
Dynamically Discovering Likely Program Invariants

to Support Program Evolution

Michael Ernst

y

, Jake Cockrell

y

, William G. Griswold

z

, and David Notkin

y

University of Washington Technical Report UW-CSE-98-08-03

August 27, 1998

y

Dept. Computer Science & Engineering

University of Washington

Box 352350, Seattle WA 98195-2350 USA

+1-206-543-1695

fmernst,jake,notking@cs.washington.edu

z

Dept. Computer Science & Engineering

University of California San Diego, 0114

La Jolla, CA 92093-0114 USA

+1-619-534-6898

wgg@cs.ucsd.edu

ABSTRACT

Explicitly stated program invariants can help program-

mers by identifying program properties that must be

preserved when modifying code. In practice, however,

these invariants are usually implicit. An alternative to

expecting programmers to fully annotate code with in-

variants is to automatically infer invariants from the

program itself. This research focuses on dynamic tech-

niques for discovering invariants from execution traces.

This paper reports two results. First, it describes

techniques for dynamically discovering invariants, along

with an instrumentation and inference engine that em-

bodies these techniques. Second, it reports on the ap-

plication of the engine to two sets of target programs.

In programs from Gries's work on program derivation,

we rediscovered prede�ned invariants. In C programs

lacking explicit invariants, we discovered invariants that

assisted a software evolution task.

Keywords

Program invariants, formal speci�cation, software evo-

lution, dynamic extraction, logical inference, pattern

recognition

1 INTRODUCTION

Invariants play a central role in program development.

Representative uses include re�ning a speci�cation into

a correct program, static veri�cation of invariants such

as type declarations, and run-time checking of invariants

encoded as assert statements.

Invariants play an equally critical role in software evo-

lution. In particular, invariants can protect a program-

mer from making changes that inadvertently violate as-

sumptions upon which the program's correct behavior

depends. The near absence of explicit invariants in ex-

isting programs makes it all too easy for programmers

to introduce errors while making changes.

An alternative to expecting programmers to annotate

code with invariants is to automatically infer invariants.

In this research, we focus on the dynamic discovery of in-

variants: we execute a program on a collection of inputs

and extract variable values from which we then infer in-

variants. As with other dynamic approaches such as

testing, the accuracy of the inferred invariants depends

on the quality and completeness of the test cases; ad-

ditional test cases might provide new data from which

more accurate invariants can be inferred. This approach

is complementary to static approaches which examine

the program text but do not run the program.

This paper presents two related results stemming from

our initial experiences with this approach. Our �rst

result is a set of techniques, and an implementation, for

discovering invariants from execution traces (Section 3).

Our second result is the application of the engine to two

sets of target programs. The �rst set of programs, taken

from The Science of Programming [Gri81], was derived

from formal preconditions, postconditions, and loop in-

variants. Given runs of the program based on random-

ized inputs, our techniques derive those same program

properties, plus some additional ones (Section 2). In

contrast, the second set|eight C programs, originally

from Siemens [HFGO94], and modi�ed by Rothermel

and Harrold [RH98]|is not annotated with invariants,

nor is there any indication that invariants were used in

their construction. Section 4 shows how numeric invari-

ants dynamically inferred from these programs assist in

understanding, and making changes to, them.

Section 5 presents performance measurements and dis-

cusses techniques for mitigating combinatorial blowups

and otherwise improving runtime. Section 6 surveys re-

lated work, and Section 7 concludes.

2 REDISCOVERY OF INVARIANTS

To introduce our approach and illustrate the output

of our tool, we present the invariants detected in a

simple program taken from The Science of Program-

ming [Gri81], a book that espouses deriving programs

from speci�cations. Unlike typical programs, for which

it may be di�cult to determine the desired output of in-

variant detection, many of the book's programs include

preconditions, postconditions, and loop invariants that

embody important properties of the computation. Our

invariant detector successfully reports all the formally-

speci�ed preconditions, postconditions, and loop invari-

ants in chapters 14 and 15 of the book (chapter 14 is

the �rst in which such programs appear).

As a simple example, consider a program that sums the



i; s := 0; 0;

do i 6= n!

i; s := i+ 1; s+ b[i]

od

Precondition: n � 0

Postcondition: s = (

P

j : 0 � j < n : b[j])

Loop invariant: 0 � i � n ^ s = (

P

j : 0 � j < i : b[j])

Figure 1: Gries program 15.1.1 [Gri81, p. 180], which sums

the values in array b (of length n) into result variable s,

and its formal speci�cation. The statement i; s := 0; 0 is

a parallel (simultaneous) assignment of the values on the

right-hand side of the := to the variables on the left-hand

side. The do-od form repeatedly evaluates the condition on

the left-hand side of the ! and, if it is true, evaluates the

body on the right-hand side; the form terminates when the

condition evaluates to false.

elements of an array (Figure 1). We transliterated this

program to a dialect of Lisp enhanced with Gries-style

control constructs. Our instrumenter (Section 3) added

code, at the beginning of the program, at the loop head,

and at the end of the program, that writes variable val-

ues into a data trace �le. We ran this program on 100

randomly generated arrays of length 7 to 13, in which

each element was a random number between �100 and

100, inclusive. Figure 2 shows the output of our invari-

ant detector given the data trace �le.

The precondition inferences record the relationship be-

tween N and the length of array B (which is crucial to the

correctness of the program but omitted from the formal

invariants), the range of values for N appearing in the

test cases, and that the test case array elements were

always at least �100.

The postcondition inferences include the basic invari-

ant of Gries, S = sum(B); Section 3 describes inference

over functions such as sum. In addition, the engine

discovered that N and B remain unchanged (var_orig

represents var 's value at the start of execution).

The inferred loop invariants (based on 1107 executions

of the loop) include those of Gries (since i is an integer,

i 2 [0::13] is shorthand for i � 0 and i � 13), along with

several others. For instance, these additional invariants

bound the maximum value of the array elements, in ad-

dition to the minimum value noted in the precondition

invariants. The presence of these bounds is controlled

by our statistical rules for determining invariants and

by the vagaries of the actual data; more samples tend

to give more con�dence in the bounds. Section 3 dis-

cusses these and other phenomena related to the extra

invariants.

3 INVARIANT DETECTION ENGINE

Our basic approach for detecting invariants from pro-

gram executions consists of instrumenting the source

program to trace the variables of interest, running the

15.1.1:::BEGIN 100 samples

N = size(B)

N in [7..13] (7 values)

B (100 values)

All elements >= -100 (200 values)

15.1.1:::END 100 samples

N = I = N_orig = size(B)

B = B_orig

S = sum(B)

N in [7..13] (7 values)

B (100 values)

All elements >= -100 (200 values)

15.1.1:::LOOP 1107 samples

N = size(B)

S = sum(B[0..I-1])

N in [7..13] (7 values)

B (100 values)

All elements in [-100..100] (200 values)

I in [0..13] (14 values)

sum(B) in [-556..539] (96 values)

B[0] nonzero in [-99..96] (79 values)

B[-1] in [-88..99] (80 values)

B[0..I-1] (985 values)

All elements in [-100..100] (200 values)

I <= N (77 values)

Negative invariants:

N != B[-1] (99 values)

B[0] != B[-1] (100 values)

Figure 2: Invariants for Gries program 15.1.1. Inferred in-

variants are shown for the beginning (precondition) and end

(postcondition) of the program, as well as the loop head (the

loop invariant). B[-1] is shorthand for B[size(B)-1], the

last element of array B.

instrumented program over a set of test cases, and infer-

ring invariants over both the instrumented variables and

derived variables that are not manifest in the original

program.

Instrumentation

The goal of instrumentation is to capture the values

of variables, so that patterns can be detected among

those values. The two primary decisions are selecting

the program points at which to insert instrumentation

and selecting the variables to examine at those points.

Our prototype instruments procedure entry and exit

points and loop heads. At these points, it records the

values of all variables in scope, including global vari-

ables, procedure arguments, local variables, and the pro-

cedure's return value. Each variable's value is written

out to a �le, along with the name and type of the vari-

able. Instrumenting is much faster than compilation.

For the relatively small, compute-bound programs we

have examined so far, the instrumented code can be

slowed down by more than an order of magnitude, be-

cause the programs become I/O-bound. We have not

yet optimized trace �le size; another approach would be

2



to perform invariant checking online rather than writing

variable values to a �le.

For every instrumented program point, the output is a

list of sets of values, one value per instrumented vari-

able. For instance, if procedure p has two formal pa-

rameters, is in the scope of three global variables, and

is called twelve times, then when computing a precon-

dition for p the invariant engine would be presented

a list of twelve elements, each element being a set of

�ve variable values (one for each visible variable). We

also track uninitialized variables by maintaining a sep-

arate boolean variable tracking initialization state for

each original program variable.

We have implemented instrumenters for programs writ-

ten in Lisp and C/C++ (the C instrumenter currently

does not instrument loop heads). Instrumentation is

conceptually simple, but requires care in practice. It

can be di�cult to determine the size of (the valid data

of) an array passed to a C procedure, or even whether

a pointer refers to a single element or to an element of

an array. We hand-annotated the C programs with the

lengths of array, or with the information that the arrays

are null-terminated, as for strings. (A static or dynamic

analysis may be able to determine many of these types

for C programs, and many other languages make this

information manifest at compile time or run time.) The

C instrumenter uses this information to avoid walking

o� the ends of arrays, and it outputs values both as

pointer addresses and as contents (single elements or

entire arrays), to permit both pointer comparisons and

comparisons over the underlying values.

Test suite

Invariant discovery requires use of a test suite, which

is also necessary for tasks like testing, debugging, and

pro�ling. A single test suite may not be ideal for all

tasks. Some test suites are crafted to be as small as

possible while still achieving complete code coverage.

Invariant detection requires repeated execution of each

instrumentation point, because no statistically valid in-

ferences can be made about the distribution of values

based on just a few samples. We have obtained good

results so far by using pre-existing test suites; for an

example, see Section 4.

Inferring invariants

Provided with the output of an instrumented program,

the invariant detector lists the invariants detected at

each instrumented program point. These invariants may

involve a single variable (a constraint that holds over

its values) or multiple variables (a relationship among

the values of the variables). Our system checks for the

following invariants, among others (x, y, and z are vari-

ables, and a, b, and c are computed constants):

� any variable: constant value or small number of

values

� numeric variable: range (a � x � b), modulus

(x � a (mod b)), nonmodulus (x 6� a (mod b))

� multiple numbers: linear relationship (such as

x = ay + bz + c), functions (including all those

in the standard library, such as x = abs(y) or

x = max(y; z)), comparisons (x < y, x � y, x = y),

invariants over x+ y and x� y

� sequence: sortedness, invariants over all elements

(e.g., every element < 100)

� multiple sequences: subsequence relationship, lexi-

cographic comparison

� sequence and another variable: membership

We produced this list incrementally, starting with in-

variants that seemed basic and natural, then adding

invariants we found helpful in analyzing the Gries pro-

grams (Sections 2) and which we believed would be gen-

erally applicable. The list is surely not exhaustive; for

instance, we do not yet follow arbitrary-length paths

through recursive data structures. However, we suc-

cessfully detected many invariants that occurred in the

Siemens suite (Section 4).

For each variable or tuple of variables, each potential in-

variant is tested. As soon as an invariant is determined

not to hold, it is not checked for the remainder of the val-

ues taken on by the variable(s). Thus, the cost of com-

puting invariants tends to be proportional to the num-

ber of invariants discovered (see also Section 5). The

invariants listed above are inexpensive to test. For ex-

ample, the linear relationship x = ay+ bz + c with un-

known coe�cients a, b, and c and variables x, y, and z

has three degrees of freedom. Consequently, three tu-

ples of values for x, y, and z are su�cient to infer the

possible coe�cients. As another example, a common

modulus (variable b in x � a (mod b)) is the gcd of the

di�erences among list elements.

Negative invariants

Negative invariants are relationships that might be ex-

pected to occur but were never observed in the input.

We compute the probability that such a property would

not appear in a random input; if this probability is su�-

ciently small, then the property is reported as possibly

non-coincidental. For example, if the reported values

for variable x �t in a range of size r that includes 0,

the probability that a single instance of x is not 0 is

1 �

1

r

. (We make the simplifying assumption of a uni-

form distribution of values.) Given v reported values,

the probability that x is never 0 is (1�

1

r

)

v

; if this is less

than a user-de�ned con�dence level, then the negative

invariant x 6= 0 is reported; x 6= y and modulus tests are

analogous.

Ranges for numeric variables (such as c 2 [32::126] or

x > 0) are also not reported unless they appear to be

non-coincidental. In particular, if the several values

near the range's extrema all appear about as often as

would be expected, or if the extremum appears much

3



15.1.1:::BEGIN 100 samples

N = size(B)

N >= 0 (24 values)

15.1.1:::END 100 samples

B = B_orig

N = I = N_orig = size(B)

S = sum(B)

N >= 0 (24 values)

15.1.1:::LOOP 986 samples

N = size(B)

S = sum(B[0..I-1])

B (96 values)

All elements in [-6005..7680] (784 values)

N in [0..35] (24 values)

I >= 0 (36 values)

sum(B) in [-15006..21144] (95 values)

B[0..I-1] (887 values)

All elements in [-6005..7680] (784 values)

I <= N (363 values)

Figure 3: Invariants for Gries program 15.1.1 over an input

set whose array lengths and element values were chosen from

exponential rather than uniform distributions, as in Figure 2.

more often than would be expected (as if greater or

lesser values have been clipped to that value), then the

limit is reported.

In Figure 2, negative invariants are reported for the loop

head, but not for the beginning or end of the procedure,

where the 100 samples were insu�cient to support any

inequality inferences.

1

Similarly, the elements of array

B were bounded from above and below at the loop head,

but only from below (as being at least �100) at proce-

dure entry and exit. The random distribution of array

elements happened to support only one boundedness in-

ference for 100 samples; on another run over a similarly

small set of test cases, only the upper bound, neither

bound, or both bounds might be inferred.

2

In Figure 2, the invariants beyond those of Gries, rather

than being artifacts of our technique, provide valuable

information about the data set. (This can help validate

a test suite or indicate the contexts in which a function

or other computation is used.) Figure 3 shows the result

of running our system on a di�erent set of 100 arrays;

the output is almost precisely the Gries invariants.

Derived variables

In addition to manifest values explicitly passed to the

engine, we need to compute relations over non-manifest

1

The values for which inequalities are inferred in the loop head

are actually the same as the values at procedure entry and exit.

However, the loop head is executed more times. We plan to en-

hance the implementation so that loop iterations do not incor-

rectly add support for values unchanged by the loop.

2

This paper uses .01 as the probability limit. A smaller value

is probably more practical but is poorer for illustrative purposes,

as it eliminates the negative invariants in Figure 2.

values. For instance, if array a and integer lasti are

both in scope, then the value of a[lasti] may be of

interest, even if that expression does not appear in the

program text.

Therefore, we add certain \derived variables" (actually

expressions) to the list of variables given to the engine

as input. These derived variables include the following:

� from any array: length, �rst and last elements

� from a numeric array: sum, min, and max

� from array and scalar: element at that index

(a[i]), subarray up to or subarray beyond that

index (e.g., a[0..i-1])

Derived variables are treated just like other variables by

the inference engine.

Derived variables permit the engine to infer invariants

that are not hard-coded into its list. For instance, if

len(A) is derived from array A, then we can determine

that i < len(A) without hardcoding a less-than compar-

ison check for the case of a scalar and an array. The im-

plementation maintains short lists of simple invariants

and variable derivations, and can thus report compound

relations that we did not necessarily anticipate.

Many possible derived values are not of general interest.

For example, we don't want to run a battery of tests on

x

y

for every x and y, much less compute ax+b for every

variable x and constant a and b. Moreover, each new

variable introduces costs of checking invariants over it.

We also take care not to introduce arbitrarily many new

variables when deriving variables from derived variables.

Staged derivation and inference

Both variable derivation and invariant inference bene�t

from access to previously-computed invariants. There-

fore, derived variables are not introduced until invari-

ants have been computed over previously-existing vari-

ables, and derived variables are introduced in stages

rather than all at once. For instance, for array A, the de-

rived variable len(A) is introduced, and invariants are

computed over it, before any other variables are derived

from A. If it is determined that j � len(A), then there

is no sense to create the derived variable A[j]. When a

derived variable is only sometimes sensible, as when j is

only sometimes a valid index to A, no further derivations

are performed over A[j]. Likewise, A[0..len(A)-1] is

identical to A, so it need not be derived.

Derived variables are guaranteed to have certain rela-

tionships with other variables; for instance, A[0] is a

member of A, and I is the length of A[0..I-1]. We

do not compute or report such tautologies. Addition-

ally, whenever two or more variables are determined to

be equal, one of them is marked as canonical. Non-

canonical variables are removed from the pool of vari-

ables to be derived from or analyzed, reducing compu-

tation time and output size.

4



...

else if ((arg[i] == CLOSURE) && (i > start))

{

lj = lastj;

if (in_set_2(pat[lj]))

done = true;

else

stclose(pat, &j, lastj);

}

...

Figure 4: Function makepat's use of constant CLOSURE in

Siemens program replace.

4 USE OF INVARIANTS

The techniques described in the previous section are suf-

�cient for rediscovering the known invariants for the

Gries programs discussed in Section 2. This section

demonstrates that derived invariants can help a pro-

grammer to evolve a program that contains no explic-

itly stated invariants. In particular, we used invariants

produced by our implementation in evolving a program

from the Siemens suite [HFGO94, RH98].

The Task

The Siemens replace program, 563 lines of C, takes

a regular expression and a replacement string as

command-line arguments, writing an input stream to an

output stream while replacing any substring matched by

the regular expression with the replacement string.

The regular expression language of replace includes

Kleene-* closure but omits Kleene-+ closure, so we de-

cided that this would be a useful extension. The ba-

sic plan for the enhancement was to introduce a new

operator, +, and implement it by mimicking the imple-

mentation of *, except that at least one instance of the

pattern must be matched.

Performing the Change

The program's call structure and high-level de�nitions

reveal that it is composed of a pattern parser, pattern

compiler, and matching engine. The compiled pattern

is stored in a 100-element array named pat. Function

addstr is often used to add characters to this array dur-

ing pattern compilation. We decided to avoid modifying

the matching engine and minimize changes to the parser

by compiling an input pattern of the form hpati+ as

though it were the semantically equivalent hpatihpati*.

Simple text searches helped us determine what code

needed to be extended and added. A constant called

CLOSURE with value '*' is referenced in several places,

so we introduced a constant PCLOSURE of value '+'. Af-

ter several simple changes, we focused on the use of

CLOSURE in makepat, which controls the invocation of

stclose (Figure 4), whose name stands for \star clo-

sure."

This code in makepat determines whether the next char-

acter in the input is CLOSURE; if so, it calls stclose if

void stclose(pat, j, lastj)

char *pat;

int *j;

int lastj;

{

int jt;

int jp;

bool junk;

for (jp = *j - 1; jp >= lastj ; jp--)

{

jt = jp + CLOSIZE;

junk = addstr(pat[jp], pat, &jt, MAXPAT);

}

*j = *j + CLOSIZE;

pat[lastj] = CLOSURE;

}

Figure 5: Function stclose in Siemens program replace.

some previous element in the input was not in the set

speci�ed by in set 2. We duplicated this code in the

if-then-else sequence, modi�ed the copy to check against

PCLOSURE, and then modi�ed it to call a new plclose

function. Since in set 2 was earlier modi�ed to include

PCLOSURE, no other changes to makepat should be re-

quired.

Since plclose should be similar to stclose, we copied

function stclose (Figure 5) and renamed it to plclose.

To decide what plclose should do, we studied stclose.

We speculated that the uses of array pat in the loop

manipulate the pattern that is the target of the closure

operator. Since closure must always be applied to a

pattern, we wanted to verify that the loop was indeed

entered on every call to stclose. The loop's exit con-

dition says the loop would not be entered if *j were

equal to lastj, so we examined the invariants inferred

for them on entry to stclose, �nding the following:

�j � 2

lastj � 0

lastj � �j

The third invariant implies that there are cases when

the loop is not entered.

To �nd the o�ending values of *j and lastj, we queried

the trace database for those calls to stclose in which

variable junk is never set, since these are the cases when

the loop is not entered. (We wrote a tool which �nds

the tuples in the execution trace database that satisfy

a given invariant.) The query returned several calls in

which the value of *j is 101 or more, greater than the

size of the array pat. We soon determined that the pro-

gram contains an array bounds error which is triggered

in some instances when the compiled pattern is too long.

In the absence of this bug, the loop in stclose should

always be entered when it is called, which increased our

con�dence that the loop is manipulating the pattern

to which the closure operator is being applied. To in-

5



void plclose(pat, j, lastj)

char *pat;

int *j;

int lastj;

{

int jt;

int jp;

bool junk;

jt = *j;

addstr(CLOSURE, pat, *j, MAXPAT);

for (jp = lastj; jp < jt; jp++)

{

junk = addstr(pat[jp], pat, j, MAXPAT);

}

}

Figure 6: Function plclose in the extended replace

program.

crease the precision of stclose's invariants for the rest

of the task, we recomputed the invariants without the

test cases that caused the improper calls to stclose.

Returning to consideration of stclose's manipulation

of array pat (Figure 5), we observed that the loop index

is being decremented, and pat is both read and written

by addstr. Moreover, the closure character is inserted

into the array at index lastj, which is not at the end

of the compiled pattern. Looking at the invariants

for pat, we found the string comparison pat

orig

6= pat,

which indicates that pat is always updated. To �nd

out exactly what stclose does to pat, we queried the

trace database for values of pat on entry to and exit

from stclose. For example:

Test case: replace "ab*" "A"

values of parameter pat for calls to stclose:

in value: pat = "cacb"

out value: pat = "ca*cb"

These revealed that the program compiles literals

by pre�xing them with the character c and puts

Kleene-* expressions into pre�x form. The negative

indexing and assignment of * into position lastj

moves the closed-over pattern rightward in the array

to make room for the * itself in the pre�x format. For

a call to plclose the result for the above test case

should be cacb*cb, which would match one or more

instances of character b rather than zero or more. This

is a simple copy of the previous pattern, rather than a

rightward move, so the resulting implementation can be

a bit simpler. After �guring out what addstr is doing

with the address of the index passed in (it increments

the index unless the array bound are exceeded), we

converged on the version of plclose in Figure 6.

To check that the modi�ed program does not violate

invariants that are still expected to hold, we added test

cases for Kleene-+ and recomputed the invariants for

the modi�ed program. By displaying the di�erence be-

tween the old and new invariants, we ascertained that

the expected invariants hold. Comparing the invariants

for stclose and plclose, we observed that whereas

stclose has the invariant �j = �j

orig

+ 1, plclose has

the invariant �j � �j

orig

+ 2. This di�erence is expected,

since the compilation of Kleene-+ replicates the entire

target pattern, which is two or more characters long in

its compiled form.

Invariants for makepat

Several invariants discovered for makepatwere also help-

ful. In determining when stclose is called, the invari-

ants showed us that parameter start (tested in Fig-

ure 4) is always 0, and parameter delim, which controls

the outer loop, is always the null character (character

0). These invariants helped reveal that makepat is used

in more specialized contexts than we anticipated, sav-

ing us considerable e�ort in understanding its role in

pattern compilation.

We had hypothesized that lastj and lj in makepat

should both always be less than local j (lastj and lj

refer to the last generated element of the compiled pat-

tern, whereas j refers to the next place to append).

Although the invariants for makepat con�rmed this re-

lation over lastj and j, no invariant between lj and j

was reported. A query on the trace database for vari-

ables j and lj at the exit of makepat revealed several

cases in which j is 1 and lj is 100, a complete surprise

to us.

Another inferred invariant was number of calls(in set 2)

= number of calls(stclose). Since in set 2 is only called

in the predicate controlling stclose's invocation, the

equal number of calls indicates that none of the test

cases caused in set 2 to return false. (We used a

randomly-selected set of 100 inputs from those sup-

plied with the replace program.) This suggests that

we needed to run more test cases to expose more of

replace's special-case behavior and produce more ac-

curate invariants. Nevertheless, the inferred invariants

were still helpful in the task.

Discussion

Although the invariants inferred by our prototype are

simple, they provide substantial insight. For exam-

ple, our expectations regarding the preconditions for

stclose were contradicted by the inferred invariants,

and the necessary intuition was provided by supporting

data. This not only helped us discover a bug, but also

helped establish the conditions under which our pos-

tulated invariant holds. This knowledge simpli�ed our

task because the need for special-case processing inside

plclosewas quickly proven unwarranted. On the other

hand, dynamic invariants alone did not solve these prob-

lems. Static analyses identi�ed the general architecture

of the system and the code likely to require change.

6



The usefulness of elementary invariants in a software

evolution task can be attributed to at least three fac-

tors. First, the programmer does not need a full speci-

�cation, only insight on program properties that should

not be violated by the proposed change. Second, the

invariants provide a suitable basis for the programmer's

own, more complex inferences. Because the inferred in-

variants concern observable entities in the program, the

programmer can examine the program text or perform

supporting static analyses to better understand the in-

variants' implications. For example, we might have liked

to see an invariant that *j always refers to the next

place to append a character into pat, but this is at best

expensive to compute. However, the presence of sev-

eral related invariants indicating that �j starts with a 0

value and is regularly incremented by 1 during the com-

pilation of the pattern allowed us to ascertain its basic

function and quickly determine the more higher-level in-

variant. Third, the invariants are a succinct abstraction

of a mass of supporting data. These data can be ac-

cessed to provide the evidence needed to build intuition

about the source of an invariant or lack thereof. These

data helped us to determine under which conditions the

loop in stclose is not executed and the format of the

pat array.

5 SCALABILITY

We ran several simple experiments to identify the costs

of invariant inference. These suggest ways to acceler-

ate inference and manage the number of invariants re-

ported.

Performance Measurements

We present three scalability-related measurements in

turn: the e�ect of number of variables on invariant de-

tection time, the e�ect of test suite size on invariant de-

tection time, and the e�ect of test suite size on what in-

variants are detected. To investigate these phenomena,

we instrumented and ran the Siemens program replace

on 500 test cases randomly selected from the 5542 sup-

plied with the program. We broke the test cases into 5

runs consisting of numbers 1{50, 1{100, 101{200, 1{200,

and 1{500.

Our system infers invariants over an average of 59 (orig-

inal and derived) variables per instrumentation point in

replace. On average, 500 test cases produce 4775 sam-

ples per instrumentation point, and our system takes

207 seconds to infer the invariants for that point on a

200MHz UltraSPARC 2. Our prototype implementa-

tion uses the interpreted language Python [van97]. At

one point we improved performance by nearly a fac-

tor of ten by inlining two one-line procedures, but we

have not yet seriously optimized our implementation.

In addition to local optimizations and algorithmic im-

provements, use of a compiled language such as C could

improve performance by another order of magnitude or

more.

0

2

4

6

8

10

12

14

16

0 1 2 3 4 5
ratio change in number of instrumented 

variables

ra
ti

o
 c

h
an

g
e 

in
 r

u
n

ti
m

e

Figure 7: Change in invariant detection runtime versus

change in number of variables. A least-squares trend line

highlights the relationship. Each data point compares infer-

ence over two di�erent sets of variables at a single instru-

mentation point, for a single test run of 100 test cases. If

one run has v

1

variables and a runtime of t

1

, and the other

has v

2

variables and a runtime of t

2

, the x axis measures

v

2

v

1

and the y axis measures

t

2

t

1

. For example, doubling the

number of variables tends to increase runtime fourfold.

The number of variables over which invariants are

checked is the most important factor in invariant de-

tection runtime. On average, each of the 20 functions

in replace has 5 parameters (2 of them arrays and the

others scalars), and 1 scalar local variable is in scope at

the procedure exit. On average, about ten derived vari-

ables are derived for each original one, a number that is

remarkably insensitive to the relative numbers of scalars

and arrays. Figure 7 plots growth in invariant detection

time against growth in number of variables. Each data

point compares inference times for two sets of variables

at a single instrumentation point. The instrumentation

points are procedure exits; one set of variables is the

global variables and initial argument values, while the

other set adds �nal argument values, local variables, and

the return value. Absolute runtimes vary from 5 to 519

seconds, while the number of variables ranges from 28

to 182.

Test suite size has a less pronounced e�ect on invari-

ant detection runtime. Unsurprisingly, test suite size

is linearly related to number of samples for each in-

strumentation point. The number of distinct variable

values at each instrumentation point also follows an

almost perfectly linear relationship to these measures,

with about 1 new value per 20 samples.

3

Runtime is ap-

proximately linearly related to test suite size, number

of samples, and number of values per variable. Fig-

3

We expected fewer new values to appear in later runs. How-

ever, repeated array values are rare. Also, our smallest test suite

of 50 inputs produced 600 samples per function on average, per-

haps avoiding the high distinct variable values per sample ratio

expected with few inputs.

7



0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 2 4 6 8

ratio change in values per variable

ra
ti

o
 c

h
an

g
e 

in
 r

u
n

ti
m

e

Figure 8: Change in invariant detection runtime versus

change in number of values per variable. A least-squares

trend line highlights the relationship. Each data point com-

pares inference at one program point over two test runs. If

one test runs has v

1

values per variable and a runtime of

t

1

, and the has with v

2

values per variable and a runtime

of t

2

, the x axis measures

v

2

v

1

and the y axis measures

t

2

t

1

.

For example, quadrupling the number of values per variable

tends to double runtime.

ure 8 plots growth in runtime against growth in values

per variable. Quadrupling the number of values per

variable (or increasing the test suite size by a factor of

80) only doubles invariant detection runtime. Runtimes

vary from 27 to 1721 seconds, while the number of val-

ues per variable ranges from 10 to 1798.

In Figures 7 and 8, we removed two data points corre-

sponding to functions with tiny runtimes (times smaller

than 1 second). In these cases, timing errors may pro-

duce inaccurate results.

Test suite size does not appear to dramatically a�ect

invariant precision at the sizes we examined. Each of

the runs described above produced about 6000 lines of

output (the larger runs had slightly smaller output).

Between two 100-test-case runs, 1500 lines of output

di�ered; between a 100-test-case-run and the 500-test-

case-run, 1300 lines di�ered; and between the 200-test-

case-run and the 500-test-case-run, 900 lines di�ered.

Substantive di�erences in invariants, such as detect-

ing result = i in one case but not another, were

rare|far fewer than one per procedure on average.

Changes in a constant bound on a variable value,

such as outset[0] 2 [�1::113] vs. outset[0] 2 [�1::126] or

�j 2 [1::103] vs. �j � 1, accounted for 20{30% of the dif-

ferences. Similar changes in an inferred comparison

(say, � vs. >) were also non-negligible. Di�erences

in negative invariants accounted for 15{25% of the dif-

ferences; of these, about two thirds appeared only in

the invariants produced from larger test cases, and vice

versa for the other third. Most of the positive invari-

ants discovered in one procedure but not in another

were between clearly incomparable or unrelated quan-

tities (such as a comparison between an integer and an

address, or between two elements of an array or of di�er-

ent arrays) or were artifacts of the particular test cases

(such as adding �i 6= 5 (mod 13) to �i � 0).

Improvements to the Approach

There are potentially large numbers of program points

to instrument, variables to examine at each point, and

invariants to check over those variables. We have iden-

ti�ed ways to mitigate this combinatorial blowup in in-

strumentation output size, inference time, and number

of results. The techniques generally trade o� the time

spent on inference against the precision of the discov-

ered invariants, possibly under programmer control.

The granularity of instrumentation a�ects the amount

of data gathered and thus the time required to process

it. Inferring loop invariants or relationships among local

variables can require instrumentation at loop heads, at

function calls, or elsewhere, whereas determining prop-

erties of global variables or other large-scale structures

does not require so many instrumentation points; per-

haps module entry and exit points would be su�cient.

When only a part of the program is of interest, the whole

program need not be instrumented; we often computed

invariants over just a single procedure. The choice of

variables instrumented at each program point also af-

fects inference performance. When some are not of in-

terest, they can be skipped, and variables that cannot

have changed since the last instrumentation point may

not need to be reexamined. Finally, supplying fewer test

cases results in faster runtimes at the risk of less precise

output.

The inference engine can be directly sped up by check-

ing for fewer invariants; this is particularly useful when

a programmer is focusing on part of the program and is

not interested in certain kinds of properties (say, tran-

scendental arithmetic functions). Derived variables can

likewise be throttled to save time or increased to pro-

vide more extensive coverage. More complicated derived

variables may be added for complex expressions that ap-

pear in the program text; derived variables or invariants

may also involve functions de�ned in the program. Type

analysis can indicate which variables are incomparable,

even if they have the same type in the programming

language [OJ97].

User Interface

A large data set and large number of derived invariants

can be overwhelming. We have already developed a tool

that retrieves from the data set the variable{value tu-

ples that satisfy or falsify an invariant. There are also

several ways to improve the presentation of invariants

themselves.

To control the number of displayed invariants, a text

editor could provide a list of invariants for the variable

8



under the cursor. Programmers could also be permitted

to �lter out classes of invariants (e.g., array relation-

ships). Statically obvious invariants (such as x = y + 1

immediately after x:=y+1) could be �ltered. Presenting

invariants on demand naturally permits computing the

invariants on demand, possibly avoiding delays for the

computation of unneeded invariants. Users should be

permitted to declaratively specify additional relations

and derived variables for analysis.

Ordering the reported invariants according to category

or predicted usefulness could also help a programmer

�nd a relevant invariant more quickly. Since a pro-

grammer might like to know how a software change

has a�ected the invariants, an invariant-di�erencing tool

could help focus on invariants that have changed.

6 RELATED WORK

Dynamic Inference

The research most directly related to ours uses inductive

logic programming (ILP) [Qui90, Coh94] to construct

Horn clause loop invariants from variable values on par-

ticular loop executions [BG93]. ILP requires counterex-

amples (which are not available in our domain) and

background knowledge, and the resulting relations typ-

ically misclassify 10% or more of the training set. (Our

approach characterizes the training set perfectly; either

approach may misclassify additional data.) Other AI

approaches like neural nets may predict results but have

little explicative power. Traditionally, machine learn-

ing attempts to learn a function over n � 1 variables

producing the n

th

or to classify examples into speci�ed

categories, neither of which is directly applicable to our

problem [Mit97]. However, we believe applying these

techniques to subproblems of our task will be fruitful.

Other dynamic analyses that examine program execu-

tions are used for software tasks from testing to de-

bugging. Program spectra (speci�c aspects of pro-

gram runs, such as event traces, code coverage, or out-

puts) [RBDL97, HRWY98] can reveal di�erences in in-

puts or program versions. Cook and Wolf use event

traces, which describe the sequence of events in a possi-

bly concurrent system, to produce a �nite state machine

generating the trace [CW98b, CW98a].

Static Inference

Static analyses operate on the program text, not par-

ticular test runs, and are typically sound but conserva-

tive. As a result, properties they report are true for any

program run, but static analyses are limited by uncer-

tainty about properties beyond their capabilities and by

the high cost of modeling program states. For instance,

accurate alias analysis is still beyond the state of the

art, so many static checkers must give up in the face of

pointer manipulation. The ease of checking some such

properties at runtime makes static and dynamic tech-

niques complementary.

Considerable research has addressed checking for-

mal speci�cations [DC94, EGHT94, Det96, Eva96,

NCOD97, LN98, JvH

+

98, Pfe92]; this work could be

used to verify likely invariants discovered dynami-

cally. Determining what property to check is consid-

ered harder than actually doing the checking [Weg74,

BLS96]; our goal is the discovery of such properties from

a broad class of possible ones.

Some formal proof systems generate intermediate as-

sertions for help in proving a given goal formula by

propagating known invariants forward or backward in

the program [Weg74, GW75, KM76, BBM97]. Variable

types are a variety of formal speci�cation and docu-

mentation and whose checking can detect errors. Type

inference extends partial type annotations to full ones;

similarly, Givan [Giv96] extends speci�cations on the

inputs of a procedure to its output, and ADDS propa-

gates data structure shape descriptions through a pro-

gram [HHN92, GH96]. In the case of array bounds

checking [SI77, Gup90, KW95, XP98], the desired prop-

erty is obvious.

Other related work includes the Illustrating Compiler,

which heuristically detects the abstract datatype imple-

mented by a collection of concrete operations [HWF90].

Staging and binding-time analyses determine invari-

ant or semi-invariant values for use in partial evalua-

tion [JGS93].

7 CONCLUSIONS

This paper documents the feasibility of discovering pro-

gram invariants based on execution traces, as well as

the usefulness of these invariants in a software evolu-

tion task. The techniques we have developed, along

with the prototype implementation, are adequately fast

when applied to programs of several hundred lines.

Acting as our own users was advantageous in the initial

phases of this research. Working on evolution tasks with

programs that we did not write gave us insights into

the strengths and weaknesses of the techniques and the

tool, as well as to the overall approach. Moreover, we

found that the use of dynamically inferred invariants

qualitatively a�ected our programming, encouraging us

to actively think in terms of invariants in situations that

we might otherwise not.

With a variety of performance improvements, including

user-directed indications of instrumentation points and

variables of interest, the approach should be applicable

to the evolution of larger systems. More sophisticated

invariants will also be required; a few of the most critical

are invariants over pointer-based data structures such as

trees, predicated invariants (if condition then invariant),

and disjunctions (p = NULL or *p > i). We will need to

assess the enhanced technology by having programmers

apply it to larger, more complicated programming tasks.

Dynamically inferred invariants can be used in many

9



situations that statically-supplied invariants can, and in

some cases the application of dynamic ones may be even

more e�ective. For instance, dynamic invariants form a

program spectrum, changes to which can indicate prop-

erties of a changed program or input. They can assist in

test case generation and can also validate a test suite;

invariants in the resulting program runs can indicate in-

su�cient coverage of program values, even if every line

is executed at least once. A nearly-true invariant may

indicate a bug or special case that should be brought

to the programmer's attention. Discovered invariants

can be inserted into a program as assert statements

to further test the invariant or to ensure that detected

invariants are not later violated as code evolves. They

can also double-check existing documentation or assert

statements. Compilers can exploit invariants by opti-

mizing for the common case, like pro�le-directed opti-

mization but potentially at a higher level of abstraction.

Detected invariants can bootstrap or direct a (manual

or automatic) correctness proof.

ACKNOWLEDGMENTS

We are grateful for discussions of these ideas with Craig

Chambers, Oren Etzioni, Tessa Lau, David Madigan,

and Jared Saia. Gregg Rothermel shared his mod-

i�ed versions of the Siemens test programs. Greg

Badros, Craig Chambers, Tessa Lau, Todd Millstein,

and Jon Nowitz improved this paper by critiquing a

draft. Daniel Jackson, Vass Litvinov, George Necula,

and James Noble suggested related work.

REFERENCES

[BBM97] N. Bj�rner, A. Browne, and Z. Manna. Automatic gen-

eration of invariants and intermediate assertions. Theoretical

Computer Science, 173(1):49{87, Feb. 1997.

[BG93] I. Bratko and M. Grobelnik. Inductive learning applied

to program construction and veri�cation. In J. Cuena, editor,

AIFIPP '92, pp 169{182. North-Holland, 1993.

[BLS96] S. Bensalem, Y. Lakhnech, and H. Saidi. Powerful tech-

niques for the automatic generation of invariants. In CAV, pp

323{335, 1996.

[Coh94] W. W. Cohen. Grammatically biased learning: learn-

ing logic programs using an explicit antecedent description lan-

guage. Arti�cial Intelligence, 68:303{366, 1994.

[CW98a] J. E. Cook and A. L. Wolf. Discovering models of soft-

ware processes from event-based data. ACM Transactions on

Software Engineering and Methodology, July 1998.

[CW98b] J. E. Cook and A. L. Wolf. Event-based detection of

concurrency. In FSE, Orlando, FL, Nov. 1998.

[DC94] M. B. Dwyer and L. A. Clarke. Data ow analysis for

verifying properties of concurrent programs. In FSE, pp 62{75,

Dec. 1994.

[Det96] D. L. Detlefs. An overview of the Extended Static Check-

ing system. In First Workshop on Formal Methods in Software

Practice, pp 1{9, Jan. 1996.

[EGHT94] D. Evans, J. Guttag, J. Horning, and Y. M. Tan.

LCLint: A tool for using speci�cations to check code. FSE,

pp 87{97, Dec. 1994.

[Eva96] D. Evans. Static detection of dynamic memory errors. In

PLDI, pp 44{53, May 1996.

[GH96] R. Ghiya and L. J. Hendren. Is it a tree, a DAG, or a

cyclic graph? A shape analysis for heap-directed pointers in C.

In POPL, pp 1{15, Jan. 1996.

[Giv96] R. Givan. Inferring program speci�cations in polynomial-

time. In SAS, pp 205{219, Sept. 1996.

[Gri81] D. Gries. The Science of Programming. Springer-Verlag,

New York, 1981.

[Gup90] R. Gupta. A fresh look at optimizing array bound check-

ing. In PLDI, pp 272{282, June 1990.

[GW75] S. M. German and B. Wegbreit. A synthesizer of induc-

tive assertions. IEEE Transactions on Software Engineering,

1(1):68{75, Mar. 1975.

[HFGO94] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand.

Experiments on the e�ectiveness of dataow- and controlow-

based test adequacy criteria. In ICSE, pp 191{200, May 1994.

[HHN92] L. J. Hendren, J. Hummel, and A. Nicolau. Abstrac-

tions for recursive pointer data structures: Improving the anal-

ysis and transformation of imperative programs. In PLDI, pp

249{260, June 1992.

[HRWY98] M. J. Harrold, G. Rothermel, R. Wu, and L. Yi. An

empirical investigation of program spectra. In PASTE '98, pp

83{90, June 1998.

[HWF90] R. Henry, K. M. Whaley, and B. Forstall. The Univer-

sity of Washington IllustratingCompiler. In PLDI, pp 223{246,

June 1990.

[JGS93] N. D. Jones, C. K. Gomard, and P. Sestoft. Partial

Evaluation and Automatic Program Generation. Prentice Hall,

1993.

[JvH

+

98] B. Jacobs, J. van den Berg, M. Huisman, M. van

Berkum, U. Hensel, and H. Tews. Reasoning about Java classes.

In OOPSLA, Vancouver, BC, Canada, Oct. 1998.

[KM76] S. Katz and Z. Manna. Logical analysis of programs.

Communications of the ACM, 19(4):188{206, Apr. 1976.

[KW95] P. Kolte and M. Wolfe. Elimination of redundant array

subscript range checks. In PLDI, pp 270{278, June 1995.

[LN98] K. R. M. Leino and G. Nelson. An extended static checker

for Modula-3. In Compiler Construction '98, pp 302{305.

Springer-Verlag, Apr. 1998.

[Mit97] T. M. Mitchell. Machine Learning. WCB/McGraw-Hill,

Boston, MA, 1997.

[NCOD97] G. Naumovich, L. A. Clarke, L. J. Osterweil, and

M. B. Dwyer. Veri�cation of concurrent software with

FLAVERS. In ICSE, pp 594{595. Springer, May 1997.

[OJ97] R. O'Callahan and D. Jackson. Lackwit: A program un-

derstanding tool based on type inference. In ICSE, pp 338{348,

May 1997.

[Pfe92] F. Pfenning. Dependent types in logic programming. In

Types in Logic Programming, chapter 10, pp 285{311. MIT

Press, Cambridge, MA, 1992.

[Qui90] J. R. Quinlan. Learning logical de�nitions from relations.

Machine Learning, 5:239{266, 1990.

[RBDL97] T. Reps, T. Ball, M. Das, and J. Larus. The use of

program pro�ling for software maintenancewith applications to

the year 2000 problem. In ESEC/FSE, pp 432{449, Sept. 1997.

[RH98] G. Rothermel and M. J. Harrold. Empirical studies of a

safe regression test selection technique. Transactions on Soft-

ware Engineering, 24(6):401{419, June 1998.

[SI77] N. Suzuki and K. Ishihata. Implementation of an array

bound checker. In POPL, pp 132{143, Los Angeles, California,

Jan. 1977.

[van97] G. van Rossum. Python Reference Manual, release 1.5

edition, Dec. 1997.

[Weg74] B. Wegbreit. The synthesis of loop predicates. Commu-

nications of the ACM, 17(2):102{112, Feb. 1974.

[XP98] H. Xi and F. Pfenning. Eliminating array bound checking

through dependent types. In PLDI, pp 249{257, June 1998.

10


