

over the examples. For example, if told that `Thatcher lied ', `Mao lied ', and `Einstein

didn't lie', an inductive learner might hypothesize that `Politicians lie'. Each example

consists of an instance and its label according to the target hypothesis. Induction is

thus a matter of reconstructing the target from a sample of its behavior on a number

of example instances. We de�ned the Induce generic learning algorithm. To learn a

193

particular hypothesis is some particular class H, Induce is provided with an oracle,

which provides a stream of examples, as well as a generalization function Generalize

H

that is specialized to the class H.

In our application, examples correspond to the query responses, and hypotheses

correspond to wrappers. The example pages are labeled with the content that is to be

extracted from them. Describing how to learn wrappers thus mainly involves de�ning

a class W of wrappers and the implementing the function Generalize

W

.

Contribution 2: Reasonably expressive yet e�ciently learnable wrapper

classes. In Chapter 4 we describe one such class, hlrt. As discussed in Section 4.2,

head-left-right-tail wrappers formalize a simple but common \programming idiom".

hlrt wrappers operate by scanning the page for speci�c constraint strings that sepa-

rate the body of the page from its head and tail (which might contain extraneous but

confusing text), as well as strings that delimit each text fragment to be extracted.

Though simple, our empirical results indicate that hlrt wrappers can handle 57%

of a recently surveyed list of actual Internet resources (Section 7.2).

In Section 4.3, we proceeded by de�ning the Generalize

hlrt

function. To do so,

we speci�ed a set of constraints (denoted C

hlrt

) that must hold if an hlrt wrapper

is to operate correctly on a given set of examples. Thus Generalize

hlrt

is a special-

purpose constraint satisfaction engine, customized to solving the constraint C

hlrt

.

Our na��ve generate-and-test implementation of Generalize

hlrt

is relatively simple.

Unfortunately, this algorithm runs very slowly; our worst-case complexity analysis

shows that it runs in time that is exponential in the number of attributes (Theo-

rem 4.4). But a careful examination of C

hlrt

reveals that it can be decomposed

into several distinct subproblems. In Section 4.4, we use this analysis to develop

the Generalize

�

hlrt

algorithm, which runs in time that is linear in the number of

attributes (Theorem 4.6).

Our experiments in Section 7.3 demonstrate that Generalize

�

hlrt

is quite fast in

194

practice. Indeed, this performance is somewhat at odds with Theorem 4.6's com-

plexity bound: while the bound is linear in the number of attributes, it is actually a

degree-six polynomial in the size of the examples. Our heuristic-case analysis (Theo-

rem 4.7 in Section 4.5) explains analytically why Generalize

�

hlrt

is so fast in practice.

In Section 7.5, we empirically validated the assumptions underlying this analysis.

In any inductive learning setting, running time is only one important resource.

The number of examples required for e�ective learning is often even more signi�-

cant. For instance, in our wrapper-construction application, each example consumes

substantial network bandwidth. The probably approximately correct (PAC) model

of inductive learning an approach to obtaining theoretical bounds on the number of

examples needed to satisfy a user-speci�ed level of performance. In Section 3.2.3 we

described the PAC model in general, and in Section 4.6 we developed a PAC model for

the hlrt wrapper class. The main result is that|under assumptions that are empir-

ically validated (Section 7.6)|the PAC model's prediction of the number of training

examples required for the hlrt class is independent of the number of attributes, and

polynomial in all relevant parameters (Theorem 4.9).

Finally, hlrt is just one of many possible wrapper classes. In Chapter 5, we de�ne

�ve more classes, lr, oclr, hoclrt, n-lr and n-hlrt. Adopting the framework

developed for the hlrt class, we describe the Generalize

W

function for each of these

�ve wrapper classes. We then compare all six classes on two grounds. First (Theorems

5.1 and 5.10), we analyze the relative expressiveness of the six wrapper classes, which

characterize the extent to which wrappers in one class can mimic the behavior of

another. Second (Theorems 4.7, 5.4, 5.7, 5.9, 5.12 and 5.14) we analyzed the heuristic-

case running time of each Generalize

W

function.

Contribution 3. Noise-tolerant techniques for automatically labeling ex-

amples. Our inductive approach to constructing wrappers requires a supply of la-

beled example pages. In Chapter 6, we describe techniques to automate this labeling

195

process. The basic idea is to take as input a library of recognizers. A recognizer is a

procedure that examines a page for instances of a particular attribute. For example,

when learning a wrapper for the country/code resource, the system takes as input

a recognizer for the countries, and another recognizer for the codes. The results of

these recognizers are then integrated to generate a label for the entire page.

Clearly, this corroboration process is trivial if each of the recognizers is perfect .

Assuming perfect recognizers is unrealistic, though corroboration is very di�cult

unless the library contains at least one perfect recognizer, which can be used to

anchor the evidence provided by the others. Corroboration is also di�cult if any of

the recognizers are unreliable (i.e., might report both spurious false positive instances

as well as miss some true positives). We developed the Corrob algorithm (Section 6.4),

which can handle recognizer libraries that contain at least one perfect recognizer, but

no unreliable recognizers. (Note that though the recognizers can not be unreliable,

they can be unsound (exhibit false positives but no false negatives) or incomplete

(false negatives but no false positives).)

The idea, then, is to use Corrob to label the example pages. But in general,

recognizers give ambiguous or incomplete information about a page's label. Thus

we face an interesting problem of learning from noisily-labeled pages. Fortunately, as

we demonstrate for the hlrt class in Section 6.5, it is relatively straightforward to

modify the Generalize

W

functions and PAC model to handle this noise. Our approach

to learning from noisy data is somewhat unusual: our wrapper induction application

is \self-correcting", in that it can usually determine which labels are correct.

Unfortunately, Corrob is very slow unless all the recognizers are perfect. We thus

developed Corrob

�

(Section 6.6), which heuristically solves a simpli�ed version of the

corroboration problem.

196

9.2 Future work

While this summary describes the progress we have made, in many ways our tech-

niques for automatic wrapper construction just scratch the surface. We now suggest

promising directions for future research.

9.2.1 Short-to-medium term ideas

The point of our e�ort is to build tools to make it easier to write wrappers for actual

Internet information resources. While our experiments and analysis demonstrate that

our techniques are e�ective for such resources, there are numerous ways to make our

system more immediately useful and practical.

First, there are many subtle user-interface issues that must be handled when de-

veloping a useful wrapper-construction tool. Our wien application (Section 7.8)

application could be improved in several ways. First, we have many ideas for

how to change the user interface to simplify the process of wrapper construction.

For example, we are experimenting with aggressive learning , in which wien starts

learning as soon as parts of the page are labeled. Of course the results of such

learning might be wrong, and thus we must provide a mechanism for easily cor-

recting wien's mistakes. Second, our six wrapper classes are rather general pur-

pose, but they are unknown outside our research group; it would be interest-

ing to select a standard wrapper language (e.g., the wrapper languages discussed

in [Ashish & Knoblock 97a, Roth & Schwartz 97, Chidlovskii et al. 97]) and extend

wien so that it builds wrappers that adhere to an emerging standard.

Second, as discussed in Section 6.7, we have not expended much e�ort developing

recognizers. To make our techniques more useful, it would be helpful to develop a

library of common recognizers. While many recognizers would no doubt be simply

idiosyncratic hacks, it would also be worthwhile trying to develop a more general

framework.

197

A third important direction, related to the second, is the elaboration of our work

on corroboration. We developed the Corrob

�

algorithm, which works very well in

the domains we have investigated. But recall that Corrob

�

makes several simpli�ca-

tions and assumptions (Section 6.6). We are a long way from e�cient corroboration

algorithms that work well with unrestricted recognizer libraries.

A fourth extension would be to investigate ways to make the generalization func-

tions (Generalize

W

for each class W) run faster. One idea would be to investigate

the search control used by these functions. Figure 4.5 on page 54 shows the space

searched by the Generalize

hlrt

function. We did not specify exactly how this space

is traversed, beyond stating that it is searched in a depth-�rst manner. Recall that

Generalize

hlrt

tries each candidate for each hlrt component; e.g., line 4.6(b) tries

all candidates for r

k

. Di�erent orderings of these candidates correspond to di�erent

ways to traverse the space of hlrt wrappers. As our experiments in Section 7.3 show,

the default search order is reasonably fast. However, more advanced search control

would probably speed up the search.

A �nal direction for short-to-medium term future work involves the wrapper

classes themselves. We have identi�ed six wrapper classes; they are reasonably useful

for actual Internet resources and yet can be learned reasonably quickly. But obvi-

ously there are many other classes that can be considered. We have two speci�c

suggestions.

� Our coverage survey (Section 7.2) suggests that the n-lr and n-hlrt wrapper

classes are less useful than anticipated; n-lr, for example, can handle just

13% of the surveyed sites. The problem is that these classes o�er tremendous

exibility; they allow for arbitrarily nested pages. But this exibility requires

that the pages be highly structured as well: there must exist a set of delimiters

that reliably extract this structure, and the constraints on these delimiters are

much more stringent than for the tabular wrappers. Unfortunately, the data

198

suggest that relatively few sites have such structure. Thus one fruitful avenue

for future work would be a more careful investigation of the issues related to

building wrappers for hierarchically nested resources.

� Our results in Section 7.2 indicate that about 30% of the surveyed information

resources can not be handled by any of the six wrapper classes we discuss. It

would be helpful to develop wrapper classes for these resources. Inspection

of these sites reveals that many contain missing attributes|e.g., in the coun-

try/code resource, perhaps the country code is occasionally missing. None of

the six wrapper classes we de�ned can handle missing attributes

1

Our pre-

liminary investigation suggests that about 20% (i.e., about two-thirds of the

unwrappable sites) could bene�t from wrappers that can handle missing values.

Our delimiter-based wrapper framework can be extended to handle missing

attributes. Consider m-lr, a simple extension to the lr wrapper class. Like

lr, m-lr uses two delimiters, `

k

and r

k

, to indicate the beginning and end

of each attribute. m-lr wrappers also use a third delimiter per attribute, x

k

,

which indicates that the attribute is missing. For example, if countries are

formatted as Congo or as <BLINK>Missing</BLINK> if missing, then

an m-lr wrapper could `

k

= , r

k

= and x

k

= <BLINK>. While we

have not investigated the coverage of the m-lr class (a la Section 7.2), it is

nonetheless usfseful to ask how quickly m-lr wrappers can be learned.

Note that for each k, delimiters `

k

and x

k

interact (just as h, t and `

1

interact

for the hlrt class). Therefore learning m-lr is slower than learning lr, since

the Generalize

m-lr

function must enumerate the combinations of candidates

for `

k

and x

k

. (As with lr, the r

k

delimiters can be learned in isolation). To

1

Actually, the n-lr and n-hlrt wrapper class can handle a special case of missing attributes: if

K attributes are to be extracted, then attributes K, K � 1, K � 2, . . .|i.e., the \bottom" several

layers of nodes in a tree such as Figure 5.2 on page 92|can be missing.

199

summarize, we conjecture that learningm-lr is harder than learning lr, though

easier than oclr, hlrt, hoclrt, n-lr and n-hlrt.

9.2.2 Medium-to-long term ideas

There are several directions in which to push our work that concern the \bigger pic-

ture". While our work on wrapper construction is an important enabling technology

for a variety of information integration applications, there are still many problems

left unsolved.

Consider �rst the task of information extraction from semi-structured resources.

We emphasized one simple version of this task: information is to be extracted from

a single document containing tuples from one relation. As a concrete example, the

information from a query to the country/code resource is contained in a single page,

and there is just one table of data on this page (namely, the country/code table).

But industrial-strength wrapper applications require more sophisticated functionality

[Doorenbos 97], such as

� extracting and merging data from multiple documents|e.g., clicking on a table

of hyper-linked product names in order to get their prices; and

� extracting information from a single page that contains more than one collection

of data|e.g., a page might contain one table listing products and prices, and

another table listing manufacturers and their telephone numbers.

It is straightforward to compose our wrappers so that such issues can be handled: a

meta-wrapper can invoke a wrapper on the pages obtained by clicking on hyper-links,

or invokes several wrappers on the same page. However, automatically constructing

such wrappers is a challenging direction for future work.

A second important long-term research direction involves closing informa-

tion integration loop. We have examined information extraction in isola-

200

tion, but our techniques must be integrated with work on resource discovery

[Bowman et al. 94, Zaiane & Jiawei 95], learning to query information resources

[Cohen & Singer 96, Doorenbos et al. 97], and learning semantic models of informa-

tion resources [Perkowitz & Etzioni 95, Tejada et al. 96].

Third, our work has focused on resources whose content is formatted by html

tags. Let us emphasize that our techniques do not depend on html or any other

particular formatting convention. Nevertheless, we have not yet demonstrated that

our techniques work for other kinds of semi-structured information resources. For

example, in Section 8.2.2, we mentioned that it would be interesting to apply our

techniques to legacy information systems.

Another possibility is to apply our techniques to various formats used to encode

tabular information, such as csv or dif (two spreadsheet standards), or various

document standards such as \Rich Text Format" (rtf) or L

A

T

E

X. For instance, the

following code samples:

standard example

html

<TABLE>

<TR><TD>A</TD><TD>B</TD><TD>C</TD></TR>

<TR><TD>D</TD><TD>E</TD><TD>F</TD></TR>

</TABLE>

csv

A,B,C

D,E,F

dif

DATA

BOT 1,0 A 1,0 B 1,0 C

BOT 1,0 D 1,0 E 1,0 F

EOD

rtf

\trowd A \cell B \cell C \cell \row

\trowd D \cell E \cell F \cell \row

L

A

T

E

X

\begin{tabular}{ccc}

A & B & C \\

D & E & F \\

\end{tabular}

201

all encode the following table:

A B C

D E F

Clearly, most if not all of these formats can be handled by the sort of delimiter-based

wrappers discussed in this thesis.

Finally, as a fourth medium-to-long term direction for future research, we propose

integrating our techniques with traditional natural language processing approaches to

information extraction (IE). E�ective IE systems should leverage whatever structure

is available in the text, whether it be linguistic or extra-linguistic. Ideally, inductive

learning techniques can be used to discover such regularities automatically.

This thesis demonstrates that such an approach is feasible for the kinds of semi-

structured documents found on the Internet. At the other end of the spectrum,

autoslog [Rilo� 93] and crystal/webfoot [Soderland et al. 95, Soderland 97b,

Soderland 97c] have demonstrated the feasibility of this approach for natural language

text. More recently, Soderland has developed whisk [Soderland 97a], which learns

information extraction rules in highly structured but non-grammatical domains such

as apartment listings. whisk's rules are essentially regular expressions, specifying

speci�c delimiters, quite similar to our delimiter-based wrappers. But truly general

purpose IE systems are still a long way o�.

9.2.3 Theoretical directions

Finally, let us mention two directions in which our theoretical analysis can be ex-

tended.

First, as discussed in Section 7.4, our PAC model is too loose by one to two

orders of magnitude. Thus we can not realistically use this PAC model to auto-

matically terminate the learning algorithm. Tightening this model would be an

interesting direction for future work. Note that the PAC model makes worst-case

assumptions about the learning task. Speci�cally, it assumes that the distribution D

202

over examples is arbitrary. A standard technique for tightening a PAC model is to

assume that D has certain properties [Benedek & Itai 88, Bartlett & Williamson 91].

[Schuurmans & Greiner 95] suggests another strategy: by replacing the \batch"

model on inductive learning with a \sequential" model in which the PAC-theoretic

analysis is repeated as each example is observed, many fewer examples are predicted.

It would be interesting to apply each of these approaches to our wrapper construction

task.

Second, although we are interested in completely automating the wrapper con-

struction process, realism demands that we focus on semi-automatic systems for some

time to come. But our techniques do not take into account the cost of asking a per-

son for assistance. For example, if a person plays the role of a recognizer for country

names, then our system requires that the person locate all the countries in the doc-

uments, even though it is possible that pointing out just one or two countries could

be su�cient for the system to guess the rest. Our investigation of aggressive learning

(Section 9.2.1) is a step in the right direction. But it would be interesting to develop a

model of learning that explicitly reasons about the utility of asking the oracle various

questions.

9.3 Conclusions

The Internet presents a dizzying array of information resources, and more are coming

on-line every day. Many of these sites|those whose goal is purely entertainment,

or the growing collection of on-line magazines and newspapers|are perhaps suited

only for direct manual browsing. But many other sites|airline schedules, retail

product catalogs, weather forecasts, stock market quotations|provide structured

data. As the number and variety of such resources has grown, many have argued for

the development of systems that automatically interact with such resources in order

to extract this structured content on a user's behalf.

203

There are many technical challenges to building such systems, but one in particular

is immediately apparent as soon as one starts to design such a system. There is a

huge amount of information available on the Internet, but machines today understand

very little of it. While standards such as xml or z39.50 promise to ameliorate this

situation, standards require cooperation or enforcement, both of which are in short

supply on the Internet today.

In this thesis, we have investigated techniques|wrapper learning algorithms, and

corroboration algorithms for generating labeled examples|that promise to signif-

icantly increase the amount of on-line information to which software agents have

access. Although our techniques make relatively strong assumptions, we have at-

tempted to empirically validate these assumptions against actual Internet resources.

As described earlier in this chapter, there are many open issues. But we think

that this thesis demonstrates that automatic wrapper construction can facilitate the

construction of a variety of software agents and information integration tools.

Appendix A

AN EXAMPLE RESOURCE AND ITS WRAPPERS

In this Appendix, we provide a concrete instance of each of the six wrapper

classes discussed in this thesis: lr, hlrt, oclr, hoclrt, n-lr and n-hlrt. We

provide examples of the html source for site 4 in the \www.search.com" survey

described in Section 7.2: \Yahoo People Search: Telephone/Address", available at

http://www.yahoo.com/search/people/. Site 4 can be wrapped by all six wrapper

classes, and so we present a wrapper in each class that is consistent with pages drawn

from this resource.

Resource 4. To begin, Figure A.1(a) shows the query interface for resource 4,

while Figure A.1(b) provides an example of the resource's query responses. The site

is treated as yielding tuples containing K = 4 attributes (name, address, area code,

and phone number).

Example 1. We now list the html source for two of the example query responses.

The html is shown exactly as supplied from the resource, except that white-space

has been altered in unimportant ways to simplify the presentation. The information

content of each page is indicated with boxes around the text to be extracted.

The �rst example is the html source of the response to the query \Last Name =

kushmerick", depicted in Figure A.1(b).

<head>

<title>

Yahoo! People Search Telephone Results

</title>

</head>

<body>

205

(a) (b)

Figure A.1: Site 4 in the survey (Figure 7.1): (a) the query interface; and (b) an

example query response.

<!--Yahoo Subcategory Banner-->

<map name="menu">

<area shape=rect coords="0,0,210,56" href="http://www.yahoo.com/">

<area shape=rect coords="210,0,265,56"

href="http://www.yahoo.com/docs/info/help.html">

<area shape=rect coords="265,0,317,56" href="http://add.yahoo.com/bin/add?">

<area shape=rect coords="319,0,446,56"

href="http://www.yahoo.com/docs/family/more.html">

</map>

<p><!-- Default Fail --><IMG SRC=/g/rlogo.gif ALT="Four11 Corp" HEIGHT=66

WIDTH=515>

<P>

If you have questions regarding privacy, please

read this.<p>

Search Again<p>

<center>

<table><tr>

<td>[</td>

<td>

Displaying matches 1-10 of 14

</td>

<td>| <a href=/cgi-bin/Four11?YahooPhoneResults&Offset=104464&Id=2&

NameCount=10&LastName=kushmerick&FirstName=&City=&State=> Next 4</td>

<td>]</td>

</tr></table>

<p>

206

<table border=1 cellpadding=4 cellspacing=0

WIDTH=100<tr><th>Name<th>Address<th>Phone</tr>

<tr>

<td> James Kushmerick</td>

<td> 125 W Curtin St, Bellefonte,PA 16823-1620</td>

<td>(814) 355-7672</td>

</tr>

<tr>

<td> Jim Kushmerick</td>

<td> 74 Clark Av, Ocean Grove,NJ 07756-1113</td>

<td>(908) 774-3603</td>

</tr>

<tr>

<td>
John M Kushmerick

</td>

<td> 503 Delaware Av #503, Olyphant,PA 18447-1620</td>

<td>(717) 489-3270</td>

</tr>

<tr>

<td> John P Kushmerick</td>

<td> 306 Powell Av, Jessup,PA 18434-1628</td>

<td>(717) 383-2017</td>

</tr>

<tr>

<td> K Kushmerick</td>

<td> 49 Center Pl, Chatham,NJ 07928-2523</td>

<td>(201) 635-5910</td>

</tr>

<tr>

<td> L & J Kushmerick</td>

<td> 47 Maplewood Av, Maplewood,NJ 07040-1221</td>

<td>(201) 762-4496</td>

</tr>

<tr>

<td> M Kushmerick</td>

<td> 36 N Main St, Sherborn,MA 01770-1514</td>

<td>(508) 650-1732</td>

</tr>

<tr>

<td> Marie Kushmerick</td>

<td> Sherwood Oaks, Mars,PA 16046</td>

<td>(412) 776-8309</td>

</tr>

<tr>

<td> Marie J Kushmerick</td>

<td> 809 Summit Pt, Scranton,PA 18508-1047</td>

<td>(717) 969-0393</td>

</tr>

<tr>

<td> Martin J Kushmerick</td>

<td> 12720 Riviera Pl Ne, Seattle,WA 98125-4642</td>

<td>(206) 367-2578</td>

</tr>

207

</table>

</center>

<table border=1><tr>

<td>[</td>

<td>

Displaying matches 1-10 of 14

</td>

<td>| <a href=/cgi-bin/Four11?YahooPhoneResults&Offset=104464&Id=2&

NameCount=10&LastName=kushmerick&FirstName=&City=&State=> Next 4</td>

<td>]</td>

</tr></table>

<HR>

<center>

<img src="http://images.Four11.com/g/Yahoo/resultsbyfour11.gif"

alt="results by Four11" width=207 height=39>

<i>Copyright © 1997 Yahoo! All Rights Reserved.

 Copyright MetroMail Corp. © 1997

</center>

</body>

Example 2. The second example is the html source of the response to the query

\First Name = weld".

<head>

<title>

Yahoo! People Search Telephone Results

</title>

</head>

<body>

<!--Yahoo Subcategory Banner-->

<map name="menu">

<area shape=rect coords="0,0,210,56" href="http://www.yahoo.com/">

<area shape=rect coords="210,0,265,56"

href="http://www.yahoo.com/docs/info/help.html">

<area shape=rect coords="265,0,317,56" href="http://add.yahoo.com/bin/add?">

<area shape=rect coords="319,0,446,56"

href="http://www.yahoo.com/docs/family/more.html">

</map>

<p><!-- Default Fail --><IMG SRC=/g/rlogo.gif ALT="Four11 Corp" HEIGHT=66

WIDTH=515>

<P>

If you have questions regarding privacy, please read this.<p>

Search Again<p>

There are over 200 names that meet your search criteria.

Try narrowing your search by specifying more parameters.

Here are the first 200 names.<P>

208

<center>

<table><tr>

<td>[</td>

<td>

Displaying matches 1-10 of 200

</td>

<td>| <a href=/cgi-bin/Four11?YahooPhoneResults&Offset=896&Id=1&

NameCount=10&LastName=&FirstName=weld&City=&State=> Next 10</td>

<td>]</td>

</tr></table>

<p>

<table border=1 cellpadding=4 cellspacing=0

WIDTH=100<tr><th>Name<th>Address<th>Phone</tr>

<tr>

<td> Weld Birmingham</td>

<td> 28 22nd Av Nw, Birmingham,AL 35215-3412</td>

<td>(205) 854-1688</td>

</tr>

<tr>

<td> Weld Butler</td>

<td> Cider Hl Rd, York,ME 03909</td>

<td>(207) 363-6104</td>

</tr>

<tr>

<td> Weld & Mary Butler</td>

<td> 11 Kings, Eliot,ME 03903</td>

<td>(
207

)
439-5137

</td>

</tr>

<tr>

<td> Weld S & Jessie Carter</td>

<td> 7405 Cresthill Ct, Fox Lake,IL 60020-1008</td>

<td>(847) 587-9890</td>

</tr>

<tr>

<td> Weld S & Ruth Carter</td>

<td> 106 Lorimer Rd, Belmont,MA 02178-1004</td>

<td>(617) 484-2027</td>

</tr>

<tr>

<td> Robert & Weld Conley</td>

<td> 312 S Beckley Sta Rd, Louisville,KY 40245-4002</td>

<td>(502) 254-2002</td>

</tr>

<tr>

<td> Weld Conley</td>

<td> 804 Corona Ct, Louisville,KY 40222</td>

<td>(502) 425-3787</td>

</tr>

<tr>

<td> Weld Coxe</td>

<td> 44 Concord Av #502, Cambridge,MA 02138-2350</td>

209

<td>(617) 492-8622</td>

</tr>

<tr>

<td> Weld H Fickel</td>

<td> Kernville #963, Kernville,CA 93238-0963</td>

<td>(619) 376-2366</td>

</tr>

<tr>

<td> Weld Field</td>

<td> Columbia,SC 29210</td>

<td>(803) 750-0001</td>

</tr>

</table>

</center>

<table border=1><tr>

<td>[</td>

<td>

Displaying matches 1-10 of 200

</td>

<td>| <a href=/cgi-bin/Four11?YahooPhoneResults&Offset=896&Id=1&

NameCount=10&LastName=&FirstName=weld&City=&State=> Next 10</td>

<td>]</td>

</tr></table>

<HR>

<center>

<img src="http://images.Four11.com/g/Yahoo/resultsbyfour11.gif"

alt="results by Four11" width=207 height=39>

<i>Copyright © 1997 Yahoo! All Rights Reserved.

 Copyright MetroMail Corp. © 1997

</center>

</body>

The wrappers. The following wrappers are consistent with these examples (as well

as eight more collected from this resource):

class wrapper

lr and n-lr h`

1

; r

1

; `

2

; r

2

; `

3

; r

2

; `

4

; r

4

i

hlrt and n-hlrt hh; t; `

1

; r

1

; `

2

; r

2

; `

3

; r

2

; `

4

; r

4

i

oclr ho; c; `

1

; r

1

; `

2

; r

2

; `

3

; r

2

; `

4

; r

4

i

hoclrt hh; t; o; c; `

1

; r

1

; `

2

; r

2

; `

3

; r

2

; `

4

; r

4

i

where

h = <body>

210

t = </body>

o = <td>

c = �

`

1

= <td>

`

2

= <td>+<td>

`

3

= (

`

4

=)

r

1

= </td>

r

2

= </td>

r

3

=)

r

4

= </td>

(Recall from Appendix C that � denotes the empty string and + is the carriage return

character.)

Note that these particular wrappers are one of many possible for each class. For

example, exhaustive enumeration reveals that there are more than twenty-�ve million

consistent lr wrappers.

Appendix B

PROOFS

B.1 Proof of Theorem 4.1

Proof of Theorem 4.1: We must prove that, for any wrapper

w = hh; t; `

1

; r

1

; : : : ; `

K

; r

k

i and example hP; Li, C

hlrt

(w; hP; Li) ()

ExecHLRT(w; P) = L. (As usual, let M = jLj be the number of tuples in the

example, and let K be the number of attributes per tuple.)

Part I ()). We demonstrate that if C

hlrt

(w; hP; Li), then:

1. b

1;1

(the �rst tuple's �rst attribute's beginning index) is calculated correctly

(i.e., the computed b

1;1

equals the corresponding value in P 's label L).

2. For each 1 � k � K and 1 � m � M , if index b

m;k

is calculated correctly, then

the end index e

m;k

is calculated correctly.

3. For each 1 � k < K and 1 � m �M , if e

m;k

is calculated correctly, then b

m;k+1

is calculated correctly.

4. For each 1 � m < M , if e

m;K

is calculated correctly, then b

m+1;1

is calculated

correctly.

5. If e

M;K

is calculated correctly, then ExecHLRT will immediately halt.

Note that establishing each of these claims su�ces to establish Part I.

1. ExecHLRT calculates b

1;1

by setting i to the position of h in P (line 4.1(a)),

and then setting b

1;1

to the �rst character following the next occurrence of `

1

(lines 4.1(c{d)). Since C

hlrt

(w; hP; Li) holds, we know that C3(h; t; `

1

; hP; Li)

holds. In particular, we know that C3(i{ii) both hold. C3(i) guarantees that

this procedure works properly: since `

1

is a proper su�x of the part of page

212

P 's head following h, searching for h and then `

1

will in fact �nd the end of

the head. Moreover, C3(ii) guarantees that the test at line 4.1(b) succeeds, so

that line 4.1(c) is actually reached.

2. ExecHLRT calculates e

m;k

by starting with index i equal to b

m;k

(line 4.1(d))

and then searching for the next occurrence of r

k

. Since C

hlrt

(w; hP; Li) holds,

we know that C1(r

k

; hP; Li) holds. Therefore, r

k

will not be found in the

attribute value itself (C1(ii)), but will be found immediately following the

attribute value (C1(i)). Therefore, searching for string r

k

at position b

m;k

does

in fact �nd index e

m;k

.

3. ExecHLRT calculates b

m;k+1

(k < K) by starting with index i equal to the

position of r

k

(line 4.1(e)), and then setting b

m;k+1

equal to the next occur-

rence of `

k+1

(line 4.1(c{d)). Since C

hlrt

(w; hP; Li) holds, we know that

C2(`

k+1

; hP; Li) holds. Therefore, `

k+1

is a proper su�x of the page frag-

ment between i and the beginning of the next tuple (which has index b

m;k+1

).

Thus ExecHLRT will indeed �nd b

m;k+1

properly.

4. ExecHLRT calculates b

m+1;1

(m < M) by starting with the index i pointing

at the end of the previous tuple, which has index e

m;K

(line 4.1(e) during

the K

th

iteration of the inner `for each' loop). Then, b

m+1;1

is calculated by

scanning forward for the next occurrence of `

1

. Since C

hlrt

(w; hP; Li) holds, we

know that C3(h; t; `

1

; hP; Li) holds. In particular, we know that C3(iv) (which

guarantees that this procedure works properly) and C3(v) (which guarantees

that the test at line 4.1(b) succeeds, so that line 4.1(c) is actually reached) both

hold.

5. After calculating e

M;K

correctly, the index i point to the �rst character of

page P 's tail, and ExecHLRT invokes the termination condition test at line

213

4.1(b). Since C

hlrt

(w; hP; Li) holds, we know that C3(h; t; `

1

; hP; Li) holds.

In particular, we know that C3(iii) holds, which ensures that this termination

condition fails, so ExecHLRT halts.

To summarize, we have shown that label L's b

m;k

and e

m;k

values are all computed

correctly, with no content being incorrectly extracted, no content being skipped, and

no \extra" content being extracted.

Part II ((). We demonstrate a contradiction. Suppose there exists an exam-

ple hP; Li such that ExecHLRT(w; P) = L, yet :C

hlrt

(w; hP; Li). Then one of

the three constraints C1{C3 must be incorrect|i.e., it must be the case that

ExecHLRT(w; P) = L even though one of C1{C3 doesn't hold.

C1: For each k, if :C1(r

k

; hP; Li), then ExecHLRT's line 4.1(f) would have cal-

culated e

m;k

incorrectly for at least one value of m. But we assumed that

ExecHLRT(w; P) = L, and thus the e

m;k

must be correct.

C2: For each k, if :C2(`

k

; hP; Li), then S

m;k�1

=`

k

6= `

k

for some particular tuple m.

But then ExecHLRT's line 4.1(d) would have calculated b

m;k

incorrectly. But we

assumed that ExecHLRT(w; P) = L, and thus b

m;k

must be correct.

C3: Constraint C3 has �ve parts:

C3(i) If this predicate does not hold, then the execution of line 4.1(a) would

set i }. The behavior of ExecHLRT under these circumstances is un-

speci�ed, but we can assume that ExecHLRT(w; P) 6= L.

1

C3(ii) If this predicate fails, then line 4.1(c) would fail to calculate b

1;1

correctly,

or the outer loop (line 4.1(b)) would iterate too few times.

C3(iii) If this predicate fails, then the outer loop (line 4.1(b)) would iterate too

many times.

1

Throughout this thesis, we ignore the issue of applying a wrapper to an inappropriate page.

These circumstances are of little theoretical signi�cance; for example, we could easily have speci�ed

formally what happens if i }, but that would have simply cluttered the algorithms while providing

little bene�t. Moreover, since these modi�cations are so simple, we do not need to be concerned

about them from a practical perspective either.

214

C3(iv) If this predicate fails for the m

th

tuple, then line 4.1(c) would fail to

calculate b

m;1

correctly.

C3(v) If this predicate fails for the m

th

tuple, then the outer loop (line 4.1(b))

would stop after m iterations instead of M .

2 (Proof of Theorem 4.1)

B.2 Proof of Lemma 4.3

Proof of Lemma 4.3: Completeness requires that, for every example set E , if

there exists a wrapper satisfying C

hlrt

for each example in E , then Generalize

hlrt

will return such a wrapper. Note that by lines 4.4(h{j), Generalize

hlrt

returns only

wrappers that satisfy C

hlrt

. Thus to prove the lemma, we need to prove that, if a

consistent wrapper exists, then line 4.4(j) is eventually reached.

We prove that Generalize

hlrt

has this property by contradiction. Let E =

fhP

1

; L

1

i; : : : ; hP

N

; L

N

ig be a set of examples and w be a wrapper such that

C

hlrt

(w; E). Suppose that Generalize

hlrt

(E) never reaches line 4.4(j)|i.e., sup-

pose that the 2K + 2 nested loops iterate completely with C

hlrt

never satis�ed.

The fact that Generalize

hlrt

never reaches 4.4(j) implies that it must have ne-

glected to consider wrapper w. In particular, Generalize

hlrt

must have neglected to

consider some of the values for one or more of w's hlrt components (h, t, `

1

, r

1

,

etc.). We now show that, on the contrary, Generalize

hlrt

considers enough candi-

dates for each hlrt component. Speci�cally, we show that for each hlrt component,

w's value for the component is among the set of candidates. Establishing this fact

su�ces to prove that w is considered at line 4.4(j), because the algorithm's nested

loop control structure (lines 4.4(a{g)) eventually considers every combination of the

candidates.

the r

k

: Suppose Generalize

hlrt

failed to consider all possible strings for the right-

hand delimiter r

k

. Generalize

hlrt

does not consider every string as a candidate

for each r

k

. Rather, lines 4.4(a{b) indicate that the candidates for r

k

are the pre-

�xes of the �rst page's S

1;k

(the k

th

intra-tuple separators for the �rst page's �rst

215

tuple).

2

But note that this restriction is required in order to satisfy constraint

C1(i). Therefore, if the r

k

value of wrapper w does not satisfy this restriction,

then it will not satisfy C1, and therefore w will not satisfy C

hlrt

(w; E). But

this is a contradiction, since we assumed that C

hlrt

(w; E) holds.

the `

k

(k > 1): A similar argument applies to each left-hand delimiter `

k

, for k > 1.

Lines 4.4(d{e) indicate that the candidates for `

k

are the su�xes of the �rst

page's S

1;k�1

(the (k�1)

th

intra-tuple separators of the �rst page's �rst tuple).

But constraint C2 requires this restriction. Therefore, if the `

k

value of wrapper

w does not satisfy this restriction, then it will not satisfy C2, and therefore w

will not satisfy C

hlrt

(w; E).

`

1

: A similar argument applies to `

1

. Line 4.4(c) indicates that the candidates for `

1

must be su�xes of P

1

's head S

0;K

, which is required to satisfy constraint C3(i).

h: A similar argument applies to the head delimiter h: Line 4.4(f) indicates that

candidates for h must by substrings of page P

1

's head S

0;K

, which is required

to satisfy constraint C3(i).

t: A similar argument applies to the tail delimiter t. Line 4.4(g) indicates that

candidates for t must by substrings of page P

1

's tail S

M;K

, which is required to

satisfy constraint C3(iii).

In summary, we have shown that wrapper w is eventually considered in line 4.4(h{i),

because su�cient candidates are always considered for each of the 2K+2 components

of w.

2 (Proof of Lemma 4.3)

B.3 Proof of Theorem 4.5

Proof of Theorem 4.5: Recall the discussion of Figure 4.5 on pages 54{55 and

pages 60{61. We saw that Generalize

hlrt

and Generalize

�

hlrt

search the same space;

they simply traverse it di�erently. Speci�cally, Generalize

hlrt

searches the tree com-

pletely, while Generalize

�

hlrt

searches the tree greedily (backtracking only over the

2

See Figure 4.2 and Equation 4.1 for a refresher on the meaning of the partition variables S

m;k

.

216

bottom three layers of nodes). If we can show that this greedy search never skips a

consistent wrapper, then we will have shown that Generalize

�

hlrt

is consistent. (Note

that since the search space is the same for both algorithms, we don't need to re-prove

that all returned wrappers satisfy C

hlrt

.)

Let E be a set of examples, and suppose that w is an hlrt wrapper that is

consistent with E . Without loss of generality, suppose that w is the only consis-

tent wrapper|informally, w's leaf in Figure 4.5 is the only one not marked `X'. By

Theorem 4.2, we know that Generalize

hlrt

will return w. We need to show that

Generalize

�

hlrt

will too.

(The assumption that w is unique causes no loss of generality because if there

were multiple such wrappers, then we could apply this proof technique to each. The

only di�culty would be that we can't guarantee which particular wrapper is returned

by Generalize

�

hlrt

, since we haven't speci�ed the order in which candidates for each

component are considered. But no matter which ordering is used, Generalize

�

hlrt

would still be consistent, because consistency requires that any|rather than some

particular|consistent wrapper be returned.)

Generalize

�

hlrt

returns wrapper w i� at each node in the search tree

Generalize

�

hlrt

chooses w's value for the corresponding wrapper component. There-

fore, Generalize

�

hlrt

will fail to return w if and only if some of w's values are rejected.

the r

k

: Generalize

�

hlrt

will not reject w's value for any of the r

k

. To see this, note

that we assumed w satis�es C

hlrt

, and therefore w's value for r

k

satis�es C1,

and therefore Generalize

�

hlrt

's line 4.6(c) will not reject the value.

the `

k

(k > 1): Generalize

�

hlrt

will not reject w's value for any of the `

k

(for k > 1).

To see this, note that we assumed w satis�es C

hlrt

, and therefore w's value

for `

k

satis�es C2, and therefore Generalize

�

hlrt

's line 4.6(f) will not reject the

value.

h, t and `

1

: Generalize

�

hlrt

will not reject w's value for h, t and `

1

. To see this,

note that we assumed w satis�es C

hlrt

, and therefore w's value for h, t and

217

`

1

satis�es C3, and therefore Generalize

�

hlrt

's line 4.6(j)|which examines all

combinations of these three components|will not reject these values.

2 (Proof of Theorem 4.5)

B.4 Proof of Theorem 4.8

Proof of Theorem 4.8: Suppose E = fhP

1

; L

1

i; : : : ; hP

N

; L

N

ig is a set of N pages

drawn independently according to distribution D, and then labeled according to the

target wrapper T . Let hlrt wrapper w = Generalize

hlrt

(E). We must show that, if

Equation 4.5 holds, then w is PAC|i.e., E

T ;D

(w) < � with probability at least 1� �.

E

T ;D

(w) measures the chance that the hypothesis wrapper w and the target wrap-

per T disagree. When do w and T disagree? That is, under what circumstances is

w(P) 6= T (P), for some particular page P ? The consistency constraints C1{C3

capture these circumstances. Speci�cally, by De�nition 4.3 and Theorem 4.1, if any

of the constraints C1{C3 fail to hold between w and hP; T (P)i, then w(P) 6= T (P),

and thus w and T disagree about P .

Consider how predicates C1{C3 apply to each of w's components. As indicated

in De�nition 4.3, these three predicates operate on the di�erent components of w:

C1 constrains each of the K r

k

components; C2 constrains each of the (K � 1) `

k

components (for k > 1); and C3 constrains h, t, and `

1

. Wrapper w disagrees with

target T on page P if any of these 2K particular constraints are violated for P .

Therefore, the chance of w disagreeing with T is equal to the chance that one or

more of the 2K separate constraints are violated. We shall proceed by establishing

that, if Equation 4.5 holds then, with high reliability, w and T disagree only rarely.

Observe that, by the probabilistic union bound

3

, we have that the chance of w

disagreeing with T is at most the sum of the chances of the 2K individual constraints

being violated.

3

The probabilistic union bound states that, for any events A and B, Pr[A _ B] � Pr[A] + Pr[B].

218

Suppose we can guarantee (to a particular level of reliability) that the K C1

constraints and (K � 1) C2 constraints each are violated with probability at most

�

4K�2

, and that the C3 constraint is violated with probability at most

�

2

. If we meet

this guarantee, then we will have shown that (with bounded reliability) w and T

disagree with probability at most K

�

4K�2

+(K � 1)

�

4K�2

+

�

2

= � |i.e., we will have

shown that w is PAC.

Now consider the following Lemma.

Lemma B.1 (Sample complexity of individual delimiters) The

following statements hold for any target T , distribution D, and 0 < � < 1.

(As usual, E is a set of N examples, comprising a total of M

tot

tuples,

and the shortest example has length R.)

1. For any 1 � k � K, if C1 holds of r

k

and every example in E, then,

with probability at most 2

�

1�

�

2

�

M

tot

, C1 is violated by a fraction �

or more (with respect to D) of the instances.

2. For any 1 < k � K, if C2 holds of `

k

and every example in E, then,

with probability at most 2

�

1�

�

2

�

M

tot

, C2 is violated by a fraction �

or more (with respect to D) of the instances.

3. If C3 holds between `

1

, h, t and every example in E, then, with

probability at most �(R)(1 � �)

N

, C3 is violated by a fraction

� or more (with respect to D) of the instances, where �(R) =

1

4

�

R

5

3

� 2R

4

3

+R

�

.

Invoking Lemma B.1 with the value � =

�

4K�2

for the (2K�1) r

k

and `

k

delimiters,

and � =

�

2

for h, t, and `

1

, we have that the chance that E

T ;D

(w) > � is at most

2K

�

1�

�

4K � 2

�

M

tot

+ 2(K � 1)

�

1�

�

4K � 2

�

M

tot

+ �(R)

�

1�

�

2

�

N

and therefore ensuring that

(4K � 2)

�

1�

�

4K � 2

�

M

tot

+ �(R)

�

1�

�

2

�

N

< �

219

su�ces to ensure that w is PAC, as claimed. (For clarity, we can rewrite this equation

as

	(K)

1�

�

	(K)

!

M

tot

+ �(R)

�

1�

�

2

�

N

< �

where 	(K) = 4K�2.) To complete the proof of Theorem 4.8, it su�ces to establish

Lemma B.1.

2 (Proof of Theorem 4.8)

Proof of Lemma B.1: We derive each part of the Lemma in turn.

Part 1 (`

k

). Wrapper component `

k

is learned by examining the M

tot

tuples in E .

We are looking for some string `

k

that occurs just to the left of the instances of the

k

th

attribute.

More abstractly, we can treat the task of learning `

k

as one of identifying a common

proper su�x

4

of a set of strings fs

1

; : : : ; s

M

tot

g, where the s

i

are the values of the

S

m;k�1

partition variables. For example, when learning `

2

using the example shown

in Figure 2.1(c), the set of examples would be the four strings

f <I>; <I>; <I>; <I>g :

Note that these four strings are the values of S

1;1

, S

2;1

, S

3;1

and S

4;1

(which in this

example happen to be identical).

Given this description of the learning task, we need to determine the chance that

`

k

is not a proper su�x of at least a fraction � (with respect to D) of the instances.

(We can treat D as a distribution over the s

i

even though D is in fact a distribution

over pages, because, from the perspective of learning a single `

k

, an example page is

equivalent to the examples of `

k

it provides.)

4

A proper su�x is a su�x that occurs only as a su�x; see Appendix C for a description of our

string algebra.

220

Let s be a string. Notice that each su�x of s can be represented as an integer I,

where I is the index in s of the su�x's �rst character. For example, the su�x abc of

the strings abcpqrabc is identi�ed with the integer I = 7, because abcpqrabc[7] =

abc. Since a su�x and its integral representation are equivalent, we use the two terms

interchangeably in this proof.

The set of all proper su�xes of a string s can be represented as an interval [1; U],

where U indicates s's shortest proper su�x. For example, the set of proper su�xes

of the string abcpqrabc can be represented as the interval [1; 6], because abc (which

starts at position 7) is the string's longest improper su�x. Note that every integer

in [1; U] corresponds to a proper su�x, and every proper su�x corresponds to an

integer in [1; U]: every string is a proper su�x of itself, and if some particular su�x

is improper, then all shorter su�xes are also improper.

In addition to being a proper su�x, `

k

must be a common proper su�x of each

example. The set of common proper su�xes of a set of strings fs

1

; : : :g is captured

by the interval [L; U]. L is the index into s

1

indicating the longest common su�x,

while U is the index into s

1

indicating the shortest common proper su�x. Notice

that implicitly these indices use s

1

as a reference string.

Observe that every integer in [L; U] corresponds to a common proper su�x, and

every common proper su�x corresponds to an integer in [L; U]: by construction,

su�xes corresponding to integers � L are common su�xes, while those corresponding

to integers � U are proper su�xes. Therefore, the intersection of these two intervals

corresponds exactly to the set of common proper su�xes.

Figure B.1 uses a su�x-tree representation to illustrate that [5; 6] represents the

common proper su�xes of the strings s

1

= rqpabcd, s

2

= dzqpabcd, s

3

= dqzabcd,

s

4

= pqzabcd and s

5

= qpabcd. That is, bcd and cd are the only proper su�xes that

are common to all �ve examples.

Figure B.2 illustrates the point of the preceding discussion: learning a common

proper su�x corresponds to learning the integer I based on a set of observed upper

221

r

q

p

b

c

d

p

q

z

q

p

d

z1

2

3

4

7

s1 = "rqpabcd"
s2 = "dzqpabcd"

s4 = "pqzabcd"

s5 = "qpbcd"

d

s3 = "dqzabcd"

a

L = 5

U = 6

Figure B.1: A su�x tree showing that the common proper su�xes of the �ve examples

can be represented as the interval [L; U] = [5; 6].

L* U*I

L U

L3 L5 L4 L2 U3 U4 U1 U2 U5L1

Figure B.2: An example of learning the integer I from lower bounds fL

1

; : : : ; L

5

g and

upper bounds fU

1

; : : : ; U

5

g.

and lower bounds on I, where I is the index into the reference string s

1

representing

the target value for `

k

. Each example s

i

provides a lower bound L

i

for I as well as an

upper bound U

i

for I. More formally, L

i

is the index in s

1

of the longest su�x shared

by s

i

and s

1

, and U

i

is the index into s

1

of the shortest proper su�x of s

i

. Given a

set of examples, our learner outputs an hypothesis corresponding to integers in the

interval [L; U], where L = max

i

L

i

is the greatest lower bound, and U = min

i

U

i

is

the least upper bound.

At this point, we can analyze the learning task in terms of a PAC model. As

shown in Figure B.2, de�ne L

�

< I to be the integer such that exactly a fraction

�

2

of the probability mass of D corresponds to strings providing a lower bound in the

range [L

�

; I]. Conceptually, L

�

is determined by starting at I and moving to the

222

left until the strings depositing their lower-bound L

i

within [L

�

; I] collectively have

probability mass exactly

�

2

. Similarly, de�ne U

�

to be the integer such that [I; U

�

]

has mass exactly

�

2

.

5

The learner will output some integer from [L; U]; what is the chance that a ran-

domly selected string will disagree with this choice? By construction, if L < L

�

or

U > U

�

, then this chance will be at least 2

�

2

= �. What is the chance that L < L

�

or

U > U

�

? By the union bound, we have that the chance of this disjunctive event is

at most the sum of the probabilities of each disjunct. Therefore, by calculating this

sum, we can obtain the probability that the learned hypothesis has error more than

�.

What is the chance that L < L

�

? L < L

�

if, amongst the M

tot

example strings,

we have seen none such that L

i

� L

�

(since, if we had seen such a string, then we

would have L � L

�

). By the construction of L

�

, the chance that a single string's

lower bound is less than L

�

is 1�

�

2

. So the chance that we see no such examples is

(1�

�

2

)

M

tot

.

A symmetrical argument applies to the chance that U > U

�

: the chance that

U > U

�

is exactly (1�

�

2

)

M

tot

.

Summing these two bounds, we have that the chance that `

k

disagrees with a

fraction � or more of the instances is at most 2

�

1�

�

2

�

M

tot

.

Part 2 (r

k

). A similar proof technique can be used to show that the same bound

applies to learning r

k

. The di�erence is that the observed lower bounds and upper

bounds are generated from the examples somewhat di�erently.

5

Since the interval is taken to be integral, it may be that no such L

�

or U

�

exists. For example,

if the interval [3; I] has mass <

�

2

while [4; I] has mass >

�

2

, then L

�

is not de�ned. In this case

we simply choose L

�

= 3:5. More generally, we allow L

�

and U

�

to be non-integral if needed. This

technicality does not a�ect the rest of the proof.

223

Speci�cally, r

k

is learned from a set of M

tot

pairs of examples strings

fhs

a

1

; s

b

1

i; : : : ; hs

a

i

; s

b

i

i; : : : ; hs

a

M

tot

; s

b

M

tot

ig:

The s

a

i

are A

m;k

partition variables, and the s

b

i

are the S

m;k

partition variables. For

example, when learning r

1

, the country/code example page provides the four pairs of

strings

fhCongo; </I>i; hEgypt; </I>i; hBelize; </I>i; hSpain; </I>ig :

Constraint C1 speci�es that r

k

must be a pre�x of every s

b

i

and that r

k

must not

occur in any s

a

i

. We need to determine the chance that r

k

does not satisfy C1 for a

fraction � or more of the instances.

An hypothesis is represented as an index I into the �rst example. For example,

the pre�x abc of the example hpqrs; abcdefi would be represented by the integer

I = 3, since abcdef[1; 3] = abc.

The interval [L; U] represents all the hypothesis satisfying constraint C1. As with

part 1, each example corresponds to a value L

i

and U

i

, and the learning task involves

returning any hypothesis in [L; U], where L = max

i

L

i

and U = min

i

U

i

.

Speci�cally, L

i

for example hs

a

i

; s

b

i

i is the shortest pre�x of s

a

1

satisfying constraint

C1. U

i

is the longest such pre�x. For instance, if we are trying to learn r

k

from the

following pairs of strings:

n

hs

a

1

= abc; s

b

1

= abcdefi; hs

a

2

= pqr; s

b

2

= abcdexi

o

then we would translate these examples into L

1

= 4, U

1

= 6, L

2

= 4 and U

2

= 5, so

that L = 4 and U = 5.

The key observation about this construction is the interval [L; U] is equivalent to

the set of hypothesis satisfying C1: G 2 [L; U] () G satis�es C1. (Proof of):

Suppose G did not satisfy C1 for example i; thus L

i

> G or U

i

< G; therefore L > G

or U < G; but G 2 [L; U]|contradiction. Proof of (: Suppose G 62 [L; U]; then

224

there exists an example i such that L

i

> G or U

i

< G; therefore G does not satisfy

C1 for example i|contradiction.)

From this point, the proof of part 2 is identical to the proof of part 1: the chance

that r

k

disagrees with a fraction � or more of the instances is at most 2

�

1�

�

2

�

M

tot

.

Part 3 (h, t, `

1

). We can think of �nding values for h, t, and `

1

as a problem of

learning within a \restricted" hypothesis space H

h;t;`

1

. Given the �rst example page

P

1

, there are only a �nite number of choices for h, t, `

1

, and thus H

h;t;`

1

has �nite

cardinality. Speci�cally, Equation 4.4 states that the number of combinations of h,

t, and `

1

is bounded by O(R

5

3

), where R = min

n

jP

n

j is the length of the shortest

example page.

6

How many hypotheses exactly? In the analysis leading to Equation 4.4, we were

concerned only with asymptotic complexity. We can re-examine the relevant parts

of Generalize

�

hlrt

to determine the actual number of h, t, `

1

combinations, jH

h;t;`

1

j.

Note that jH

h;t;`

1

j is a function (only) of R; let jH

h;t;`

1

j = �(R). Then lines 4.6(g{i)

reveal that:

�(R) =

3

p

R

�

3

p

R � 1

�

2

| {z }

h is a

substring of

a string of

length

3

p

R

�

3

p

R

�

3

p

R� 1

�

2

| {z }

t is a

substring of

a string of

length

3

p

R

�

3

p

R

|{z}

`

1

is a

su�x of a

string of

length

3

p

R

=

1

4

�

R

5

3

� 2R

4

3

+R

�

:

To summarize, we have determined �(R), which is the number of hypotheses jH

h;t;`

1

j

examined by the Generalize

�

hlrt

algorithm.

PAC bounds for �nite hypothesis spaces are well known in the literature (e.g.,

[Russell & Norvig 95, pp 553{5]). Speci�cally, it is straightforward to show that, if

6

This proof requires Assumption 4.1 only to obtain this bound; if the assumption doesn't hold,

then we get a looser, though still correct, model.

225

some hypothesis from class H is consistent with N examples, then the chance that it

disagrees with at least a fraction � of the instances is at most jHj(1� �)

N

.

Applying this bound to the problem of learning H

h;t;`

1

, we have that the chance

that h, t, and `

1

jointly disagree with at least a fraction � of the instances is at most

�(R)(1� �)

N

.

2 (Proof of Lemma B.1)

B.5 Proof of Theorem 5.1 (Details)

Proof of Theorem 5.1 (Details):

Assertion 1. Figure B.3 lists nine pages. For each page, the label (not explicitly

listed) extracts the information fhA11; A12i; hA21; A22i; hA31; A32ig from the corre-

sponding page. For example, the page marked (A), pA11qA12rA21sA22tA31uA32v, is

labeled fhh2; 4i; h6; 8ii; hh10; 12i; h14; 16ii; hh18; 20i; h22; 24iig.

7

Figure B.3 lists each of the wrapper classes: lr, hlrt, oclr and hoclrt. The

symbol \�" in a particular page's row and a particular class's column indicates that

no wrapper in the class is consistent with the given page. For example, the symbol

\�" at page (A) under column hlrt indicates that no hlrt wrapper exists which

can extract the given content from page (A). On the other hand, the hlrt wrapper

hh; t; [;]; (;)i for page (C) indicates that the given wrapper can indeed extracted

the desired content from the page.

We must verify each cell of the nine-by-four matrix. The cells not marked by

\�" can be easily veri�ed by simply running the corresponding wrapper execution.

For instance, to verify that the cell \(C){hlrt" should be marked hh; t; [;]; (;)i, we

simply run ExecHLRT with arguments -[h[A11](A12)[A21](A22)[A31](A32)t and

hh; t; [;]; (;)i and then verify that the output is correct.

7

Recall our warning in Footnote 1 on page 77 when examining Figures B.3 and B.4.

226

Verifying the cells marked \�" is more di�cult. Each requires a detailed argument

speci�c to the particular page and wrapper class in question. In this proof, we provide

such arguments for just two cells.

8

� Consider row (I). The page [ho[A11](A12)cox[A21](A22)co[A31](A32)c is

claimed to be wrappable by oclr and hoclrt, but not lr or hlrt. To see

that no consistent lr wrapper exists, note that `

1

must be a common proper

su�x of the three strings [ho[,)cox[and)co[. Clearly, [is the only such

string. But using this `

1

candidate in an lr wrapper causes ExecLR to get

confused by the page's head [ho[. Speci�cally, when attempting to extract the

page's �rst attribute (A11), ExecLR will extract [ho[A11 instead, because `

1

occurs �rst at position 1 instead of position 5.

To see that [ho[A11](A12)cox[A21](A22)co[A31](A32)c can not be wrapped

by hlrt, consider the tail delimiter t. t must be a substring of the tail)c.

However, we can not use any of the three substrings ()c,) and c), because all

three occur between the tuples and therefore confuse ExecHLRT.

� As a second example, consider row (C),

-[h[A11](A12)[A21](A22)[A31](A32)t. As with (I), there is no consis-

tent lr wrapper because all candidates for `

1

confuse ExecLR.

To see that no oclr wrapper can handle

-[h[A11](A12)[A21](A22)[A31](A32)t, notice that all candidates for

the opening delimiter o confuse ExecOCLR.

Finally, notice that row (A) in Figure B.3 corresponds to region (A) in Figure

5.1, (B) in Figure B.3 corresponds to region (B) in Figure 5.1, and so on. Thus we

8

We also implemented a computer program to enumerate and rule out every possible wrapper in

the given class. The program is complete, in that it will always �nd a wrapper if one exists, and it

will always terminate, so that if no wrapper exists, then we can in fact use the program to verify

this fact.

227

have exhibited one pair hP; Li in each of the regions (A), . . . , (I), which establishes

the �rst assertion in the proof of Theorem 5.1.

Assertions 2 and 3. Lemmas B.2 and B.3 below establish the second and third

assertions, respectively.

2 (Proof of Theorem 5.1 (Details))

Lemma B.2 �(lr) � �(oclr).

Proof of Lemma B.2: We need to show that, for every pair hP; Li 2 �(lr), if

lr wrapper w = h`

1

; r

1

; : : : ; `

K

; r

K

i satis�es w(P) = L, then oclr wrapper w

0

=

h`

1

; �; `

1

; r

1

; : : : ; `

K

; r

K

i satis�es w

0

(P) = L.

9

If we establish this assertion, then we

will have established that �(lr) � �(oclr).

To see that this assertion holds, note that oclr wrapper w

0

's o component has the

value `

1

, while c is the empty string �. But under these circumstances, the ExecOCLR

procedure is equivalent to the ExecLR procedure. Speci�cally, when o = `

1

, lines (a{

b) of ExecOCLR are equivalent to line (a{b) of ExecLR. Furthermore, when c = �,

line (c) of ExecOCLR is a \no-op".

Since we know ExecLR(w; P) = L, we conclude ExecOCLR(w

0

; P) = L.

2 (Proof of Lemma B.2)

Lemma B.3 �(hlrt) � �(hoclrt).

Proof of Lemma B.3: Substantially the same proof technique applies to Lemma

B.3 and Lemma B.2. In this case, when o = `

1

, then lines (a{b) of ExecHOCLRT

are equivalent to lines 4.1(b{c) of ExecHLRT, and when c = �, then line (c) of

ExecHOCLRT is a \no-op".

2 (Proof of Lemma B.3)

9

Recall that the empty string � is de�ned in Appendix C.

2
2
8

region

example

lr

h`

1

; r

1

; `

2

; r

2

i

hlrt

hh; t; `

1

; r

1

; `

2

; r

2

i

oclr

ho; c; `

1

; r

1

; `

2

; r

2

i

hoclrt

hh; t; o; c; `

1

; r

1

; `

2

; r

2

i

(A) pA11qA12rA21sA22tA31uA32v � � � �

(B) o[ho[A11](A12)cox[A21](A22)co[A31](A32)c � � � hh;); o; c; [;]; (;)i

(C) -[h[A11](A12)[A21](A22)[A31](A32)t � hh; t; [;]; (;)i � hh; t; [;); [;]; (;)i

(D) [h[A11](A12)h-[A21](A22)h[A21](A22)t � hh; t; [;]; (;)i hh;); [;]; (;)i hh; t; x;); [;]; (;)i

(E) ho[A11](A12)co[A21](A22)co[A31](A32)ct h[;]; (;)i hh; t; [;]; (;)i ho; c; [;]; (;)i hh; t; o; c; [;]; (;)i

(F) ho[A11](A12)cox[A21](A22)co[A31](A32)c h[;]; (;)i � ho; c; [;]; (;)i hh;); o; c; [;]; (;)i

(G) [A11](A12)t[A21](A22)[A31](A32)t h[;]; (;)i � h[;); [;]; (;)i �

(H) x[o[A11](A12)o[A21](A22)ox[A31](A32) � � ho;); [;]; (;)i �

(I) [ho[A11](A12)cox[A21](A22)co[A31](A32)c � � ho; c; [;]; (;)i hh;); o; c; [;]; (;)i

Figure B.3: One point in each of the regions in Figure 5.1.

229

B.6 Proof of Theorem 5.10 (Details)

Proof of Theorem 5.10 (Details):

Assertion 1. The proof technique used for Theorem 5.1 can be applied to the

present theorem. Figure B.4 lists one point in each of the regions marked (J) through

(U) in Figure 5.3.

Assertions 2 and 3. Lemmas B.4 and B.5 below establish the second and third

assertions, respectively.

2 (Proof of Theorem 5.10 (Details))

Lemma B.4 (�(n-lr) \ �(hlrt)) � �(lr).

Proof of Lemma B.4: Let hP; Li be some page wrappable by both n-lr and hlrt:

hP; Li 2 (�(n-lr) \ �(hlrt)). Since hP; Li is wrappable by hlrt, it must have a

tabular (as opposed to nested) structure. Let w be an n-lr wrapper consistent with

hP; Li. Since P has a tabular structure, then ExecLR(w; P) = L; i.e., when treated as

an lr wrapper, the n-lr wrapper w is consistent with hP; Li. (To see this, note that

P is tabular and so line (i) of ExecN-LR always �nds attribute k+1 after attribute k.

Therefore, the ExecLR routine operates properly when using the same attribute `

k

.)

Since there exists a w such ExecLR(w; P) = L, we have that hP; Li 2 �(lr).

2 (Proof of Lemma B.4)

Lemma B.5 (�(n-hlrt) \ �(lr)) � �(hlrt).

Proof of Lemma B.5: Essentially the same proof applies at for Lemma B.4. The

di�erence is that instead of treating an n-lr wrapper as an lr wrapper (the technique

used in the previous proof), we rely on the fact that if a given page is tabular, then

an n-hlrt wrapper operates correctly when treated as an hlrt wrapper.

2
3
0

region

example

lr

h`

1

; r

1

; `

2

; r

2

i

hlrt

hh; t; `

1

; r

1

; `

2

; r

2

i

n-lr

h`

1

; r

1

; `

2

; r

2

i

n-hlrt

hh; t; `

1

; r

1

; `

2

; r

2

i

(J) pA11qA12rA21sA22tA31uA32v � � � �

(K) [h[A11][(A12)[A21](A22)[A31](A32)t � hh; t; [;]; (;)i � �

(L) [A11][(A12)t[A21](A22)[A31](A32)t h[;]; (;)i � � �

(M) h[A11][(A12)[A21](A22)[A31](A32)t h[;]; (;)i hh; t; [;]; (;)i � �

(N) h[A11]-(A12)[A21](A22)[A31](A32)t(h[;]; (;)i hh; t; [;]; (;)i � hh; t; [;]; (;)i

(O) [h[A11](A12)[A21](A22)[A31](A32)t � hh; t; [;]; (;)i � hh; t; [;]; (;)i

(P) [h[A11i][A11ii](A12)[A21](A22)[A31](A32)t � � � hh; t; [;]; (;)i

(Q) [A11i][A11ii](A12)t[A21](A22)[A31](A32)t � � h[;]; (;)i �

(R) [A11](A12)t[A21](A22)[A31](A32)t h[;]; (;)i � h[;]; (;)i �

(S) h[A11])t(A12)[A21](A22)[A31](A32)t h[;]; (;)i hh; t; [;]; (;)i h[;]; (;)i �

(T) h[A11](A12)[A21](A22)[A31](A32)t h[;]; (;)i hh; t; [;]; (;)i h[;]; (;)i hh; t; [;]; (;)i

(U) h[A11i][A11ii](A12)[A21](A22)[A31](A32)t � � h[;]; (;)i hh; t; [;]; (;)i

Figure B.4: One point in each of the regions in Figure 5.3.

231

2 (Proof of Lemma B.5)

B.7 Proof of Theorem 6.1

Proof of Theorem 6.1: Let � be a recognizer library satisfying Assumption 6.1,

let P be a page, let L

�

be P 's true label, and let L = Corrob(P;�). Correctness

requires that there exists some member of L that matches L

�

. To establish this

assertion, we �rst show how to construct a label L that matches L

�

, and then show

that L 2 L.

Constructing L from L

�

. L's attribute ordering is identical to that of L

�

. L also

contains exactly the same instances as L

�

, except that any instance hb; e; F

k

i from L

�

is replaced by \?" if hb; ei was not recognized (i.e., hb; ei 62 R

F

k

(P)).

For example, consider the following example recognizer library output:

R

cap

perfect

h29; 34i

h49; 54i

h69; 74i

R

ctry

incomplete

h35; 40i

R

code

perfect

h22; 27i

h42; 47i

h62; 67i

In this case, we construct L from L

�

as follows:

true label L

�

constructed label L

ctry code cap

h15; 20i h22; 27i h29; 34i

h35; 40i h42; 47i h49; 54i

h55; 60i h62; 67i h69; 74i

=)

ctry code cap

? h22; 27i h29; 34i

h35; 40i h42; 47i h49; 54i

? h62; 67i h69; 74i

Note that L is identical to L

�

except that two ctry instances|h15; 20i and h55; 60i|

are omitted, because neither is a member of R

ctry

(P).

Showing that L 2 L. It is clear from the previous discussion that L matches L

�

,

in the sense required for the set L to qualify as a solution to the labeling problem

hP;�i. Thus to complete the proof we need to show that L 2 L.

232

Let \�" be the attribute ordering of L

�

and L; note that the ordering is

the same for both. Let f: : : ; hb; e; F

k

i; : : :g be the instances in L. Now par-

tition f: : : ; hb; e; F

k

i; : : :g into two parts: I

unsnd

= fhb; e; F

k

i j unsnd(R

F

k

)g,

the set of instances recognized by the unsound recognizers; and I

:unsnd

=

fhb; e; F

k

i j :unsnd(R

F

k

)g, the set of instances recognized by the incomplete or per-

fect recognizers.

To show that L 2 L, we must demonstrate that the following �ve assertions hold.

1. I

:unsnd

is the set of instances returned by the call to NTPSet at line 6.1(a),

so that NTPSet = I

:unsnd

.

2. I

unsnd

is one of the sets of instances returned by the call to PTPSets at line

6.1(b); so that eventually PTPSet = I

unsnd

;

3. \�" is one of the orderings returned by the call to Orders at line 6.1(c).

4. When invoked at line 6.1(d) with NTPSet = I

:unsnd

, PTPSet = I

unsnd

and attribute ordering \�", the function invocation Consistent?(\�";NTPSet[

PTPSet) returns true, thereby ensuring that:

MakeLabel(\�";NTPSet [PTPSet) 2 L:

5. Finally, when invoked at line 6.1(e) with NTPSet = I

:unsnd

, PTPSet =

I

unsnd

and attribute ordering \�", label L is returned by the function in-

vocation

MakeLabel(\�";NTPSet [PTPSet):

We now establish each item on this list.

1. The function NTPSet simply collect the instances recognized by each of the

perfect or incomplete recognizers. So we have that hb; e; F

k

i 2 I

:unsnd

()

hb; e; F

k

i 2 NTPSet(P;�), and thus I

:unsnd

= NTPSet(P;�).

233

2. Consider partitioning I

unsnd

according to the attribute F

k

to which they be-

long: I

F

k

unsnd

= fhb; ei j hb; e; F

k

i 2 I

unsnd

g. Note that unsound recognizers

never produce false negatives, and therefore I

F

k

unsnd

� R

F

k

(P). Furthermore,

note that jI

F

k

unsnd

j = M , where M is the number of rows in L

�

. Now, since

the PTPSets subroutine returns the cross product of all subsets of size M for

all sets R

F

k

(P) of instances recognized by unsound recognizers, we know that

the particular set I

unsnd

will be among those returned.

3. Orders returns the set of all possible attribute orderings and therefore it must

include the ordering \�".

4. To review, we know now that L's attribute ordering \�", NTP instances

I

:unsnd

, and PTP instances I

unsnd

will eventually be considered at lines

6.1(d{e). Thus we know that Corrob is prepared to add L to L. So the only re-

maining questions are: Does Consistent? return true, and, if so, doesMakeLabel

correctly produce L from these inputs?

To see that Consistent? returns true for these inputs, note that Consistent?

veri�es that a label exists with the given attribute ordering and all the given

instances. Since L is such a label, we know that Consistent? must return true.

5. Moreover, note that there is exactly one such label|i.e., L is the only label that

can be constructed from \�" and I

:unsnd

[I

unsnd

. To see this, note that

I

:unsnd

[I

unsnd

contain a subset of L

�

's instances, and since the attribute

ordering is �xed, each instance recognized by an incomplete recognizer belongs

to exactly one row in L. Therefore, MakeLabel returns L for the given inputs.

2 (Proof of Theorem 6.1)

Appendix C

STRING ALGEBRA

The consistency predicates C1{C5 and the ExecW execution functions for each

wrapper class W are de�ned in terms of the following concise string algebra.

� We assume an alphabet �. We don't restrict the alphabet, though we have in

mind the ascii characters. The symbol \+" refers to the new-line character.

� In this Appendix, s, s

0

, etc. are strings over �. The length of string s is written

jsj. The empty string is denoted \�". Adjacency indicates concatenation: \ss

0

"

denotes the string s followed by s

0

.

� \=" is the string search operator: string s=s

0

is the su�x of s starting from the

�rst occurrence of s

0

. For example, abcdecdf=cd = cdecdf. The empty string

� occurs at the beginning of every: s=� = s.

� If s does not contain s

0

, then we write s=s

0

= }. For example, abc=xyz = }. We

stipulate that \=" propogates failure: s=} = }=s = }. Also, for convenience

we de�ne j}j =1.

� One common use of the search operator is to determine if one string is a proper

su�x of another. We say that s

0

is a proper su�x of string s if s

0

is a su�x of

s and moreover s

0

occurs only as a su�x of s. Note that s

0

is a proper su�x of

s if and only if s=s

0

= s

0

.

235

� A second common use of the string search operator is to determine if one string

occurs before another in some third string. Note that s

0

occurs after s

00

in s if

and only if js=s

0

j < js=s

00

j.

� \#" is the string index operator: s#s

0

= jsj�js=s

0

j+1. As with s=s

0

, s#s

0

= }

if s does not contain s

0

. For example, abcdefg#cde = 3, while abcdefg#xyz =

}.

� The substring operator s[b; e] extracts from s characters b though e, where b

and e are one-based integral indices into s. For example, abcdef[3; 4] = cd. s[b]

is an abbreviation for s[b; jsj]. For example, abcdef[3] = cdef.

BIBLIOGRAPHY

[Adali et al. 96] Adali, S., Candan, K., Papakonstantinou, Y., and Subrahmanian,

V. Query caching and optimization in distributed mediator systems. In

Procceedings of SIGMOD-96, 1996.

[Aiken 95] Aiken, P. Data Reverse Engineering: Staying the Legacy Dragon. McGraw

Hill, 1995.

[Andreoli et al. 96] Andreoli, J., Borgho�, U., and Pareschi, R. The Constraint-

Based Knowledge Broker Mode: Semantics, Implementation and Analysis.

J. Symbolic Computation, 21(4):635{67, 1996.

[Angluin & Laird 88] Angluin, D. and Laird, P. Learning from noisy examples. Ma-

chine Learning, 2(4):343{70, 1988.

[Angluin & Smith 83] Angluin, D. and Smith, C. Inductive inference: Theory and

methods. ACM Computing Surveys, 15:237{69, 1983.

[Angluin 82] Angluin, D. Inference of reversible languages. J. ACM, 29(3):741{65,

1982.

[Angluin 87] Angluin, D. Learning regular sets from queries and counterexamples.

Information and Computation, 75:87{106, 1987.

[Angluin 92] Angluin, D. Computational learning theory: survey and selected bibli-

ography. In Proc. 24th ACM Symp. Theory Comp., pages 351{69, 1992.

[ANSI 92] ANSI. Database Language SQL, 1992. Standard X3.135-1992.

[Arens et al. 96] Arens, Y., Knoblock, C., Chee, C., and Hsu, C. SIMS: Single inter-

face to multiple sources. TR RL-TR-96-118, USC Rome Labs, 1996.

237

[ARPA 95] ARPA. Proc. 6th Message Understanding Conf. Morgan Kaufmann,

1995.

[Ashish & Knoblock 97a] Ashish, N. and Knoblock, C. Semi-automatic wrapper gen-

eration for Internet information sources. In Proc. Cooperative Information

Systems, 1997.

[Ashish & Knoblock 97b] Ashish, N. and Knoblock, C. Wrapper Generation for

Semi-structured Information Sources. In Proc. ACM SIGMOD Workshop

on Management of Semi-structured Data, 1997.

[Bartlett & Williamson 91] Bartlett, P. and Williamson, R. Investigating the distri-

butional assumptions of the PAC learning model. In Proc. 4th Workshop

Computational Learning Theory, pages 24{32, 1991.

[Benedek & Itai 88] Benedek, G. and Itai, A. Learnability by �xed distributions. In

Proc. 1st Workshop Computational Learning Theory, pages 80{90, 1988.

[Biermann & Feldman 72] Biermann, A. and Feldman, J. On the synthesis of �nite

state machines from samples of their behavior. IEEE Trans. on Computers,

C-21:592{7, 1972.

[Blumer et al. 89] Blumer, A., Ehrenfeucht, A., Haussler, D., and Warmuth, M.

Learnability and the Vapnik-Cherv�onenkis dimension. J. ACM, 36(4):929{

65, 1989.

[Borgman & Siegfried 92] Borgman, C. and Siegfried, S. Getty's Synoname and its

cousin: A survey of applications of personal name-matching algorithms. J.

Amer. Soc. of Information Science, 43:459{76, 1992.

[Bowman et al. 94] Bowman, M., Danzig, P., Manber, U., and Schwartz, F. Scalable

Internet discovery: Research problems and approaches. C. ACM, 37(8):98{

107, 1994.

[Bradshaw 97] Bradshaw, J., editor. Intelligent Agents. MIT Press, 1997.

238

[Brodie & Stonebraker 95] Brodie, M. and Stonebraker, M. Migrating Legacy Sys-

tems: Gateways, Interfaces, & the Incremental Approach. Morgan Kauf-

mann, 1995.

[Carey et al. 95] Carey, M., Haas, L., Schwarz, P., Arya, M., Cody, W., Fagin,

R., Flickner, M., Luniewski, A., Niblack, W., Petkovic, D., Thomas, J.,

Williams, J., and Wimmers, E. Towards heterogeneous multimedia infor-

mation systems: The Garlic approach. In Proc. 5th Int. Workshop of Re-

search Issues in Data Engineering: Distributed Object Management, pages

124{31, 1995.

[Chawathe et al. 94] Chawathe, S., Garcia-Molina, H., Hammer, J., Ireland, K., Pa-

pakonstantinou, Y., Ullman, J., and Widom, J. The TSIMMIS project:

Integration of heterogeneous information sources. In Proc. 10th Meeting of

the Information Processing Soc. of Japan, pages 7{18, 1994.

[Chidlovskii et al. 97] Chidlovskii, B., Borgho�, U., and Chevalier, P. Towards So-

phisticated Wrapping of Web-based Information Repositories. In Proc.

Conf. Computer-Assisted Information Retrieval, pages 123{35, 1997.

[Cohen & Singer 96] Cohen, W. and Singer, W. Learning to Query the Web. In Proc.

Workshop Internet-based Information Systems, 13th Nat. Conf. Arti�cial

Intelligence, pages 16{25, 1996.

[Collet et al. 91] Collet, C., Huhns, M., and Shen, W. Resource integration using a

large knowledge base in CARNOT. IEEE Computer, 1991.

[Cowie & Lehnert 96] Cowie, J. and Lehnert, W. Information extraction. C. ACM,

39(1):80{91, 1996.

[Decatur & Gennaro 95] Decatur, S. and Gennaro, R. On Learning from Noisy and

Incomplete Examples. In Proc. 8th Annual ACM Conf. Computational

Learning Theory, pages 353{60, 1995.

239

[Decker et al. 97] Decker, K., Sycara, K., and Williamson, M. Middle-agents for the

internet. In Proc. 15th Int. Joint Conf. AI, pages 578{83, 1997.

[Dietterich & Michalski 83] Dietterich, T. and Michalski, R. A comparative review

of selected methods for learning from examples. In [Michalski et al. 83],

chapter 3, pages 41{82.

[Doorenbos 97] Doorenbos, R., October 1997. Personal communication.

[Doorenbos et al. 97] Doorenbos, R., Etzioni, O., and Weld, D. A scalable

comparison-shopping agent for the World-Wide Web. In Proc. Autonomous

Agents, pages 39{48, 1997.

[Douglas & Hurst 96] Douglas, S. and Hurst, M. Layout and language: Lists and

tables in tehcnical documents. In Proc. SIGPARSE, pages 19{24, 1996.

[Douglas et al. 95] Douglas, S., Hurst, M., and Quinn, D. Using Natural Language

Processing for Identifying and Intepreting Tables in Plain Text. In Proc. 4th

Symp. Document Analysis and Information Retrieval, pages 535{46, 1995.

[Draper 97] Draper, D., October 1997. Personal communication.

[Etzioni & Weld 94] Etzioni, O. and Weld, D. A softbot-based interface to the Inter-

net. C. ACM, 37(7):72{6, 1994.

[Etzioni 93] Etzioni, O. Intelligence without robots: A reply to Brooks. AI Magazine,

14(4):7{13, 1993.

[Etzioni 96a] Etzioni, O. Moving up the information food chain: softbots as infor-

mation carnivores. In Proc. 13th Nat. Conf. AI, 1996.

[Etzioni 96b] Etzioni, O. The World Wide Web: quagmire or gold mine? C. ACM,

37(7):65{8, 1996.

240

[Etzioni et al. 93] Etzioni, O., Lesh, N., and Segal, R. Building softbots for UNIX

(preliminary report). Technical Report 93-09-01, University of Washington,

1993.

[Etzioni et al. 94] Etzioni, O., Maes, P., Mitchell, T., and Shoham, Y., editors. Work-

ing Notes of the AAAI Spring Symposium on Software Agents, Menlo Park,

CA, 1994. AAAI Press.

[Finin et al. 94] Finin, T., Fritzson, R., McKay, D., and McEntire, R. KQML: A lan-

guage and protocol for knowledge and information exchange. In Knowledge

Building and Knowledge Sharing. Ohmsha and IOS Press, 1994.

[Florescu et al. 95] Florescu, D., Rashid, L., and Valduriez, P. Using heterogeneous

equivalences for query rewriting in multi-database systems. In Proc. Coop-

erative Information Systems, 1995.

[Freitag 96] Freitag, D. Machine Learning for Information Extraction from Online

Documents: A Preliminary Experiment. Unpublished manuscript, 1996.

Available at www.cs.cmu.edu/afs/cs.cmu.edu/user/dayne/www/prelim.ps.

[Freitag 97] Freitag, D. Using grammatical inference to improve precision in infor-

mation extraction. In Working Papers of the Workshop on Automata In-

duction, Grammatical Inference, and Language Acquisition, 14th Int. Conf.

Machine Learning, 1997. Available at http://www.cs.cmu.edu/~pdupont/-

ml97p/ml97 GI wkshp.tar.

[Friedman & Weld 97] Friedman, M. and Weld, D. E�ciently executing information-

gathering plans. In Proc. 15th Int. Joint Conf. AI, pages 785{91, 1997.

[Goan et al. 96] Goan, T., Benson, N., and Etzioni, O. A grammar inference algo-

rithm for the world wide web. In Proc. AAAI Spring Symposium on Machine

Learning in Information Access, 1996.

[Gold 78] Gold, E. Complexity of automaton identi�cation from given data. Infor-

mation and Control, 37(3):302{320, 1978.

241

[Green & Krishnamoorthy 95] Green, E. and Krishnamoorthy, M. Model-Based

Analysis of Printed Tables. In Proc. 3rd Int. Conf. Document Analysis

and Recognition, 1995.

[Gupta 89] Gupta, A., editor. Integration of Information Systems: Bridging Hetero-

geneous Databases. IEEE Press, 1989.

[Haussler 88] Haussler, D. Quantifying inductive bias. J. Arti�cial Intelligence,

36(2):177{221, 1988.

[Hayes 94] Hayes, P. NameFinder: Softwre that �nds names in text. In Proc. Conf.

Computer-Assisted Information Retrieval, pages 762{74, 1994.

[Hobbs 92] Hobbs, J. The generic information extraction system. In Proc. 4th Mes-

sage Understanding Conf., 1992.

[Kearns & Vazirani 94] Kearns, M. and Vazirani, U. An introduction to computa-

tional learning theory. MIT, 1994.

[Kearns 93] Kearns, M. E�cient Noise-Tolerant Learning from Statistical Queries.

In Proc. 25th Annual ACM Symp. Theory of Computing, pages 392{401,

1993.

[Kirk et al. 95] Kirk, T., Levy, A., Sagiv, Y., and Srivastava, D. The Information

Manifold. In AAAI Spring Symposium: Information Gathering from Het-

erogeneous, Distributed Environments, pages 85{91, 1995.

[Knuth et al. 77] Knuth, D., Morris, J., and Pratt, V. Fast pattern matching in

strings. SIAM J. Computing, 6(2):323{50, 1977.

[Krulwich 96] Krulwich, B. The BargainFinder agent: Comparison price shopping

on the Internet. In Williams, J., editor, Bots and Other Internet Beasties,

chapter 13. SAMS.NET, 1996.

242

[Kwok & Weld 96] Kwok, C. and Weld, D. Planning to gather information. In Proc.

13th Nat. Conf. AI, 1996.

[Levy et al. 96] Levy, A., Rajaraman, A., and Ordille, J. Query-answering algorithms

for information agents. In Proc. 13th Nat. Conf. AI, 1996.

[Luke et al. 97] Luke, S., Spector, L., Rager, D., and Hendler, J. Ontology-based

web agents. In Proc. First Int. Conf. Autonomous Agents, 1997.

[Martin & Biggs 92] Martin, A. and Biggs, N. Computational learning theory: An

introduction. Cambridge University Press, 1992.

[Michalski 83] Michalski, R. A theory and methodology of inductive learning. In

[Michalski et al. 83], chapter 4, pages 83{135.

[Michalski et al. 83] Michalski, R., Carbonell, J., and Mitchell, T., editors. Machine

Learning | An Arti�cial Intelligence Approach. Morgan Kaufman, 1983.

[Mitchell 80] Mitchell, T. The need for biases in learning generalizations. Technical

Report CBM-TR-117, Dept. of Computer Science, Rutgers Univ., 1980.

[Mitchell 97] Mitchell, T. Machine Learning. McGraw Hill, 1997.

[Monge & Elkan 96] Monge, A. and Elkan, C. The �eld matching problem: Algo-

rithms and applications. In Proc. 2nd Int. Conf. Knowledge Discovery and

Data Mining, 1996.

[Paik et al. 93] Paik, W., Liddy, E., Yu, E., and McKenna, M. Categorizing and

standardizing proper nouns for e�cient retrieval. In Proc. Assoc. for Com-

putational Linguistics Workshop on the Aquisition of Lexical Knowledge

from Text, 1993.

[Papakonstantinou et al. 95] Papakonstantinou, Y., Garcia-Monlina, H., and

Widom, J. Object exchange across heterogeneous information sources. In

Proc. 11th Int. Conf. Data Engineering, pages 251{60, 1995.

243

[Perkowitz & Etzioni 95] Perkowitz, M. and Etzioni, O. Category translation: Learn-

ing to understand information on the Internet. In Proc. 14th Int. Joint Conf.

AI, pages 930{6, 1995.

[Perkowitz et al. 97] Perkowitz, M., Doorenbos, R., Etzioni, O., and Weld, D. Learn-

ing to understand information on the Internet: An example-based approach.

J. Intelligent Information Systems, 8(2):133{153, 1997.

[Rau 91] Rau, L. Extracting company names from text. In Proc. 9th Nat. Conf. AI,

1991.

[Rilo� 93] Rilo�, E. Automatically Constructing a Dictionary for Information Ex-

traction Tasks. In Proc. 11th Nat. Conf. AI, pages 811{6, 1993.

[Roth & Schwartz 97] Roth, M. and Schwartz, P. Don't scrap it, wrap it! A wrapper

architecture for legacy data sources. In Proc. 22nd VLDB Conf., pages

266{75, 1997.

[Rus & Subramanian 97] Rus, D. and Subramanian, D. Customizing information

capture and access. ACM Trans. Information Systems, 15(1):67{101, 1997.

[Russell & Norvig 95] Russell, S. and Norvig, P. Arti�cial Intelligence: A Modern

Approach. Prentice Hall, 1995.

[Schuurmans & Greiner 95] Schuurmans, D. and Greiner, R. Practical PAC Learn-

ing. In Proc. 14th Int. Joint Conf. AI, pages 1169{75, 1995.

[Selberg & Etzioni 95] Selberg, E. and Etzioni, O. Multi-service search and compar-

ison using the metacrawler. In Proc. 4th World Wide Web Conf., pages

195{208, Boston, MA USA, 1995.

[Selberg & Etzioni 97] Selberg, E. and Etzioni, O. The metacrawler architecture for

resource aggregation on the web. IEEE Expert, 12(1):8{14, January 1997.

244

[Shakes et al. 97] Shakes, J., Langheinrich, M., and Etzioni, O. Dynamic reference

sifting: a case study in the homepage domain. In Proc. 6th World Wide

Web Conf., 1997. See http://www.cs.washington.edu/research/ahoy.

[Shklar et al. 94] Shklar, L., Thatte, S., Marcus, H., and Sheth, A. The InfoHarness

Information Integration Platform. In Proc. 2nd Int. WWW Conf., 1994.

[Shklar et al. 95] Shklar, L., Shah, K., and Basu, C. Putting Legacy Data on the

Web: A Repository De�nition Language. In Proc. 3rd Int. WWW Conf.,

1995.

[Smeaton & Crimmins 97] Smeaton, A. and Crimmins, F. Relevance Feedback and

Query Expansion for Searching the Web: A Model for Searching a Digital

Library. In Proc. 1st European Conf. Digital Libraries, pages 99{112, 1997.

[Soderland 97a] Soderland, S., October 1997. Personal communication.

[Soderland 97b] Soderland, S. Learning Text Analysis Rules for Domain-Speci�c Nat-

ural Language Processing. PhD dissertation, University of Massachusetts,

1997.

[Soderland 97c] Soderland, S. Learning to Extract Text-based Information from the

World Web. In Proc. 3rd Int. Conf. Knowledge Discovery and Data Mining,

1997.

[Soderland et al. 95] Soderland, S., Fisher, D., Aseltine, J., and Lehnert, W. CRYS-

TAL: Inducing a Conceptual Dictionary. In Proc. 14th Int. Joint Conf. AI,

pages 1314{21, 1995.

[Tanida & Yokomori 92] Tanida, N. and Yokomori, T. Polynomial-time identi�cation

of strictly regular languages in the limit. IEICE Tran. Information and

Systems, E75-D(1):125{32, 1992.

245

[Tejada et al. 96] Tejada, S., Knoblock, C., and Minton, S. Learning models for

multi-source integration. In Proc. AAAI Spring Symposium on Machine

Learning in Information Access, 1996.

[Valiant 84] Valiant, L. A theory of the learnable. C. ACM, 27(11):1134{42, 1984.

[Vapnik & Cherv�onenkis 71] Vapnik, V. and Cherv�onenkis, A. On the uniform con-

vergence of relative frequencies of events to their probabilities. Theory of

Probability and its Applications, 16(2):264{80, 1971.

[Wooldridge & Jennings 95] Wooldridge, M. and Jennings, N., editors. Intelligent

Agents. Springer Verlag, 1995.

[Zaiane & Jiawei 95] Zaiane, O. R. and Jiawei, H. Resource and knowledge discovery

in global information systems: A preliminary design and experiment. In

Proc. KDD, pages 331{6, 1995.

VITA

Nicholas Kushmerick received his B.S. degree in Computer Engineering, with Uni-

versity Honors, from Carnegie Mellon University in 1989. From 1989{91, he worked

as a research programmer in CMU's Psychology Department. From 1991{97, he

was a graduate student in the University of Washington's Department of Computer

Science and Engineering. He received his M.S. degree in 1994 and his Ph.D. de-

gree in 1997. In 1994{95, he was a visiting researcher at the Center for Theoretical

Study (Charles University) and the Institute for Information Theory and Automation

(Czech Academy of Science) in Prague. In 1998, Nick will join the Department of

Computer Applications at Dublin City University as a Lecturer.

