Modular Typechecking for Hierarchically Extensible Datatypes and Functions

Todd Millstein Craig Chambers
Department of Computer Science and Engineering
University of Washington
\{todd, chambers\}@cs.washington.edu

Technical Report UW-CSE-01-07-02
July 2001, revised March 2002

Abstract

This technical report provides the formal details of Mini-Eml, a core language for Eml. Eml is an ML-like language containing hierarchically, extensible datatypes and functions while retaining modular typechecking. Section 1 presents the syntax of Mini-Eml. Section 2 presents its dynamic semantics and section 3 presents its static semantics. Section 4 gives the subject reduction proof, and section 5 gives the progress proof.

$$
\begin{aligned}
& T::=T n|C t| T_{1} \rightarrow T_{2} \mid T_{1} * \cdots * T_{k} \\
& M t \quad::=\quad \# C t \mid T_{1} * \cdots * T_{i-1} * M t * T_{i+1} * \cdots * T_{k} \\
& E \quad::=\quad I|F v| E_{1} E_{2}|C t(\bar{E})|(\bar{E}) \mid C t\{\bar{V}=\bar{E}\} \\
& \text { Pat }::=\quad-\mid I \text { as Pat }|C\{\bar{V}=\overline{P a t}\}|(\overline{P a t}) \\
& C t::=\bar{T} C \quad F v::=\bar{T} F \\
& C \quad::=B n . C n \quad V::=B n . V n \\
& F \quad::=B n . F n \\
& \text { (a) } \\
& B \quad:=\text { block } B n=\mathrm{blk} \text { extends } \overline{B n} \overline{O o d} \text { end } \\
& \text { Ood ::= <abstract> class } \overline{T n} C n(\bar{I}: \bar{T}) \\
& \ll \text { extends } C t(\bar{E}) \gg \text { of }\left\{\overline{V n}: \overline{T_{0}}=\overline{E_{0}}\right\} \\
& \text { fun } \overline{T n} F n: M t \rightarrow T \\
& \text { extend } \mathrm{fun}_{M n} \overline{T n} F P a t=E \\
& \text { (b) }
\end{aligned}
$$

Figure 1: (a) Mini-Eml types, expressions, and patterns; (b) Mini-Eml blocks. Metavariable Tn ranges over type variable names, I over identifier names, $C n$ over class names, $V n$ over instance variable names, $F n$ over function names, and $M n$ over case names. \bar{D} denotes a comma-separated list of elements (and is independent of any variable named D). Angle brackets $(<>)$ and double angle brackets $(\ll \gg)$ denote independent optional pieces of syntax. The notation $\bar{V}=\bar{E}$ abbreviates $V_{1}=E_{1}, \ldots, V_{k}=E_{k}$ where \bar{V} is V_{1}, \ldots, V_{k} and \bar{E} is E_{1}, \ldots, V_{k} for some $k \geq 0$, and similarly for $\bar{V}=\overline{P a t}, \overline{V n}: \overline{T_{0}}=\overline{E_{0}}$, and $\bar{I}: \bar{T}$.

1 Syntax

1.1 Types, Expressions, and Patterns

Figure 1a defines the syntax of types, expressions, and patterns in Mini-Eml. Mini-Eml types include type variables, class types, function types, and tuple types. The domain $M t$ represents marked types, which contain a \# mark on a single component class type. Marked types are used to implement our modular type system discussed in section 3 .

Expressions include identifiers, function values, function application, constructor calls, tuples, and instance expressions. The instance expression $C t\{\bar{V}=\bar{E}\}$ is not available at the source level, as instances may only be created via a constructor call. Patterns include the wildcard pattern, identifier binding, class patterns, and tuple patterns. We assume that all identifiers bound in a given pattern are distinct.

The subset of expressions that are Mini-Eml values is described by the following grammar:

$$
v::=C t\{\bar{V}=\bar{v}\}|F v|(\bar{v})
$$

Values include class instances, function values, and tuple values.

1.2 Declarations, Blocks and Programs

The syntax of Mini-Eml blocks and declarations is shown in figure 1(b). A block consists of a sequence of class, extensible function, and function case declarations. The class (function, case) names introduced in a given block are assumed to be distinct. The type variables parameterizing a given OO declaration are assumed to be distinct. The instance variable names introduced in a given class declaration are assumed to be distinct.

A Mini-Eml program is a pair of a block table and an expression. A block table is a finite function from block names to blocks. The semantics assumes a fixed block table denoted $B T$. The domain of a block table $B T$ is denoted dom $(B T)$. The block table is assumed to satisfy some sanity conditions: (1) $B T(B n)=\mathrm{block}$ $B n=\mathrm{blk} \ldots$ for every $B n \in \operatorname{dom}(B T) ;(2)$ for every block name $B n$ appearing anywhere in the program, we have $B n \in \operatorname{dom}(B T)$.

2 Dynamic Semantics

2.1 Preliminaries

Mini-EmL's dynamic semantics is defined as a mostly standard small-step operational semantics. The block table $B T$ is accessed when information about a given OO declaration is required in the evaluation of an expression. In addition, several side judgments are necessary to express the function-case lookup semantics.

The metavariable e ranges over environments, which are finite functions from identifiers to values. We use $|\bar{D}|$ to denote the length of the sequence \bar{D}. The notation $\left[I_{1} \mapsto E_{1}, \ldots, I_{k} \mapsto E_{k}\right] D$ denotes the expression resulting from the simultaneous substitution of E_{i} for each occurrence of I_{i} in D, for $1 \leq i \leq k$, and similarly for $\left[T n_{1} \mapsto T_{1}, \ldots, T n_{k} \mapsto T_{k}\right] D$. We use $[\bar{I} \mapsto \bar{v}] D$ as a shorthand for $\left[I_{1} \mapsto v_{1}, \ldots, I_{k} \mapsto v_{k}\right] D$, where $\bar{I}=I_{1}, \ldots, I_{k}$ and $\bar{v}=v_{1}, \ldots, v_{k}$, and similarly for $[\overline{T n} \mapsto \bar{T}] D$. In a given inference rule, fragments enclosed in $<>$ must either be all present or all absent, and similarly for $\ll \gg$. We sometimes treat sequences as if they were sets. For example, $\operatorname{Ood} \in \overline{O o d}$ means that Ood is one of the declarations in $\overline{O o d}$. We use $\operatorname{Ood} \in B T(B n)$ as shorthand for $B T(B n)=\mathrm{block} B n=\mathrm{blk}$ extends $\overline{B n} \overline{\operatorname{Ood}}$ end and $\operatorname{Ood} \in \overline{O o d}$.

2.2 Expressions

$$
\begin{gathered}
C t=(\bar{T} C) \quad \operatorname{concrete}(C) \quad \operatorname{rep}\left(C t\left(\overline{E_{0}}\right)\right)=\left\{\bar{V}=\overline{E_{1}}\right\} \\
C t\left(\overline{E_{0}}\right) \longrightarrow C t\left\{\bar{V}=\overline{E_{1}}\right\} \\
\overline{C t}\left\{\overline{V_{0}}=\overline{E_{0}}, V=E, \overline{V_{1}}=\overline{E_{1}}\right\} \longrightarrow E^{\prime} \\
\left.E \longrightarrow \overline{V_{0}}=\overline{E_{0}}, V=E^{\prime}, \overline{V_{1}}=\overline{E_{1}}\right\} \\
E t \overline{V_{0}} \\
E \longrightarrow E^{\prime} \\
\overline{\left(\overline{E_{0}}, E, \overline{E_{1}}\right) \longrightarrow\left(\overline{E_{0}}, E^{\prime}, \overline{E_{1}}\right)} \text { E-TuP } \\
\frac{E_{1} \longrightarrow E_{1}^{\prime}}{\overline{E_{1} E_{2} \longrightarrow E_{1}^{\prime} E_{2}} \mathrm{E}-\operatorname{App} 1 \quad \frac{E_{2} \longrightarrow E_{2}^{\prime}}{E_{1} E_{2} \longrightarrow E_{1} E_{2}^{\prime}} \text { E-App2 }} \\
\frac{\text { most-specific-case-for }(F v, v)=(\{(\bar{I}, \bar{v})\}, E)}{F v v \longrightarrow[\bar{I} \mapsto \bar{v}] E}
\end{gathered}
$$

Rule E-AppRED: The notation (\bar{I}, \bar{v}) abbreviates $\left(I_{1}, v_{1}\right), \ldots,\left(I_{k}, v_{k}\right)$.

2.3 Function Application

These auxiliary judgments are used to specify the function-case lookup semantics. Some of these judgments are used by the static semantics as well.
most-specific-case-for $(F v, v)=(e, E)$

$$
\begin{aligned}
& \text { (extend } \left.\mathrm{fun}_{M n} \overline{T n} F P a t=E\right) \in B T(B n) \quad \operatorname{match}(v, P a t)=e \\
& \forall B n^{\prime} \in \operatorname{dom}(B T) . \forall\left(\text { extend } \text { fun }_{M n^{\prime}} \overline{T n^{\prime}} F P a t^{\prime} \ldots\right) \in B T\left(B n^{\prime}\right) . \forall e^{\prime} . \\
& \frac{\left(\operatorname{match}\left(v, P a t^{\prime}\right)=e^{\prime} \wedge B n . M n \neq B n^{\prime} \cdot M n^{\prime} \Rightarrow P a t \leq P a t^{\prime} \wedge P a t^{\prime} \notin P a t\right)}{\text { most-specific-case-for }((\bar{T} F), v)=(e,[\overline{T n} \mapsto \bar{T}] E)} \text { Lookup }
\end{aligned}
$$

$$
\begin{gathered}
\overline{\operatorname{match}(v,-)=\{ \}} \mathrm{E}-\mathrm{MatchWild} \\
\frac{\operatorname{match}(v, P a t)=e}{\operatorname{match}(v, I \text { as Pat })=e \cup\{(I, v)\}} \text { E-MatchBind } \\
\frac{C \leq C^{\prime} \quad \operatorname{match}(\bar{v}, \overline{P a t})=\bar{e}}{\operatorname{match}\left(\bar{T} C\left\{\bar{V}=\bar{v}, \overline{V_{1}}=\overline{v_{1}}\right\}, C^{\prime}\{\bar{V}=\overline{P a t}\}\right)=\bigcup \bar{e}} \text { E-MatchClass }
\end{gathered}
$$

Rule E-MatchClass: The notation match $(\bar{v}, \overline{P a t})=\bar{e} \operatorname{abbreviates} \operatorname{match}\left(v_{1}, P a t_{1}\right)=e_{1} \cdots \operatorname{match}\left(v_{k}\right.$, Pat $\left._{k}\right)=$ e_{k}.

$$
P a t \leq P a t^{\prime}
$$

Rule SpecClass: The notation $\overline{P a t} \leq \overline{P a t^{\prime}}$ abbreviates $P a t_{1} \leq P a t_{1}^{\prime} \ldots P a t_{k} \leq P a t_{k}^{\prime}$.

$$
\frac{\overline{P a t_{1}} \leq \overline{P a t_{2}}}{\left(\overline{P a t_{1}}\right) \leq\left(\overline{P a t_{2}}\right)} \text { SpecTuP }
$$

$$
\begin{gathered}
\overline{C \leq C} \text { SubReF } \\
\frac{C_{1} \leq C_{2} \quad C_{2} \leq C_{3}}{C_{1} \leq C_{3}} \text { SubTrans } \\
\frac{\left(<\text { abstract }>\text { class }(\overline{T n} C n)\left(\overline{I_{1}}: \overline{T_{1}}\right) \text { extends }(\bar{T} C) \ldots\right) \in B T(B n)}{B n . C n \leq C} \text { SubExt }
\end{gathered}
$$

$$
\begin{aligned}
& \frac{\operatorname{match}(\bar{v}, \overline{P a t})=\bar{e}}{\operatorname{match}((\bar{v}),(\overline{P a t}))=\bigcup \bar{e}} \text { E-MatchTuP } \\
& \overline{P a t \leq} \text { SpecWild } \\
& \frac{P a t_{1} \leq P a t_{2}}{I \text { as } P a t_{1} \leq \text { Pat }_{2}} \text { SpecBind1 } \quad \frac{P a t_{1} \leq \text { Pat }_{2}}{P a t_{1} \leq I \text { as } \text { Pat }_{2}} \text { SpecBind2 } \\
& \frac{C \leq C^{\prime} \quad \overline{P a t_{1}} \leq \overline{P a t_{2}}}{C\left\{\bar{V}=\overline{P a t_{1}}, \overline{V_{3}}=\overline{P a t_{3}}\right\} \leq C^{\prime}\left\{\bar{V}=\overline{\text { Pat }_{2}}\right\}} \text { SPECCLASS }
\end{aligned}
$$

2.4 Auxiliary Judgments

concrete (C)

$$
\frac{(\text { class } \overline{T n} C n \ldots) \in B T(B n)}{\operatorname{concrete}(B n . C n)} \text { Concrete }
$$

$$
\operatorname{rep}\left(C t\left(\overline{E_{0}}\right)\right)=\{\bar{V}=\bar{E}\}
$$

$$
\begin{gathered}
\left(\ll \text { abstract } \gg \text { class } \overline{T n} C n\left(\bar{I}: \overline{T_{1}}\right)<\text { extends } C t\left(\overline{E_{0}}\right)>\text { of }\left\{\overline{V n}: \overline{T_{2}}=\overline{E_{2}}\right\}\right) \in B T(B n) \\
<\operatorname{rep}\left(C t\left(\overline{E_{0}}\right)\right)=\left\{\bar{V}=\overline{E_{1}}\right\}> \\
\hline \operatorname{rep}((\bar{T} B n . C n)(\bar{E}))=[\bar{I} \mapsto \bar{E}][\overline{T n} \mapsto \bar{T}]\left\{<\bar{V}=\overline{E_{1}},>B n . \overline{V n}=\overline{E_{2}}\right\}
\end{gathered}
$$

Rule Rep: The notation $B n \cdot \overline{V n}=\bar{E}$ abbreviates $B n . V n_{1}=E_{1}, \ldots, B n . V n_{k}=E_{k}$.

3 Static Semantics

3.1 Preliminaries

Γ is a type environment, mapping identifiers to types. The metavariable $T m$ ranges over both types and marked types. The notation $\hat{M} t$ denotes the type T equivalent to $M t$, but with the \# mark removed.

3.2 Blocks

$$
\frac{\overline{B n} \vdash \overline{O o d} \text { OK in } B n}{\text { block } B n=\mathrm{blk} \text { extends } \overline{B n} \overline{O o d} \text { end OK }} \text { BlockOK }
$$

Rule BlockOK: The notation $\overline{B n} \vdash \overline{O o d}$ OK in $B n$ abbreviates $\overline{B n} \vdash O_{o d}$ OK in $B n \cdots \overline{B n} \vdash \operatorname{Ood}_{k}$ OK in $B n$.

3.3 OO Declarations

> | $\overline{B n} \vdash O o d$ OK in $B n$ |
| :---: |

$$
\begin{gathered}
\quad<C t=\overline{T n} B n . C n>\quad<\Gamma ; \overline{T n} \vdash C t(\bar{E}) \text { OK }> \\
\overline{T n} \vdash \bar{T} \text { OK } \quad \overline{T n} \vdash \overline{T_{0}} \text { OK } \quad \Gamma=\{(\bar{I}, \bar{T})\} \quad \bar{T} ; \overline{E_{0}}: \overline{T_{1}} \quad \overline{T_{1}} \leq \overline{T_{0}} \\
\overline{B n} \vdash B n . C n \text { transExtended } \quad \text { concrete }(B n . C n) \Rightarrow \overline{B n} \vdash \text { funs-have-ldefault-for } B n . C n \\
\hline \overline{\overline{B n} \vdash \ll \text { abstract } \gg \text { class } \overline{T n}} C n(\bar{I}: \bar{T})<\text { extends } C t(\bar{E})>\text { of }\left\{\overline{V n}: \overline{T_{0}}=\overline{E_{0}}\right\} \text { OK in } B n
\end{gathered}
$$

Rule ClassOK: The notation $\overline{T n} \vdash \bar{T}$ OK abbreviates $\overline{T n} \vdash T_{1}$ OK $\cdots \overline{T n} \vdash T_{k}$ OK. The notation (\bar{I}, \bar{T}) abbreviates $\left(I_{1}, T_{1}\right), \ldots,\left(I_{k}, T_{k}\right)$. The notation $\Gamma ; \overline{T n} \vdash \bar{E}: \bar{T}$ abbreviates $\Gamma ; \overline{T n} \vdash E_{1}: T_{1} \cdots \Gamma ; \overline{T n} \vdash E_{k}: T_{k}$. The notation $\overline{T_{1}} \leq \overline{T_{0}}$ abbreviates $T_{11} \leq T_{01} \cdots T_{1 k} \leq T_{0 k}$.

$$
\frac{\overline{T n} \vdash \hat{M} t \text { OK } \quad \overline{T n} \vdash T \text { OK } \quad \mathrm{CP}(B n . F n)=B n^{\prime} . C n \quad B n=B n^{\prime} \vee \overline{B n} \vdash B n . F n \text { has-gdefault }}{\overline{B n} \vdash \text { fun } \overline{T n} F n: M t \rightarrow T \text { OK in } B n} \text { FunOK }
$$

$$
\begin{aligned}
& \quad\left(\text { fun } \overline{T n^{\prime}} F n: M t \rightarrow T\right) \in B T\left(B n^{\prime}\right) \\
& \text { matchType }\left(\left[\overline{T n^{\prime}} \mapsto \overline{T n}\right] \hat{M} t, P a t\right)=\left(\Gamma, T_{0}\right) \quad \Gamma ; \overline{T n} \vdash E: T^{\prime} \quad T^{\prime} \leq\left[\overline{T n^{\prime}} \mapsto \overline{T n}\right] T \\
& \overline{B n} \vdash B n^{\prime} . F n \text { extended } \quad B n ; \overline{B n} \vdash \text { extend } \text { fun }_{M n} \overline{T n} B n^{\prime} . F n \text { Pat }=E \text { unambiguous } \\
& \overline{\overline{B n}} \vdash \text { extend } \mathrm{fun}_{M n} \overline{T n} B n^{\prime} . F n \text { Pat }=E \text { OK in } B n
\end{aligned}
$$

3.4 Types

$\overline{T n} \vdash T \mathrm{OK}$

$$
\frac{T n \in \overline{T n}}{\overline{T n} \vdash T n \text { OK }} \text { TVAROK }
$$

$\frac{\left(<\text { abstract }>\text { class } \overline{T n_{0}} C n \ldots\right) \in B T(B n) \quad \overline{T n} \vdash \bar{T} \text { OK } \quad\left|\overline{T n_{0}}\right|=|\bar{T}|}{\overline{T n} \vdash \bar{T} B n . C n \text { OK }}$ ClassTypeOK

$$
\frac{\overline{T n} \vdash T_{1} \mathrm{OK} \quad \overline{T n} \vdash T_{2} \text { OK }}{\overline{T n} \vdash T_{1} \rightarrow T_{2} \mathrm{OK}} \text { FunTypeOK }
$$

$$
\frac{\overline{T n} \vdash T_{1} \text { OK } \quad \cdots \quad \overline{T n} \vdash T_{k} \text { OK }}{\overline{T n} \vdash T_{1} * \cdots * T_{k} \text { OK }} \text { TupTypeOK }
$$

3.5 Subtyping

$$
T \leq T^{\prime}
$$

$$
\begin{gathered}
\overline{T \leq T} \text { SubTRef } \\
\frac{T_{1} \leq T_{2} \quad T_{2} \leq T_{3}}{T_{1} \leq T_{3}} \text { SubTTrans } \\
\frac{\left(<\text { abstract }>\text { class } \overline{T n} C n\left(\overline{T_{1}}: \overline{T_{1}}\right) \text { extends } C t \ldots\right) \in B T(B n)}{\bar{T} B n . C n \leq[\overline{T n} \mapsto \bar{T}] C t} \text { SubTExT } \\
\frac{T_{1}^{\prime} \leq T_{1} \quad T_{2} \leq T_{2}^{\prime}}{T_{1} \rightarrow T_{2} \leq T_{1}^{\prime} \rightarrow T_{2}^{\prime}} \text { SubTFun } \\
\frac{T_{1} \leq T_{1}^{\prime} \quad \cdots \quad T_{k} \leq T_{k}^{\prime}}{T_{1} * \cdots * T_{k} \leq T_{1}^{\prime} * \cdots * T_{k}^{\prime}} \text { SubTTup }
\end{gathered}
$$

3.6 Patterns

$$
\operatorname{matchType}(T, P a t)=\left(\Gamma, T^{\prime}\right)
$$

$$
\begin{gathered}
\frac{\operatorname{matchType}(T,-)=(\{ \}, T)}{} \text { T-MatchWild } \\
\frac{\operatorname{matchType}(T, P a t)=\left(\Gamma, T^{\prime}\right)}{\operatorname{matchType}(T, I \text { as } P a t)=\left(\Gamma \cup\left\{\left(I, T^{\prime}\right)\right\}, T^{\prime}\right)} \text { T-MatchBind } \\
\frac{C \leq C^{\prime} \quad \operatorname{repType}(\bar{T} C)=\left\{\bar{V}: \overline{T_{0}}\right\} \quad \operatorname{matchType}\left(\overline{T_{0}}, \overline{P a t}\right)=\left(\bar{\Gamma}, \overline{T_{1}}\right)}{\left.\operatorname{matchType}\left(\bar{T} C^{\prime}\right), C\{\bar{V}=\overline{P a t}\}\right)=(\bigcup \bar{\Gamma},(\bar{T} C))} \text { T-MatchClass }
\end{gathered}
$$

Rule T-MatchClass: The notation matchType $\left(\overline{T_{0}}, \overline{P a t}\right)=\left(\bar{\Gamma}, \overline{T_{1}}\right)$ abbreviates matchType $\left(T_{1}\right.$, Pat $\left._{1}\right)=$ $\left(\Gamma_{1}, T_{1}^{\prime}\right) \cdots \operatorname{matchType}\left(T_{k}\right.$, Pat $\left._{k}\right)=\left(\Gamma_{k}, T_{k}^{\prime}\right)$.

$$
\frac{\operatorname{matchType}\left(T_{1}, \text { Pat } t_{1}\right)=\left(\Gamma_{1}, T_{1}^{\prime}\right) \quad \cdots \quad \operatorname{matchType}\left(T_{k}, P a t_{k}\right)=\left(\Gamma_{k}, T_{k}^{\prime}\right)}{\operatorname{matchType}\left(T_{1} * \cdots * T_{k},\left(\text { Pat }_{1}, \ldots, \text { Pat }_{k}\right)\right)=\quad\left(\Gamma_{1} \cup \ldots \cup \Gamma_{k}, T_{1}^{\prime} * \cdots * T_{k}^{\prime}\right)} \text { T-MatchTuP }
$$

3.7 Expressions

$\Gamma ; \overline{T n} \vdash E: T$

$$
\begin{aligned}
& \frac{(I, T) \in \Gamma}{\Gamma ; \overline{T n} \vdash I: T} \text { T-ID } \\
& \frac{\left(\text { fun } \overline{T n_{0}} F n: M t \rightarrow T\right) \in B T(B n) \quad \overline{T n} \vdash \overline{T_{0}} \text { OK }}{\Gamma ; \overline{T n} \vdash \overline{T_{0}} B n . F n:\left[\overline{T n_{0}} \mapsto \overline{T_{0}}\right](\hat{M} t \rightarrow T)} \text { T-FuN } \\
& \frac{\Gamma ; \overline{T n} \vdash E_{1}: T_{2} \rightarrow T \quad \Gamma ; \overline{T n} \vdash E_{2}: T_{2}^{\prime} \quad T_{2}^{\prime} \leq T_{2}}{\Gamma ; \overline{T n} \vdash E_{1} E_{2}: T} \text { T-APP } \\
& \frac{\Gamma ; \overline{T n} \vdash C t(\bar{E}) \text { OK } \quad C t=(\bar{T} C) \quad \text { concrete }(C)}{\Gamma ; \overline{T n} \vdash C t(\bar{E}): C t} \text { T-New } \\
& \frac{\Gamma ; \overline{T n} \vdash E_{1}: T_{1} \quad \ldots \quad \Gamma ; \overline{T n} \vdash E_{k}: T_{k}}{\Gamma ; \overline{T n} \vdash\left(E_{1}, \ldots, E_{k}\right): T_{1} * \cdots * T_{k}} \text { T-TUP } \\
& \overline{T n} \vdash C t \text { OK } \\
& \begin{array}{c}
C t=\left(\overline{T_{0}} C\right) \quad \text { concrete }(C) \quad \operatorname{repType}(C t)=\{\bar{V}: \bar{T}\} \quad \Gamma ; \overline{T n} \vdash \bar{E}: \overline{T_{1}} \quad \overline{T_{1}} \leq \bar{T} \\
\Gamma ; \overline{T n} \vdash C t\{\bar{V}=\bar{E}\}: C t \\
\text { T-REP }
\end{array}
\end{aligned}
$$

3.8 Constructor Calls

$$
\Gamma ; \overline{T n} \vdash C t(\bar{E}) \mathrm{OK}
$$

$$
\frac{\begin{array}{c}
\overline{T n} \vdash C t \text { OK } \quad C t=\left(\overline{T_{0}} B n . C n\right) \\
\left(<\text { abstract }>\text { class } \overline{T n_{0}} C n(\bar{T}: \bar{T}) \ldots\right) \in B T(B n) \\
\Gamma ; \overline{T n} \vdash \bar{E}: \overline{T_{1}}
\end{array} \overline{T_{1} \leq\left[\overline{T n_{0}} \mapsto \overline{T_{0}}\right] \bar{T}} \text { T-SUPER }}{\Gamma ; \overline{T n} \vdash C t(\bar{E}) \text { OK }}
$$

3.9 Class Representation Types

$$
\operatorname{rep} \operatorname{Type}(C t)=\{\bar{V}: \bar{T}\}
$$

$$
\begin{gathered}
\begin{array}{c}
\left(\ll \text { abstract } \gg \text { class } \overline{T n} C n\left(\bar{I}: \overline{T_{1}}\right)<\text { extends } C t\left(\overline{E_{0}}\right)>\text { of }\left\{\overline{V n}: \overline{T_{2}}=\overline{E_{2}}\right\}\right) \in B T(B n) \\
\quad<\operatorname{repType}(C t)=\left\{\bar{V}: \overline{T_{3}}\right\}>
\end{array} \\
\operatorname{repType}(\bar{T} B n . C n)=[\overline{T n} \mapsto \bar{T}]\left\{\left\langle\bar{V}: \overline{T_{3}},>B n . \overline{V_{n}}: \overline{T_{2}}\right\}\right.
\end{gathered}
$$

Rule RepType: The notation $B n . \overline{V n}: \bar{T}$ abbreviates $B n . V n_{1}: T_{1}, \ldots, B n . V n_{k}: T_{k}$.

3.10 Completeness Checking

3.10.1 Checking for Local and Global Default Cases

$$
\overline{B n} \vdash \text { funs-have-ldefault-for } C
$$

$$
\frac{\forall F, C^{\prime} .\left[\left(\overline{B n} \vdash F \text { extended } \wedge \mathrm{CP}(F)=C^{\prime} \wedge C \leq C^{\prime}\right) \Rightarrow \overline{B n} \vdash F \text { has-default-for } C\right]}{\overline{B n} \vdash \text { funs-have-ldefault-for } C} \text { LDefault }
$$

$$
\overline{B n} \vdash F \text { has-gdefault }
$$

$$
\frac{\mathrm{CP}(F)=C \quad \overline{B n} \vdash F \text { has-default-for } C}{\overline{B n} \vdash F \text { has-gdefault }} \text { GDefault }
$$

$\overline{B n} \vdash F$ has-default-for C

$$
\begin{aligned}
& \text { (fun } \overline{T n} F n: M t \rightarrow T) \in B T(B n) \quad \operatorname{defaultPat}(M t, C)=P a t \\
& \\
& \frac{\text { (extend } \left.\text { fun }_{M n} \overline{T n_{0}} B n . F n P a t^{\prime}=E\right) \in B T\left(B n^{\prime}\right) \quad P a t \leq P a t^{\prime}}{} \quad B n^{\prime} \in \overline{B n} \\
& \overline{B n} \vdash B n . F n \text { has-default-for } C
\end{aligned}
$$

3.10.2 Generating the Default Pattern

$$
\operatorname{defaultPat}(M t, C)=P a t
$$

$$
\frac{\text { defaultPat }(M t, C, d)=P a t}{\operatorname{defaultPat}(M t, C)=P a t} \text { DefPat }
$$

Rule DefPat: The metavariable d ranges over nonnegative integers. It represents the "depth" of the resulting default pattern. For example, a default pattern of depth 0 is simply the wildcard, while a default pattern of depth 1 for a class type has the form C. The higher the depth, the more precise the check
for local/global defaults is. This type system does not compute the best depth to use, instead choosing it non-deterministically. It is straightforward to find the appropriately precise depth - it is the maximum depth of any pattern in an available case of the function being checked.

$$
\operatorname{defaultPat}(T m, C, d)=P a t
$$

The metavariable $T m$ ranges over both types and marked types.

$$
\begin{gathered}
\overline{\operatorname{defaultPat}(T m, C, 0)=-} \text { DefZero } \\
\frac{d>0}{\operatorname{defaultPat}(T n, C, d)=-} \text { DefTyPeVAr } \\
\frac{\operatorname{repType}\left(\bar{T} C^{\prime}\right)=\left\{\bar{V}: \overline{T_{0}}\right\} \quad \operatorname{defaultPat}\left(\overline{T_{0}}, C, d-1\right)=\overline{P a t} \quad d>0}{\operatorname{defaultPat}\left(\left(\bar{T} C^{\prime}\right), C, d\right)=\left(C^{\prime}\{\bar{V}=\overline{P a t}\}\right)} \text { DefClassType }
\end{gathered}
$$

Rule DefClassType: The notation defaultPat $\left(\overline{T_{0}}, C, d-1\right)=\overline{P a t} \operatorname{abbreviates} \operatorname{defaultPat}\left(T_{1}, C, d-1\right)=$ Pat $t_{1} \cdots$ defaultPat $\left(T_{k}, C, d-1\right)=P a t_{k}$.

$$
\begin{gathered}
\frac{\operatorname{repType}(\bar{T} C)=\left\{\bar{V}: \overline{T_{0}}\right\} \quad \operatorname{defaultPat}\left(\overline{T_{0}}, C, d-1\right)=\overline{P a t} \quad d>0}{\operatorname{defaultPat}\left(\#\left(\bar{T} C^{\prime}\right), C, d\right)=(C\{\bar{V}=\overline{P a t}\})} \text { DefCPClassTyPE } \\
\frac{\operatorname{defaultPat}\left(T m_{1}, C, d-1\right)=P a t_{1} \quad \ldots \quad \operatorname{defaultPat}\left(T m_{k}, C, d-1\right)=P a t_{k} \quad d>0}{\operatorname{defaultPat}\left(T m_{1} * \ldots * T m_{k}, C, d\right)=\left(P a t_{1}, \ldots, P a t_{k}\right)} \text { DefTupTyPE } \\
\frac{d>0}{\operatorname{defaultPat}\left(T_{1} \rightarrow T_{2}, C, d\right)=_{-}} \text {DefFunTyPe }^{2}
\end{gathered}
$$

3.11 Ambiguity Checking

3.11.1 The Top-Level Rule

$$
B n ; \overline{B n} \vdash \text { extend fun } \ldots \text { unambiguous }
$$

$\overline{B n} \vdash$ extend fun $_{M n} \overline{T n} B n^{\prime} . F n$ Pat $=E$ unambiguous in $B n$

$$
\frac{\left(\text { fun } \overline{T n^{\prime}} F n: M t \rightarrow T\right) \in B T\left(B n^{\prime}\right) \quad \mathrm{CP}(M t, P a t)=B n^{\prime \prime} . C n \quad B n=B n^{\prime} \vee B n=B n^{\prime \prime}}{B n ; \overline{B n} \vdash \text { extend } \mathrm{fun}_{M n} \overline{T n} B n^{\prime} . F n P a t=E \text { unambiguous }} \text { Амв }
$$

3.11.2 Ambiguity With Available Cases

$$
\overline{\overline{B n}} \vdash \text { extend fun } \ldots \text { unambiguous in } B n
$$

$$
\begin{gathered}
\forall B n^{\prime} \in \overline{B n} . \forall\left(\text { extend } \text { fun }_{M n^{\prime}} \overline{T n_{1}} F P a t^{\prime}=E^{\prime}\right) \in B T\left(B n^{\prime}\right) . \\
\forall P a t_{0} \cdot\left[\left(P a t \cap P a t^{\prime}=P a t_{0} \wedge B n . M n \neq B n^{\prime} . M n^{\prime}\right) \Rightarrow\right. \\
\exists B n^{\prime \prime} \in \overline{B n} \cdot \exists\left(\text { extend } \text { fun }_{M n^{\prime \prime}} \overline{T n_{2}} F P a t^{\prime \prime}=E^{\prime \prime}\right) \in B T\left(B n^{\prime \prime}\right) . \\
\frac{\left.\left(P a t_{0} \leq P a t^{\prime \prime} \wedge P a t^{\prime \prime} \leq P a t \wedge P a t^{\prime \prime} \leq P a t^{\prime} \wedge\left(P a t \not \leq P a t^{\prime \prime} \vee P a t^{\prime} \not \leq P a t^{\prime \prime}\right)\right)\right]}{\overline{B n} \vdash \text { extend fun } \text { mun }^{T n} \overline{T n} P a t=E \text { unambiguous in } B n} \text { BLA }
\end{gathered}
$$

Rule BlAmb: This rule ensures that a function case is not ambiguous with any other function cases declared in $\overline{B n}$: for each such case that has a non-empty intersection with the current case's pattern, there must exist a resolving case. The resolving case must cover the intersection, be at least as specific as the other two cases, and be strictly more specific than one of them.

3.11.3 Pattern Intersection

$$
P a t_{1} \cap P a t_{2}=P a t
$$

$$
\begin{aligned}
& \overline{-\cap P a t=P a t} \text { PatIntWild } \\
& \frac{P a t_{1} \cap P a t_{2}=P a t}{I \text { as } P a t_{1} \cap \text { Pat }_{2}=P a t} \text { PatIntBind } \\
& \overline{C \leq C^{\prime} \quad \overline{P a t_{1}} \cap \overline{P_{1} t_{2}}=\overline{\text { Pat }}} \overline{\left.C \overline{P_{\text {Pat }}}, \overline{V_{3}}=\overline{P a t_{3}}\right\} \cap C^{\prime}\left\{\bar{V}=\overline{\text { Pat }_{2}}\right\}=C\left\{\bar{V}=\overline{\text { Pat }}, \overline{V_{3}}=\overline{P_{\text {Pat }}}\right\}} \text { PatIntClass }
\end{aligned}
$$

Rule PatIntClass: The notation $\overline{P_{a t_{1}}} \cap \overline{P a t_{2}}=\overline{P a t}$ abbreviates Pat \cap Pat $t_{1}^{\prime \prime}=$ Pat $_{1} \cdots$ Pat $_{k}^{\prime} \cap$ Pa $t_{k}^{\prime \prime}=$ Pat $_{k}$.

$$
\begin{gathered}
\frac{\overline{P a t_{1}} \cap \overline{P a t_{2}}=\overline{P a t}}{\left(\overline{P a t_{1}}\right) \cap\left(\overline{P a t_{2}}\right)=(\overline{P a t})} \text { PatIntTup } \\
\frac{P a t_{2} \cap P a t_{1}=P a t}{P a t_{1} \cap P a t_{2}=P a t} \text { PatIntRev }^{\text {Pater }}=
\end{gathered}
$$

3.12 Block Extension

$$
\overline{B n} \vdash B n . C n \text { transExtended }
$$

$$
\frac{B n \in \overline{B n}}{\overline{B n} \vdash B n . F n \text { extended }} \text { FunExt }
$$

3.13 Accessing the CP

3.13.1 The CP of a Function's Argument Type

$$
\mathrm{CP}(F)=C
$$

$$
\frac{(\text { fun } \overline{T n} F n: M t \rightarrow T) \in B T(B n) \quad \mathrm{CP}(M t)=C}{\mathrm{CP}(B n . F n)=C} \text { CPFun }
$$

$$
\mathrm{CP}(M t)=C
$$

$$
\begin{gathered}
\overline{\mathrm{CP}(\# \bar{T} C)=C} \mathrm{CPClass} \\
\frac{\mathrm{CP}(M t)=C}{\mathrm{CP}\left(T_{1} * \cdots * T_{i-1} * M t * T_{i+1} * \cdots * T_{k}\right)=C} \mathrm{CPTup}
\end{gathered}
$$

3.13.2 The CP of a Pattern

$$
\mathrm{CP}(\text { Mt, Pat })=C
$$

$$
\begin{gathered}
\frac{\mathrm{CP}(M t, \text { Pat })=C}{\mathrm{CP}(M t, I \text { as Pat })=C} \text { CPBindPat } \\
\frac{\mathrm{CP}\left(M t, \text { Pat }_{i}\right)=C}{\mathrm{CP}\left(T_{1} * \cdots * T_{i-1} * M t * T_{i+1} * \cdots * T_{k},\left(\text { Pat }_{1}, \ldots, \text { Pat }_{k}\right)\right)=C} \mathrm{CPTuPPAT} \\
\frac{\mathrm{CP}(\# C t, C\{\bar{V}=\overline{\text { Pat }}\})=C}{C P C l a s s P a t}
\end{gathered}
$$

3.13.3 The CP of a Value

$$
\mathrm{CP}(M t, v)=C
$$

These rules are used only in the proof of progress.

$$
\begin{gathered}
\frac{\mathrm{CP}\left(M t, v_{i}\right)=C}{\mathrm{CP}\left(T_{1} * \cdots * T_{i-1} * M t * T_{i+1} * \cdots * T_{k},\left(v_{1}, \ldots, v_{k}\right)\right)=C} \mathrm{CPTupVAL}^{\overline{\mathrm{CP}}(\# C t,(\bar{T} C)\{\bar{V}=\bar{v}\})=C} \text { CPInstance }
\end{gathered}
$$

4 Subject Reduction

4.1 Shared Preliminaries and Lemmas

These preliminaries and lemmas are also used in the progress proof in section 5.
As in the inference rules, we assume a global block table $B T$. We further assume that for each $B n \in$ $\operatorname{dom}(B T)$ we have $B T(B n)$ OK. The empty sequence is denoted \bullet. The notation $\vdash E: T$ is shorthand for $\} ; \bullet \vdash E: T$.

Lemma 4.1 If $\overline{T n} \vdash T$ OK, then all type variables in T are in $\overline{T n}$.
Proof By (strong) induction on the depth of the derivation of $\overline{T n} \vdash T$ OK. Case analysis on the last rule used in the derivation. For TVarOK, T has the form $T n$ and the premise ensures that $T n \in \overline{T n}$. All other cases are easily proven by induction.

Lemma 4.2 If $\overline{T n} \vdash T$ OK and $|\overline{T n}|=|\bar{T}|$ and $\overline{T n^{\prime}} \vdash \bar{T}$ OK, then $\overline{T n^{\prime}} \vdash[\overline{T n} \mapsto \bar{T}] T$ OK.
Proof By (strong) induction on the depth of the derivation of $\overline{T n} \vdash T$ OK. Case analysis on the last rule used in the derivation. For TVarOK, T has the form $T n$ and the premise ensures that $T n \in \overline{T n}$. Therefore $[\overline{T n} \mapsto \bar{T}] T$ is some T_{0} in \bar{T}. By assumption $\overline{T n^{\prime}} \vdash T_{0}$ OK so the result follows. All other cases are easily proven by induction.

Lemma 4.3 If $(\bar{T} C) \leq T$, then T has the form $\left(\overline{T_{1}} C^{\prime}\right)$.
Proof By (strong) induction on the depth of the derivation of $(\bar{T} C) \leq T$. Case analysis of the last rule used in the derivation.

- Case SubTRef. Then $T=(\bar{T} C)$.
- Case SubTTrans. Then $(\bar{T} C) \leq T^{\prime}$ and $T^{\prime} \leq T$. By induction T^{\prime} has the form $\left(\overline{T_{2}} C^{\prime \prime}\right)$. Then by induction again, T has the form $\left(\overline{T_{1}} C^{\prime}\right)$.
- Case SubTExt. Then T has the form $[\overline{T n} \mapsto \bar{T}] C t$, which is also of the form $\left(\overline{T_{1}} C^{\prime}\right)$.

Lemma 4.4 If $(\bar{T} C) \leq\left(\overline{T_{1}} C^{\prime}\right)$, then $\bar{T}=\overline{T_{1}}$.
Proof By (strong) induction on the depth of the derivation of $(\bar{T} C) \leq\left(\overline{T_{1}} C^{\prime}\right)$. Case analysis of the last rule used in the derivation.

- Case SubTRef. Then $(\bar{T} C)=\left(\overline{T_{1}} C^{\prime}\right)$, so $\bar{T}=\overline{T_{1}}$.
- Case SubTTrans. Then $(\bar{T} C) \leq T$ and $T \leq\left(\overline{T_{1}} C^{\prime}\right)$. By Lemma 4.3, T has the form $\left(\overline{T_{2}} C^{\prime \prime}\right)$. Then by induction we have $\bar{T}=\overline{T_{2}}$ and $\overline{T_{2}}=\overline{T_{1}}$, so $\bar{T}=\overline{T_{1}}$.
- Case SubTExt. Then $C=B n . C n$ and $\left(\overline{T_{1}} C^{\prime}\right)=[\overline{T n} \mapsto \bar{T}]\left(\overline{T_{2}} C^{\prime}\right)$ and (<abstract> class $\overline{T n}$ $C n\left(I_{1}: T_{1}, \ldots, I_{m}: T_{m}\right)$ extends $\left.\left(\overline{T_{2}} C^{\prime}\right) \ldots\right) \in B T(B n)$. By CLASSOK, we have $\overline{T_{2}}=\overline{T n}$. Therefore $\left(\overline{T_{1}} C^{\prime}\right)=[\overline{T n} \mapsto \bar{T}]\left(\overline{T n} C^{\prime}\right)=\left(\bar{T} C^{\prime}\right)$. Therefore $\bar{T}=\overline{T_{1}}$.

Lemma 4.5 If $(\bar{T} C) \leq\left(\overline{T_{1}} C^{\prime}\right)$ then $C \leq C^{\prime}$.
Proof By (strong) induction on the depth of the derivation of $(\bar{T} C) \leq\left(\overline{T_{1}} C^{\prime}\right)$. Case analysis of the last rule used in the derivation.

- Case SubTRef. Then $(\bar{T} C)=\left(\overline{T_{1}} C^{\prime}\right)$, so $C=C^{\prime}$. Then the result holds by SubRef.
- Case SubTTrans. Then $(\bar{T} C) \leq T$ and $T \leq\left(\overline{T_{1}} C^{\prime}\right)$. By Lemma $4.3 T$ has the form $\left(\overline{T_{2}} C^{\prime \prime}\right)$. Then by induction we have that $C \leq C^{\prime \prime}$ and $C^{\prime \prime} \leq C^{\prime}$. Therefore the result follows by SubTrans.
- Case SubTExt. Then $C=B n . C n$ and (<abstract> class $\overline{T n} C n\left(\overline{T_{0}}: \overline{T_{0}}\right)$ extends ($\left.\overline{T_{2}} C^{\prime}\right) \ldots$) $\in B T(B n)$. Then the result follows by SubExt.

Lemma 4.6 If $T \leq T_{1} * \cdots * T_{k}$, then T has the form $T_{1}^{\prime} * \cdots * T_{k}^{\prime}$, where for all $1 \leq i \leq k$ we have $T_{i}^{\prime} \leq T_{i}$. Proof By (strong) induction on the depth of the derivation of $T \leq T_{1} * \cdots * T_{k}$. Case analysis of the last rule used in the derivation.

- Case SubTRef. Then $T=T_{1} * \cdots * T_{k}$. By SubTRef, for all $1 \leq i \leq k$ we have $T_{i} \leq T_{i}$, so the result follows.
- Case SubTTrans. Then $T \leq T^{\prime}$ and $T^{\prime} \leq T_{1} * \cdots * T_{k}$. By induction T^{\prime} has the form $T_{1}^{\prime \prime} * \cdots * T_{k}^{\prime \prime}$, where for all $1 \leq i \leq k$ we have $T_{i}^{\prime \prime} \leq T_{i}$. Then by induction again, T has the form $T_{1}^{\prime} * \cdots * T_{k}^{\prime}$, where for all $1 \leq i \leq k$ we have $T_{i}^{\prime} \leq T_{i}^{\prime \prime}$. Then by SubTTrans, for all $1 \leq i \leq k$ we have $T_{i}^{\prime} \leq T_{i}$.
- Case SubTTup. Then T has the form $T_{1}^{\prime} * \cdots * T_{k}^{\prime}$, where for all $1 \leq i \leq k$ we have $T_{i}^{\prime} \leq T_{i}$.

Lemma 4.7 If Bn. $C n \leq B n^{\prime} . C n^{\prime}$ and $\overline{T n_{0}} \vdash(\bar{T} B n . C n)$ OK then (1) $(\bar{T} B n . C n) \leq\left(\bar{T} B n^{\prime} . C n^{\prime}\right)$; and (2) $\overline{T n_{0}} \vdash\left(\bar{T} B n^{\prime} . C n^{\prime}\right)$ OK.
Proof $B y$ (strong) induction on the depth of the derivation of $B n . C n \leq B n^{\prime} . C n^{\prime}$. Case analysis of the last rule used in the derivation.

- Case SubRef. Then $B n^{\prime} . C n^{\prime}=B n . C n$. Then condition 1 follows from SubTRef, and condition 2 follows by assumption.
- Case SubTrans. Then $B n . C n \leq B n^{\prime \prime} . C n^{\prime \prime}$ and $B n^{\prime \prime} . C n^{\prime \prime} \leq B n^{\prime} . C n^{\prime}$. By induction we have $(\bar{T} B n . C n) \leq$ $\left(\bar{T} B n^{\prime \prime} . C n^{\prime \prime}\right)$ and $\overline{T n_{0}} \vdash\left(\bar{T} B n^{\prime \prime} . C n^{\prime \prime}\right)$ OK. Then by induction again we have $\left(\bar{T} B n^{\prime \prime} . C n^{\prime \prime}\right) \leq\left(\bar{T} B n^{\prime} . C n^{\prime}\right)$ and $\overline{T n_{0}} \vdash\left(\bar{T} B n^{\prime} . C n^{\prime}\right)$ OK. Therefore condition 2 is shown, and condition 1 follows from SubTTrans.
- Case SubExt. Then (<abstract> class $\overline{\overline{T n}} C n\left(\overline{T_{0}}: \overline{T_{0}}\right)$ extends $\left.\left(\overline{T^{\prime}} B n^{\prime} . C n^{\prime}\right)(\bar{E}) \ldots\right) \in B T(B n)$. Then by Classok we have $\overline{T^{\prime}}=\overline{T n}$. Since $\overline{T n_{0}} \vdash(\bar{T} B n . C n)$ OK, by ClassTypeOK we have $|\overline{T n}|=$ $|\bar{T}|$ and $\overline{T n_{0}} \vdash \bar{T}$ OK. Therefore by SubTExt we have ($\left.\bar{T} B n . C n\right) \leq[\overline{T n} \mapsto \bar{T}]\left(\overline{T n} B n^{\prime} . C n^{\prime}\right)$. Since $[\overline{T n} \mapsto \bar{T}]\left(\overline{T n} B n^{\prime} . C n^{\prime}\right)=\left(\bar{T} B n^{\prime} . C n^{\prime}\right)$, condition 1 is shown. Also by CLASSOK $\overline{T n} \vdash\left(\overline{T n} B n^{\prime} . C n^{\prime}\right)(\bar{E})$ OK, so by T-SuPER we have have $\overline{T n} \vdash\left(\overline{T n} B n^{\prime} . C n^{\prime}\right)$ OK. Therefore by Lemma 4.2 we have $\overline{T n_{0}} \vdash$ ($\bar{T} B n^{\prime} . C n^{\prime}$) OK, so condition 2 is shown.

Lemma 4.8 If $\overline{T n} \vdash C t$ OK then repType $(C t)$ is well-defined and has the form $\left\{\overline{V_{0}}: \overline{T_{0}}\right\}$.
Proof Let $C t=(\bar{T} B n . C n)$. We prove this lemma by induction on the length of the longest path in the superclass graph from Bn.Cn (in other words, the number of non-trivial superclasses of $B n . C n$). By ClassTypeOK we have $\overline{T n} \vdash \bar{T}$ OK and (<abstract> class $\overline{T n_{0}} C n\left(\overline{I_{1}}: \overline{T_{1}}\right) \ll$ extends $C t^{\prime}(\bar{E}) \gg$ of $\left.\left\{\overline{V n}: \overline{T_{2}}=\overline{E_{2}}\right\}\right) \in B T(B n)$ and $\left|\overline{T n_{0}}\right|=|\bar{T}|$. There are two cases to consider.

- The length of the longest path in the superclass graph from $B n . C n$ is 0 . Then $B n . C n$ has no non-trivial superclasses, so the extends clause in the declaration of $B n . C n$ is absent. Then by Reptype we have repType $(C t)=\left[\overline{T n_{0}} \mapsto \bar{T}\right]\left\{B n . \overline{V n}: \overline{T_{2}}\right\}$, so the result follows.
- The length of the longest path in the superclass graph from Bn.Cn is $i>0$. Then Bn.Cn has at least one non-trivial superclass, so the extends clause in the declaration of $B n . C n$ is present. Then by Classok we have $\overline{T n_{0}} \vdash C t^{\prime}(\bar{E})$ OK, so by T-Super we have $\overline{T n_{0}} \vdash C t^{\prime}$ OK. Since $C t^{\prime}$ must have the form $\left(\overline{T_{1}} B n^{\prime} . C n^{\prime}\right)$, where the length of the longest path in the superclass graph from $B n^{\prime} . C n^{\prime}$ is $i-1$, by induction we have that repType $\left(C t^{\prime}\right)$ has the form $\left\{\overline{V_{0}}: \overline{T_{0}}\right\}$. Then by RepType we have $\operatorname{repType}(C t)=\left[\overline{T n_{0}} \mapsto \bar{T}\right\}\left\{\overline{V_{0}}: \overline{T_{0}}, B n . \overline{V_{n}}: \overline{T_{2}}\right\}$, so the result follows.

Lemma 4.9 If $\overline{T n} \vdash C t$ OK and $C t \leq C t^{\prime}$, then $\overline{T n} \vdash C t^{\prime}$ OK.
Proof By (strong) induction on the depth of the derivation of $C t \leq C t^{\prime}$. Case analysis of the last rule used in the derivation.

- Case SubTRef. Then $C t=C t^{\prime}$, so the result follows by assumption.
- Case SubTTrans. Then $C t \leq T$ and $T \leq C t^{\prime}$. By Lemma $4.3 T$ has the form $C t^{\prime \prime}$. Therefore by induction we have $\overline{T n} \vdash C t^{\prime \prime} \mathrm{OK}$, and by induction again we have $\overline{T n} \vdash C t^{\prime} \mathrm{OK}$.
- Case SubTExt. Then $C t=(\bar{T} B n . C n)$ and $C t^{\prime}=\left[\overline{T n_{0}} \mapsto \bar{T}\right] C t^{\prime \prime}$ and (<abstract> class $\overline{T n_{0}}$ $C n\left(\overline{I_{0}}: \overline{T_{0}}\right)$ extends $\left.C t^{\prime \prime}(\bar{E}) \ldots\right) \in B T(B n)$. By ClassOK we have $\overline{T n_{0}} \vdash C t^{\prime \prime}(\bar{E})$ OK, so by T-Super we have $\overline{T n_{0}} \vdash C t^{\prime \prime}$ OK. Since $\overline{T n} \vdash C t$ OK, by ClassTypeOK we have $\overline{T n} \vdash \bar{T}$ OK. Therefore by Lemma 4.2 we have $\overline{T n} \vdash\left[\overline{T n_{0}} \mapsto \bar{T}\right] C t^{\prime \prime}$ OK.
Lemma 4.10 If repType $(C t)=\{\bar{V}: \bar{T}\}$ and $\overline{T n} \vdash C t$ OK, then $\overline{T n} \vdash \bar{T}$ OK.
Proof By induction on the depth of the derivation of repType $(C t)=T$. Then by RepType $C t=\left(\overline{T_{0}} B n . C n\right)$ and $\{\bar{V}: \bar{T}\}=\left[\overline{T n_{0}} \mapsto \overline{T_{0}}\right]\left\{<\overline{V_{1}}: \overline{T_{1}},>B n . \overline{V n}: \overline{T_{2}}\right\}$ and (<<abstract>>class $\overline{T_{n}} C n\left(\overline{\bar{T}_{0}}: \overline{T_{0}}\right)<$ extends $C t^{\prime}(\bar{E})>$ of $\left.\left\{\overline{V n}: \overline{T_{2}}=\overline{E_{2}}\right\}\right) \in B T(B n)$ and $<\operatorname{repType}\left(C t^{\prime}\right)=\left\{\overline{V_{1}}: \overline{T_{1}}\right\}$. By ClassOK we have $<\overline{T n_{0}} \vdash$ $C t^{\prime}(\bar{E})$ OK $>$, so by T-SUPER we have $<\overline{T n_{0}} \vdash C t^{\prime}$ OK $>$. Then by induction we have have $<\overline{T n_{0}} \vdash \overline{T_{1}}$ OK. Also by ClassOK we have $\overline{T n_{0}} \vdash \overline{T_{2}}$ OK. Since $\overline{T n} \vdash C t$ OK, by ClassTypeOK we have that $\overline{T n} \vdash \overline{T_{0}}$ OK. Therefore by Lemma 4.2 we have $<\overline{T n} \vdash\left[\overline{T n_{0}} \mapsto \overline{T_{0}}\right] \overline{T_{1}}$ OK $>$ and $\overline{T n} \vdash\left[\overline{T n_{0}} \mapsto \overline{T_{0}}\right] \overline{T_{2}}$ OK, so the result follows.
Lemma 4.11 If repType $(C t)=\{\bar{V}: \bar{T}\}$ and $|\overline{T n}|=|\bar{T}|$, then repType $([\overline{T n} \mapsto \bar{T}] C t)=[\overline{T n} \mapsto \bar{T}]\{\bar{V}: \bar{T}\}$.
Proof By induction on the depth of the derivation of repType $(C t)=\{\bar{V}: \bar{T}\}$. Then by RepType $C t=\left(\overline{T_{0}} B n . C n\right)$ and $\{\bar{V}: \bar{T}\}=\left[\overline{T n_{0}} \mapsto \overline{T_{0}}\right]\left\{<\overline{V_{1}}: \overline{T_{1}},>B n . \overline{V n}: \overline{T_{2}}\right\}$ and (<<abstract \gg class $\overline{T n_{0}}$ $C n\left(\overline{I_{4}}: \overline{T_{4}}\right)<$ extends $C t^{\prime}(\bar{E})>$ of $\left.\left\{\overline{V n}: \overline{T_{2}}=\overline{E_{2}}\right\}\right) \in B T(B n)$ and $<\operatorname{repType}\left(C t^{\prime}\right)=\left\{\overline{V_{1}}: \overline{T_{1}}\right\}>$. Therefore by REPTYPE we have repType $\left([\overline{T n} \mapsto \bar{T}]\left(\overline{T_{0}} B n . C n\right)\right)=\left[\overline{T n_{0}} \mapsto[\overline{T n} \mapsto \bar{T}] \overline{T_{0}}\right]\left\{<\overline{V_{1}}: \overline{T_{1}},>B n . \overline{V_{n}}: \overline{T_{2}}\right\}$. By ClassOK we have $<\overline{T n_{0}} \vdash C t^{\prime}(\bar{E})$ OK $>$, so by T-Super we have $<\overline{T n_{0}} \vdash C t^{\prime}$ OK $>$. Then by Lemma 4.10 we have $<\overline{T n_{0}} \vdash \overline{T_{1}}$ OK $>$, so by Lemma 4.1 all type variables $\overline{T_{1}}$ are in $\overline{T n_{0}}$. Also by Class OK we have $\overline{T n_{0}} \vdash \overline{T_{2}}$ OK, so by Lemma 4.1 all type variables in $\overline{T_{2}}$ are in $\overline{T n_{0}}$. Therefore $\left[\overline{T n_{0}} \mapsto[\overline{T n} \mapsto \bar{T}] \overline{T_{0}}\right]\left\{\overline{V_{1}}: \overline{T_{1}}, B n . \overline{V n}: \overline{T_{2}}\right\}$ is equivalent to $[\overline{T n} \mapsto \bar{T}]\left[\overline{T n_{0}} \mapsto \overline{T_{0}}\right]\left\{\overline{V_{1}}: \overline{T_{1}}, B n \cdot \overline{V n}: \overline{T_{2}}\right\}$, so the result follows.
Lemma 4.12 If $\bullet \vdash C t$ OK and $C t \leq C t^{\prime}$ then repType $(C t)=\left\{\overline{V_{1}}: \overline{T_{1}}, \overline{V_{2}}: \overline{T_{2}}\right\}$ and repType $\left(C t^{\prime}\right)=$ $\left\{\overline{V_{1}}: \overline{T_{1}}\right\}$.
Proof By induction on the depth of the derivation of $C t \leq C t^{\prime}$. Case analysis of the last rule used in the derivation.
- Case SubTRef. Then $C t=C t^{\prime}$. Since • $\vdash C t$ OK, by Lemma 4.8 we have that repType $(C t)$ is well-defined and has the form $\{\bar{V}: \bar{T}\}$. Therefore, repType $\left(C t^{\prime}\right)=\{\bar{V}: \bar{T}\}$ as well, so the result follows.
- Case SubTTrans. Then $C t \leq T$ and $T \leq C t^{\prime}$. By Lemma $4.3 T$ has the form $C t^{\prime \prime}$. Then by Lemma 4.9 we have $\bullet \vdash C t^{\prime \prime}$ OK and $\bullet \vdash C t^{\prime}$ OK. Therefore by induction we have repType $(C t)$ $=\left\{\overline{V_{1}}: \overline{T_{1}}, \overline{V_{3}}: \overline{T_{3}}, \overline{V_{4}}: \overline{T_{4}}\right\}$ and repType $\left(C t^{\prime \prime}\right)=\left\{\overline{V_{1}}: \overline{T_{1}}, \overline{V_{3}}: \overline{T_{3}}\right\}$. By induction again we have repType $\left(C t^{\prime}\right)=\left\{\overline{V_{1}}: \overline{T_{1}}\right\}$, so the result is shown.
- Case SubTExt. Then $C t=(\bar{T} B n . C n)$ and $C t^{\prime}=[\overline{T n} \mapsto \bar{T}] C t^{\prime \prime}$ and (<abstract> class $\overline{T n} C n\left(\overline{I_{0}}\right.$: $\overline{T_{0}}$) extends $C t^{\prime \prime}(\bar{E})$ of $\left.\left\{\overline{V n}: \overline{T_{2}}=\overline{E_{2}}\right\}\right) \in B T(B n)$. Since $\bullet \vdash C t$ OK, by Lemma 4.8 we have that repType $(C t)$ is well defined and has the form $\left\{\overline{V_{3}}: \overline{T_{3}}\right\}$. Then by REPType we have $\left\{\overline{V_{3}}: \overline{T_{3}}\right\}=$ $[\overline{T n} \mapsto \bar{T}]\left\{\overline{V_{1}}: \overline{T_{1}}, B n . \overline{V n}: \overline{T_{2}}\right\}$ and repType $\left(C t^{\prime \prime}\right)=\left\{\overline{V_{1}}: \overline{T_{1}}\right\}$. Then by Lemma 4.11 we have repType $\left(C t^{\prime}\right)=[\overline{T n} \mapsto \bar{T}]\left\{\overline{V_{1}}: \overline{T_{1}}\right\}$, so the result follows.

4.2 Simple Lemmas

Lemma 4.13 If $T \leq T_{1} \rightarrow T_{2}$, then T has the form $T_{1}^{\prime} \rightarrow T_{2}^{\prime}$, where $T_{1} \leq T_{1}^{\prime}$ and $T_{2}^{\prime} \leq T_{2}$.
Proof By (strong) induction on the depth of the derivation of $T \leq T_{1} \rightarrow T_{2}$. Case analysis on the last rule used in the derivation.

- Case SubTRef. Therefore $T=T_{1} \rightarrow T_{2}$, so $T_{1}^{\prime}=T_{1}$ and $T_{2}^{\prime}=T_{2}$. By SubTREF we have $T_{1} \leq T_{1}^{\prime}$ and $T_{2}^{\prime} \leq T_{2}$.
- Case SubTTrans. Therefore $T \leq T^{\prime}$ and $T^{\prime} \leq T_{1} \rightarrow T_{2}$. By induction T^{\prime} has the form $T_{1}^{\prime \prime} \rightarrow T_{2}^{\prime \prime}$, where $T_{1} \leq T_{1}^{\prime \prime}$ and $T_{2}^{\prime \prime} \leq T_{2}$. Therefore, again by induction T has the form $T_{1}^{\prime} \rightarrow T_{2}^{\prime}$, where $T_{1}^{\prime \prime} \leq T_{1}^{\prime}$ and $T_{2}^{\prime} \leq T_{2}^{\prime \prime}$. By SubTTRANs we have $T_{1} \leq T_{1}^{\prime}$ and $T_{2}^{\prime} \leq T_{2}$.
- Case SubTFun. Then T has the form $T_{1}^{\prime} \rightarrow T_{2}^{\prime}$, where $T_{1} \leq T_{1}^{\prime}$ and $T_{2}^{\prime} \leq T_{2}$.

Lemma 4.14 If $\operatorname{rep}(C t(\bar{E}))=\left\{\overline{V_{1}}=\overline{E_{1}}\right\}$ and repType $(C t)=\left\{\overline{V_{2}}: \overline{T_{2}}\right\}$ then $\overline{V_{1}}=\overline{V_{2}}$.
Proof By induction on the depth of the derivation of $\operatorname{rep}(C t(\bar{E}))=\left\{\overline{V_{1}}=\overline{E_{1}}\right\}$. By Rep we have $C t=$ $(\bar{T} B n . C n)$ and (<<abstract>> class $\overline{T n} C n\left(\overline{I_{0}}: \overline{T_{0}}\right)<$ extends $C t^{\prime}\left(\overline{E_{0}}\right)>$ of $\left.\left\{\overline{V_{n}}: \overline{T_{2}}=\overline{E_{2}}\right\}\right) \in B T(B n)$ and $<\operatorname{rep}\left(C t^{\prime}\left(\overline{E_{0}}\right)\right)=\left\{\overline{V_{3}}=\overline{E_{3}}\right\}>$ and $\overline{V_{1}}$ is equivalent to $<\overline{V_{3}},>B n$. $\overline{V n}$. Since repType $(C t)=\left\{\overline{V_{2}}: \overline{T_{2}}\right\}$, by RepType we have $<\operatorname{repType}\left(C t^{\prime}\right)=\left\{\overline{V_{4}}: \overline{T_{4}}\right\}>$, so by induction $<\overline{V_{3}}=\overline{V_{4}}>$. Then by RepType $\overline{V_{2}}$ is equivalent to $<\overline{V_{3}},>B n . \overline{V n}$.

4.3 Type Substitution

Lemma 4.15 If $T \leq T^{\prime}$ and $|\overline{T n}|=|\bar{T}|$, then $[\overline{T n} \mapsto \bar{T}] T \leq[\overline{T n} \mapsto \bar{T}] T^{\prime}$.
Proof By (strong) induction on the depth of the derivation of $T \leq T^{\prime}$. Case analysis of the last rule used in the derivation. The only interesting case is SubTExt.

- Case SubTExt. Then T has the form $\overline{T_{0}} B n . C n$ and T^{\prime} has the form $\left[\overline{T n_{0}} \mapsto \overline{T_{0}}\right] C t$ and (<abstract> class $\overline{T n_{0}} C n\left(\overline{I_{3}}: \overline{T_{3}}\right)$ extends $\left.C t(\bar{E}) \ldots\right) \in B T(B n)$. Then by SubTEXT we have $\left([\overline{T n} \mapsto \bar{T}] \overline{T_{0}}\right) B n . C n \leq$ $\left[\overline{T n_{0}} \mapsto[\overline{T n} \mapsto \bar{T}] \overline{T_{0}}\right] C t$. Note that $\left([\overline{T n} \mapsto \bar{T}] \overline{T_{0}}\right) B n . C n$ is equivalent to $[\overline{T n} \mapsto \bar{T}]\left(\overline{T_{0}} B n . C n\right)$. Further, by ClassOK we have that $\overline{T n_{0}} \vdash C t(\bar{E})$ OK, so by T-Super also $\overline{T n_{0}} \vdash C t$ OK. Therefore, by Lemma 4.1 all type variables in $C t$ are in $\overline{T n_{0}}$. Therefore we have that $\left[\overline{T n_{0}} \mapsto[\overline{T n} \mapsto \bar{T}] \overline{T_{0}}\right] C t$ is equivalent to $[\overline{T n} \mapsto \bar{T}]\left[\overline{T n_{0}} \mapsto \overline{T_{0}}\right] C t$. Therefore the result follows.

Lemma 4.16 If $\Gamma ; \overline{T n} \vdash E: T$ and $|\overline{T n}|=|\bar{T}|$ and $\overline{T n_{0}} \vdash \bar{T}$ OK, then $[\overline{T n} \mapsto \bar{T}] \Gamma ; \overline{T n_{0}} \vdash[\overline{T n} \mapsto \bar{T}] E:$ $[\overline{T n} \mapsto \bar{T}] T$.
Proof By (strong) induction on the depth of the derivation of $\Gamma ; \overline{T n} \vdash E: T$. Case analysis of the last rule used in the derivation.

- Case T-ID. Then $E=I$ and $(I, T) \in \Gamma$. Therefore, $(I,[\overline{T n} \mapsto \bar{T}] T) \in[\overline{T n} \mapsto \bar{T}] \Gamma$. Also, $I=[\overline{T n} \mapsto$ $\bar{T}] I$. So by T-ID we have $[\overline{T n} \mapsto \bar{T}] \Gamma ; \overline{T n_{0}} \vdash[\overline{T n} \mapsto \bar{T}] E:[\overline{T n} \mapsto \bar{T}] T$.
- Case T-New. Then $E=C t(\bar{E})$ and $T=C t$ and $\overline{T n} \vdash C t(\bar{E})$ OK and $C t=\left(\overline{T_{1}} B n . C n\right)$ and concrete $(B n . C n)$. By T-Super we have $\overline{T n} \vdash C t$ OK and (<abstract> class $\overline{T n_{1}} C n\left(\overline{I_{0}}: \overline{T_{0}}\right) \ldots$) $\in B T(B n)$ and $\Gamma ; \overline{T n} \vdash \bar{E}: \overline{T_{0}^{\prime}}$ and $\overline{T_{0}^{\prime}} \leq\left[\overline{T n_{1}} \mapsto \overline{T_{1}}\right] \overline{T_{0}}$. By Lemma 4.2 we have $\overline{T n_{0}} \vdash[\overline{T n} \mapsto \bar{T}] C t$ OK. Since $C t=\left(\overline{T_{1}} B n . C n\right)$ we have $[\overline{T n} \mapsto \bar{T}] C t=[\overline{T n} \mapsto \bar{T}]\left(\overline{T_{1}} B n . C n\right)=\left([\overline{T n} \mapsto \bar{T}] \overline{T_{1}} B n . C n\right)$, which is of the form ($\overline{T_{2}} B n . C n$). By induction we have $[\overline{T n} \mapsto \bar{T}] \Gamma ; \overline{T n_{0}} \vdash[\overline{T n} \mapsto \bar{T}] \bar{E}:[\overline{T n} \mapsto \bar{T}] \overline{T_{0}^{\prime}}$. By Lemma 4.15 we have $[\overline{T n} \mapsto \bar{T}] \overline{T_{0}^{\prime}} \leq[\overline{T n} \mapsto \bar{T}]\left[\overline{T n_{1}} \mapsto \overline{T_{1}}\right] \overline{T_{0}}$. By CLASSOK we have $\overline{T n_{1}} \vdash \overline{T_{0}}$ OK, so by Lemma 4.1 all type variables in each $\overline{T_{0}}$ are in $\overline{T n_{1}}$. Therefore $[\overline{T n} \mapsto \bar{T}]\left[\overline{T n_{1}} \mapsto \overline{T_{1}}\right] \overline{T_{0}}$ is equivalent to $\left[\overline{T n_{1}} \mapsto[\overline{T n} \mapsto \bar{T}] \overline{T_{1}}\right] \overline{T_{0}}$. Therefore by T-SUPER we have $[\overline{T n} \mapsto \bar{T}] \Gamma ; \overline{T n_{0}} \vdash[\overline{T n} \mapsto \bar{T}] E$ OK, and the result follows by T-NEW.
- Case T-Rep. Then $E=C t\{\bar{V}=\bar{E}\}$ and $T=C t$ and $\overline{T n} \vdash C t \mathrm{OK}$ and $C t=\left(\overline{T_{1}} B n . C n\right)$ and concrete $(B n . C n)$ repType $(C t)=\left\{\overline{V_{0}}: \overline{T_{0}}\right\}$ and $\Gamma ; \overline{T n} \vdash \bar{E}: \overline{T_{0}^{\prime}}$ and $\overline{T_{0}^{\prime}} \leq \overline{T_{0}}$. By Lemma 4.2 we have $\overline{T n_{0}} \vdash[\overline{T n} \mapsto \bar{T}] C t$ OK. Since $C t=\left(\overline{T_{1}} B n . C n\right)$ we have $[\overline{T n} \mapsto \bar{T}] C t=[\overline{T n} \mapsto \bar{T}]\left(\overline{T_{1}} B n . C n\right)=$ $\left([\overline{T n} \mapsto \bar{T}] \overline{T_{1}} B n . C n\right)$, which is of the form ($\overline{T_{2}} B n . C n$). By Lemma 4.11 we have repType $([\overline{T n} \mapsto \bar{T}] C t)$ $=[\overline{T n} \mapsto \bar{T}]\left\{\overline{V_{0}}: \overline{T_{0}}\right\}$. By induction we have $\left.\overline{[\overline{T n}} \mapsto \bar{T}\right] \Gamma ; \overline{T n_{0}} \vdash[\overline{T n} \mapsto \bar{T}] \bar{E}:[\overline{T n} \mapsto \bar{T}] \overline{T_{0}^{\prime}}$. By Lemma 4.15 we have $[\overline{T n} \mapsto \bar{T}] \overline{T_{0}^{\prime}} \leq[\overline{T n} \mapsto \bar{T}] \overline{T_{0}}$. Therefore by T-REP the result follows.
- Case T-Fun. Then $E=\overline{T_{1}} B n . F n$ and $T=\left[\overline{T n_{1}} \mapsto \overline{T_{1}}\right]\left(\hat{M} t \rightarrow T^{\prime}\right)$ and $\overline{T n} \vdash \overline{T_{1}}$ OK and (fun $\overline{T n_{1}}$ $\left.F n: M t \rightarrow T^{\prime}\right) \in B T(B n)$. By Lemma 4.2 we have $\overline{T n_{0}} \vdash\left[\overline{T n} \mapsto \bar{T} \mid \overline{T_{1}}\right.$ OK. Therefore by T-Fun we have $[\overline{T n} \mapsto \bar{T}] \Gamma ; \overline{T n_{0}} \vdash[\overline{T n} \mapsto \bar{T}]\left(\overline{T_{1}} B n . F n\right):[\overline{T n} \mapsto \bar{T}]\left[\overline{T n_{1}} \mapsto \overline{T_{1}}\right]\left(\hat{M} t \rightarrow T^{\prime}\right)$. By FunOK we have $\overline{T n} \vdash \hat{M} t \mathrm{OK}$ and $\overline{T n} \vdash T^{\prime} \mathrm{OK}$. Therefore by Lemma 4.1 we have that all type variables in $\hat{M} t$ and T^{\prime} are in $\overline{T n}$. Therefore, $[\overline{T n} \mapsto \bar{T}]\left[\overline{T n_{1}} \mapsto \overline{T_{1}}\right]\left(\hat{M} t \rightarrow T^{\prime}\right)$ is equivalent to $\left[\overline{T n_{1}} \mapsto[\overline{T n} \mapsto \bar{T}] \overline{T_{1}}\right]\left(\hat{M} t \rightarrow T^{\prime}\right)$, so the result follows.
- Case T-Tup. Then $E=\left(E_{1}, \ldots, E_{k}\right)$ and $T=T_{1} * \cdots * T_{k}$ and for all $1 \leq i \leq k$ we have $\Gamma ; \overline{T n} \vdash E_{i}: T_{i}$. Therefore by induction, for all $1 \leq i \leq k$ we have $[\overline{T n} \mapsto \bar{T}] \Gamma ; \overline{T n_{0}} \vdash[\overline{T n} \mapsto \bar{T}] E_{i}:[\overline{T n} \mapsto \bar{T}] T_{i}$, and the result follows by T-Tup.
- Case T-App. Then $E=E_{1} E_{2}$ and $\Gamma ; \overline{T n} \vdash E_{1}: T_{2} \rightarrow T$ and $\Gamma ; \overline{T n} \vdash E_{2}: T_{2}^{\prime}$ and $T_{2}^{\prime} \leq T_{2}$. By induction we have $[\overline{T n} \mapsto \bar{T}] \Gamma ; \overline{T n_{0}} \vdash[\overline{T n} \mapsto \bar{T}] E_{1}:[\overline{T n} \mapsto \bar{T}]\left(T_{2} \rightarrow T\right)$ and $[\overline{T n} \mapsto \bar{T}] \Gamma ; \overline{T n_{0}} \vdash[\overline{T n} \mapsto$ $\bar{T}] E_{2}:[\overline{T n} \mapsto \bar{T}] T_{2}^{\prime}$. By Lemma 4.15 we have $[\overline{T n} \mapsto \bar{T}] T_{2}^{\prime} \leq[\overline{T n} \mapsto \bar{T}] T_{2}$, so the result follows by T-App.

Lemma 4.17 If matchType $(T, \operatorname{Pat})=\left(\Gamma, T^{\prime}\right)$ and $|\overline{T n}|=|\bar{T}|$, then matchType $([\overline{T n} \mapsto \bar{T}] T$, Pat $)=([\overline{T n} \mapsto$ $\left.\bar{T}] \Gamma,[\overline{T n} \mapsto \bar{T}] T^{\prime}\right)$.
Proof By (strong) induction on the depth of the derivation of matchType $(T, \operatorname{Pat})=\left(\Gamma, T^{\prime}\right)$. Case analysis of the last rule used in the derivation.

- Case T-MatchWild. Then Pat has the form - and $\Gamma=\{ \}$ and $T^{\prime}=T$. Then $[\overline{T n} \mapsto \bar{T}] T=[\overline{T n} \mapsto$ $\bar{T}] T^{\prime}$ and $[\overline{T n} \mapsto \bar{T}] \Gamma=\{ \}$, so the result follows by T-MatchWild.
- Case T-MatchBind. Then Pat has the form I as $P a t^{\prime}$ and $\Gamma=\Gamma^{\prime} \cup\left\{\left(I, T^{\prime}\right)\right\}$ and matchType $\left(T, P a t^{\prime}\right)=$ $\left(\Gamma^{\prime}, T^{\prime}\right)$. By induction we have matchType $\left([\overline{T n} \mapsto \bar{T}] T, P a t^{\prime}\right)=\left([\overline{T n} \mapsto \bar{T}] \Gamma^{\prime},[\overline{T n} \mapsto \bar{T}] T^{\prime}\right)$. Therefore by T-MatchBind we have matchType $\left([\overline{T n} \mapsto \bar{T}] T,(I\right.$ as Pat' $)=[\overline{T n} \mapsto \bar{T}] \Gamma^{\prime} \cup\{(I,[\overline{T n} \mapsto$ $\left.\left.\left.\bar{T}] T^{\prime}\right)\right\},[\overline{T n} \mapsto \bar{T}] T^{\prime}\right)$. Since $[\overline{T n} \mapsto \bar{T}] \Gamma^{\prime} \cup\left\{\left(I,[\overline{T n} \mapsto \bar{T}] T^{\prime}\right)\right\}$ is equivalent to $[\overline{T n} \mapsto \bar{T}]\left(\Gamma^{\prime} \cup\left\{\left(I, T^{\prime}\right)\right\}\right)$, the result follows.
- Case T-MatchTup. Then $T=T_{1} * \cdots * T_{k}$ and Pat has the form (Pat $_{1}, \ldots$, Pat t_{k}) and $\Gamma=\Gamma_{1} \cup \ldots \cup \Gamma_{k}$ and $T^{\prime}=T_{1}^{\prime} * \cdots * T_{k}^{\prime}$ and for all $1 \leq i \leq k$ we have matchType $\left(T_{i}, P a t_{i}\right)=\left(\Gamma_{i}, T_{i}^{\prime}\right)$. By induction, for all $1 \leq i \leq k$ we have matchType $\left([\overline{T n} \mapsto \bar{T}] T_{i}, P a t_{i}\right)=\left([\overline{T n} \mapsto \bar{T}] \Gamma_{i},[\overline{T n} \mapsto \bar{T}] T_{i}^{\prime}\right)$. Therefore, the result follows by T-MatchTup.
- Case T-MatchClass. Then Pat has the form $C\{\bar{V}=\overline{P a t}\}$ and $T=\left(\overline{T_{1}} C^{\prime}\right)$ and $T^{\prime}=\left(\overline{T_{1}} C\right)$ and $\Gamma=\bigcup \bar{\Gamma}$ and $C \leq C^{\prime}$ and $\operatorname{repType}\left(\overline{T_{1}} C\right)=\{\bar{V}: \bar{T}\}$ and matchType $(\bar{T}, \overline{P a t})=\left(\bar{\Gamma}, \overline{T^{\prime}}\right)$. By Lemma 4.11 we have repType $\left([\overline{T n} \mapsto \bar{T}]\left(\overline{T_{1}} C\right)\right)=[\overline{T n} \mapsto \bar{T}]\{\bar{V}: \bar{T}\}$. By induction we have matchType $([\overline{T n} \mapsto$ $\bar{T}] \bar{T}, \overline{P a t})=\left([\overline{T n} \mapsto \bar{T}] \bar{\Gamma},[\overline{T n} \mapsto \bar{T}] \overline{T^{\prime}}\right)$. Therefore the result follows by T-MatchClass.

4.4 Subject Reduction

Lemma 4.18 If $\vdash v: T^{\prime \prime}$ and $T^{\prime \prime} \leq T$ and $\operatorname{match}(v, P a t)=e$ and $\operatorname{match} \operatorname{Type}(T, P a t)=\left(\Gamma, T^{\prime}\right)$, then (1) $T^{\prime \prime} \leq T^{\prime}$; and (2) $\operatorname{dom}(\Gamma)=\operatorname{dom}(e)$ and for each $\left(I_{0}, T_{0}\right) \in \Gamma$, there exists $\left(I_{0}, v_{0}\right) \in e$ such that $\vdash v_{0}: T_{0}^{\prime}$,
where $T_{0}^{\prime} \leq T_{0}$.
Proof By (strong) induction on the length of the derivation of match $(v, P a t)=e$. Case analysis of the last rule used in the derivation:

- Case E-MatchWild. Then Pat has the form - and $e=\{ \}$. By T-MatchWild we have $\Gamma=\{ \}$ and $T^{\prime}=T$. Therefore, condition 1 follows from the assumption that $T^{\prime \prime} \leq T$, and condition 2 holds vacuously.
- Case E-MatchBind. Then Pat has the form I as $P a t^{\prime}$ and $e=e^{\prime} \cup\{(I, v)\}$ and match $\left(v, P a t^{\prime}\right)=e^{\prime}$. By T-MatchBind we have $\Gamma=\Gamma^{\prime} \cup\left\{\left(I, T^{\prime}\right)\right\}$ and matchType $\left(T, P a t^{\prime}\right)=\left(\Gamma^{\prime}, T^{\prime}\right)$. By induction we have that $T^{\prime \prime} \leq T^{\prime}$ and $\operatorname{dom}\left(\Gamma^{\prime}\right)=\operatorname{dom}\left(e^{\prime}\right)$ and for each $\left(I_{0}, T_{0}\right) \in \Gamma^{\prime}$, there exists $\left(I_{0}, v_{0}\right) \in e^{\prime}$ such that $\vdash v_{0}: T_{0}^{\prime}$, where $T_{0}^{\prime} \leq T_{0}$. Therefore, we have $T^{\prime \prime} \leq T^{\prime}$ and $\operatorname{dom}\left(\Gamma^{\prime} \cup\left\{\left(I, T^{\prime}\right)\right\}\right)=\operatorname{dom}\left(e^{\prime} \cup\{(I, v)\}\right)$ and for each $\left(I_{0}, T_{0}\right) \in \Gamma^{\prime} \cup\left\{\left(I, T^{\prime}\right)\right\}$, there exists $\left(I_{0}, v_{0}\right) \in e^{\prime} \cup\{(I, v)\}$ such that $\vdash v_{0}: T_{0}^{\prime}$, where $T_{0}^{\prime} \leq T_{0}$.
- Case E-MatchTup. Then $v=\left(v_{1}, \ldots, v_{k}\right)$ and Pat has the form (Pat $_{1}, \ldots$, Pat $_{k}$) and $e=e_{1} \cup \cdots \cup e_{k}$ and for all $1 \leq i \leq k$ we have $\operatorname{match}\left(v_{i}, P a t_{i}\right)=e_{i}$. By T-MatchTuP we have $T=T_{1} * \cdots * T_{k}$ and $\Gamma=\Gamma_{1} \cup \ldots \cup \Gamma_{k}$ and $T^{\prime}=T_{1}^{\prime} \cdots * T_{k}^{\prime}$ and for all $1 \leq i \leq k$ we have match $\left(T_{i}, \operatorname{Pat}_{i}\right)=\left(\Gamma_{i}, T_{i}^{\prime}\right)$.
Since we're given that $\vdash v: T^{\prime \prime}$, by T-TuP we have that $T^{\prime \prime}=T_{1}^{\prime \prime} * \cdots * T_{k}^{\prime \prime}$ and for all $1 \leq i \leq k$ we have $\vdash v_{i}: T_{i}^{\prime \prime}$. Since we're given that $T^{\prime \prime} \leq T$, by Lemma 4.6 we have $T_{i}^{\prime \prime} \leq T_{i}$ for all $1 \leq i \leq k$. Then by induction, for all $1 \leq i \leq k$ we have $T_{i}^{\prime \prime} \leq T_{i}^{\prime}$. Then by SubTTuP we have $T_{1}^{\prime \prime} * \cdots * T_{k}^{\prime \prime} \leq T_{1}^{\prime} * \ldots * T_{k}^{\prime}$, proving condition 1. Also by induction, $\operatorname{dom}\left(\Gamma_{i}\right)=\operatorname{dom}\left(e_{i}\right)$ and for each $\left(I_{0}, T_{0}\right) \in \Gamma_{i}$, there exists $\left(I_{0}, v_{0}\right) \in e_{i}$ such that $\vdash v_{0}: T_{0}^{\prime}$, where $T_{0}^{\prime} \leq T_{0}$, so condition 2 follows.
- Case E-MatchClass. Then $v=\left((\bar{T} C)\left\{\overline{V_{1}}=\overline{v_{1}}, \overline{V_{2}}=\overline{v_{2}}\right\}\right)$ and Pat has the form ($C^{\prime \prime}\left\{\overline{V_{1}}=\overline{P_{a t_{1}}}\right)$ and $C \leq C^{\prime}$ and $e=\bigcup \overline{e_{1}}$ and match $\left(\overline{v_{1}}, \overline{P a t_{1}}\right)=\overline{e_{1}}$. By T-MatchClass we have $T=\left(\overline{T^{\prime}} C^{\prime \prime}\right)$ and $T^{\prime}=\left(\overline{T^{\prime}} C^{\prime}\right)$ and $\Gamma \cup \overline{\Gamma_{1}}$ and $C^{\prime} \leq C^{\prime \prime}$ and repType $\left(\overline{T^{\prime}} C^{\prime}\right)=\left\{\overline{V_{1}}: \overline{T_{1}}\right\}$ and matchType $\left(\overline{T_{1}}, \overline{\text { Pat }_{1}}\right)=$ $\left(\overline{\Gamma_{1}}, \overline{T_{1}^{\prime}}\right)$.
Since $\vdash v: T^{\prime \prime}$ and $v=\left((\bar{T} C)\left\{\overline{V_{1}}=\overline{v_{1}}, \overline{V_{2}}=\overline{v_{2}}\right\}\right)$, by T-REP we have that $T^{\prime \prime}=(\bar{T} C)$ and
 $T^{\prime \prime} \leq T$, we have $(\bar{T} C) \leq\left(\overline{T_{1}} C^{\prime \prime}\right)$, so by Lemma 4.4 we have $\bar{T}=\overline{T_{1}}$. Since $C \leq C^{\prime}$ and $\bullet \vdash$ $(\bar{T} C)$ OK, by Lemma 4.7 we have $(\bar{T} C) \leq\left(\bar{T} C^{\prime}\right)$, and since $\bar{T}=\overline{T_{1}}$, condition 1 is shown. By Lemma 4.12 we have $\overline{T_{1}^{\prime \prime}}=\overline{T_{1}}$. Therefore $\vdash \overline{v_{1}}: \overline{T_{1}^{\prime \prime \prime}}$ and $\overline{T_{1}^{\prime \prime \prime}} \leq \overline{T_{1}}$ and match $\left(\overline{v_{1}}, \overline{P_{1}} \overline{T_{1}}\right)=\overline{e_{1}}$ and $\operatorname{matchType}\left(\overline{T_{1}}, \overline{P a t_{1}}\right)=\left(\overline{\Gamma_{1}}, \overline{T_{1}^{\prime}}\right)$, so by induction we have that $\overline{T_{1}^{\prime \prime \prime}} \leq \overline{T_{1}^{\prime}}$ and $\operatorname{dom}\left(\bigcup \overline{\Gamma_{1}}\right)=\operatorname{dom}\left(\bigcup \overline{e_{1}}\right)$ and for each $\left(I_{0}, T_{0}\right) \in \bigcup \overline{\Gamma_{1}}$, there exists $\left(I_{0}, v_{0}\right) \in \bigcup \overline{e_{1}}$ such that $\vdash v_{0}: T_{0}^{\prime}$, where $T_{0}^{\prime} \leq T_{0}$.

Lemma 4.19 (Substitution) If $\Gamma, \overline{T n_{0}} \vdash E: T$ and $\left.\Gamma=\left\{\overline{T_{0}}, \overline{T_{0}}\right)\right\}$ and $\Gamma_{0} ; \overline{T n_{0}} \vdash \overline{E_{0}}: \overline{T_{0}}{ }^{\prime}$ and $\overline{T_{0}^{\prime}} \leq \overline{T_{0}}$, then $\Gamma_{0} ; \overline{T n_{0}} \vdash\left[\overline{I_{0}} \mapsto \overline{E_{0}}\right] E: T^{\prime}$ and $T^{\prime} \leq T$.
Proof By (strong) induction on the depth of the derivation of $\Gamma, \overline{T n_{0}} \vdash E: T$. Case analysis of the last rule used in the derivation.

- Case T-ID. Then $E=I$ and $(I, T) \in \Gamma$, so $I=I_{j}$ and $T=T_{j}$, for some $1 \leq j \leq k$, where $\overline{I_{0}}=I_{1}, \ldots, I_{k}$ and $\overline{T_{0}}=T_{1}, \ldots, T_{k}$ and $\overline{E_{0}}=E_{1}, \ldots, E_{k}$. Therefore $\left[\overline{I_{0}} \mapsto \overline{E_{0}}\right] E=E_{j}$. Since we're given that $\Gamma_{0} ; \overline{T n_{0}} \vdash E_{j}: T_{j}^{\prime}$ and $T_{j}^{\prime} \leq T_{j}$, the result is shown.
- Case T-New. Then $E=C t(\bar{E})$ and $T=C t$ and $\overline{T n_{0}} \vdash C t(\bar{E})$ OK and $C t=\left(\overline{T_{1}} B n . C n\right)$ and concrete (Bn.Cn). Then by T-SUPER we have $\overline{T n_{0}} \vdash C t$ OK and (<abstract> class $\overline{T n_{1}} C n(\bar{I}: \bar{T})$ $\ldots) \in B T(B n)$ and $\Gamma ; \overline{T n_{0}} \vdash \bar{E}: \overline{T^{\prime}}$ and $\overline{T^{\prime}} \leq\left[\overline{T n_{1}} \mapsto \overline{T_{1}}\right] \bar{T}$. Since $\left[\overline{I_{0}} \mapsto \overline{E_{0}}\right] C t=C t$ and $\left[\overline{I_{0}} \mapsto\right.$ $\left.\overline{E_{0}}\right] B n . C n=B n . C n$, we have $\overline{T n_{0}} \vdash\left[\overline{I_{0}} \mapsto \overline{E_{0}}\right] C t$ OK and concrete $\left(\left[\overline{I_{0}} \mapsto \overline{E_{0}}\right] B n . C n\right)$. By induction we have $\Gamma_{0} ; \overline{T n_{0}} \vdash\left[\overline{I_{0}} \mapsto \overline{E_{0}}\right] \bar{E}: \overline{T^{\prime \prime}}$ and $\overline{T^{\prime \prime}} \leq \overline{T^{\prime}}$. Then by SubTTrans we have $\overline{T^{\prime \prime}} \leq\left[\overline{T n_{1}} \mapsto \overline{T_{1}}\right] \overline{T^{\prime}}$.

Therefore by T-SUPER we have $\Gamma_{0} ; \overline{T_{n}} \vdash\left[\overline{I_{0}} \mapsto \overline{E_{0}}\right] E$ OK, so by T-New we have $\Gamma_{0} ; \overline{T n_{0}} \vdash\left[\overline{T_{0}} \mapsto\right.$ $\left.\overline{E_{0}}\right] E: T$. By SubTRef we have $T \leq T$, so the result is shown.

- Case T-Rep. Then $E=C t\{\bar{V}=\bar{E}\}$ and $T=C t$ and $\overline{T n_{0}} \vdash C t \overline{\mathrm{OK}}$ and $C t=\left(\overline{T_{1}} B n . C n\right)$ and concrete $(B n . C n)$ and repType $(C t)=\{\bar{V}: \bar{T}\}$ and $\Gamma ; \overline{T n_{0}} \vdash \bar{E}: \overline{T^{\prime}}$ and $\overline{T^{\prime}} \leq \bar{T}$. Since $\left[\overline{I_{0}} \mapsto \overline{E_{0}}\right] C t=C t$ and $\left[\overline{I_{0}} \mapsto \overline{E_{0}}\right] B n . C n=B n . C n$, we have $\overline{T n_{0}} \vdash\left[\overline{I_{0}} \mapsto \overline{E_{0}}\right] C t$ OK and concrete $\left(\left[\overline{I_{0}} \mapsto \overline{E_{0}}\right] B n . C n\right)$ and and repType $\left(\left[\overline{I_{0}} \mapsto \overline{E_{0}}\right] C t\right)=\{\bar{V}: \bar{T}\}$. By induction we have $\Gamma_{0} ; \overline{T n_{0}} \vdash\left[\overline{I_{0}} \mapsto \overline{E_{0}}\right] \bar{E}: \overline{T^{\prime \prime}}$ and $\overline{T^{\prime \prime}} \leq \overline{T^{\prime}}$. Then by SubTTrans we have $\overline{T^{\prime \prime}} \leq \bar{T}$, so by T-Rep we have $\Gamma_{0} ; \overline{T n_{0}} \vdash\left[\bar{I}_{0} \mapsto \overline{E_{0}}\right] E: T$. By SubTRef we have $T \leq T$, so the result is shown.
- Case T-Fun. Then since Γ is not used at all in T-Fun and $\Gamma ; \overline{T n_{0}} \vdash E: T$, also $\Gamma_{0} ; \overline{T n_{0}} \vdash E: T$. Further, we have $E=F v$, so $\left[\overline{I_{0}} \mapsto \overline{E_{0}}\right] E=E$. Therefore $\Gamma_{0} ; \overline{T n_{0}} \vdash\left[\overline{I_{0}} \mapsto \overline{E_{0}}\right] E: T$, and by SubTREf $T \leq T$, so the result is shown.
- Case T-Tup. Then $E=\left(E_{1}, \ldots, E_{k}\right)$ and $T=T_{1} * \cdots * T_{k}$ and for all $1 \leq j \leq k$ we have $\Gamma ; \overline{T n_{0}} \vdash$ $E_{j}: T_{j}$. Then by induction, for all $1 \leq j \leq k$ we have $\Gamma_{0} ; \overline{T n_{0}} \vdash\left[\overline{I_{0}} \mapsto \overline{E_{0}}\right] \bar{E}_{j}: \bar{T}_{j}^{\prime}$ and $T_{j}^{\prime} \leq T_{j}$. Then by T-Tup we have $\Gamma_{0} ; \overline{T n_{0}} \vdash\left[\overline{I_{0}} \mapsto \overline{E_{0}}\right]\left(E_{1}, \ldots, E_{k}\right): T_{1}^{\prime} * \cdots * T_{k}^{\prime}$. Finally, by SubTTup we have $T_{1}^{\prime} * \cdots * T_{k}^{\prime} \leq T_{1} * \cdots * T_{k}$.
- Case T-App. Then $E=E_{1} E_{2}$ and $\Gamma ; \overline{T n_{0}} \vdash E_{1}: T_{2} \rightarrow T$ and $\Gamma ; \overline{T n_{0}} \vdash E_{2}: T_{2}^{\prime}$ and $T_{2}^{\prime} \leq T_{2}$. By induction we have $\Gamma_{0} ; \overline{T n_{0}} \vdash\left[\overline{I_{0}} \mapsto \overline{E_{0}}\right] E_{1}: T_{0}$ and $T_{0} \leq T_{2} \rightarrow T$. Also by induction we have $\Gamma_{0} ; \overline{T n_{0}} \vdash\left[\overline{I_{0}} \mapsto \overline{E_{0}}\right] E_{2}: T_{2}^{\prime \prime}$ and $T_{2}^{\prime \prime} \leq T_{2}^{\prime}$. Then by SubTTRANs we have $T_{2}^{\prime \prime} \leq T_{2}$. By Lemma 4.13 T_{0} has the form $T_{\text {arg }} \rightarrow T_{\text {res }}$, where $T_{2} \leq T_{\text {arg }}$ and $T_{\text {res }} \leq T$. Therefore by SubTTRANS we have $T_{2}^{\prime \prime} \leq T_{\text {arg }}$. Therefore by T-FUN we have $\Gamma_{0} ; \overline{T n_{0}} \vdash\left[\overline{I_{0}} \mapsto \overline{E_{0}}\right]\left(E_{1}^{\prime} E_{2}^{\prime}\right): T_{\text {res }}$. We saw above that $T_{\text {res }} \leq T$, so the result is shown.

Lemma 4.20 If $\Gamma_{0} ; \overline{T n_{0}} \vdash C t(\bar{E})$ OK and $\operatorname{rep}(C t(\bar{E}))=\left\{\overline{V_{0}}=\overline{E_{0}}\right\}$ and repType $(C t)=\left\{\overline{V_{0}}: \overline{T_{0}}\right\}$, then $\Gamma_{0} ; \overline{T n_{0}} \vdash \overline{E_{0}}: \overline{T_{0}^{\prime}}$ and $\overline{T_{0}^{\prime}} \leq \overline{T_{0}}$.
Proof Since $\Gamma_{0} ; \overline{T n_{0}} \vdash C t(\bar{E})$ OK, by T-SUPER we have $\overline{T n_{0}} \vdash C t$ OK and $C t=(\bar{T} B n . C n)$ and (<abstract> class $\left.\overline{T n} C n\left(\overline{T_{1}}: \overline{T_{1}}\right) \ldots\right) \in B T(B n)$ and $\Gamma_{0} ; \overline{T n_{0}} \vdash \bar{E}: \overline{T_{1}^{\prime}}$ and $\overline{T_{1}^{\prime}} \leq[\overline{T n} \mapsto \bar{T}] \overline{T_{1}}$. Since $\overline{T n_{0}} \vdash C t$ OK, by ClassTypeOK we have $\overline{T n_{0}} \vdash \bar{T}$ OK and $|\bar{T}|=|\overline{T n}|$. We prove the lemma by induction on the depth of the derivation of $\operatorname{rep}(C t(\bar{E}))=\left\{\overline{V_{0}}=\overline{E_{0}}\right\}$.

By Rep we have (<<abstract>> class $\overline{T n} C n\left(\overline{T_{1}}: \overline{T_{1}}\right)<$ extends $C t^{\prime}\left(\overline{E_{1}}\right)>$ of $\left\{\overline{V_{n}}: \overline{T_{2}}=\overline{E_{2}}\right\}$) $\in B T(B n)$ and $<\operatorname{rep}\left(C t^{\prime}\left(\overline{E_{1}}\right)\right)=\left\{\overline{V_{3}}=\overline{E_{3}}\right\}>$ and $\left\{\overline{V_{0}}=\overline{E_{0}}\right\}$ is equivalent to $\left[\overline{T_{1}} \mapsto \bar{E}\right][\overline{T n} \mapsto \bar{T}]\{<$ $\left.\overline{V_{3}}=\overline{E_{3}},>B n . \overline{V_{n}}=\overline{E_{2}}\right\}$. Since repType $(C t)=\left\{\overline{V_{0}}: \overline{T_{0}}\right\}$, by RepType and Lemma 4.14 we have that $<\operatorname{rep} T y p e\left(C t^{\prime}\right)=\left\{\overline{V_{3}}: \overline{T_{3}}\right\}>$ and $\left\{\overline{V_{0}}: \overline{T_{0}}\right\}$ is equivalent to $[\overline{T n} \mapsto \bar{T}]\left\{<\overline{V_{3}}: \overline{T_{3}}>B n . \overline{V_{n}}: \overline{T_{2}}\right\}$.

Let $\Gamma=\left\{\left(\overline{T_{1}}, \overline{T_{1}}\right)\right\}$. By ClassOK we have $<\Gamma ; \overline{T n} \vdash C t^{\prime}\left(\overline{E_{1}}\right)$ OK $>$. Therefore by induction we have $<\Gamma ; \overline{T n} \vdash \overline{E_{3}}: \overline{T_{3}^{\prime}}>$ and $<\overline{T_{3}^{\prime}} \leq \overline{T_{3}}>$. Also by ClassOK we have $\Gamma ; \overline{T n} \vdash \overline{E_{2}}: \overline{T_{2}^{\prime}}$ and $\overline{T_{2}^{\prime}} \leq \overline{T_{2}}$. Then by Lemmas 4.16 and 4.15 we have $<\overline{T n} \mapsto \bar{T}] \Gamma ; \overline{T n_{0}} \vdash[\overline{T n} \mapsto \bar{T}] \overline{E_{3}}:[\overline{T n} \mapsto \bar{T}] \overline{T_{3}^{\prime}}>$ and $<[\overline{T n} \mapsto$ $\bar{T}] \overline{T_{3}^{\prime}} \leq[\overline{T n} \mapsto \bar{T}] \overline{T_{3}}>$ and $[\overline{T n} \mapsto \bar{T}] \Gamma ; \overline{T n_{0}} \vdash[\overline{T n} \mapsto \bar{T}] \overline{E_{2}}:\left[\overline{T n} \mapsto \bar{T} \overline{T_{2}^{\prime}}\right.$ and $[\overline{T n} \mapsto \bar{T}] \overline{T_{2}^{\prime}} \leq[\overline{T n} \mapsto \bar{T}] \overline{T_{2}}$. Then by Lemma 4.19 we have $<\Gamma_{0} ; \overline{T n_{0}} \vdash\left[\overline{T_{1}} \mapsto \bar{E}\right][\overline{T n} \mapsto \bar{T}] \overline{E_{3}}: \overline{T_{3}^{\prime \prime}}>$ and $\left.<\overline{T_{3}^{\prime \prime}} \leq \overline{T n} \mapsto \bar{T}\right] \overline{T_{3}^{\prime}}>$ and $\Gamma_{0} ; \overline{T n_{0}} \vdash\left[\overline{I_{1}} \mapsto \bar{E}\right][\overline{T n} \mapsto \bar{T}] \overline{E_{2}}: \overline{T_{2}^{\prime \prime}}$ and $\overline{T_{2}^{\prime \prime}} \leq[\overline{T n} \mapsto \bar{T}] \overline{T_{2}^{\prime}}$. By SUBTrans we have $<\overline{T_{3}^{\prime \prime}} \leq[\overline{T n} \mapsto \bar{T}] \overline{T_{3}}>$ and $\overline{T_{2}^{\prime \prime}} \leq[\overline{T n} \mapsto \bar{T}] \overline{T_{2}}$. Therefore we have shown $\Gamma_{0} ; \overline{T n_{0}} \vdash \overline{E_{0}}: \overline{T_{0}^{\prime}}$ and $\overline{T_{0}^{\prime}} \leq \overline{T_{0}}$.

Theorem 4.1 (Subject Reduction) If $\vdash E: T$ and $E \longrightarrow E^{\prime}$ then $\vdash E^{\prime}: T^{\prime}$, for some T^{\prime} such that $T^{\prime} \leq T$. Proof By (strong) induction on the depth of the derivation of $E \longrightarrow E^{\prime}$. Case analysis of the last rule used in the derivation.

- Case E-New. Then E has the form $C t(\bar{E})$ and E^{\prime} has the form $C t\left\{\overline{V_{0}}=\overline{E_{0}}\right\}$ and $C t=(\bar{T} C)$ and concrete (C) and $\operatorname{rep}(C t(\bar{E}))=\left\{\overline{V_{0}}=\overline{E_{0}}\right\}$. Since $\vdash E: T$, by T-New we have $T=C t$ and
$\bullet \vdash C t(\bar{E})$ OK. Then by T-SUPER we have $\bullet \vdash C t$ OK. Therefore by Lemmas 4.8 and 4.14 we have repType $(C t)=\left\{\overline{V_{0}}: \overline{T_{0}}\right\}$. So we have $\vdash C t(\bar{E})$ OK and $\operatorname{rep}(C t(\bar{E}))=\left\{\overline{V_{0}}=\overline{E_{0}}\right\}$ and repType $(C t)=$ $\left\{\overline{V_{0}}: \overline{T_{0}}\right\}$, so by Lemma 4.20 we have $\vdash \overline{E_{0}}: \overline{T_{0}^{\prime}}$ and $\overline{T_{0}^{\prime}} \leq \overline{T_{0}}$. Then by T-REP we have $\vdash C t\left\{\overline{V_{0}}=\right.$ $\left.\overline{E_{0}}\right\}$: $C t$, and by SubTRef we have $C t \leq C t$.
- Case E-Rep. Then E has the form $C t\left\{\overline{V_{0}}=\overline{E_{0}}, V_{0}=E_{0}, \overline{V_{1}}=\overline{E_{1}}\right\}$ and E^{\prime} has the form $C t$ $\left\{\overline{V_{0}}=\overline{E_{0}}, V_{0}=E_{0}^{\prime}, \overline{V_{1}}=\overline{E_{1}}\right\}$ and $E_{0} \longrightarrow E_{0}^{\prime}$. Since $\vdash E: T$, by T-REP we have $T=C t$ and $\bullet \vdash C t$ OK and repType $(\underline{C t})=\left\{\overline{V_{0}}: \overline{T_{0}}, V_{0}: T_{0}, \overline{V_{1}}: \overline{T_{1}}\right\}$ and $\vdash \overline{E_{0}}: \overline{T_{0}^{\prime}}$ and $\overline{T_{0}^{\prime}} \leq \overline{T_{0}}$ and $\vdash E_{0}: T_{0}^{\prime}$ and $T_{0}^{\prime} \leq T_{0}$ and $\vdash \overline{E_{1}}: \overline{T_{1}^{\prime}}$ and $\overline{T_{1}^{\prime}} \leq \overline{T_{1}}$. By induction we have $\vdash E_{0}^{\prime}: T_{0}^{\prime \prime}$, for some $T_{0}^{\prime \prime}$ such that $T_{0}^{\prime \prime} \leq T_{0}^{\prime}$. Therefore by SubTTrans we have that $T_{0}^{\prime \prime} \leq T_{0}$. Then by T-Rep we have $\vdash C t\left\{\overline{V_{0}}=\overline{E_{0}}, V_{0}=E_{0}^{\prime}, \overline{V_{1}}=\overline{E_{1}}\right\}: C t$, and by SubTRef we have $C t \leq C t$.
- Case E-Tup. Then E has the form $\left(E_{1}, \ldots, E_{k}\right)$ and E^{\prime} has the form $\left(E_{1}, \ldots, E_{i-1}, E_{i}^{\prime}, E_{i+1}, \ldots, E_{k}\right)$ and $E_{i} \longrightarrow E_{i}^{\prime}$, where $1 \leq i \leq k$. Since $\vdash E: T$, by T-Tup we have that T has the form $T_{1} * \cdots * T_{k}$ and $\vdash E_{j}: T_{j}$ for all $1 \leq j \leq k$. Therefore by induction we have $\vdash E_{i}^{\prime}: T_{i}^{\prime}$ for some T_{i}^{\prime} such that $T_{i}^{\prime} \leq T_{i}$. Then by T-Tup we have $\vdash\left(E_{1}, \ldots, E_{i-1}, E_{i}^{\prime}, E_{i+1}, \ldots, E_{k}\right): T_{1} * \cdots * T_{i-1} * T_{i}^{\prime} * T_{i+1} * \cdots * T_{k}$. Finally, by SubTRef we have that $T_{j} \leq T_{j}$ for all $1 \leq j \leq k$, so by SubTTup we have $T_{1} * \cdots * T_{i-1} * T_{i}^{\prime} *$ $T_{i+1} * \cdots * T_{k} \leq T_{1} * \cdots * T_{k}$.
- Case E-App1. Then E has the form $E_{1} E_{2}$ and E^{\prime} has the form $E_{1}^{\prime} E_{2}$ and $E_{1} \longrightarrow E_{1}^{\prime}$. Since $\vdash E: T$, by (T-App) we have $\vdash E_{1}: T_{2} \rightarrow T$ and $\vdash E_{2}: T_{2}^{\prime}$ and $T_{2}^{\prime} \leq T_{2}$. Therefore by induction we have $\vdash E_{1}^{\prime}: T^{\prime}$, for some T^{\prime} such that $T^{\prime} \leq T_{2} \rightarrow T$. By Lemma $4.13 T^{\prime}$ has the form $T_{2}^{\prime \prime} \rightarrow T^{\prime \prime}$, where $T_{2} \leq T_{2}^{\prime \prime}$ and $T^{\prime \prime} \leq T$. Therefore by SubTTrans we have $T_{2}^{\prime} \leq T_{2}^{\prime \prime}$, so by T-App we have $\vdash E_{1}^{\prime} E_{2}: T^{\prime \prime}$, where $T^{\prime \prime} \leq T$.
- Case E-App2. Then E has the form $E_{1} E_{2}$ and E^{\prime} has the form $E_{1} E_{2}^{\prime}$ and $E_{2} \longrightarrow E_{2}^{\prime}$. Since $\vdash E: T$, by T-App we have $\vdash E_{1}: T_{2} \rightarrow T$ and $\vdash E_{2}: T_{2}^{\prime}$ and $T_{2}^{\prime} \leq T_{2}$. Therefore by induction we have $\vdash E_{2}^{\prime}: T_{2}^{\prime \prime}$, for some $T_{2}^{\prime \prime}$ such that $T_{2}^{\prime \prime} \leq T_{2}^{\prime}$. By SubTTrans we have $T_{2}^{\prime \prime} \leq T_{2}$, so by T-App we have $\vdash E_{1} E_{2}^{\prime}: T$, and by SubTRef we have $T \leq T$.
- Case E-AppRed. Then $E=(\bar{T} F) v$ and $E^{\prime}=\left[\overline{I_{0}} \mapsto \overline{v_{0}}\right] E_{0}$ and most-specific-case-for $((\bar{T} F), v)=$ $\left(\left\{\left(\overline{I_{0}}, \overline{v_{0}}\right)\right\}, E_{0}\right)$. Since $\vdash E: T$, by T-App we have $\vdash(\bar{T} F): T_{2} \rightarrow T$ and $\vdash v: T_{2}^{\prime}$ and $T_{2}^{\prime} \leq T_{2}$. Then by T-Fun we have and $F=B n . F n$ and $T_{2} \rightarrow T=[\overline{T n} \mapsto \bar{T}]\left(\hat{M} t \rightarrow T_{0}\right)$ and (fun $\overline{T n} F n: M t \rightarrow T_{0}$) $\in B T(B n)$ and $\bullet \vdash \bar{T}$ OK. Therefore we have $T_{2}=[\overline{T n} \mapsto \bar{T}] \hat{M} t$ and $T=[\overline{T n} \mapsto \bar{T}] T_{0}$. By Lookup we have $E_{0}=\left[\overline{T n_{0}} \mapsto \bar{T}\right] E_{0}^{\prime}$ and (extend $\mathrm{fun}_{M n} \overline{T n_{0}} F$ Pat $\left.=E_{0}^{\prime}\right) \in B T\left(B n^{\prime}\right)$ and match $(v$, Pat) $=\left\{\left(\overline{I_{0}}, \overline{v_{0}}\right)\right\}$. Then by CASEOK we have $\overline{T n_{0}} \vdash \operatorname{matchType}\left(\left[\overline{T n} \mapsto \overline{T n_{0}}\right] \hat{M} t\right.$, Pat $)=\left(\Gamma, T^{\prime \prime}\right)$ and $\Gamma ; \overline{T n_{0}} \vdash E_{0}^{\prime}: T_{0}^{\prime}$ and $T_{0}^{\prime} \leq\left[\overline{T n} \mapsto \overline{T n_{0}}\right] T_{0}$.
By Lemma 4.16 we have $\left[\overline{T n_{0}} \mapsto \bar{T}\right] \Gamma ; \bullet \vdash\left[\overline{T n_{0}} \mapsto \bar{T}\right] E_{0}^{\prime}:\left[\overline{T n_{0}} \mapsto \bar{T}\right] T_{0}^{\prime}$. By Lemma 4.15 we have $\left[\overline{T n_{0}} \mapsto \bar{T}\right] T_{0}^{\prime} \leq\left[\overline{T n_{0}} \mapsto \bar{T}\right]\left[\overline{T n} \mapsto \overline{T n_{0}}\right] T_{0}$. By FunOK we have $\overline{T n} \vdash T_{0}$ OK, so by Lemma 4.1 all type variables in T_{0} are in $\overline{T n}$. Therefore $\left[\overline{T n_{0}} \mapsto \bar{T}\right]\left[\overline{T n} \mapsto \overline{T n_{0}}\right] T_{0}$ is equivalent to $[\overline{T n} \mapsto \bar{T}] T_{0}=T$, so we have $\left[\overline{T n_{0}} \mapsto \bar{T}\right] T_{0}^{\prime} \leq T$.
By Lemma 4.17 we have $\bullet \vdash$ matchType $\left(\left[\overline{T n_{0}} \mapsto \bar{T}\right]\left[\overline{T n} \mapsto \overline{T n_{0}}\right] \hat{M} t\right.$, Pat $)=\left(\left[\overline{T n_{0}} \mapsto \bar{T}\right] \Gamma,\left[\overline{T n_{0}} \mapsto \bar{T}\right] T^{\prime \prime}\right)$. By FunOK we have $\overline{T n} \vdash \hat{M} t \mathrm{OK}$, so by Lemma 4.1 all type variables in $\hat{M} t$ are in $\overline{T n}$. Therefore $\left[\overline{T n_{0}} \mapsto \bar{T}\right]\left[\overline{T n} \mapsto \overline{T n_{0}}\right] \hat{M} t$ is equivalent to $[\overline{T n} \mapsto \bar{T}] \hat{M} t=T_{2}$, so we have $\bullet \vdash \operatorname{matchType}\left(T_{2}\right.$, Pat $)=$ ($\left.\left[\overline{T n_{0}} \mapsto \bar{T}\right] \Gamma,\left[\overline{T n_{0}} \mapsto \bar{T}\right] T^{\prime \prime}\right)$.
By Lemma 4.18 we have $T_{2}^{\prime} \leq\left[\overline{T n_{0}} \mapsto \bar{T}\right] T^{\prime \prime}$ and $\operatorname{dom}\left(\left[\overline{T n_{0}} \mapsto \bar{T}\right] \Gamma\right)=\operatorname{dom}\left(\left\{\left(\overline{I_{0}}, \overline{v_{0}}\right)\right\}\right)$ and for each $\left(I_{x}, T_{x}\right) \in\left[\overline{T n_{0}} \mapsto \bar{T}\right] \Gamma$, there exists $\left(I_{x}, v_{x}\right) \in\left\{\left(\overline{I_{0}}, \overline{v_{0}}\right)\right\}$ such that $\vdash v_{x}: T_{x}^{\prime}$, where $T_{x}^{\prime} \leq T_{x}$. Then by Lemma 4.19 we have $\vdash\left[\overline{I_{0}} \mapsto \overline{v_{0}}\right]\left[\overline{T n_{0}} \mapsto \bar{T}\right] E_{0}^{\prime}: T_{\text {sub }}$ and $T_{\text {sub }} \leq\left[\overline{T n_{0}} \mapsto \bar{T}\right] T_{0}^{\prime}$. We saw above that
$\left[\overline{T n_{0}} \mapsto \bar{T}\right] T_{0}^{\prime} \leq T$, so by SubTTrans we have $T_{\text {sub }} \leq T$. Therefore we have shown $\vdash E^{\prime}: T_{\text {sub }}$ and $T_{\text {sub }} \leq T$.

5 Progress

5.1 Preliminaries and Simple Lemmas

We say that $S \subseteq S^{\prime}$, where S is either a set or a sequence and similarly for S^{\prime}, if for every element d such that $d \in S$, also $d \in S^{\prime}$. The notation Pat $<$ Pat ${ }^{\prime}$ is shorthand for Pat \leq Pat and Pat \neq pat.

Lemma 5.1 If $T \leq(\bar{T} C)$, then T has the form $\left(\overline{T_{1}} C^{\prime}\right)$.
Proof By (strong) induction on the depth of the derivation of $T \leq(\bar{T} C)$. Case analysis of the last rule used in the derivation.

- Case SubTRef. Then $T=(\bar{T} C)$.
- Case SubTTrans. Then $T \leq T^{\prime}$ and $T^{\prime} \leq(\bar{T} C)$. By induction T^{\prime} has the form ($\left.\overline{T_{2}} C^{\prime \prime}\right)$. Then by induction again, T has the form ($\overline{T_{1}} C^{\prime}$).
- Case SubTExt. Then T has the form ($\overline{T_{1}} B n . C n$), which is also of the form $\left(\overline{T_{1}} C^{\prime}\right)$.

Lemma 5.2 If $T_{1} \rightarrow T_{2} \leq T$, then T has the form $T_{1}^{\prime} \rightarrow T_{2}^{\prime}$.
Proof By (strong) induction on the depth of the derivation of $T_{1} \rightarrow T_{2} \leq T$. Case analysis of the last rule used in the derivation.

- Case SubTRef. Then $T=T_{1} \rightarrow T_{2}$.
- Case SubTTrans. Then $T_{1} \rightarrow T_{2} \leq T^{\prime}$ and $T^{\prime} \leq T$. By induction T^{\prime} has the form $T_{1}^{\prime \prime} \rightarrow T_{2}^{\prime \prime}$. Then by induction again, T has the form $T_{1}^{\prime} \rightarrow T_{2}^{\prime}$.
- Case SubTFun. Then T has the form $T_{1}^{\prime} \rightarrow T_{2}^{\prime}$.

Lemma 5.3 If $T_{1} * \cdots * T_{k} \leq T$, then T has the form $T_{1}^{\prime} * \cdots * T_{k}^{\prime}$, where for all $1 \leq i \leq k$ we have $T_{i} \leq T_{i}^{\prime}$. Proof By (strong) induction on the depth of the derivation of $T_{1} * \cdots * T_{k} \leq T$. Case analysis of the last rule used in the derivation.

- Case SubTRef. Then $T=T_{1} * \cdots * T_{k}$. By SubTRef, for all $1 \leq i \leq k$ we have $T_{i} \leq T_{i}$.
- Case SubTTrans. Then $T_{1} * \cdots * T_{k} \leq T^{\prime}$ and $T^{\prime} \leq T$. By induction T^{\prime} has the form $T_{1}^{\prime \prime} * \cdots * T_{k}^{\prime \prime}$, where for all $1 \leq i \leq k$ we have $T_{i} \leq T_{i}^{\prime \prime}$. Then by induction again, T has the form $T_{1}^{\prime} * \cdots * T_{k}^{\prime}$, where for all $1 \leq i \leq k$ we have $T_{i}^{\prime \prime} \leq T_{i}^{\prime}$. By SubTTrans, for all $1 \leq i \leq k$ we have $T_{i} \leq T_{i}^{\prime}$.
- Case SubTTup. Then T has the form $T_{1}^{\prime} * \cdots * T_{k}^{\prime}$, where for all $1 \leq i \leq k$ we have $T_{i} \leq T_{i}^{\prime}$.

Lemma 5.4 If $C_{1} \leq C_{2}$ and $C_{1} \leq C_{3}$, then either $C_{2} \leq C_{3}$ or $C_{3} \leq C_{2}$.
Proof By induction on the depth of the derivation of $C_{1} \leq C_{2}$. Case analysis of the last rule used in the derivation.

- Case SubRef. Then $C_{1}=C_{2}$. Since $C_{1} \leq C_{3}$, also $C_{2} \leq C_{3}$.
- Case SubTrans. Then $C_{1} \leq C_{4}$ and $C_{4} \leq C_{2}$. So we have $C_{1} \leq C_{4}$ and $C_{1} \leq C_{3}$, and by induction either $C_{4} \leq C_{3}$ or $C_{3} \leq C_{4}$.
- Case $C_{4} \leq C_{3}$. Then we have $C_{4} \leq C_{2}$ and $C_{4} \leq C_{3}$, so by induction either $C_{2} \leq C_{3}$ or $C_{3} \leq C_{2}$.
- Case $C_{3} \leq C_{4}$. Then we have $C_{3} \leq C_{4}$ and $C_{4} \leq C_{2}$, so by SubTrans $C_{3} \leq C_{2}$.
- Case SubExt. Then $C_{1}=B n_{1} . C n_{1}$ and (<abstract> class $\overline{T n} C n_{1}\left(\overline{T_{0}}: \overline{T_{0}}\right)$ extends $\bar{T} C_{2} \ldots$) $\in B T\left(B n_{1}\right)$. Case analysis of the last rule used in the derivation of $C_{1} \leq C_{3}$.
- Case SubRef. Then $C_{1}=C_{3}$. Since $C_{1} \leq C_{2}$, also $C_{3} \leq C_{2}$.
- Case SubTrans. Then $C_{1} \leq C_{4}$ and $C_{4} \leq C_{3}$. Assume WLOG that the derivation of $C_{1} \leq C_{4}$ ends with a use of SubExt. Then (<abstract> class $\overline{T n} C n_{1}\left(\overline{I_{0}}: \overline{T_{0}}\right)$ extends $\bar{T} C_{4} \ldots$) $\in B T\left(B n_{1}\right)$, so $C_{2}=C_{4}$. Since $C_{4} \leq C_{3}$, also $C_{2} \leq C_{3}$.
- Case SubExt. Then (<abstract> class $\overline{T n} C n_{1}\left(\overline{I_{0}}: \overline{T_{0}}\right)$ extends $\left.\bar{T} C_{3} \ldots\right) \in B T\left(B n_{1}\right)$, so $C_{2}=C_{3}$. Then by SubRef $C_{2} \leq C_{3}$.

Lemma 5.5 If $C_{1} \leq C_{2}$, then there is a path in the declared inheritance graph from C_{1} to C_{2}.
Proof By induction on the depth of the derivation of $C_{1} \leq C_{2}$. Case analysis of the last rule used in the derivation.

- Case SubRef. Then $C_{1}=C_{2}$, so there is a trivial path in the inheritance graph from C_{1} to C_{2}.
- Case SubTrans. Then $C_{1} \leq C_{3}$ and $C_{3} \leq C_{2}$. By induction, there is a path in the inheritance graph from C_{1} to C_{3} and from C_{3} to C_{2}, so the concatenation of these paths is a path from C_{1} to C_{2}.
- Case SubExt. Then $C_{1}=B n_{1} . C n_{1}$ and <abstract> class $\overline{T n_{1}} C n_{1}\left(\overline{T_{0}}: \overline{T_{0}}\right)$ extends $\bar{T} C_{2} \ldots$) $\in B T\left(B n_{1}\right)$. Therefore there is an edge from C_{1} to C_{2} in the declared inheritance graph, so there is also a path from C_{1} to C_{2}.

Lemma 5.6 If $C_{1} \leq C_{2}$ and $C_{2} \leq C_{1}$, then $C_{1}=C_{2}$.
Proof By Lemma 5.5 , there is a path in the declared inheritance graph from C_{1} to C_{2} and a path from C_{2} to C_{1}. By assumption, the declared inheritance graph is acyclic, so it must be the case that $C_{1}=C_{2}$.

Lemma 5.7 If match $(v, P a t)=e$ and Pat $\leq P a t^{\prime}$, then there exists e^{\prime} such that match $\left(v, P a t^{\prime}\right)=e^{\prime}$.
Proof By induction on the depth of the derivation of Pat \leq Pat'. Case analysis of the last rule used in the derivation:

- Case SpecWild. Then Pat' has the form _, so by E-MatchWild we have match $(v,-)=\{ \}$.
- Case SpecBind1:: Then Pat has the form (I as $P a t_{1}$) and we have Pat $t_{1} \leq$ Pat'. Since we're given that $\operatorname{match}\left(v, I\right.$ as $\left.P a t_{1}\right)=e$, by E-MatchBind we also have that match $\left(v, \operatorname{Pa} t_{1}\right)=e-\{(I, v)\}$. Therefore by induction there exists e^{\prime} such that match $\left(v, P a t^{\prime}\right)=e^{\prime}$.
- Case SpecBind2.: Then Pat has the form (I as Pat $_{2}$) and we have Pat \leq Pat t_{2}. Therefore by induction we have that there exists $e^{\prime \prime}$ such that match $\left(v, P a t_{2}\right)=e^{\prime \prime}$. Then by E-MatchBind we have match $(v$, I as $\left.P a t_{2}\right)=e^{\prime \prime} \cup\{I, v\}$.
- Case Spectup. Then Pat has the form $(\overline{P a t})$ and Pat has the form $\left(\overline{P a t^{\prime}}\right)$ and $\overline{P a t} \leq \overline{P a t^{\prime}}$. Since we're given that $\operatorname{match}(v,(\overline{P a t}))=e$, by E-MatchTuP we have that $v=(\bar{v})$ and match $(\bar{v}, \overline{P a t})=\bar{e}$. Therefore by induction we have $\operatorname{match}\left(\bar{v}, \overline{P a t^{\prime}}\right)=\overline{e^{\prime}}$. Then by E-MatchTup we have match $((\bar{v}),(\overline{P a t}))$ $=\bigcup \overline{e^{\prime}}$.
- Case SpecClass. Then Pat has the form $\left(C_{1}\left\{\bar{V}=\overline{P a t_{1}}, \overline{V_{3}}=\overline{P a t_{3}}\right\}\right)$ and Pat ${ }^{\prime}$ has the form $\left(C_{2}\{\bar{V}=\right.$ $\left.\overline{P_{a t_{2}}}\right\}$) and $C_{1} \leq C_{2}$ and $\overline{\text { Pat }_{1}} \leq \overline{p a t_{2}}$. Since we're given that match $\left(v, C_{1}\left\{\bar{V}=\overline{P a t_{1}}, \overline{V_{3}}=\overline{P_{a t_{3}}}\right\}\right)=e$, by E-MatchClass we have that $v=\left(\left(\bar{T} C_{0}\right)\left\{\bar{V}=\bar{v}, \overline{V_{3}}=\overline{v_{3}}, \overline{V_{4}}=\overline{v_{4}}\right\}\right)$ and $C_{0} \leq C_{1}$ and match $(\bar{v}$, $\left.\overline{P a t_{1}}\right)=\overline{e_{1}}$. Since $C_{0} \leq C_{1}$ and $C_{1} \leq C_{2}$, by SUBTRANS we have $C_{0} \leq C_{2}$. By induction we have $\operatorname{match}\left(\bar{v}, \overline{P a t_{2}}\right)=\overline{e_{2}}$. Therefore by E-MAtchClass we have match $\left(\left(\bar{T} C_{0}\right)\left\{\bar{V}=\bar{v}, \overline{V_{3}}=\overline{v_{3}}, \overline{V_{4}}=\overline{v_{4}}\right\}\right)$, $\left.C_{2}\left\{\bar{V}=\overline{P a t_{2}}\right\}\right)=\bigcup \overline{e_{2}}$.

Lemma 5.8 If $\overline{B n} \vdash C$ transExtended and $C \leq B n^{\prime} . C n^{\prime}$, then $B n^{\prime} \in \overline{B n}$.
Proof By induction on the depth of the derivation of $C \leq B n^{\prime} . C n^{\prime}$. Case analysis of the last rule in the derivation.

- Case SubRef. Then $C=B n^{\prime} . C n^{\prime}$. Since we're given that $\overline{B n} \vdash C$ transExtended, by ClassTransExt we have $B n^{\prime} \in \overline{B n}$.
- Case SubTrans. Then $C \leq B n^{\prime \prime} . C n^{\prime \prime}$ and $B n^{\prime \prime} . C n^{\prime \prime} \leq B n^{\prime} . C n^{\prime}$. Assume WLOG that the derivation of $C \leq B n^{\prime \prime} . C n^{\prime \prime}$ ends with a use of SubExt. Let $C=B n . C n$. Therefore by SubExt we have (<abstract> class $\overline{T n} C n\left(\overline{I_{0}}: \overline{T_{0}}\right)$ extends $\left.\overline{T_{2}} B n^{\prime \prime} . C n^{\prime \prime} \ldots\right) \in B T(B n)$. Since we're given that $\overline{B n} \vdash C$ transExtended, by ClassTransExt we have $\overline{B n} \vdash B n^{\prime \prime} . C n^{\prime \prime}$ transExtended. In addition, we showed above that $B n^{\prime \prime} . C n^{\prime \prime} \leq B n^{\prime} . C n^{\prime}$, so by induction we have $B n^{\prime} \in \overline{B n}$.
- Case SubExt. Then (<abstract> class $\overline{T n} C n\left(\overline{I_{0}}: \overline{T_{0}}\right)$ extends $\left.\overline{T_{1}} B n^{\prime} . C n^{\prime} \ldots\right) \in B T(B n)$. Since we're given that $\overline{B n} \vdash C$ transExtended, by ClassTransExt we have $\overline{B n} \vdash B n^{\prime} . C n^{\prime}$ transExtended. Therefore by ClassTransExt we have $B n^{\prime} \in \overline{B n}$.

Lemma 5.9 If $\overline{T n} \vdash C t$ OK and $C t=(\bar{T} B n . C n)$ and (<abstract $\left.>c l a s s \overline{T n_{0}} C n\left(\overline{I_{0}}: \overline{T_{0}}\right) \ldots\right) \in B T(B n)$ and $\left|\overline{E_{0}}\right|=\left|\overline{I_{0}}\right|$ then $\operatorname{rep}\left(C t\left(\overline{E_{0}}\right)\right)$ is well-defined and has the form $\{\bar{V}=\bar{E}\}$.
Proof We prove this lemma by induction on the length of the longest path in the superclass graph from $B n . C n$ (in other words, the number of non-trivial superclasses of $B n . C n$). By ClassTypeOK we have $\overline{T n} \vdash \bar{T}$ OK and (<<abstract>> class $\overline{T n_{0}} C n\left(\overline{I_{0}}: \overline{T_{0}}\right)<$ extends $C t^{\prime}\left(\overline{E^{\prime}}\right)>$ of $\left.\left.\overline{V n}: \overline{T_{2}}=\overline{E_{2}}\right\}\right) \in B T(B n)$ and $\left|\overline{T n_{0}}\right|=|\bar{T}|$. There are two cases to consider.

- The length of the longest path in the superclass graph from $B n . C n$ is 0 . Then $B n . C n$ has no non-trivial superclasses, so the extends clause in the declaration of $B n . C n$ is absent. Then by REP we have that $\operatorname{rep}\left(\operatorname{Ct}\left(\overline{E_{0}}\right)\right)$ is well-defined and has the form $\{\bar{V}=\bar{E}\}$.
- The length of the longest path in the superclass graph from $B n . C n$ is $i>0$. Then $B n . C n$ has at least one non-trivial superclass, so the extends clause in the declaration of $B n$. $C n$ is present. Then by ClassOK we have $\overline{T n_{0}} \vdash C t^{\prime}\left(\overline{E^{\prime}}\right)$ OK, so by T-Super we have $\overline{T n_{0}} \vdash C t^{\prime}$ OK and $C t^{\prime}=\left(\overline{T n_{1}} B n^{\prime} . C n^{\prime}\right)$ and (<abstract> class $\overline{T n_{0}} C n^{\prime}\left(\overline{I_{0}^{\prime}}: \overline{T_{0}^{\prime}}\right) \ldots$) $\in B T\left(B n^{\prime}\right)$ and $\left|\overline{I_{0}^{\prime}}\right|=\left|\overline{E^{\prime}}\right|$. Since $C t^{\prime}$ must have the form ($\overline{T_{1}} B n^{\prime} . C n^{\prime}$), where the length of the longest path in the superclass graph from $B n^{\prime} . C n^{\prime}$ is $i-1$, by induction we have that $\operatorname{rep}\left(C t^{\prime}\left(\overline{E^{\prime}}\right)\right)$ is well-defined and has the form $\{\bar{V}=\bar{E}\}$. Then by REP we have that $\operatorname{rep}\left(C t\left(\overline{E_{0}}\right)\right)$ is well-defined and also has the appropriate form.

5.2 Completeness

These lemmas prove that all functions are complete.
Lemma 5.10 If $\vdash v: T^{\prime}$ and $T^{\prime} \leq T$ and $T=[\overline{T n} \mapsto \bar{T}] T_{0}$ and $\operatorname{defaultPat}\left(T_{0}, C_{0}, d\right)=P a t$, then there exists e such that $\operatorname{match}(v, P a t)=e$.
Proof By strong induction on the depth of the derivation of defaultPat $\left(T_{0}, C_{0}, d\right)=$ Pat. Case analysis of the last rule in the derivation.

- Case DefZero or DefTypeVar or DefFunType. Then Pat has the form -, so by E-MatchWild we have $\operatorname{match}(v,-)=\{ \}$.
- Case DefclassType. Then T_{0} has the form $\left(\overline{T_{0}} C\right)$ and Pat has the form $(C\{\bar{V}=\overline{P a t}\})$ and repType $\left(\overline{T_{0}} C\right)=\{\bar{V}: \bar{T}\}$ and defaultPat $\left(\bar{T}, C_{0}, d-1\right)=\overline{P a t}$ and $d>0$. Since $T=[\overline{T n} \mapsto \bar{T}] T_{0}$, by Lemma 4.11 we have $\operatorname{repType}(T)=[\overline{T n} \mapsto \bar{T}]\{\bar{V}: \bar{T}\}$. Further, $T=[\overline{T n} \mapsto \bar{T}]\left(\overline{T_{0}} C\right)=([\overline{T n} \mapsto$ $\bar{T}] \overline{T_{0}} C$). Since $T^{\prime} \leq T$, by Lemma $5.1 T^{\prime}$ has the form $\left(\overline{T_{1}} C^{\prime}\right)$. Since $\vdash v: T^{\prime}$, by T-Rep v has the form $\left(\overline{T_{1}} C^{\prime}\right)\left\{\overline{V_{1}}=\overline{v_{1}}\right\}$ and $\bullet \vdash\left(\overline{T_{1}} C^{\prime}\right)$ OK and repType $\left(\overline{T_{1}} C^{\prime}\right)=\left\{\overline{V_{1}}: \overline{T_{1}}\right\}$ and $\vdash \overline{v_{1}}: \overline{T_{1}^{\prime}}$ and $\overline{T_{1}^{\prime}} \leq \overline{T_{1}}$.
Since $\left(\overline{T_{1}} C^{\prime}\right) \leq\left([\overline{T n} \mapsto \bar{T}] \overline{T_{0}} C\right)$, by Lemma 4.5 we have $C^{\prime} \leq C$. Further, by Lemma 4.12 we have that $\left\{\overline{V_{1}}: \overline{T_{1}}\right\}=\left\{\bar{V}:[\overline{T n} \mapsto \bar{T}] \bar{T}, \overline{V_{2}}: \overline{T_{2}}\right\}$. Therefore there is some prefix $\overline{T_{3}}$ of $\overline{T_{1}^{\prime}}$ such that $\overline{T_{3}} \leq[\overline{T n} \mapsto \bar{T}] \bar{T}$. Therefore there is some prefix $\overline{v_{3}}$ of $\overline{v_{1}}$ such that $\vdash \overline{v_{3}}: \overline{T_{3}}$ and $\overline{T_{3}} \leq[\overline{T n} \mapsto \bar{T}] \bar{T}$ and defaultPat $\left(\bar{T}, C_{0}, d-1\right)=\overline{\text { Pat. }}$. Therefore by induction, $\operatorname{match}\left(\overline{v_{3}}, \overline{P a t}\right)=\bar{e}$. Therefore by EMatchClass we have match $\left(\left(\overline{T_{1}} C^{\prime}\right)\left\{\overline{V_{1}}=\overline{v_{1}}\right\},(C\{\bar{V}=\overline{\text { Pat }}\})\right)=\bigcup \bar{e}$.
- Case DefTupType. Then T_{0} has the form $T_{1} * \cdots * T_{k}$ and Pat has the form (Pat $_{1}, \ldots$, Pat $_{k}$) and for all $1 \leq i \leq k$ we have defaultPat $\left(T_{i}, C_{0}, d-1\right)=\operatorname{Pat}_{i}$ and $d>0$. Since $T^{\prime} \leq[\overline{T n} \mapsto \bar{T}]\left(T_{1} * \cdots * T_{k}\right)$, by Lemma 4.6 we have that T^{\prime} has the form $T_{1}^{\prime} * \cdots * T_{k}^{\prime}$, where for all $1 \leq i \leq k$ we have $T_{i}^{\prime} \leq[\overline{T n} \mapsto \bar{T}] T_{i}$. Since $\vdash v: T^{\prime}$, by T-Tup we have that v has the form $\left(v_{1}, \ldots, v_{k}\right)$ and for all $1 \leq i \leq k$ we have $\vdash v_{i}: T_{i}^{\prime}$. Therefore by induction, for all $1 \leq i \leq k$ we have that there exists some e_{i} such that $\operatorname{match}\left(v_{i}\right.$, Pat $\left._{i}\right)=e_{i}$. Then by E-MatchTUP we have match $(v, \operatorname{Pat})=e_{1} \cup \cdots \cup e_{k}$.

Lemma 5.11 If $\mathrm{CP}(M t, v)=C_{0}$ and $C_{0} \leq C$ and $\vdash v: T^{\prime}$ and $T^{\prime} \leq T$ and $T=[\overline{T n} \mapsto \bar{T}] \hat{M} t$ and defaultPat $(M t, C, d)=P a t$, then there exists e such that $\operatorname{match}(v, P a t)=e$.
Proof By strong induction on the depth of the derivation of defaultPat $(M t, C, d)=$ Pat. Case analysis of the last rule in the derivation.

- Case DefZero. Then Pat has the form ${ }_{-}$, so by E-MatchWild we have match $\left(v,{ }_{-}\right)=\{ \}$.
- Case DefCPClassType. Then $M t$ has the form $\#\left(\overline{T_{1}} C^{\prime}\right)$ and Pat has the form ($\left.C\{\bar{V}=\overline{P a t}\}\right)$ and repType $\left(\overline{T_{1}} C\right)=\{\bar{V}: \bar{T}\}$ and defaultPat $(\bar{T}, C, d-1)=\overline{\text { Pat }}$ and $d>0$. By Lemma 4.11 we have repType $\left([\overline{T n} \mapsto \bar{T}] \overline{T_{1}} \frac{C)}{}=[\overline{T n} \mapsto \bar{T}]\{\bar{V}: \bar{T}\}\right.$. Since $\mathrm{CP}\left(\#\left(\overline{T_{1}} C^{\prime}\right), v\right)=C_{0}$, by CPInstance we have that v is of the form $\left(\overline{T_{0}} C_{0}\right)\left\{\overline{V_{1}}=\overline{v_{1}}\right\}$.
Since we're given that $\vdash v: T^{\prime}$, by T-Rep we have that $T^{\prime}=\left(\overline{T_{0}} C_{0}\right)$ and $\bullet \vdash\left(\overline{T_{0}} C_{0}\right)$ OK and repType $\left(\overline{T_{0}} C_{0}\right)=\left\{\overline{V_{2}}: \overline{T_{2}}\right\}$ and $\vdash \overline{v_{1}}: \overline{T_{2}^{\prime}}$ and $\overline{T_{2}^{\prime}} \leq \overline{T_{2}}$. We're given that $T^{\prime} \leq T$, so that means $\left(\overline{T_{0}} C_{0}\right) \leq\left([\overline{T n} \mapsto \bar{T}] \overline{T_{1}} C^{\prime}\right)$, and by Lemma 4.4 we have $\overline{T_{0}}=[\overline{T n} \mapsto \bar{T}] \overline{T_{1}}$. Since $C_{0} \leq C$ and $\bullet \vdash\left(\overline{T_{0}} C_{0}\right)$ OK, by Lemma 4.7 we have $\left(\overline{T_{0}} C_{0}\right) \leq\left(\overline{T_{0}} C\right)$. Therefore by Lemma 4.12 we have $\left\{\overline{V_{2}}: \overline{T_{2}}\right\}=\left\{\bar{V}:[\overline{T n} \mapsto \bar{T}] \bar{T}, \overline{V_{3}}: \overline{T_{3}}\right\}$.
Therefore there is some prefix $\overline{v_{3}}$ of $\overline{v_{1}}$ and some prefix $\overline{T_{3}}$ of $\overline{T_{2}^{\prime}}$ such that $\vdash \overline{v_{3}}: \overline{T_{3}}$ and $\overline{T_{3}} \leq[\overline{T n} \mapsto \bar{T}] \bar{T}$ and defaultPat $(\bar{T}, C, d-1)=\overline{P a t}$, so by Lemma 5.10, there exists \bar{e} such that match $\left(\overline{v_{3}}, \overline{P a t}\right)=\bigcup \bar{e}$. Finally, we're given $C_{0} \leq C$, so by E-MatchClass we have match $\left(\left(\overline{T_{0}} C_{0}\right)\left\{\overline{V_{1}}=\overline{v_{1}}\right\},(C\{\bar{V}=\overline{\text { Patt }}))\right.$ $=\bigcup \bar{e}$.
- Case DefTupType. Then $M t$ has the form $T_{1} * \cdots * T_{i-1} * M t_{i} * T_{i+1} * \cdots * T_{k}$ and Pat has the form $\left(\right.$ Pat $_{1}, \ldots$, Pat $\left._{k}\right)$ and for all $1 \leq j \leq k$ such that $j \neq i$ we have defaultPat $\left(T_{j}, C, d-1\right)=\operatorname{Pat}_{j}$ and we have defaultPat $\left(M t_{i}, C, d-1\right)=$ Pat $_{i}$. Let $T_{i}=\hat{M t_{i}}$. Since $T^{\prime} \leq[\overline{T n} \mapsto \bar{T}]\left(T_{1} * \cdots * T_{k}\right)$, by Lemma 4.6 we have that T^{\prime} has the form $T_{1}^{\prime} * \cdots * T_{k}^{\prime}$, where for all $1 \leq \bar{j} \leq k$ we have $T_{j}^{\prime} \leq[\overline{T n} \mapsto \bar{T}] T_{j}$. Since $\vdash v: T^{\prime}$, by T-Tup we have that v has the form $\left(v_{1}, \ldots, v_{k}\right)$ and for all $1 \leq j \leq k$ we have $\vdash v_{j}: T_{j}^{\prime}$. Therefore by Lemma 5.10, for all $1 \leq j \leq k$ such that $j \neq i$ we have that there exists some e_{j} such
that match $\left(v_{j}, P a t_{j}\right)=e_{j}$. We're given that $\mathrm{CP}(M t, v)=C_{0}$, so by CPTupVal we have $\operatorname{CP}\left(M t_{i}, v_{i}\right)$ $=C_{0}$. Therefore by induction we have that there exists some $e_{i} \operatorname{such}$ that match $\left(v_{i}, P a t_{i}\right)=e_{i}$. Then by E-MatchTup we have match $(v, P a t)=e_{1} \cup \cdots \cup e_{k}$.

Lemma 5.12 If $\vdash v: T_{2}^{\prime}$ and $T_{2}^{\prime} \leq T_{2}$ and $T_{2}=[\overline{T n} \mapsto \bar{T}] \hat{M} t$ and (fun $\left.\overline{T n} F n: M t \rightarrow T_{0}\right) \in B T(B n)$ and $\mathrm{CP}(M t, v)=C_{0}$ and $C_{0} \leq C$ and $\overline{B n} \vdash B n$.Fn has-default-for C, then there exists some $B n^{\prime} \in \overline{B n}$, some (extend $\mathrm{fun}_{M_{n}} \overline{T n_{1}} B n . F n$ Pat $\left.=E\right) \in B T\left(B n^{\prime}\right)$, and some environment e such that match $(v, P a t)=e$.
Proof Since $\overline{B n} \vdash B n . F n$ has-default-for C, by Default we have defaultPat $(M t, C)=P a t^{\prime}$ and by DefPat we have defaultPat $(M t, C, d)=P a t^{\prime}$. Therefore we have $\operatorname{CP}(M t, v)=C_{0}$ and $C_{0} \leq C$ and $\vdash v: T_{2}^{\prime}$ and $T_{2}^{\prime} \leq T_{2}$ and $T_{2}=[\overline{T n} \mapsto \bar{T}] \hat{M} t$ and defaultPat $(M t, C, d)=P a t^{\prime}$, so by Lemma 5.11 there exists e^{\prime} such that $\operatorname{match}\left(v, P a t^{\prime}\right)=e^{\prime}$.

Also by Default we have (extend $\mathrm{fun}_{M n} \overline{T n_{1}} B n . F n$ Pat $\left.=E\right) \in B T\left(B n^{\prime}\right)$ and Pat ${ }^{\prime} \leq P a t$ and $B n^{\prime} \in \overline{B n}$. By Lemma 5.7 there exists e such that match $(v, P a t)=e$, so the result follows.

Lemma 5.13 If $\vdash v: T^{\prime}$ and $T^{\prime} \leq T$ and $T=[\overline{T n} \mapsto \bar{T}] \hat{M} t$ and $\mathrm{CP}(M t)=C^{\prime}$, then there exists some class C such that $\mathrm{CP}(M t, v)=C$ and concrete (C) and $C \leq C^{\prime}$.
Proof By induction on the depth of the derivation of $\vdash v: T^{\prime}$. Case analysis of the last rule used in the derivation.

- Case T-Rep. Then v has the form $\left(\overline{T_{0}} C\right)\{\bar{V}=\bar{v}\}$ and $T^{\prime}=\left(\overline{T_{0}} C\right)$ and concrete (C) and repType $\left(\overline{T_{0}} C\right)$ $=\{\bar{V}: \bar{T}\}$. Since $T^{\prime} \leq T$, by Lemma $4.3 T$ has the form $\left(\overline{T_{1}} C^{\prime \prime}\right)$. Since $T=[\overline{T n} \mapsto \bar{T}] \hat{M} t, \hat{M} t$ has the form ($\overline{T_{2}} C^{\prime \prime}$), and by the grammar for marked types $M t$ must be $\#\left(\overline{T_{2}} C^{\prime \prime}\right)$. Then by CPInstance we have $\operatorname{CP}\left(\#\left(\overline{T_{2}} C^{\prime \prime}\right),\left(\overline{T_{0}} C\right)\{\bar{V}=\bar{v}\}\right)=C$. We're given $T^{\prime} \leq T$, so by Lemma 4.5 we have $C \leq C^{\prime \prime}$. Since $\operatorname{CP}(M t)=C^{\prime}$, by CPClass we have $C^{\prime}=C^{\prime \prime}$, so $C \leq C^{\prime}$.
- Case T-Fun. Then v has the form $\left(\overline{T_{1}} F\right)$ and T^{\prime} has the form $T_{1} \rightarrow T_{2}$. Therefore by Lemma 5.2 T has the form $T_{1}^{\prime} \rightarrow T_{2}^{\prime}$. Since $T=[\overline{T n} \mapsto \bar{T}] \hat{M} t, \hat{M} t$ has the form $T_{1}^{\prime \prime} \rightarrow T_{2}^{\prime \prime}$, but this contradicts the grammar of marked types. Therefore, T-F Un cannot be the last rule in the derivation.
- Case T-Tup: Then v has the form $\left(v_{1}, \ldots, v_{k}\right)$ and T^{\prime} has the form $T_{1}^{\prime} * \cdots * T_{k}^{\prime}$ and for all $1 \leq j \leq k$ we have $\vdash v_{j}: T_{j}^{\prime}$. Therefore by Lemma $5.3 T$ has the form $T_{1} * \cdots * T_{k}$, where for all $1 \leq j \leq k$ we have $T_{j}^{\prime} \leq T_{j}$. Since $T=[\overline{T n} \mapsto \bar{T}] \hat{M} t, \hat{M} t$ has the form $T_{1}^{\prime \prime} * \cdots * T_{k}^{\prime \prime}$, and by the grammar for marked types $M t$ must have the form $T_{1}^{\prime \prime} * \cdots * T_{i-1}^{\prime \prime} * M t_{i} * T_{i+1}^{\prime \prime} * \cdots * T_{k}^{\prime \prime}$, where $1 \leq i \leq k$ and $\hat{M t} t_{i}=T_{i}^{\prime \prime}$. We're given $\mathrm{CP}(M t)=C^{\prime}$, so by CPTup we have $\mathrm{CP}\left(M t_{i}\right)=C^{\prime}$.
Therefore we have $\vdash v_{i}: T_{i}^{\prime}$ and $T_{i}^{\prime} \leq T_{i}$ and $T_{i}=[\overline{T n} \mapsto \bar{T}] \hat{M} t_{i}$ and $\mathrm{CP}\left(M t_{i}\right)=C^{\prime}$, so by induction there exists C such that $\mathrm{CP}\left(M t_{i}, v_{i}\right)=C$ and concrete (C) and $C \leq C^{\prime}$. By CPTupVal we have $\mathrm{CP}\left(T_{1}^{\prime \prime} * \cdots * T_{i-1}^{\prime \prime} * M t_{i} * T_{i+1}^{\prime \prime} * \cdots * T_{k}^{\prime \prime},\left(v_{1}, \ldots, v_{k}\right)\right)=C$, so the result follows.

Lemma 5.14 If $\vdash(\bar{T} F): T_{2} \rightarrow T$ and $\vdash v: T_{2}^{\prime}$ and $T_{2}^{\prime} \leq T_{2}$, then there exists some $B n^{\prime} \in \operatorname{dom}(B T)$, some (extend fun $\left.\overline{M n} \overline{T n_{1}} F P a t=E\right) \in B T\left(B n^{\prime}\right)$, and some environment e such that match $(v, P a t)=e$.
Proof Since $\vdash(\bar{T} F): T_{2} \rightarrow T$, by T-Fun we have $F=B n . F n$ and (fun $\left.\overline{T n} F n: M t \rightarrow T_{0}\right) \in B T(B n)$ and $|\overline{T n}|=|\bar{T}|$ and $T_{2} \rightarrow T=[\overline{T n} \mapsto \bar{T}]\left(\hat{M} t \rightarrow T_{0}\right)$. Let $B T(B n)=$ block $B n=\mathrm{blk}$ extends $\overline{B n} \overline{O o d}$ end. Then by BlockOK we have $\overline{B n} \vdash$ (fun $\overline{T n} F n: M t \rightarrow T_{0}$) OK in Bn, so by FunOK we have that $\mathrm{CP}(M t)$ $=B n^{\prime \prime} . C n$. Then by Lemma 5.13 there exists some class C such that $\mathrm{CP}(M t, v)=C$ and concrete (C) and $C \leq B n^{\prime \prime}$. Cn. Also by FunOK we have either $\overline{B n} \vdash F$ has-gdefault or $B n=B n^{\prime \prime}$. We consider these cases separately.

- Case $\overline{B n} \vdash F$ has-gdefault. By GDefault we have $\mathrm{CP}(F)=C^{\prime}$ and $\overline{B n} \vdash F$ has-default-for C^{\prime}. By CPFun, $C^{\prime}=B n^{\prime \prime} . C n$. Then by Lemma 5.12 there exists some $B n^{\prime} \in \overline{B n}$, some (extend fun ${ }_{M n} \frac{B y}{T n_{1}}$
$F P a t=E) \in B T\left(B n^{\prime}\right)$, and some environment e such that match $(v, P a t)=e$. Since $B T(B n)=$ block $B n=\mathrm{blk}$ extends $\overline{B n} \overline{O o d}$ end, each member of $\overline{B n}$ is mentioned in the program, so by sanity condition 2 we have $\overline{B n} \subseteq \operatorname{dom}(B T)$. Therefore $B n^{\prime} \in \operatorname{dom}(B T)$, and the result is shown.
- Case $B n=B n^{\prime \prime}$. Let $C=B n_{0} . C n_{0}$. Since concrete (c), by Concrete we have (class $\overline{T n_{0}} C n_{0} \ldots$) $\in B T\left(B n_{0}\right)$. Let $B T\left(B n_{0}\right)=\mathrm{block} B n=\mathrm{blk} B n_{0}$ extends $\overline{B n_{0}} \overline{O o d_{0}}$ end. Then by BlockOK we have $\overline{B n_{0}} \vdash$ class $\overline{T n_{0}} C n_{0} \ldots$ OK in $B n_{0}$, so by CLASSOK we have concrete $(C) \Rightarrow \overline{B n_{0}} \vdash$ funs-have-ldefault-for C. Since we have shown that concrete (C) holds, we have $\overline{B n_{0}} \vdash$ funs-have-ldefault-for C.

Also by ClassOK we have $\overline{B n_{0}} \vdash C$ transExtended. Since $C \leq B n^{\prime \prime} . C n$ and $B n^{\prime \prime}=B n$, by Lemma 5.8 we have $B n \in \overline{B n_{0}}$.
Since $F=B n . F n$ and $B n \in \overline{B n_{0}}$, by FunExt we have $\overline{B n_{0}} \vdash F$ extended. Since (fun $\overline{T n} F n$: $\left.M t \rightarrow T_{0}\right) \in B T(B n)$ and $\mathrm{CP}(M t)=B n . C n$, by CPFun we have $\mathrm{CP}(F)=B n$.Cn. Also, we showed above that $C \leq B n$. Cn. Therefore, since $\overline{B n_{0}} \vdash$ funs-have-ldefault-for C, by LDEFAULT we have $\overline{B n_{0}} \vdash F$ has-default-for C. By SubRef $C \leq C$, so by Lemma 5.12 there exists some $B n^{\prime} \in \overline{B n_{0}}$, some (extend $\mathrm{fun}_{M n} \overline{T n_{1}} B n$.Fn Pat $\left.=E\right) \in B T\left(B n^{\prime}\right)$, and some environment e such that match $(v, P a t)=$ e. Since $B T\left(B n_{0}\right)=$ block $B n_{0}=\mathrm{blk}$ extends $\overline{B n_{0}} \overline{O o d_{0}}$ end, each member of $\overline{B n_{0}}$ is mentioned in the program, so by sanity condition (2) we have $\overline{B n_{0}} \subseteq \operatorname{dom}(B T)$. Therefore $B n^{\prime} \in \operatorname{dom}(B T)$, and the result is shown.

5.3 Ambiguity

These lemmas ensure that all functions are unambiguous.

5.3.1 Pattern Specificity and Intersection

Lemma 5.15 If $P a t \leq P a t^{\prime}$ and $P a t^{\prime} \leq P a t^{\prime \prime}$ then $P a t \leq P a t^{\prime \prime}$.
Proof By induction on the depth of the derivation of $P a t^{\prime} \leq P a t^{\prime \prime}$. Case analysis of the last rule used in the derivation.

- Case SpecWild. Then Pat has the form _, and by SpecWild we have Pat $\leq P a t^{\prime \prime}$.
- Case SpecBind1. Then $P a t^{\prime}$ has the form (I as $P a t_{0}^{\prime}$) and we have $P a t_{0}^{\prime} \leq P a t^{\prime \prime}$. We prove this case by induction on the number of consecutive uses of rule SpecBind1 ending the derivation of Pat \leq (I as $P a t_{0}^{\prime}$). Case analysis of the last rule used in the derivation.
- Case SpecBind1. Then Pat has the form (I^{\prime} as $\left.P a t_{0}\right)$ and $P a t_{0} \leq P a t^{\prime}$. By the inner induction $P a t_{0} \leq P a t^{\prime \prime}$, and by SpecBind1 $P a t \leq P a t^{\prime \prime}$.
- Case SpecBind2. Then Pat $\leq P a t_{0}^{\prime}$. Since also $P a t_{0}^{\prime} \leq P a t^{\prime \prime}$, by the outer induction we have $P a t \leq P a t^{\prime \prime}$.
- Case SpecBind2. Then $P a t^{\prime \prime}$ has the form (I as $P a t_{0}^{\prime \prime}$) and we have $P a t^{\prime} \leq P a t_{0}^{\prime \prime}$. By induction $P a t \leq P a t_{0}^{\prime \prime}$, and by SpecBind2 Pat $\leq P a t^{\prime \prime}$.
- Case SpecTup. Then Pat has the form $\left(\overline{P a t^{\prime}}\right)$ and $P a t^{\prime \prime}$ has the form $\left(\overline{P a t^{\prime \prime}}\right)$ and $\overline{P a t^{\prime}} \leq \overline{P a t^{\prime \prime}}$. We prove this case by induction on the number of consecutive uses of rule SpEcBind1 ending the derivation of Pat $\leq P a t^{\prime}$. Case analysis of the last rule used in the derivation.
- Case SpecBind1. Then Pat has the form $\left(I\right.$ as $\left.P a t_{0}\right)$ and we have $P a t_{0} \leq P a t^{\prime}$. By the inner induction $P a t_{0} \leq P a t^{\prime \prime}$, so by SpecBind1 Pat $\leq P a t^{\prime \prime}$.
- Case Spectup. Then Pat has the form $(\overline{P a t}) \overline{P a t} \leq \overline{P a t^{\prime}}$. Therefore by the outer induction, $\overline{P a t} \leq \overline{P a t^{\prime \prime}}$. Therefore by SpecTup Pat \leq Pat ${ }^{\prime \prime}$.
- Case SpecClass. Then Pat' has the form $C^{\prime}\left\{\overline{V_{1}}=\overline{P a t_{1}^{\prime}}, \overline{V_{2}}=\overline{P a t_{2}^{\prime}}\right\}$ and Pat" has the form $C^{\prime \prime}\left\{\overline{V_{1}}=\right.$ $\left.\overline{P a t_{1}^{\prime \prime}}\right\}$ and $C^{\prime} \leq C^{\prime \prime}$ and $\overline{P a t_{1}^{\prime}} \leq \overline{\text { Pat } t_{1}^{\prime \prime}}$. We prove this case by induction on the number of consecutive uses of the rule SpecBind1 ending the derivation of Pat $\leq P a t t^{\prime}$. Case analysis of the last rule used in the derivation.
- Case SpecBind1. Then Pat has the form (I as $P a t_{0}$) and we have $P a t_{0} \leq P a t^{\prime}$. By the inner induction Pat $t_{0} \leq$ Pat $t^{\prime \prime}$, so by SpecBind1 Pat \leq Pat ${ }^{\prime \prime}$.
- Case SpecClass. Then Pat has the form $C\left\{\overline{V_{1}}=\overline{\text { Pat }_{1}}, \overline{V_{2}}=\overline{P a t a_{2}}, \overline{V_{3}}=\overline{P a t_{3}}\right\}$ and $C \leq C^{\prime}$ and $\overline{P a t_{1}} \leq \overline{P a t_{1}^{\prime}}$ and $\overline{P a t_{2}} \leq \overline{P_{\text {Pat }}^{\prime}}$. Since $C \leq C^{\prime}$ and $C^{\prime} \leq C^{\prime \prime}$, by SubTrans we have $C \leq C^{\prime \prime}$. By the outer induction we have $\overline{P a t_{1}} \leq \overline{P a t_{1}^{\prime \prime}}$. Therefore by SpecClass Pat $\leq P a t^{\prime \prime}$.

Lemma 5.16 If $\mathrm{CP}\left(M t, P a t^{\prime}\right)=C^{\prime}$ and $\mathrm{CP}\left(M t, P a t^{\prime \prime}\right)=C^{\prime \prime}$ and Pat $\cap P a t^{\prime \prime}=P a t$, then either $C^{\prime} \leq C^{\prime \prime}$ or $C^{\prime \prime} \leq C^{\prime}$.
Proof By induction on the depth of the derivation of Pat ${ }^{\prime} \cap P a t^{\prime \prime}=$ Pat. Case analysis of the last rule used in the derivation.

- Case PatIntWild. Then Pat' has the form _. But then it cannot be the case that $\mathrm{CP}\left(M t, P^{\prime} t^{\prime}\right)=$ C^{\prime}, because none of the three associated rules applies to a wildcard pattern.
- Case PatintBind. Then Pat has the form I as $P a t_{0}$ and $P a t_{0} \cap P a t^{\prime \prime}=$ Pat. Since $\operatorname{CP}\left(M t, P a t^{\prime}\right)=$ C^{\prime}, by CPBindPat we have $\mathrm{CP}\left(M t, P a t_{0}\right)=C^{\prime}$. Therefore by induction we have that either $C^{\prime} \leq C^{\prime \prime}$ or $C^{\prime \prime} \leq C^{\prime}$.
- Case PatIntTup. Then Pat has the form (Pat t_{1}^{\prime}, \ldots, Pat $_{k}^{\prime}$) and Pat ${ }^{\prime \prime}$ has the form (Pat $_{1}^{\prime \prime}, \ldots$, Pat $t_{k}^{\prime \prime}$) and for all $1 \leq j \leq k$ we have $P a t_{j}^{\prime} \cap P a t_{j}^{\prime \prime}=P a t_{j}$. Since $\operatorname{CP}\left(M t, P a t^{\prime}\right)=C^{\prime}$, by CPTupPat we have $M t=T_{1} * \cdots * T_{i-1} * M t_{i} * T_{i+1} * \cdots * T_{k}$ and $\operatorname{CP}\left(M t_{i}, P_{a t}^{\prime}\right)=C^{\prime}$. Since $\operatorname{CP}\left(M t, P a t^{\prime \prime}\right)=C^{\prime \prime}$, by CPTupPat we have $\mathrm{CP}\left(M t_{i}, P a t_{i}^{\prime \prime}\right)=C^{\prime \prime}$. Therefore by induction we have that either $C^{\prime} \leq C^{\prime \prime}$ or $C^{\prime \prime} \leq C^{\prime}$.
- Case PatIntClass. Then Pat' has the form ($\left.C_{1}\left\{\bar{V}=\overline{P a t t^{\prime}}, \overline{V_{2}}=\overline{\text { Pat }_{2}}\right\}\right)$ and Pat ${ }^{\prime \prime}$ has the form $\left(C_{2}\left\{\bar{V}=\overline{P a t^{\prime \prime}}\right\}\right)$ and $C_{1} \leq C_{2}$. Since $\mathrm{CP}\left(M t\right.$, Pat $\left.t^{\prime}\right)=C^{\prime}$, by CPClassPat $C^{\prime}=C_{1}$. Since $\mathrm{CP}\left(M t\right.$, Pat $\left.{ }^{\prime \prime}\right)=C^{\prime \prime}$, by CPClassPat $C^{\prime \prime}=C_{2}$. Therefore $C^{\prime} \leq C^{\prime \prime}$.
- Case Patintrev. Then $P a t^{\prime \prime} \cap P a t^{\prime}=P a t$, so by induction we have that either $C^{\prime \prime} \leq C^{\prime}$ or $C^{\prime} \leq C^{\prime \prime}$.

Lemma 5.17 If $\vdash v: T$ and $\operatorname{match}\left(v, P a t^{\prime}\right)=e^{\prime}$ and match $\left(v, P a t^{\prime \prime}\right)=e^{\prime \prime}$ and matchType $\left(T^{\prime}, P a t^{\prime}\right)=\Gamma^{\prime}, T_{0}^{\prime}$ and matchType $\left(T^{\prime \prime}, P a t^{\prime \prime}\right)=\Gamma^{\prime \prime}, T_{0}^{\prime \prime}$, then there exists some Pat such that Pat $\cap P a t^{\prime \prime}=$ Pat.
Proof By induction on the depth of the derivation of $\operatorname{match}\left(v, P a t^{\prime}\right)=e^{\prime}$. Case analysis of the last rule used in the derivation.

- Case E-MatchWild. Then Pat has the form _, so by Patint Wild we have $P a t^{\prime} \cap P a t^{\prime \prime}=P a t^{\prime \prime}$.
- Case E-MatchBind. Then Pat has the form I as Pat $_{0}^{\prime}$ and match $\left(v\right.$, Pat $\left.t_{0}^{\prime}\right)=e_{0}^{\prime}$, for some e_{0}^{\prime}. Since matchType $\left(T^{\prime}, P a t^{\prime}\right)=\Gamma^{\prime}, T_{0}^{\prime}$, by T-MatchBind we have matchType $\left(T^{\prime}, P a t_{0}^{\prime}\right)=\Gamma_{0}^{\prime}, T_{0}^{\prime}$. Then by induction there exists some Pat such that Pat $t_{0}^{\prime} \cap P a t^{\prime \prime}=P a t$, so by PatIntBind we have $P a t^{\prime} \cap P a t^{\prime \prime}=$ Pat.
- Case E-MatchTup. Then $v=\left(v_{1}, \ldots, v_{k}\right)$ and Pat' has the form (Pat t_{1}^{\prime}, \ldots, Pat t_{k}^{\prime}) and for all $1 \leq i \leq k$ we have match $\left(v_{i}, P a t_{i}^{\prime}\right)=e_{i}^{\prime}$, for some e_{i}^{\prime}. We prove this case by induction on the number of consecutive uses of E-MatchBind ending the derivation of match $\left(v, P a t^{\prime \prime}\right)=e^{\prime \prime}$. Case analysis of the last rule used in the derivation.
- Case E-MatchWild. Then Pat ${ }^{\prime \prime}$ has the form $_$, so by PatintWild we have $P a t^{\prime \prime} \cap P a t^{\prime}=P a t^{\prime}$, and by PatintRev Pat \cap Pat $t^{\prime \prime}=$ Pat ${ }^{\prime}$.
- Case E-MatchBind. Then Pat ${ }^{\prime \prime}$ has the form I as $\operatorname{Pat} t_{0}^{\prime \prime}$ and match $\left(v, \operatorname{Pat} t_{0}^{\prime \prime}\right)=e_{0}^{\prime \prime}$, for some $e_{0}^{\prime \prime}$. Since matchType $\left(T^{\prime \prime}, P a t^{\prime \prime}\right)=\Gamma^{\prime \prime}, T_{0}^{\prime \prime}$, by T-MatchBind we have matchType $\left(T^{\prime \prime}, P a t_{0}^{\prime \prime}\right)=$ $\Gamma_{0}^{\prime \prime}, T_{0}^{\prime \prime}$. Then by the inner induction there exists some Pat such that Pat \cap Pat ${ }_{0}^{\prime \prime}=$ Pat. Then by PatIntRev Pat $t_{0}^{\prime \prime} \cap$ Pat $t^{\prime}=$ Pat, by PatIntBind Pat ${ }^{\prime \prime} \cap$ Pat $=$ Pat, and again by PatIntRev Pat ${ }^{\prime} \cap P a t^{\prime \prime}=$ Pat.
- Case E-MatchTup. Then Pat ${ }^{\prime \prime}$ has the form (Pat $_{1}^{\prime \prime}, \ldots$, Pat $t_{k}^{\prime \prime}$) and for all $1 \leq i \leq k$ we have $\operatorname{match}\left(v_{i}\right.$, Pat $\left.t_{i}^{\prime \prime}\right)=e_{i}^{\prime \prime}$, for some $e_{i}^{\prime \prime}$. Since $\vdash v: T$, by T-TuP we have $T=T_{1} * \cdots * T_{k}$ and $\vdash v_{i}: T_{i}$ for all $1 \leq i \leq k$. Since matchType $\left(T^{\prime}, P a t^{\prime}\right)=\Gamma^{\prime}, T_{0}^{\prime}$ and matchType $\left(T^{\prime \prime}\right.$, Pat $\left.t^{\prime \prime}\right)=$ $\Gamma^{\prime \prime}, T_{0}^{\prime \prime}$, by T-MatchTup we have $T^{\prime}=T_{1}^{\prime} * \cdots * T_{k}^{\prime}$ and $T^{\prime \prime}=T_{1}^{\prime \prime} * \cdots * T_{k}^{\prime \prime}$ and for all $1 \leq i \leq k$ $\operatorname{matchType}\left(T_{i}^{\prime}, P a t^{\prime}\right)=\Gamma_{i}^{\prime}, T_{i}^{\prime \prime \prime}$ and matchType $\left(T_{i}^{\prime \prime}, P a t^{\prime \prime}\right)=\Gamma_{i}^{\prime \prime}, T_{i}^{\prime \prime \prime \prime}$. Then by the outer induction, for all $1 \leq i \leq k$ there exists $P a t_{i}$ such that $P a t_{i}^{\prime} \cap P a t_{i}^{\prime \prime}=P_{a} t_{i}$. Then by PatIntTup there exists Pat such that Pat ${ }^{\prime} \cap$ Pat $t^{\prime \prime}=$ Pat.
- Case E-MatchClass. Then $v=((\bar{T} C)\{\bar{V}=\bar{v}\})$, contradicting our assumption that $v=$ $\left(v_{1}, \ldots, v_{k}\right)$.
- Case E-MatchClass. Then $v=\left((\bar{T} C)\left\{V_{1}=v_{1}, \ldots, V_{k}=v_{k}\right\}\right)$ and Pat' has the form ($C^{\prime}\left\{V_{1}=\right.$ Pat $\left.\left.t_{1}^{\prime}, \ldots, V_{m}=P a t_{m}^{\prime}\right\}\right)$ and $C \leq C^{\prime}$ and $m \leq k$ and for all $1 \leq i \leq m$ we have match $\left(v_{i}, P a t_{i}^{\prime}\right)=e_{i}^{\prime}$ for some e_{i}^{\prime}. We prove this case by induction on the number of consecutive uses of E-MatchBind ending the derivation of $\operatorname{match}\left(v, P a t^{\prime \prime}\right)=e^{\prime \prime}$. Case analysis of the last rule used in the derivation.
- Case E-MatchWild. Then Pat ${ }^{\prime \prime}$ has the form _, so by PatIntWild we have $P a t^{\prime \prime} \cap P a t^{\prime}=P a t^{\prime}$, and by PatintRev Pat \cap Pat ${ }^{\prime \prime}=P a t^{\prime}$.
- Case E-MatchBind. Then Pat ${ }^{\prime \prime}$ has the form I as Pat $t_{0}^{\prime \prime}$ and match $\left(v\right.$, Pat $\left.t_{0}^{\prime \prime}\right)=e_{0}^{\prime \prime}$, for some $e_{0}^{\prime \prime}$. Since matchType $\left(T^{\prime \prime}, P a t^{\prime \prime}\right)=\Gamma^{\prime \prime}, T_{0}^{\prime \prime}$, by T-MatchBind we have matchType $\left(T^{\prime \prime}, P a t_{0}^{\prime \prime}\right)=$ $\Gamma_{0}^{\prime \prime}, T_{0}^{\prime \prime}$. Then by the inner induction there exists some Pat such that Pat \cap Pat $t_{0}^{\prime \prime}=$ Pat. Then by PatIntRev Pat $t_{0}^{\prime \prime} \cap$ Pat $t^{\prime}=$ Pat, by PatIntBind $P a t^{\prime \prime} \cap$ Pat $=$ Pat, and again by PatIntRev Pat ${ }^{\prime} \cap$ Pat $t^{\prime \prime}=$ Pat.
- Case E-MatchTup. Then $v=(\bar{v})$, contradicting our assumption that $v=\left((\bar{T} C)\left\{V_{1}=\right.\right.$ $\left.v_{1}, \ldots, V_{k}=v_{k}\right\}$).
- Case E-MatchClass. Then Pat ${ }^{\prime \prime}$ has the form ($\left.C^{\prime \prime}\left\{V_{1}=P a t_{1}^{\prime \prime}, \ldots, V_{p}=P a t_{p}^{\prime \prime}\right\}\right)$ and $C \leq C^{\prime \prime}$ and $p \leq k$ and for all $1 \leq i \leq p$ we have match $\left(v_{i}, P a t_{i}^{\prime \prime}\right)=e_{i}^{\prime \prime}$ for some $e_{i}^{\prime \prime}$. Since $\vdash v: T$, by T-REP we have $\bullet \vdash(\bar{T} C)$ OK and for all $1 \leq i \leq k$ we have $\vdash v_{i}: T_{i}$ for some T_{i}. Since $C \leq C^{\prime}$ and $C \leq C^{\prime \prime}$, by Lemma 4.7 we have $\bullet \vdash\left(\overline{\bar{T}} C^{\prime}\right)$ OK and $\bullet \vdash\left(\bar{T} C^{\prime \prime}\right)$ OK. Since matchType $\left(T^{\prime}\right.$, Patt $)$ $=\bar{\Gamma}^{\prime}, T_{0}^{\prime}$ and $\operatorname{matchType}\left(T^{\prime \prime}, P a t^{\prime \prime}\right)=\Gamma^{\prime \prime}, T_{0}^{\prime \prime}$, by T-MatchClass we have repType $\left(\overline{T_{0}} C^{\prime}\right)$ has the form $\left\{V_{1}: T_{1}^{\prime}, \ldots, V_{m}: T_{m}^{\prime}\right\}$ and repType $\left(\overline{T_{1}} C^{\prime \prime}\right)$ has the form $\left\{V_{1}: T_{1}^{\prime \prime}, \ldots, V_{p}: T_{p}^{\prime \prime}\right\}$, for some $\overline{T_{0}}$ and $\overline{T_{1}}$. Therefore by inspection of RepType, also repType $\left(\bar{T} C^{\prime}\right)$ has the form $\left\{V_{1}: T_{1}^{\prime \prime \prime}, \ldots, V_{m}: T_{m}^{\prime \prime \prime}\right\}$ and repType $\left(\bar{T} C^{\prime \prime \prime}\right)$ has the form $\left\{V_{1}: T_{1}^{\prime \prime \prime \prime}, \ldots, V_{p}: T_{p}^{\prime \prime \prime \prime}\right\}$. Also by TMatchClass, for all $1 \leq i \leq m$ we have matchType $\left(T_{i}^{\prime}, P a t^{\prime}\right)=\Gamma_{i}^{\prime}, T_{i}^{\prime \prime \prime}$ and for all $1 \leq i \leq p$ we have matchType $\left(T_{i}^{\prime \prime}, P a t^{\prime \prime}\right)=\Gamma_{i}^{\prime \prime}, T_{i}^{\prime \prime \prime \prime}$. Since $C \leq C^{\prime}$ and $C \leq C^{\prime \prime}$, by Lemma 5.4 either $C^{\prime} \leq C^{\prime \prime}$ or $C^{\prime \prime} \leq C^{\prime}$.
* Case $C^{\prime} \leq C^{\prime \prime}$. Since $\bullet \vdash\left(\bar{T} C^{\prime}\right)$ OK, by Lemma 4.7 we have $\left(\bar{T} C^{\prime}\right) \leq\left(\bar{T} C^{\prime \prime}\right)$. Then by Lemma 4.12 we have that $p \leq m$. Then by the outer induction we have that for all $1 \leq i \leq p$ there exists $P a t_{i}$ such that $P a t_{i}^{\prime} \cap P a t_{i}^{\prime \prime}=P a t_{i}$. Then by PatIntClass there exists $P a t$ such that $P a t^{\prime} \cap P a t^{\prime \prime}=P a t$.
* Case $C^{\prime \prime} \leq C^{\prime}$. Since $\bullet \vdash\left(\bar{T} C^{\prime \prime}\right)$ OK, by Lemma 4.7 we have $\left(\bar{T} C^{\prime \prime}\right) \leq\left(\bar{T} C^{\prime}\right)$. Then by Lemma 4.12 we have that $m \leq p$. Then by the outer induction we have that for all $1 \leq i \leq m$ there exists $P a t_{i}$ such that $P a t_{i}^{\prime} \cap P a t_{i}^{\prime \prime}=P a t_{i}$. Then by PatIntREv we have that for all $1 \leq i \leq m$ there exists $P a t_{i}$ such that $P a t_{i}^{\prime \prime} \cap P a t_{i}^{\prime}=P a t_{i}$. Then by PatIntClass there exists Pat such that $P a t^{\prime \prime} \cap P a t^{\prime}=P a t$, and the result follows by PatIntRev.

Lemma 5.18 If match $\left(v, P a t^{\prime}\right)=e^{\prime}$ and $\operatorname{match}\left(v, P a t^{\prime \prime}\right)=e^{\prime \prime}$ and $P a t^{\prime} \cap P a t^{\prime \prime}=P a t$, then there exists some e such that match $(v, P a t)=e$.
Proof By induction on the depth of the derivation of $P a t^{\prime} \cap P a t^{\prime \prime}=P a t$. Case analysis of the last rule used in the derivation.

- Case PatIntWild. Then Pat is identical to Pat ${ }^{\prime \prime}$, so match $(v, P a t)=e^{\prime \prime}$.
- Case PatIntBind. Then Pat has the form I as Pat t_{0}^{\prime} and Pat $t_{0}^{\prime} \cap$ Pat $t^{\prime \prime}=$ Pat. Since match $\left.(v, \text { Pat })^{\prime}\right)$ $=e^{\prime}$, by E-MatchBind there exists some $e_{0}^{\prime} \operatorname{such}$ that match $\left(v, P a t_{0}^{\prime}\right)=e_{0}^{\prime}$. Therefore by induction there exists some e such that match $(v, P a t)=e$.
- Case PatIntTup. Then Pat has the form $\left(\overline{P a t^{\prime}}\right)$ and $P a t^{\prime \prime}$ has the form $\left(\overline{P a t^{\prime \prime}}\right)$ and Pat has the form $(\overline{P a t})$ and $\overline{P a t^{\prime}} \cap \overline{P a t^{\prime \prime}}=\overline{P a t}$. Since match $\left(v, P a t^{\prime}\right)=e^{\prime}$, by E-MATCHTUP $v=(\bar{v})$ and $\operatorname{match}\left(\bar{v}, \overline{P a t^{\prime}}\right)$ $=\overline{e^{\prime}}$. Since match $\left(v, P a t^{\prime \prime}\right)=e^{\prime \prime}$, by E-MatchTUP match $\left(\bar{v}, \overline{P a t^{\prime \prime}}\right)=\overline{e^{\prime \prime}}$. Therefore by induction $\operatorname{match}(\bar{v}, \overline{P a t})=\bar{e}$. Then by E-MatchTUP there exists e such that match $(v, P a t)=e$.
- Case PatIntClass. Then Pat has the form ($\left.C^{\prime}\left\{V_{1}=P a t_{1}^{\prime}, \ldots, V_{m}=P a t_{m}^{\prime}\right\}\right)$ and Pat ${ }^{\prime \prime}$ has the form ($\left.C^{\prime \prime}\left\{V_{1}=P a t_{1}^{\prime \prime}, \ldots, V_{p}=P a t_{p}^{\prime \prime}\right\}\right)$ and $m \geq p$ and Pat has the form $\left(C^{\prime}\left\{V_{1}=P a t_{1}, \ldots, V_{p}=\right.\right.$ $\left.\left.P a t_{p}, V_{p+1}=P a t_{p+1}^{\prime}, \ldots, V_{m}=P a t_{m}^{\prime}\right\}\right)$ and $C^{\prime} \leq C^{\prime \prime}$ and $P a t_{i}^{\prime} \cap P a t_{i}^{\prime \prime}=P a t_{i}$ for all $1 \leq i \leq m$. Since $\operatorname{match}\left(v, P a t^{\prime}\right)=e^{\prime}$, by E-MatchClass $v=\left((\bar{T} C)\left\{V_{1}=v_{1}, \ldots, V_{k}=v_{k}\right\}\right)$ and $C \leq C^{\prime}$ and $k \geq m$ and $\operatorname{match}\left(v_{i}, P a t_{i}^{\prime}\right)=e_{i}^{\prime}$ for all $1 \leq i \leq m$. Since match $\left(v, P a t^{\prime \prime}\right)=e^{\prime \prime}$, by E-MatchClass we have $\operatorname{match}\left(v_{i}, P a t_{i}^{\prime \prime}\right)=e_{i}^{\prime \prime}$ for all $1 \leq i \leq p$. Then by induction, there exists e_{i} such that match $\left(v_{i}, P a t_{i}\right)=$ e_{i}, for all $1 \leq i \leq p$. Then by E-MatchClass there exists e such that match $(v, P a t)=e$.
- Case PatIntRev. Then Pat ${ }^{\prime \prime} \cap$ Pat $t^{\prime}=$ Pat. Then by induction there exists e such that match $(v, P a t)$ $=e$.

5.3.2 Ambiguity

Lemma 5.19 If $\mathrm{CP}(M t, P a t)=B n . C n$ and $\overline{T n} \vdash \operatorname{matchType}(T, P a t)=\left(\Gamma, T^{\prime}\right)$, then there exists some (<abstract>class $\left.\overline{T n_{0}} C n \ldots\right) \in B T(B n)$.
Proof By induction on the depth of the derivation of $\mathrm{CP}(M t, P a t)=B n . C n$. Case analysis of the last rule used in the derivation.

- Case CPBindPat. Then Pat has the form I as Pat and $C P\left(M t, P a t^{\prime}\right)=B n . C n$. Since $\overline{T n} \vdash$ matchType $(T, P a t)=\left(\Gamma, T^{\prime}\right)$, by T-MatchBind we have that there exists some Γ^{\prime} such that $\overline{T n} \vdash$ matchType $\left(T, P a t^{\prime}\right)=\left(\Gamma^{\prime}, T^{\prime}\right)$. Therefore by induction there exists some (<abstract> class $\overline{T n_{0}}$ $C n . ..) \in B T(B n)$.
- Case CPTupPat. Then Pat has the form $\left(\right.$ Pat $\left._{1}, \ldots, P a t_{k}\right)$ and $M t=T_{1} * \cdots * T_{i-1} * M t_{i} * T_{i+1} * \cdots * T_{k}$ and $\operatorname{CP}\left(M t_{i}, P a t_{i}\right)=B n$.Cn. Since $\overline{T n} \vdash$ matchType $(T, P a t)=\left(\Gamma, T^{\prime}\right)$, by T-MatchTuP there exist some T_{i}, Γ_{i}, and T_{i}^{\prime} such that $\overline{T n} \vdash \operatorname{matchType}\left(T_{i}, P a t_{i}\right)=\left(\Gamma_{i}, T_{i}^{\prime}\right)$. Therefore by induction there exists some (<abstract> class $\left.\overline{T n_{0}} C n . ..\right) \in B T(B n)$.
- Case CPClassPat. Then Pat has the form Bn. $C n\{\bar{V}=\overline{P a t}\}$. Since $\overline{T n} \vdash \operatorname{matchType}(T, P a t)=$ (Γ, T^{\prime}), by T-MatchClass we have $T=\left(\bar{T} C^{\prime}\right)$ and repType $(\bar{T} C)=\left\{\bar{V}: \overline{T_{1}}\right\}$. Then by Rep there exists some (<abstract> class $\overline{T n_{0}} C n \ldots$) $\in B T(B n)$.

The following lemma says that the modular ambiguity checks for a function case are enough to ensure global unambiguity of the function case.

Lemma 5.20 If (extend fun $\left._{M_{n}} \overline{T n} F P a t=E\right) \in B T(B n)$, then $\operatorname{dom}(B T) \vdash$ extend $f_{u_{M n}} \overline{T n} F P a t=E$ unambiguous in $B n$.
Proof Suppose not. Then we have (extend fun $\left._{M n} \overline{T n} F P a t=E\right) \in \overline{O o d}$, but it is not the case that $\operatorname{dom}(B T) \vdash$ extend fun $_{M n} \overline{T n} F P a t=E$ unambiguous in $B n$. Then by BlAMB we have that there exists some $B n^{\prime} \in \operatorname{dom}(B T)$, some (extend fun $\left.{ }_{M n^{\prime}} \overline{T n_{1}} F P a t^{\prime}=E^{\prime}\right) \in B T\left(B n^{\prime}\right)$, and some $P a t_{0}$ such that $P a t \cap P a t^{\prime}=P a t_{0} \wedge B n . M n \neq B n^{\prime} \cdot M n^{\prime} \wedge \neg \exists B n^{\prime \prime} \in \operatorname{dom}(B T) . \exists\left(\right.$ extend fun $\left._{M n^{\prime \prime}} \overline{T n_{2}} F P a t^{\prime \prime}=E^{\prime \prime}\right) \in$ $B T\left(B n^{\prime \prime}\right) .\left(P a t_{0} \leq P a t^{\prime \prime} \wedge P a t^{\prime \prime} \leq P a t \wedge P a t^{\prime \prime} \leq P a t^{\prime} \wedge\left(P a t \not 又 P a t^{\prime \prime} \vee P a t^{\prime} \not \leq P a t^{\prime \prime}\right)\right)$.

Let $B T(B n)$ be (block $B n=\mathrm{blk}$ extends $\overline{B n} \overline{O o d}$ end). Since (extend fun $\overline{M n} \overline{T n} F a t=E) \in B T(B n)$, by BlockOK we have $\overline{B n} \vdash$ (extend $\mathrm{fun}_{M n} \overline{T n} F P a t=E$) OK in $B n$, so by CaseOK we have $B n ; \overline{B n} \vdash$ extend $\operatorname{fun}_{M n} \overline{T n} F P a t=E$ unambiguous. Let $B T\left(B n^{\prime}\right)=\left(\right.$ block $B n^{\prime}=\mathrm{blk}$ extends $\overline{B n^{\prime}} \overline{O o d^{\prime}}$ end $)$. Since (block $B n^{\prime}=$ blk extends $\overline{B n^{\prime}} \overline{O o d^{\prime}}$ end) $=B T\left(B n^{\prime}\right)$ and (extend fun Mn $^{\prime} \overline{T n_{1}} F P a t^{\prime}=E^{\prime}$) $\in B T\left(B n^{\prime}\right)$, by BlockOK we have $\overline{B n^{\prime}} \vdash$ (extend $\mathrm{fun}_{M n^{\prime}} \overline{T n_{1}} F P a t^{\prime}=E^{\prime}$) OK in $B n$, so by CaseOK we have $B n^{\prime} ; \overline{B n^{\prime}} \vdash$ extend fun mn $^{\prime} \overline{T n_{1}} F P a t^{\prime}=E^{\prime}$ unambiguous.

We divide the proof into several cases.

- Case $B n^{\prime} \in \overline{B n}$. Since $B n ; \overline{B n} \vdash$ extend $f_{u^{M n}} \overline{T n} F$ Pat $=E$ unambiguous, by Amb we have $\overline{B n} \vdash$ extend fun $_{M n} \overline{T n} F P a t=E$ unambiguous in $B n$. Since $B n^{\prime} \in \overline{B n}$ and we saw above that (extend $\left.\mathrm{fun}_{M n^{\prime}} \overline{T n_{1}} F P a t^{\prime}=E^{\prime}\right) \in B T\left(B n^{\prime}\right)$ and $P a t \cap P a t^{\prime}=P a t_{0}$ and $B n . M n \neq B n^{\prime} . M n^{\prime}$, by BlAmb we have $\exists B n^{\prime \prime} \in \overline{B n} . \exists\left(\right.$ extend fun $\left._{M n^{\prime \prime}} \overline{T n_{2}} F P a t^{\prime \prime}=E^{\prime \prime}\right) \in B T\left(B n^{\prime \prime}\right) .\left(P a t_{0} \leq P a t^{\prime \prime} \wedge P a t^{\prime \prime} \leq P a t \wedge\right.$ $\left.P a t^{\prime \prime} \leq P a t^{\prime} \wedge\left(P a t \not \leq P a t^{\prime \prime} \vee P a t^{\prime} \not \leq P a t^{\prime \prime}\right)\right)$. Since (block $=\mathrm{blk} B n$ extends $\left.\overline{B n} \overline{O o d} \mathrm{end}\right)=B T(B n)$, each block name in $\overline{B n}$ appears in the program, so by sanity condition 2 we have $\overline{B n} \subseteq \operatorname{dom}(B T)$. Therefore we have $\exists B n^{\prime \prime} \in \operatorname{dom}(B T) \cdot \exists\left(\right.$ extend fun $\left._{M n^{\prime \prime}} \overline{T n_{2}} F P a t^{\prime \prime}=E^{\prime \prime}\right) \in B T\left(B n^{\prime \prime}\right) \cdot\left(P a t_{0} \leq P a t^{\prime \prime} \wedge\right.$ $\left.P a t^{\prime \prime} \leq P a t \wedge P a t^{\prime \prime} \leq P a t^{\prime} \wedge\left(P a t \not \leq P a t^{\prime \prime} \vee P a t^{\prime} \not \leq P a t^{\prime \prime}\right)\right)$, and we have a contradiction.
- Case $B n \in \overline{B n^{\prime}}$. Since $B n^{\prime} ; \overline{B n^{\prime}} \vdash$ extend fun $_{M n^{\prime}} \overline{T n_{1}} F P a t^{\prime}=E^{\prime}$ unambiguous, by Amb we have $\overline{B n^{\prime}} \vdash$ extend fun Mn $^{\prime} \overline{T n_{1}} F P a t^{\prime}=E^{\prime}$ unambiguous in $B n^{\prime}$. By assumption $B n \in \overline{B n^{\prime}}$, and we're given that (extend $\left.\mathrm{fun}_{M n} \overline{T n} F P a t=E\right) \in B T(B n)$. We're also given Pat \cap Pat ${ }^{\prime}=P a t_{0}$, so by PatIntRev also $P a t^{\prime} \cap P a t=P a t_{0}$. Finally, we're given Bn. $M n \neq B n^{\prime} . M n^{\prime}$. Therefore by BlAmb we have $\exists B n^{\prime \prime} \in \overline{B n^{\prime}} \cdot \exists\left(\right.$ extend fun $\left._{M n^{\prime \prime}} \overline{T n_{2}} F P a t^{\prime \prime}=E^{\prime \prime}\right) \in B T\left(B n^{\prime \prime}\right) \cdot\left(P a t_{0} \leq P a t^{\prime \prime} \wedge P a t^{\prime \prime} \leq P a t^{\prime} \wedge P a t^{\prime \prime} \leq\right.$ $\left.P a t \wedge\left(P a t \not \leq P a t^{\prime \prime} \vee P a t^{\prime} \not \leq P a t^{\prime \prime}\right)\right)$. Since (block $=\mathrm{blk} B n^{\prime}$ extends $\overline{B n^{\prime}} \overline{O o d^{\prime}}$ end) $=B T\left(B n^{\prime}\right)$, each block name in $\overline{B n^{\prime}}$ appears in the program, so by sanity condition 2 we have $\overline{B n^{\prime}} \subseteq \operatorname{dom}(B T)$. Therefore we have $\exists B n^{\prime \prime} \in \operatorname{dom}(B T) . \exists\left(\right.$ extend fun $\left._{M n^{\prime \prime}} \overline{T n_{2}} F P a t^{\prime \prime}=E^{\prime \prime}\right) \in B T\left(B n^{\prime \prime}\right) .\left(P a t_{0} \leq P a t^{\prime \prime} \wedge P a t^{\prime \prime} \leq\right.$ $\left.P a t \wedge P a t^{\prime \prime} \leq P a t^{\prime} \wedge\left(P a t \not \leq P a t^{\prime \prime} \vee P a t^{\prime} \not \leq P a t^{\prime \prime}\right)\right)$, and we have a contradiction.
- Case $B n^{\prime} \notin \overline{B n}$ and $B n \notin \overline{B n^{\prime}}$. Since $B n ; \overline{B n} \vdash$ extend fun $_{M n} \overline{T n} F P a t=E$ unambiguous, by Amb we have $F=B n_{1} . F n$ and (fun $\left.\overline{T n_{3}} F n: M t \rightarrow T\right) \in B T\left(B n_{1}\right)$ and $\mathrm{CP}(M t, P a t)=B n_{2} . C n$ and
$B n=B n_{1} \vee B n=B n_{2}$. Since $B n^{\prime} ; \overline{B n^{\prime}} \vdash$ extend $f u n_{M n^{\prime}} \overline{T n_{1}} F P a t^{\prime}=E^{\prime}$ unambiguous, by AmB we have $\mathrm{CP}\left(M t, P a t^{\prime}\right)=B n_{3} . C n^{\prime}$ and $B n^{\prime}=B n_{1} \vee B n^{\prime}=B n_{3}$. We have three sub-cases.
- Case $B n^{\prime}=B n_{1}$. Since $\overline{B n} \vdash$ (extend $\left.f u n_{M n} \overline{T n} F P a t=E\right)$ OK in $B n$, by CaseOK we have $\overline{B n} \vdash F$ extended, so by FunExt we have $B n_{1} \in \overline{B n}$. Therefore we've shown $B n^{\prime} \in \overline{B n}$, so we have a contradiction.
- Case $B n=B n_{1}$. Since $\overline{B n^{\prime}} \vdash$ (extend fun $\operatorname{mn}^{\prime} \overline{T n_{1}} F P a t^{\prime}=E^{\prime}$) OK in $B n^{\prime}$, by CASEOK we have $\overline{B n^{\prime}} \vdash F$ extended, so by FunExt we have $B n_{1} \in \overline{B n^{\prime}}$. Therefore we've shown $B n \in \overline{B n^{\prime}}$, so we have a contradiction.
- Case $B n^{\prime} \neq B n_{1}$ and $B n \neq B n_{1}$. Since $B n=B n_{1} \vee B n=B n_{2}$, we have $B n=B n_{2}$. Since $B n^{\prime}=B n_{1} \vee B n^{\prime}=B n_{3}$, we have $B n^{\prime}=B n_{3}$. Since $\operatorname{CP}(M t, P a t)=B n_{2} . C n$ and $\operatorname{CP}\left(M t, P a t^{\prime}\right)$ $=B n_{3} . C n^{\prime}$ and Pat $\cap P a t^{\prime}=P a t_{0}$, by Lemma 5.16 we have that either $B n_{2} . C n \leq B n_{3} . C n^{\prime}$ or $B n_{3} . C n^{\prime} \leq B n_{2} . C n$. Equivalently, either $B n . C n \leq B n^{\prime} . C n^{\prime}$ or $B n^{\prime} . C n^{\prime} \leq B n . C n$. There are two subcases.
* Case $B n . C n \leq B n^{\prime} . C n^{\prime}$. Since $\overline{B n} \vdash$ (extend fun $\left._{M n} \overline{T n} F P a t=E\right)$ OK in $B n$, by CaseOK we have $\overline{T n_{0}} \vdash \operatorname{match}\left(T_{0}, P a t\right)=\left(\Gamma_{0}, T_{0}^{\prime}\right)$, for some $\overline{T n_{0}}, T_{0}, P a t, \Gamma_{0}$, and T_{0}^{\prime}. Since $\operatorname{CP}(M t, P a t)$ $=B n . C n$, by Lemma 5.19 there exists some (<abstract> class $\left.\overline{T n_{4}} C n \ldots\right) \in B T(B n)$. Therefore by BlockOK we have $\overline{B n} \vdash\left(\right.$ (abstract> class $\overline{T n_{4}} C n \ldots$...) OK in $B n$, so by ClassOK we have $\overline{B n} \vdash B n$. Cn transExtended. Since $B n$. $C n \leq B n^{\prime}$. $C n^{\prime}$, by Lemma 5.8 we have $B n^{\prime} \in \overline{B n}$, which is a contradiction.
* Case $B n^{\prime} . C n^{\prime} \leq B n . C n$. Since $\overline{B n^{\prime}} \vdash$ (extend $\mathrm{fun}_{M n^{\prime}} \overline{T n_{1}} F P a t^{\prime}=E^{\prime}$) OK in $B n^{\prime}$, by CaseOK we have $\overline{T n_{0}} \vdash \operatorname{match}\left(T_{0}, P a t^{\prime}\right)=\left(\Gamma_{0}, T_{0}^{\prime}\right)$, for some $\overline{T n_{0}}, T_{0}, P a t, \Gamma_{0}$, and T_{0}^{\prime}. Since $\mathrm{CP}\left(M t, P a t^{\prime}\right)=B n^{\prime} . C n^{\prime}$, by Lemma 5.19 there exists some (<abstract>class $\overline{T n_{4}} C n^{\prime} \ldots$) $\in B T\left(B n^{\prime}\right)$. Therefore by BlockOK we have $\overline{B n^{\prime}} \vdash\left(\right.$ <abstract> class $\overline{T n_{4}} C n^{\prime} \ldots$) OK in $B n^{\prime}$, so by ClassOK we have $\overline{B n^{\prime}} \vdash B n^{\prime}$. $C n^{\prime}$ transExtended. Since $B n^{\prime} . C n^{\prime} \leq B n$. $C n$, by Lemma 5.8 we have $B n \in \overline{B n^{\prime}}$, which is a contradiction.

Lemma 5.21 If $\vdash v: T$ and $B n \in \operatorname{dom}(B T)$ and (extend fun $\left.{ }_{M n} \overline{T n} F P a t=E\right) \in B T(B n)$ and match $(v, P a t)$ $=e$, then there exists some $B n^{\prime} \in \operatorname{dom}(B T)$, some (extend fun $\left.{ }_{M n^{\prime}} \overline{T n_{1}} F P a t^{\prime}=E^{\prime}\right) \in B T\left(B n^{\prime}\right)$, and some e^{\prime} such that match $\left(v, P a t^{\prime}\right)=e$ and $\forall B n^{\prime \prime} \in \operatorname{dom}(B T) . \forall\left(\right.$ extend fun mn $\left.^{\prime \prime} \overline{T n_{2}} F P a t^{\prime \prime}=E^{\prime \prime}\right) \in B T\left(B n^{\prime \prime}\right)$. $\forall e^{\prime \prime} .\left(\left(\operatorname{match}\left(v, P a t^{\prime \prime}\right)=e^{\prime} \wedge B n^{\prime} . M n^{\prime} \neq B n^{\prime \prime} . M n^{\prime \prime}\right) \Rightarrow P a t^{\prime}<P a t^{\prime \prime}\right)$.
Proof By (strong) induction on the number of function cases of the form (extend fun Mn $_{0} \overline{T n_{0}} F P a t_{0}=E_{0}$) such that (extend fun $\left.\operatorname{mn}_{n_{0}} \overline{T n_{0}} F P a t_{0}=E_{0}\right) \in B T\left(B n_{0}\right)$ for some block $B n_{0} \in \operatorname{dom}(B T)$, and match $\left(v, P a t_{0}\right)$ $=e_{0}$ for some e_{0}, and Pat $\nless P a t_{0}$.

- Case there are zero function cases of the form (extend fun $\operatorname{mn}_{0} \overline{T n_{0}} F P a t_{0}=E_{0}$) such that (extend $\left.\operatorname{fun}_{M n_{0}} \overline{T n_{0}} F P a t_{0}=E_{0}\right) \in B T\left(B n_{0}\right)$ for some block $B n_{0} \in \operatorname{dom}(B T)$, and match $\left(v, P a t_{0}\right)=e_{0}$ for some e_{0}, and Pat $\nless P a t_{0}$.
We're given that $B n \in \operatorname{dom}(B T)$ and (extend $\left.\mathrm{fun}_{M n} \overline{T n} F P a t=E\right) \in B T(B n)$ and match $(v, P a t)$ $=e$. Further, since it cannot both be the case that Pat $\leq P a t$ and Pat $\not \leq P a t$, we have Pat $\nless P a t$. Therefore, we have found a function case that contradicts the initial assumption of this case.
- Case there is exactly one function case of the form (extend fun Mno $\overline{T_{n}} F P a t_{0}=E_{0}$) such that (extend $\left.\mathrm{fun}_{M n_{0}} \overline{T n_{0}} F P a t_{0}=E_{0}\right) \in B T\left(B n_{0}\right)$ for some block $B n_{0} \in \operatorname{dom}(B T)$, and match $\left(v, P a t_{0}\right)=$ e_{0} for some e_{0}, and Pat $\nless P a t_{0}$.
As we saw in the previous case, (extend $\left.\mathrm{fun}_{M n} \overline{T n} F P a t=E\right) \in B T(B n)$ and $\operatorname{match}(v, P a t)=$ e and Pat $\nless P a t$, so $B n . M n$ is the single case satisfying all the conditions. Therefore it follows
that $\forall B n^{\prime \prime} \in \operatorname{dom}(B T) . \forall\left(\right.$ extend fun $\left._{M n^{\prime \prime}} \overline{T n_{2}} F P a t^{\prime \prime}=E^{\prime \prime}\right) \in B T\left(B n^{\prime \prime}\right) \cdot \forall e^{\prime \prime} .\left(\left(\operatorname{match}\left(v, P a t^{\prime \prime}\right)=e^{\prime} \wedge\right.\right.$ $\left.\left.B n . M n \neq B n^{\prime \prime} . M n^{\prime \prime}\right) \Rightarrow P a t<P a t^{\prime \prime}\right)$. Then the result follows.
- There are $k>1$ function cases of the form (extend fun Mn $_{0} \overline{T n_{0}} F P a t_{0}=E_{0}$) such that (extend $\left.\operatorname{fun}_{M n_{0}} \overline{T n_{0}} F P a t_{0}=E_{0}\right) \in B T\left(B n_{0}\right)$ for some block $B n_{0} \in \operatorname{dom}(B T)$, and match $\left(v, P a t_{0}\right)=e_{0}$ for some e_{0}, and $P a t \nless P a t_{0}$. Let (extend fun mn $_{1} \overline{T n_{3}} F P a t_{1}=E_{1}$) be one such function case, so (extend $\operatorname{fun}_{M n_{1}} \overline{T n_{3}} F$ Pat $\left._{1}=E_{1}\right) \in B T\left(B n_{1}\right)$ for some block $B n_{1} \in \operatorname{dom}(B T)$, and match $\left(v, P a t_{1}\right)=e_{1}$ for some e_{1}, and Pat $\nless P a t_{1}$. Since $k>1$, at least one of the function cases satisfying the conditions is not $B n . M n$, so assume WLOG that $B n \cdot M n \neq B n_{1} \cdot M n_{1}$.
Since (extend $\left.\operatorname{fun}_{M n} \overline{T n} F P a t=E\right) \in B T(B n)$ and (extend fun $\left.{ }_{M n_{1}} \overline{T_{n}} F P a t_{1}=E_{1}\right) \in B T\left(B n_{1}\right)$ and $B n \in \operatorname{dom}(B T)$ and $B n_{1} \in \operatorname{dom}(B T)$, by CASEOK we have matchType $\left(T_{0}, P a t\right)=\Gamma_{0}, T_{0}^{\prime}$ and matchType $\left(T_{1}, P a t_{1}\right)=\Gamma_{1}, T_{1}^{\prime}$. We're given that $\vdash v: T$. Finally, we saw above that match $(v, P a t)$ $=e$ and $\operatorname{match}\left(v, P a t_{1}\right)=e_{1}$. Therefore by Lemma 5.17 there exists some Patint such that Pat \cap $P a t_{1}=P a t_{i n t}$. We're given that (extend $\left.\mathrm{fun}_{M n} \overline{T n} F P a t=E\right) \in B T(B n)$, so by Lemma 5.20 we have $\operatorname{dom}(B T) \vdash$ extend $\mathrm{fun}_{M n} \overline{T n} F P a t=E$ unambiguous in $B n$. Therefore by BLAMB there exists some $B n_{2} \in \operatorname{dom}(B T)$ and some (extend fun $\left._{M n_{2}} \overline{T n_{4}} F P a t_{2}=E_{2}\right) \in B T\left(B n_{2}\right)$ such that Pat int $\leq P a t_{2}$ and $P a t_{2} \leq P a t$ and $P a t_{2} \leq P a t_{1}$ and $\left(P a t \not \leq P a t_{2}\right.$ or $\left.P a t_{1} \not 又 P a t_{2}\right)$. Since match $(v, P a t)$ $=e$ and $\operatorname{match}\left(v, P a t_{1}\right)=e_{1}$ and $P a t \cap P a t_{1}=P a t_{i n t}$, by Lemma 5.18 there exists some $e_{i n t}$ such that $\operatorname{match}\left(v, P_{\text {at }}^{i n t}\right)=e_{i n t}$. Then since Patint $\leq P a t_{2}$, by Lemma 5.7 there exists e_{2} such that $\operatorname{match}\left(v\right.$, Pat $\left._{2}\right)=e_{2}$.
So we have shown there exists some $B n_{2} \in \operatorname{dom}(B T)$ and some (extend fun Mn $_{2} \overline{T n_{4}} F P a t_{2}=E_{2}$) $\in B T\left(B n_{2}\right)$ and some e_{2} such that match $\left(v, P a t_{2}\right)=e_{2}$. Suppose there are l function cases of the form (extend fun $\operatorname{Mn}_{n_{0}} \overline{T n_{0}} F P a t_{0}=E_{0}$) such that (extend fun Mn $_{0} \overline{T n_{0}} F P a t_{0}=E_{0}$) $\in B T\left(B n_{0}\right)$ for some block $B n_{0} \in \operatorname{dom}(B T)$, and $\operatorname{match}\left(v, P a t_{0}\right)=e_{0}$ for some e_{0}, and $P a t_{2} \nless P a t_{0}$. If $l<k$, then this case is proven by induction.
Consider some block $B n_{0} \in \operatorname{dom}(B T)$, some (extend fun $\left.M_{M n_{0}} \overline{T n_{0}} F P a t_{0}=E_{0}\right) \in B T\left(B n_{0}\right)$, and some e_{0} such that match $\left(v, P a t_{0}\right)=e_{0}$ and $P a t_{2} \nless P a t_{0}$. I claim that also Pat $\nless P a t_{0}$. Since Pat $\nless P a t_{0}$, we have that ($P a t_{2} \not \leq P a t_{0}$ or $P a t_{0} \leq P a t_{2}$), so we consider these cases in turn.
- Case $P a t_{2} \not \leq P a t_{0}$. Then I claim that Pat $\not \leq P a t_{0}$, so also Pat $\nless P a t_{0}$. Suppose not, so Pat $\leq P a t_{0}$. Since $P a t_{2} \leq P a t$, by Lemma 5.15 we have $P a t_{2} \leq P a t_{0}$, contradicting the assumption of this case.
- Case Pat \leq Pat $_{2}$. We showed above that Pat $t_{2} \leq$ Pat, so by Lemma 5.15 Pat $\leq P a t$, so Pat $\nless P a t_{0}$.

Therefore we have shown that every function case of the appropriate form with respect to $B n_{2} \cdot M n_{2}$ is also of the appropriate form with respect to $B n . M n$, so $l \leq k$.
To finish the proof, we show that there exists a function case of the appropriate form w.r.t. Bn.Mn that is not of the appropriate form w.r.t. $B n_{2} \cdot M n_{2}$. In particular, we showed in the first case above that $B n . M n$ is of the appropriate form w.r.t. itself, since Pat $\nless P a t$. To show that Bn. $M n$ is not of the appropriate form w.r.t $B n_{2} . M n_{2}$, we must show that $P a t_{2}<P a t$. We showed above that $P a t_{2} \leq P a t$, so we simply need to prove that Pat $\not \leq P a t_{2}$. We showed above that either Pat $\not \leq P a t_{2}$ or $P a t_{1} \not \leq P a t_{2}$, so we consider each case.

- Case Pat $\not \leq P a t_{2}$. Then Pat $\not \leq P a t_{2}$.
- Case Pat $\not \subset P a t_{2}$ and $P a t \leq P a t_{2}$. We're given above that $P a t \nless P a t_{1}$, so either $P a t \not \leq P a t_{1}$ or $P a t_{1} \leq P a t$. We saw above that $P a t_{2} \leq P a t_{1}$, so since we assume $P a t \leq P a t_{2}$, by Lemma 5.15 we have $P a t \leq P a t_{1}$. Therefore $P a t_{1} \leq P a t$. Again since we assume $P a t \leq P a t_{2}$, by Lemma 5.15 we have $P a t_{1} \leq$ Pat $_{2}$, contradicting the assumption of this case.

Lemma 5.22 If $\vdash(\bar{T} F): T_{2} \rightarrow T$ and $\vdash v: T_{2}^{\prime}$ and $T_{2}^{\prime} \leq T_{2}$ then there exist e_{0} and E_{0} such that most-specific-case-for $((\bar{T} F), v)=\left(e_{0}, E_{0}\right)$.
Proof By Lemma 5.14, there exists some $B n \in \operatorname{dom}(B T)$, some (extend fun $\left._{M n} \overline{T n} F P a t=E\right) \in B T(B n)$, and some environment e such that $\operatorname{match}(v, P a t)=e$. Then by Lemma 5.21 there exists some $B n^{\prime} \in$ $\operatorname{dom}(B T)$, some (extend fun $\left.\operatorname{Mn}^{\prime} \overline{T n_{1}} F P a t^{\prime}=E^{\prime}\right) \in B T\left(B n^{\prime}\right)$, and some e^{\prime} such that match $\left(v, P a t^{\prime}\right)=e$ and $\forall B n^{\prime \prime} \in \operatorname{dom}(B T) \cdot \forall\left(\right.$ extend fun $\left._{M n^{\prime \prime}} \overline{T n_{2}} F P a t^{\prime \prime}=E^{\prime \prime}\right) \in B T\left(B n^{\prime \prime}\right) \cdot \forall e^{\prime \prime} .\left(\left(\operatorname{match}\left(v, P a t^{\prime \prime}\right)=e^{\prime} \wedge B n^{\prime} \cdot M n^{\prime} \neq\right.\right.$ $\left.\left.B n^{\prime \prime} . M n^{\prime \prime}\right) \Rightarrow P a t^{\prime} \leq P a t^{\prime \prime} \wedge P a t^{\prime \prime} \not \leq P a t^{\prime}\right)$. Since $\vdash(\bar{T} F): T_{2} \rightarrow T$, by T-Fun we have $F=B n_{0} . F n_{0}$ and (fun $\overline{T n_{0}} F n_{0}: M t_{0} \rightarrow T_{0}$) and $\left|\overline{T n_{0}}\right|=|\bar{T}|$. Since (extend fun $\left.M n^{\prime} \overline{T n_{1}} F P a t^{\prime}=E^{\prime}\right) \in B T\left(B n^{\prime}\right)$, by CASEOK we have $\left|\overline{T n_{1}}\right|=\left|\overline{T n_{0}}\right|$. Therefore we have $\left|\overline{T n_{1}}\right|=|\bar{T}|$, so by Lookup there exists some e_{0} and E_{0} such that most-specific-case-for $((\bar{T} F), v)=\left(e_{0}, E_{0}\right)$.

5.4 Progress

Theorem 5.1 (Progress): If $\vdash E: T$ and E is not a value, then there exists an E^{\prime} such that $E \longrightarrow E^{\prime}$. Proof By (strong) induction on the depth of the derivation of $\vdash E: T$. Case analysis of the last rule used in the derivation.

- Case T-Id. Then $E=I$ and $(I, T) \in\}$, so we have a contradiction. Therefore this rule could not be the last rule used in the derivation.
- Case T-New. Then $E=C t(\bar{E})$ and $C t=(\bar{T} B n . C n)$ and $\bullet \vdash C t(\bar{E})$ OK and concrete $(B n . C n)$. Then by T-SUPER also $\bullet \vdash(\bar{T} B n . C n)$ OK and and (<abstract> class $\left.\overline{T n_{0}} C n\left(\overline{I_{0}}: \overline{T_{0}}\right) \ldots\right) \in B T(B n)$ and $\left|\overline{I_{0}}\right|=|\bar{E}|$. Therefore by Lemma $5.9 \operatorname{rep}\left(\operatorname{Ct}(\bar{E})\right.$ is well-defined and has the form $\left\{\overline{V_{1}}=\overline{E_{1}}\right\}$. Then by E-NEw we have $E \longrightarrow C t\left\{\overline{V_{1}}=\overline{E_{1}}\right\}$.
- Case T-Rep. Then $E=C t\left\{V_{1}=E_{1}, \ldots, V_{k}=E_{k}\right\}$ and for all $1 \leq i \leq k$ we have $\vdash E_{i}: T_{i}$ for some T_{i}. We have two subcases:
- For all $1 \leq i \leq k, E_{i}$ is a value. Then E is a value, contradicting our assumption.
- There exists $1 \leq j \leq k$ such that E_{j} is not a value. By induction, there exists an E_{j}^{\prime} such that $E_{j} \longrightarrow E_{j}^{\prime}$. Therefore by E-REP we have $C t\left\{V_{1}=E_{1}, \ldots, V_{k}=E_{k}\right\} \longrightarrow C t\left\{V_{1}=\right.$ $\left.E_{1}, \ldots, V_{j-1}=E_{j-1}, V_{j}=E_{j}^{\prime}, V_{j+1}=E_{j+1}, \ldots, V_{k}=E_{k}\right\}$.
- Case T-Fun. Then $E=\bar{T} B n . F n$. Then E is a value, contradicting our assumption.
- Case T-Tup. Then $E=\left(E_{1}, \ldots, E_{k}\right)$ and $T=T_{1} * \cdots * T_{k}$ and for all $1 \leq i \leq k$ we have $\vdash E_{i}: T_{i}$. We have two subcases:
- For all $1 \leq i \leq k, E_{i}$ is a value. Then E is a value, contradicting our assumption.
- There exists $1 \leq j \leq k$ such that E_{j} is not a value. By induction, there exists an E_{j}^{\prime} such that $E_{j} \longrightarrow E_{j}^{\prime}$. Therefore by E-TUP we have $\left(E_{1}, \ldots, E_{k}\right) \longrightarrow\left(E_{1}, \ldots, E_{j-1}, E_{j}^{\prime}, E_{j+1}, \ldots, E_{k}\right)$.
- Case T-App. Then $E=E_{1} E_{2}$ and $\vdash E_{1}: T_{2} \rightarrow T$ and $\vdash E_{2}: T_{2}^{\prime}$ and $T_{2}^{\prime} \leq T_{2}$. We have three subcases:
- E_{1} is not a value. Then by induction, there exists an E_{1}^{\prime} such that $E_{1} \longrightarrow E_{1}^{\prime}$. Therefore by E-APP 1 we have $E_{1} E_{2} \longrightarrow E_{1}^{\prime} E_{2}$.
$-E_{2}$ is not a value. Then by induction, there exists an E_{2}^{\prime} such that $E_{2} \longrightarrow E_{2}^{\prime}$. Therefore by E-ApP2 we have $E_{1} E_{2} \longrightarrow E_{1} E_{2}^{\prime}$.
- Both E_{1} and E_{2} are values. Since $\vdash E_{1}: T_{2} \rightarrow T$ and E_{1} is a value, the last rule in the derivation of $\vdash E_{1}: T_{2} \rightarrow T$ must be T-Fun, so E_{1} has the form $F v$. Therefore by Lemma 5.22 we have that there exist e_{0} and E_{0} such that most-specific-case-for $\left(F v, E_{2}\right)=\left(e_{0}, E_{0}\right)$. Let $e_{0}=\{(\bar{I}, \bar{v})\}$. Then by E-AppRED we have $F v E_{2} \longrightarrow[\bar{I} \mapsto \bar{v}] E_{0}$.

