Modular Typechecking for Hierarchically Extensible Datatypes and
Functions

Todd Millstein Craig Chambers

Department of Computer Science and Engineering
University of Washington
{todd, chambers}@cs.washington.edu

Technical Report UW-CSE-01-07-02
July 2001, revised March 2002

Abstract

This technical report provides the formal details of MINI-EML, a core language for EML. EML is an
ML-like language containing hierarchically, extensible datatypes and functions while retaining modular
typechecking. Section 1 presents the syntax of MINI-EML. Section 2 presents its dynamic semantics and
section 3 presents its static semantics. Section 4 gives the subject reduction proof, and section 5 gives
the progress proof.

T = Tn|C|Th—-Ty | Ti*---xTy
Mt == #Ct|Tys---xTi % Mt Ty %---% Ty B = block Bn = blk extends Bn Ood end
E == [I|Fv|E E|CHE)|(E)|Ct{V =E} Ood := <abstract> class Tn Cn(I:T)
Pat == _|Ias Pat|C {V = Pat} | (Pat) <<extends CH(E) >> of {Vn:T, = Ey}
Ct == TC Fv:=TF | fun Tn Fn:Mt—T
C = Bn.Cn V = Bn.Vn | extend fun,, Tn F Pat=FE
F == DBnFn

(a) (b)

Figure 1: (a) MINI-EML types, expressions, and patterns; (b) MINI-EML blocks. Metavariable T'n ranges
over type variable names, I over identifier names, Cn over class names, Vn over instance variable names,
Fn over function names, and Mn over case names. D denotes a comma-separated list of elements (and is
independent of any variable named D). Angle brackets (<>) and double angle brackets (<<>>) denote
independent optional pieces of syntax. The notation V' = E abbreviates V; = Ei,..., Vi = Ej where V is
Vi,...,Vi and E is Ey,...,V}, for some k > 0, and similarly for V = Pat, Vn:Ty = Ey, and I : T.

1 Syntax

1.1 Types, Expressions, and Patterns

Figure la defines the syntax of types, expressions, and patterns in MINI-EML. MINI-EML types include
type variables, class types, function types, and tuple types. The domain Mt represents marked types, which
contain a # mark on a single component class type. Marked types are used to implement our modular type
system discussed in section 3.

Expressions include identifiers, function values, function application, constructor calls, tuples, and in-
stance expressions. The instance expression Ct {V = E} is not available at the source level, as instances
may only be created via a constructor call. Patterns include the wildcard pattern, identifier binding, class
patterns, and tuple patterns. We assume that all identifiers bound in a given pattern are distinct.

The subset of expressions that are MINI-EML values is described by the following grammar:

vu= Ct{V =v}| Fv| ()

Values include class instances, function values, and tuple values.

1.2 Declarations, Blocks and Programs

The syntax of MINI-EML blocks and declarations is shown in figure 1(b). A block consists of a sequence
of class, extensible function, and function case declarations. The class (function, case) names introduced
in a given block are assumed to be distinct. The type variables parameterizing a given OO declaration are
assumed to be distinct. The instance variable names introduced in a given class declaration are assumed to
be distinct.

A MINI-EML program is a pair of a block table and an expression. A block table is a finite function from
block names to blocks. The semantics assumes a fixed block table denoted BT. The domain of a block table
BT'is denoted dom(BT). The block table is assumed to satisfy some sanity conditions: (1) BT(Bn) = block
Bn = blk ... for every Bn € dom(BT); (2) for every block name Bn appearing anywhere in the program,
we have Bn € dom(BT).

2 Dynamic Semantics

2.1 Preliminaries

MinNI-EML’s dynamic semantics is defined as a mostly standard small-step operational semantics. The block
table BT is accessed when information about a given OO declaration is required in the evaluation of an
expression. In addition, several side judgments are necessary to express the function-case lookup semantics.

The metavariable e ranges over environments, which are finite functions from identifiers to values. We use
|D| to denote the length of the sequence D. The notation [I; — FEj,..., I — Ei]D denotes the expression
resulting from the simultaneous substitution of E; for each occurrence of I; in D, for 1 < ¢ < k, and similarly
for [Tny — Ty,..., Tny — Ty]D. We use [I — 9]D as a shorthand for [I; — v1,...,I; — v;]D, where
I=1,...,Iy and ¥ = vy,..., v, and similarly for [Tn +— T]D. In a given inference rule, fragments enclosed
in <> must either be all present or all absent, and similarly for <<>>. We sometimes treat sequences
as if they were sets. For example, Ood € Ood means that Ood is one of the declarations in Ood. We use
Ood € BT(Bn) as shorthand for BT(Bn) = block Bn = blk extends Bn Ood end and Ood € Ood.

2.2 Expressions

E— FE
Ct=(T O) concrete(C) rep(Ct(Ey)) = {V = E;}
— —— E-New
Ct(Eo) — Ct {V = El}
E— FE
E-REP

Ci(o=FoV=Eh=B} — Gi{lh=FoV=E =5}

E—FE
— — — —— E-Tup
(EﬂaE;El) - (E07EI7E1)
E1 — E{ E2 — Eé
; E-Arpl - E-App2
E1 E2—>E1 E2 E1 E2—>E1 E2

most-specific-case-for(Fv,v) = ({(1,v)}, E)
— E-APPRED
Fvv— [[»7|E

Rule E-APPRED: The notation (I,7) abbreviates (I1,vy), ..., (Ix, v¢).

2.3 Function Application

These auxiliary judgments are used to specify the function-case lookup semantics. Some of these judgments
are used by the static semantics as well.

‘most—speciﬁc—case—for (Fo,v) = (e, E) ‘

(extend fun,, Tn F' Pat= E) € BT(Bn) match(v, Pat) = e
VBn' € dom(BT).V(extend fun,, Tn' F Pat ...) € BT(Bn').Ve'.
(match(v, Pat') = €' A Bn.Mn # Bn'.Mn' = Pat < Pat' A\ Pat' £ Pat)

— —— Lookupr
most-specific-case-for ((T' F),v) = (e, [ITn — T|E)

‘ match(v, Pat) = e ‘

——— E-MATCHWILD
match(v,) = {}

match(v, Pat) = e

E-MATCHBIND
match(v, I as Pat) = eU{(I,v)}

c<c match(7, Pat) =€

— — — —— E-MATcHCLASS
match(T O {V =7,V =7},0" {V = Pat}) = | Je

Rule E-MATCHCLASS: The notation match (v, Pat) = € abbreviates match(vy, Pat;) = e; - - - match(vg, Paty) =
€k -

match(v, Pat)

match((0), (Pat)) = | Je

e
E-MATcHTUP

Pat < Pat

SPECWILD
Pat < _
Pat1 S Pat2 Pat1 S Patg
SPECBIND1 SPECBIND2
I as Pat; < Pat, Pat; < I as Pat,

c<c Pat; < Paty

— — —— ——=—————— SPECCLASS
C{V:Patl,Vg,:Patg}gC {V:Patz}

Rule SpECCLASS: The notation Pat < Pat' abbreviates Pat; < Pat; --- Patj, < Pat),.

P(I,tl S P(I,tz

——— SpecTvup
(Patl) S (Patz)

SUBREF
c<c

C: <0y Cy <Cs

SUBTRANS
C1 <03

(<abstract> class (Tn Cn)(Iy : Ty) extends (T C) ...) € BT(Bn)
Bn.Cn<C

SuBEXT

2.4 Auxiliary Judgments

concrete(C)

(class Tn Cn ...) € BT(Bn)

CONCRETE
concrete(Bn.Cn)

rep(CH(Eo)) = {V = E}

(<<abstract>> class Tn Cn(I : Ty) <extends Ct(Ey) >of {Vn: Ty, = E»}) € BT(Bn)
< rep(Ct(Ey)) = {V = Er} >
rep((T Bn.Cn)(E)) =[[— E|[Tn— T){<V = E1,> Bn.Vn= E»}

Rule REP: The notation Bn.Vn = E abbreviates Bn.Vny = Ey, ..., Bn.Vny, = Ej,.

REP

3 Static Semantics

3.1 Preliminaries
I' is a type environment, mapping identifiers to types. The metavariable T'm ranges over both types and
marked types. The notation Mt denotes the type 71" equivalent to Mt, but with the # mark removed.
3.2 Blocks
B OK

BntF Ood OK in Bn

— BLockOK
block Bn = blk extends Bn Ood end OK

Rule BLocKOK: The notation Bn Ood OK in Bnabbreviates Bn + Ood; OK in Bn--- BnF Oodj, OK in Bn.

3.3 0O Declarations

Bnt Ood OK in Bn

< Ct=Tn Bn.Cn > I; Tnt+ CHE) OK >
TntTOK TnbTy, OK T'={(I,T)} I;jTn+E:T1 Ti<Tp
Bn F Bn.Cn transExtended concrete(Bn.Cn) = Bn I funs-have-ldefault-for Bn.Cn
Bn <<abstract>> class Tn Cn(I : T) <extends C(E) > of {Vn:Ty = Ey} OK in Bn

<
1,

CrassOK

Rule CLASSOK: The notation Tn T OK abbreviates Tn - Ty OK --- Tn F T}, OK. The notation (I,T)
abbreviates (Il_,Tl)L. -, (I, Ty). The notation I'; Tn - E : T abbreviates I'; Tn+ Ey : Ty ---T'; Tnk Ey, : Ty,.
The notation T} < Ty abbreviates T1; < To1 --- 11k < Tog.

Tnk MtOK TnkT OK CP(Bn.Fn)=Bn'.Cn Bn= Bn'V Bnt Bn.Fn has-gdefault
Bnt fun Tn Fn: Mt — T OK in Bn

FuNnOK

(fun Tn' Fn: Mt— T) € BT(Bn')
matchType([Tn' — Tn|Mt, Pat) = (0, Ty) T;Tnk E:T' T <[TW — Tn|T
Bn b Bn'.Fn extended Bn; Bn\- extend fun,, Tn Bn'.Fn Pat = E unambiguous
BnF extend fun,, In Bn'.Fn Pat=E OK in Bn

CAseOK

3.4 Types

Tne Tn

Tnk Tn OK

(<abstract> class Tng Cn ...) € BT(Bn) TntkT OK | Tno| = |T|

— CrLassTYPEOK
Tnt T Bn.Cn OK
Tntk T, OK Tnt T, OK
—— FunTyreOK
TntF T1 - T2 OK
TnF T) OK TnF T, OK
— TupTyrPEOK
Tnt Ty *---%T) OK
3.5 Subtyping
T<T'
SUBTREF
T<T
T, <T: T, <T:
L=-2 =3 SUBTTRANS
T, <Ts
(<abstract> class Tn Cn(I; : Ty) extends Ct...) € BT(Bn)
SUBTEXT

T Bn.Cn < [Tnw— T)Ct

T{<Ty T,<Ty

SuBTFuUN

T, <1} e T, < Ty

7 - SuBTTup
Tys---xTyp <T| %--- % T,

3.6 Patterns

matchType(T, Pat) = (I',T")

T-MATCHWILD
matchType(T,.) = ({},T)

matchType(T, Pat) = ([, T")

T-M B
matchType(T, I as Pat) = (T U{([,T")},T") ATCHBIND

c<c repType(T C) = {V : Ty} matchType(Ty, Pat) = (T, T})
Q))

— — — T-MATCHCLASS
matchType((T C'),C {V = Pat}) = ((JT,(T
(T,

Rule T-MATCHCLASS: The notation matchType(Ty, Pat) =
(F17T1,) T ma’tChType(Tka Pa’tk) = (F’mTI.I,)

Ty) abbreviates matchType(T}, Pat;) =

matchType(Ty, Paty) = (['1,T}) -+ matchType(T}, Paty) = (T, T})
matchType(Ty * - - - x Ty, (Paty, .. ., Paty)) = (T U UL, T % x T7)

T-MATrcHTUP

3.7 Expressions

[Tn-E:T

(I,T)eT
[;Tnk-I1:T

(fun Tng Fn: Mt — T) € BT(Bn) Tn+ T, OK

— ————— T-FuN
[;Tnt Ty Bn.Fn: [Tng — Tol(Mt — T)

;TnkFE Ty »T F;Tnl—Eg:Té T'<T

— T-Aprp
IsTnt-Ey Ey: T

I; Tn+ CHE) OK Ct=(T C) concrete(C)

— — T-NEw
I;Tnt CHE): Ct

[;Tnk By Ty L;Tnk Ey - T

— T-Tup
D;Tntk (Ey,...,Ey) :Tyx---x Ty,

Tnt Ct OK
Ct= (1T, C) concrete(C) repType(Ct) = {V : T} I;Tnt-E:Ty
[;Tntk Ct{V=E}:Ct

x|
In
|

T-REP

3.8 Comnstructor Calls

T; Tnt+ CHE) OK

Tnt Ct OK Ct = (Ty Bn.Cn)
(<abstract> class Tng Cn(I:T) ...) € BT(Bn) I;Tnt-E:Ty Ty < [Tng — To|T

— — T-SUPER
I; Tnk CHE) OK

3.9 Class Representation Types

repType(Ct) = {V : T}

(<<abstract>> class Tn Cn(I : Ty) <extends_Ct(@) > of {Vn:Ty = E»}) € BT(Bn)
< repType(Ct) = {V : T3} >
repType(T Bn.Cn) = [Tn— TI{<V :T3,> Bn.Vn: T»}

Rule REPTYPE: The notation Bn.Vn : T abbreviates Bn.Vn; : T1,...,Bn.Vny : T.

REPTYPE

3.10 Completeness Checking
3.10.1 Checking for Local and Global Default Cases

Bn F funs-have-ldefault-for C

VF,C".[(Bnt F extended A CP(F) = C' AC < C') = Bnt F has-default-for C]

— LDEFAULT
Bn + funs-have-ldefault-for C'

‘B_n F F has-gdefault ‘

CP(F)=C BnF F has-default-for C

— GDEFAULT
Bn \- F has-gdefault

\E + I has-default-for C

(fun Tn Fn: Mt — T) € BT(Bn) defaultPat(Mt, C') = Pat
(extend fun,, Tng Bn.Fn Pat = E) € BT(Bn') Pat < Pat Bn' € Bn

Bn b Bn.Fn has-default-for C

DEFAULT

3.10.2 Generating the Default Pattern

defaultPat(Mt,C) = Pat |

defaultPat(Mt, C,d) = Pat

DEFPAT
defaultPat(Mt,C) = Pat

Rule DEFPAT: The metavariable d ranges over nonnegative integers. It represents the “depth” of the
resulting default pattern. For example, a default pattern of depth 0 is simply the wildcard, while a default
pattern of depth 1 for a class type has the form C_. The higher the depth, the more precise the check

for local/global defaults is. This type system does not compute the best depth to use, instead choosing it
non-deterministically. It is straightforward to find the appropriately precise depth — it is the maximum
depth of any pattern in an available case of the function being checked.

defaultPat(Tm, C,d) = Pat‘

The metavariable T'm ranges over both types and marked types.

DErZ
defaultPat(Tm,C,0) = _ BRABRO

d>0
defaultPat(Tn,C,d) = -

DEFTYPEVAR

repType(T C') ={V : Ty} defaultPat(Tp,C,d — 1) = Pat d >0
defaultPat((T C"),C,d) = (C' {V = Pat})

DErCLASSTYPE

Rule DEFCLASSTYPE: The notation defaultPat(7y, C,d — 1) = Pat abbreviates defaultPat(7},C,d — 1) =
Paty - - - defaultPat(Ty, C, d — 1) = Paty.

repType(T C) = {V : Ty} defaultPat(Tp, C,d — 1) = Pat d>0
defaultPat(#(T C'),C,d) = (C {V = Pat})

DErCPCLASSTYPE

defaultPat(Tm,,C,d — 1) = Pat; S defaultPat(T'my, C,d — 1) = Paiy, d>0
defaultPat(Tmy * ... % Tmy, C,d) = (Paty, ..., Paty)

DErTUPTYPE

d>0
defaultPat(T) — T»,C,d) = -

DEFFUNTYPE

3.11 Ambiguity Checking
3.11.1 The Top-Level Rule

‘ Bn; Bn - extend fun ... unambiguous

Bn F extend fun,, Tn Bn'.Fn Pat = E unambiguous in Bn
(fun Tn' Fn: Mt — T) € BT(Bn') CP(Mt, Pat) = Bn".Cn. Bn= Bn'V Bn= Bn"
Bn; Bn - extend fun,, Tn Bn'.Fn Pat = E unambiguous

MB

3.11.2 Ambiguity With Available Cases

‘B_n F extend fun ... unambiguous in Bn

VBn' € Bn.N¥(extend fun,, Tn, F Pat = E') € BT(Bn').
VPaty.[(Pat N Pat' = Paty A Bn.Mn # Bn'.Mn') =
3Bn" € Bn.3(extend fun,, Tny F Pat’ = E") € BT(Bn").
(Paty < Pat" A Pat" < Pat A Pat" < Pat' A (Pat £ Pat" vV Pat' £ Pat"))]

Bnt extend fun,, Tn F Pat=E unambiguous in Bn

BLAMB

Rule BLAMB: This rule ensures that a function case is not ambiguous with any other function cases declared
in Bn: for each such case that has a non-empty intersection with the current case’s pattern, there must exist
a resolving case. The resolving case must cover the intersection, be at least as specific as the other two cases,
and be strictly more specific than one of them.

3.11.3 Pattern Intersection

Paty N Paty, = Pat

——— PATINTWILD
_N Pat = Pat

Pat; N Paty = Pat

PATINTBIND
I as Pat; N Paty, = Pat

CSC’ PatlﬁPatzzm
C {V:Patl,vgzPatg}ﬂC’ {VZP(I,tz}ZC {VZP_M,WZPatg}
Rule PATINTCLASS: The notation Pat; N Paty = Pat abbreviates Pat; N Pat] = Pat, - -- Pat},N Pat] = Paty,.

PATINTCLASS

Pat1 n Pat2 = P—at
——— PATINTTUP
(Paty) N (Paty) = (Pat)

Pat, N Paty = Pat
Paty N Paty = Pat

PATINTREV

3.12 Block Extension

‘ Bn + Bn.Cn transExtended

(<<abstract>> class (Tn Cn)(I : T)<extends (Tp C)(E) > ...) € BT(Bn)
Bn € Bn < BnF C transExtended >

Bn + Bn.Cn transExtended

CLASSTRANSEXT

\E F F extended

Bn € Bn

— FuNEXT
Bn + Bn.Fn extended

10

3.13 Accessing the CP
3.13.1 The CP of a Function’s Argument Type

CP(F)=C
(fun Tn Fn: Mt — T) € BT(Bn) CP(Mt)=C
CPFuN
CP(Bn.Fn) =C
CP(Mt)=C
—————— CPCLass
CPr#T C)=C
CP(Mt)=C
CPTup
CP(Ty*---+Ti g« MtxTiqpq %x---%Ty)=C
3.13.2 The CP of a Pattern
| CP(Mt, Pat) = C |
CP(Mt, Pat) = C
CPBINDPAT
CP(Mt,I as Pat) =C
CP(Mt, Pat;) = C
CPTupPaT

CP(Ty *---xT; % Mt«Tiyq %% T, (Paty,..., Paty)) = C

CPCLASSPAT

CP(#Ct,C {V = Pat}) =C
3.13.3 The CP of a Value
CP(Mt,v) =C
These rules are used only in the proof of progress.

CP(Mt,UZ') =C
CP(Ty % -+ xTj 1 % Mt*Typq 55T, (v1,...,0)) =C

CPTupVAL

CPINSTANCE

CP(#Ct(T C){V=17})=C

11

4 Subject Reduction

4.1 Shared Preliminaries and Lemmas

These preliminaries and lemmas are also used in the progress proof in section 5.

As in the inference rules, we assume a global block table BT. We further assume that for each Bn €
dom(BT) we have BT(Bn) OK. The empty sequence is denoted e. The notation - E : T is shorthand for
{};eH-E:T.

Lemma 4.1 If Tn+ T OK, then all type variables in T are in 1.

Proof By (strong) induction on the depth of the derivation of Tn T OK. Case analysis on the last rule
used in the derivation. For TVAROK, T has the form Tn and the premise ensures that Tn € Tn. All other
cases are easily proven by induction.

Lemma 4.2 If Tn+ T OK and |Tn| = |T| and Tn' + T OK, then Tn' - [Tn — T|T OK.

Proof By (strong) induction on the depth of the derivation of Tn T OK. Case analysis on the last rule
used in the derivation. For TVAROK, T has the form T and the premise ensures that Tn € Tn. Therefore
[Tn — T]T is some Tp in T. By assumption Tn' - Ty OK so the result follows. All other cases are easily
proven by induction.

Lemma 4.3 If (T C) < T, then T has the form (7} C'). _
Proof By (strong) induction on the depth of the derivation of (T' C')) < T'. Case analysis of the last rule
used in the derivation.

e Case SUBTREF. Then T = (T C).

e Case SUBTTRANS. Then (T C) < T" and T' < T. By induction T" has the form (T, C""). Then by
induction again, T has the form (77 C').

e Case SUBTEXT. Then T has the form [Tn — T|Ct, which is also of the form (T} C").

Lemma 4.4 If (T C) < (T} C"), then T = Tj.
Proof By (strong) induction on the depth of the derivation of (I' C') < (T} C'). Case analysis of the last
rule used in the derivation.

e Case SUBTREF. Then (T C) = (Ty C"),so T =T1.
e Case SUBTTRANS. Then (T C) < T and T S(_Tl C"). By Lemma 4.3, T has the form (T C"). Then

by induction we have T=T,and T, = T1,s0T = T;.
e Case SUBTEXT. Then C' = Bn.Cn and (Ty C") = [Tn — T|(T; C') and (<abstract> class Tn
Cn(ly : T1,..., Iy : Ty,) extends (T C') ...) € BT(Bn). By CLASSOK, we have T, = Tn. Therefore

(T, C") = [Tn— T)(Tn C") = (T C"). Therefore T = Tj.

Lemma 4.5 If (T C) < (T} C') then C < C". _ .
Proof By (strong) induction on the depth of the derivation of (T" C') < (T} C'). Case analysis of the last
rule used in the derivation.

e Case SUBTREF. Then (T C) = (T C'), so C = C'. Then the result holds by SubRef.

e Case SUBTTRANS. Then (T'C) < T and T < (T} C"). By Lemma 4.3 T has the form (7> C""). Then
by induction we have that C' < C" and C" < C'. Therefore the result follows by SubTrans.

12

e Case SUBTEXxT. Then C = Bn.Cn and (<abstract> class Tn Cn(ly : Ty) extends (T» C') ...)
€ BT(Bn). Then the result follows by SubExt.

Lemma 4.6 If T < T x---% T}, then T has the form 77 x- -+ T}, where for all 1 < i < k we have T} < T;.
Proof By (strong) induction on the depth of the derivation of 7' < Ty * --- x Ty,. Case analysis of the last
rule used in the derivation.

e Case SUBTREF. Then T' =17 * - -- x T},. By SubTRef, for all 1 < ¢ < k we have T; < T}, so the result
follows.

e Case SUBTTRANS. Then T' < T" and T" < Ty # - - - % T},. By induction T” has the form T} - -- x T}/,
where for all 1 <¢ < k we have T}' < T;. Then by induction again, T" has the form T7 - - - T}, where
for all 1 < i <k we have T} < T/'. Then by SubTTrans, for all 1 < i <k we have T} < T;.

e Case SUBTTuUP. Then T has the form T} - - - * T}, where for all 1 <4 < k we have T} <Tj.

Lemma 4.7 If Bn.Cn < Bn'.Cn’ and Ty + (T Bn.Cn) OK then (1) (T Bn.Cn) < (T Bn'.Cn'); and (2)
Tny - (T Bn'.Cn') OK.

Proof By (strong) induction on the depth of the derivation of Bn.Cn < Bn'.Cn/. Case analysis of the last
rule used in the derivation.

e Case SUBREF. Then Bn'.Cn' = Bn.Cn. Then condition 1 follows from SubTRef, and condition 2
follows by assumption.

e Case SUBTRANS. Then Bn.Cn < Bn'.Cn' and Bn".Cn'" < Bn'.Cn/. By induction we have (T Bn.Cn) <
(T Bn".Cn") and Tng - (T Bn'.Cn"") OK. Then by induction again we have (T' Bn".Cn'") < (T Bn'.Cn')
and Tng F (T Bn'.Cn') OK. Therefore condition 2 is shown, and condition 1 follows from SubTTrans.

e Case SUBEXT. Then (<abstract> class Tn Cn(Ip : Ty) extends (1" Bn'.Cn')(E) ...) € BT(Bn).
Then by CLASSOK we have T’ = Tn. Since Tng = (T Bn.Cn) OK, by CLASSTYPEOK we have |Tn| =
IT| and Tny - T OK. Therefore by SUBTEXT we have (T Bn.Cn) < [Tn — T|(Tn Bn'.Cn'). Since
[Tn — T)(Tn Bn'.Cn') = (T Bn'.Cn'), condition 1is shown. Also by CLASSOK Tn & (Tn Bn'.Cn')(E) OK,
so by T-SUPER we have have Tn + (Tn Bn'.Cn') OK. Therefore by Lemma 4.2 we have Tny F
(T Br'.Cn') OK, so condition 2 is shown.

Lemma 4.8 If Tnt+ Ct OK then repType(Ct) is well-defined and has the form {Vj : Ty}

Proof Let Ct = (T Bn.Cn). We prove this lemma by induction on the length of the longest path in
the superclass graph from Bn.Cn (in other words, the number of non-trivial superclasses of Bn.Cn). By
CLassTYPEOK we have Tn - T OK and (<abstract> class Tnyg Cn(I; : T) <<extends Ct(E) >> of
{Vn:Ty = Ey}) € BT(Bn) and |Tng| = |T|. There are two cases to consider.

o The length of the longest path in the superclass graph from Bn.Cn is 0. Then Bn.Cn has no non-trivial
superclasses, so the extends clause in the declaration of Bn.Cn is absent. Then by REPTYPE we have
repType(Ct) = [Tng — T|{Bn.Vn:T>}, so the result follows.

e The length of the longest path in the superclass graph from Bn.Cn is ¢ > 0. Then Bn.Cn has at
least one non-trivial superclass, so the extends clause in the declaration of Bn.Cn is present. Then by
CLassOK we have Tny - Ct(E) OK, so by T-SUPER we have Tng - Ct OK. Since Ct must have
the form (T, Bn'.Cn'), where the length of the longest path in the superclass graph from Bn'.Cn' is
i — 1, by induction we have that repType(Ct) has the form {Vj : Tp}. Then by REPTYPE we have

repType(Ct) = [Tng — T){Vy : Ty, Bn.Vn : Tr}, so the result follows.

13

Lemma 4.9 If Tnt Ct OK and Ct < Ct, then TnF Cf OK.
Proof By (strong) induction on the depth of the derivation of Ct < Ct'. Case analysis of the last rule used
in the derivation.

e Case SUBTREF. Then Ct= Ct, so the result follows by assumption.

o Case SUBTTRANS. Then Ct < T and T' < Cf. By Lemma 4.3 T has the form Ct’. Therefore by
induction we have Tn F Ct' OK, and by induction again we have Tn - Ct OK.

e Case SUBTExT. Then Ct = (T Bn.Cn) and Cf = [Tng — T|Ct' and (<abstract> class Tngy
Cn(Iy : Ty) extends Ct'(E) ...) € BT(Bn). By CLASSOK we have Tng - Ct'(E) OK, so by T-SUPER
we have Tng - Ct’ OK. Since Tn - Ct OK, by CLASSTYPEOK we have Tn T OK. Therefore by
Lemma 4.2 we have Tnt+ [Tng — T]Ct" OK.

Lemma 4.10 If repType(Ct) = {V : T} and Tnt+ Ct OK, then Tn+ T OK.

Proof By induction on the depth of the derivation of repType(Ct) = T'. Then by RepType Ct = (Ty Bn.Cn)
and {V : T} = [Tng — To]{< V1 : T1,> Bn.Vn: T} and (<<abstract>> class Tng Cn(Iy : Ty) <extends
Ct(E) > of {Vn:T, = E»}) € BT(Bn) and < repType(Ct') = {Vi : T1}. By CLASSOK we have < Tng
Ct(E) OK >, so by T-SUPER we have < Tng - Ct OK >. Then by induction we have have < Tng - T; OK.
Also by CLASSOK we have Tng - T5 OK. Since Tn - Ct OK, by CLASSTYPEOK we have that Tn F Ty OK.
Therefore by Lemma 4.2 we have < Tn F [Tng — To|T1 OK > and Tn & [Tng — To|T> OK, so the result
follows.

Lemma 4.11 If repType(Ct) = {V : T} and |Tn| = |T|, then repType([Tn— T|Ct) = [Tn— T{V : T}.

Proof By induction on the depth of the derivation of repType(Ct) = {V : T}. Then by REPTYPE
Ct = (To Bn.Cn) and {V : T} = [Tng — Tol{< V1 : T1,> Bn.Vn : T} and (<<abstract>> class Tng
Cn(Iy : T,) <extends Ct'(E) > of {Vn: T, = E,}) € BT(Bn) and < repType(Ct') = {V1 : Ty} >. Therefore
by REPTYPE we have repType([Tn — T|(Ty Bn.Cn)) = [Tng — [Tn — T|To){< V1 : T\,> Bn.Vn : Tp}.
By CLassOK we have < Tng F Ct() OK >, so by T-SUPER we have < Tng F Cf OK >. Then
by Lemma 4.10 we have < Tng F T3 OK >, so by Lemma 4.1 all type variables 77 are in Tng. Also
by CLASSOK we have Tng - T OK, so by Lemma 4.1 all type variables in 7% are in Trng. Therefore

[Tng — [Tn— T|To]{V1 : Ty, Bn.Vn : TZ} is equivalent to [Tn +— T|[Tng — To]{Vi : T1, Bn.Vn : Ty}, so the
result follows.

Lemma 4.12 If ¢ - Ct OK and Ct < Cf then repType(Ct) = {V1 : T1,V; : To} and repType(Ct) =
{Vl . Tl}

Proof By induction on the depth of the derivation of Ct < Ct. Case analysis of the last rule used in the
derivation.

e Case SUBTREF. Then Ct = Cﬂ. Since o Ct OK, by Lemma 4.8 we have that repType(Ct) is
well-defined and has the form {V : T}. Therefore, repType(Ct') = {V : T} as well, so the result
follows.

e Case SUBTTRANS. Then Ct < T and T < Cf. By Lemma 4.3 T has the form Ct'. Then by
Lemma 4.9 we have e - Ct' OK and e - Ct OK. Therefore by induction we have repType(Ct)
={Vi : T1,V3 : T3,V : Ty} and repType(Ct’) = {V; : T1,V5 : T3}. By induction again we have
repType(Ct) = {V; : T1 }, so the result is shown.

e Case SUBTEXT. Then Ct= (T Bn.Cn) and Ct = [Tn+ T]Ct" and (<abstract> class Tn Cn(Iy :
Ty) extends Ct'(E) of {Vn: Ty = E»}) € BT(Bn). Since o - Ct OK, by Lemma 4.8 we have that
repType(Ct) is well defined and has the form {V3 : T3}. Then by REPTYPE we have {V3 : T3} =
[Tn — T}{Vy : T1,Bn.Vn : Ty} and repType(Ct’) = {V; : T1}. Then by Lemma 4.11 we have
repType(Ct') = [Tn +— T]{Vi : T }, so the result follows.

14

4.2 Simple Lemmas

Lemma 4.13 If ' < T} — T5, then T has the form 77 — T3, where T} < T and Ty < Tb.
Proof By (strong) induction on the depth of the derivation of T' < T} — T». Case analysis on the last rule
used in the derivation.

e Case SUBTREF. Therefore T' =17 — T», so T] = T and Ty = T». By SUBTREF we have T} < T}
and TZI < T2.

e Case SUBTTRANS. Therefore T < T and T < T} — T,. By induction T" has the form 7y — Ty,
where 77 < T{" and T3’ < T». Therefore, again by induction 7" has the form 7] — T, where T}" < T}
and T3 <T). By SUBTTRANS we have T} < T} and Ty < T5.

e Case SUBTFUN. Then T has the form 77 — T4, where Ty < T} and Ty < T.

Lemma 4.14 If rep(C(E)) = {Vi = E1} and repType(Ct) = {V; : To} then Vi = V5.

Proof By induction on the depth of the derivation of rep(CH(E)) = {Vi = E}. By REP we have Ct =
(T Bn.Cn) and (<<abstract>> class I'n Cn(ly : Ty) <extends Ct(Ey) > of {Vn:T, = E»}) € BT(Bn)
and <rep(Ct'(Ey)) = {Vs = E3} > and V,_is equivalent to < V3, > Bn.Vn. Since repType(Ct) = {V; : T»},
by REPTYPE we have <repType(C’t) = {V4 : Ty} >, so by induction < V3 =V >. Then by REpTYPE Vo
is equivalent to < V3, > Bn.Vn.

4.3 Type Substitution

Lemma 4.15 If T < T' and |Tn| = |T|, then [Tn— T|T < [Tn— T|T".
Proof By (strong) induction on the depth of the derivation of T' < T". Case analysis of the last rule used
in the derivation. The only interesting case is SUBTEXT.

e Case SUBTEXT. Then T has the form Ty Bn.Cn and 7" has the form [Tng — Tp]Ct and (<abstract>
class Tng Cn(I3 : T3) extends Ct(E) ...) € BT(Bn). Then by SUBTEXT we have ([Tn — T|Ty) Bn.Cn <
[Tng — [Tn — T]Tp]Ct. Note that ([Tn +— T]Ty) Bn.Cn is equivalent to [Tn — T]|(Ty Bn.Cn). Fur-
ther, by CLASSOK we have that Tng - C#E) OK, so by T-SUPER also Tng F Ct OK. Therefore,
by Lemma 4.1 all type variables in Ct are in Tny. Therefore we have that [Tng — [Tn — T|Tp|Ct is
equivalent to [Tn — T|[Tng — To] Ct. Therefore the result follows.

Lemma 4.16 If T; Tn - E : T and |Tn| = |T| and Tny + T OK, then [Tn — T|T; Tnyg + [Tn — T|E :
Proof By (strong) induction on the depth of the derivation of I'; Tn - E : T'. Case analysis of the last rule
used in the derivation.

e Case T-Ip. Then E = I and (1,T) € I'. Therefore, (I,[Tn — T|T) € [Tn — TII'. Also, I = [Tn
T|I. So by T-Ip we have [Tn+— T|L; Tng & [Tn— T|E : [Tn— T|T.

e Case T-NEw. Then F = CHE) and T = Ct and Tn + CHE) OK and Ct = (T} Bn.Cn) and
concrete(Bn.Cn). By T-SuPER we have Tn - Ct OK and (<abstract> class Tn; Cn(ly : Tp) -..)
€ BT(Bn) and I; Tnt E : T} and Ty < [Ty +— T1]Ty. By Lemma 4.2 we have Tng F [Tn — T]Ct OK.
Since Ct = (T} Bn.Cn) we have [Tn — T|Ct = [Tn — T](T1 Bn.Cn) = ([Tn — T]T Bn.Cn), which
is of the form (T, Bn.Cn). By induction we have [Tn — T|T; Tng + [Tn — T|E : [Tn — T]T’ By
Lemma 4.15 we have [Tn — T|T} < [Tn— T)[Tny — T1]Tp. By CLAsSOK we have Ty T OK, so
by Lemma 4.1 all type variables in each Ty are in Tn;. Therefore [Tn — T][Tm — T1]Ty is equivalent
to [Tny — [Tn — T|T1|Tp. Therefore by T-SUPER we have [Tn +— T|I; Tng + [Tn — T|E OK, and
the result follows by T-NEW.

15

e Case T-Rep. Then E = Ct{V = E} and T = Ct and Tn - Ct OK and Ct = (T1 Bn.Cn) and
concrete(Bn.Cn) repType(Ct) = {V : T} and I'; Tn - E : Tj and T < Ty. By Lemma 4.2 we have
Tny + [Tn — T]Ct OK. Since Ct = (T Bn.Cn) we have [Tn — T]Ct = [Tn — T|(T\ Bn.Cn) =
([T T]T1 Bn.Cn), which is of the form (T» Bn. .Cn). By Lemma 4.11 we have repType([Tn — T|Ct)

= [Tn — T}{V : Tp}. By induction we have [Tn — T|[; Tny + [Tn — T|E : [Tn — T|T,. By

Lemma 4.15 we have [Tn + T|T} < [Tn + T|Tp. Therefore by T-Rep the result follows.

e Case T-FUN. Then E =T, Bn.Fnand T = [Tn; Tl](Mt — T") and Tn + Ty OK and (fun Tny
Fn: Mt — T") € BT(Bn). By Lemma 4.2 we have Tng + [Tn — T]T1 OK. Therefore by T-FuN we
have [Tn — T|0; Tng + [Tn — T)(Ty Bn.Fn) : [Tn — T)|[Tn; — T1)(Mt — T'). By FUNOK we have
Tnt+ Mt OK and Tnt T OK. Therefore by Lemma 4.1 we have that all type variables in M¢ and 1"
are in Tn. Therefore, [Tn — T|[Tny — Ti)(Mt — T") is equivalent to [Tny — [Tn — T|Ty)(Mt — T"),
so the result follows.

e Case T-Tup. Then E = (Ei,...,Ey)and T =Ty *---T) and forall 1 <i < k we have I'; Tn + E; : T;.
Therefore by induction, for all 1 <14 < k we have [Tn — T|T'; Tny + [T — T|E; : [Tn — T|T;, and
the result follows by T-TUP.

e Case T-Arpr. Then E = E; E» and F_,Tn FE T, - T and L;Tn+ Ez_TZ’ and JLS T>. By
induction we have [Tn +— 10 Tng & [Tn— T1Ey : [Tn — T|(T2 — T) and [Tn — T]I; Tng = [Tn —
T|E; : [Tn — T|T3. By Lemma 4.15 we have [Tn — T|Ty < [Tn +— T1T3, so the result follows by
T-App.

Lemma 4.17 If matchType(T, Pat) = (I, T') and |Tn| = |T|, then matchType([Tn — T|T, Pat) = ([Tn —
T, [Tn— T)T").

Proof By (strong) induction on the depth of the derivation of matchType(T, Pat) = (', T"). Case analysis
of the last rule used in the derivation.

e Case T-MATCHWILD. Then Pat has the form - and I' = {} and 7" = T. Then [Tn — T|T = [Tn
T|T" and [Tn+— T|T = {}, so the result follows by T-MATCHWILD.

e Case T-MATCHBIND. Then Pathas the form I as Pat and I' = I"U{(Z,7")} and matchType(T, Pat') =
(I'",T"). By induction we have matchType([Tn — T|T,Pat') = ([Tn — T|I",[Tn — T|T"). There-
fore by T-MATCHBIND we have matchType([Tn — T|T,(I as Pat') = [Tn — TII" U {(I,[Tn —
TIT}, [Tn— T)T"). Since [Tn+— TI" U {(I,[Tn — T]T")} is equivalent to [Tn — T](I'" U {(I ™},
the result follows.

e Case T-MATcHTUP. Then T' = Ty *- - - T}, and Pat has the form (Paty, ..., Paty) and ' =T U...UT}
and T" = T % -+~ x T} and for all 1 < < k we have matchType(T;, Pat;) = (I';,T}). By induction,
for all 1 < i < k we have matchType([Tn — T|T;, Pat;) = ([Tn — T|T;, [Tn — T|T!). Therefore, the
result follows by T-MATCHTUP.

e Case T-MATcHCLASS. Then Pat has the form C' {V = Pat} and T = (T} C") and T" = (T} C) and
I'=Ul'and C < C" and repType(Ty C) = {V : T'} and matchType(T', Pat) = (I', T"). By Lemma 4.11
we have repType([Tn — T|(T1 C)) = [Tn — T|{V : T'}. By induction we have matchType([Tn —

T|T, Pat) = ([Tn— T|T,[Tn — T|T"). Therefore the result follows by T-MATCHCLASS.

4.4 Subject Reduction

Lemma 4.18 If - v : 7" and T < T and match(v, Pat) = e and matchType(T, Pat) = (I',T"), then (1)
T" <T' and (2) dom(I') = dom(e) and for each (lp,Ty) € I', there exists (Ip,v9) € e such that - vo : T§,

16

where T} < Tp.
Proof By (strong) induction on the length of the derivation of match(v, Pat) = e. Case analysis of the last
rule used in the derivation:

e Case E-MATCHWILD. Then Pat has the form _ and e = {}. By T-MATCHWILD we have I' = {}
and T'" = T. Therefore, condition 1 follows from the assumption that 7" < T', and condition 2 holds
vacuously.

e Case E-MATCHBIND. Then Pat has the form I as Pat’ and e = ¢’ U {(I,v)} and match(v, Pat') =
By T-MATCHBIND we have I' = IV U {(Z,T")} and matchType(T, Pat') = (I',T"). By induction we
have that 7" < 7" and dom(I") = dom(e’) and for each (Ip,Tp) € IV, there exists (Ip,vg) € €' such
that F v : Tjj, where T} < Tp. Therefore, we have T < T" and dom(I"U{(I,T")}) = dom(e' U{(I,v)})
and for each (Iy,Tp) € TV U {(I,T")}, there exists (Ip,vg) € €' U {(I,v)} such that vy : T, where
T < To.

e Case E-MATcHTUP. Then v = (vy,...,v;) and Pat has the form (Paty, ..., Pat;) ande =e; U---Ueg
and for all 1 < i < k we have match(v;, Pat;) = e;. By T-MATCHTUP we have T' =T} % --- % T}, and
= u...UTlyand T" =17 --- « T}, and for all 1 <i <k we have match(T;, Pat;) = (I';, T}).

Since we're given that - v : T", by T-TuPp we have that T" = T{'%- - -*T} and for all 1 <4 < k we have
Fv; : T}'. Since we'’re given that 7" < T', by Lemma 4.6 we have T}' < T; for all 1 <4 < k. Then by
induction, for all 1 < i <k we have T]' <T]. Then by SUBTTUP we have T} *-- -« T} <T{*...xT},
proving condition 1. Also by induction, dom(T';) = dom(e;) and for each (I, Tp) € T';, there exists
(Iy,v9) € e; such that vy : Tjj, where Ty < Tp, so condition 2 follows.

e Case E-MATcHCLASS. Then v = (T C) {Vi = o1, V> = T3}) and Pat has the form (C' {V; = Pat,)

and C < C' and e = |Jer and match(vy, Pat;) = &1. By T-MaATcuCLASS we have T = (77 C") and
T’ =_(T C") and T'JT; and C' < C" and repType(T’ C') = {V; : T1} and matchType(T}, Pat;) =
(Ty,T7).
Since F v : 7" and v = (T C) {Vi = 7,V> = ©3}), by T-REP we have that 7" = (T C) and
e - (T C) OK and and repType(T c)={" : T_l",v2 :TYY and F o7 : T)" and T{" < T}'. Since
T" < T, we have (T C) < (Ty C"), so by Lemma 4.4 we have T = T1 Since C < and o
(T ©) OK by Lemma 4.7 we have (T C) < (T C”), and since T = Ty, condition 1 is shown. By
Lemma 4.12 we have Tl” = T,. Therefore + o7 : T7" and T”’ < Ty and match(7r, Pat;) = @7 and
matchType(T1, Paty) = (T'1,T}), so by induction we have that T/" < T! and dom(|JT;) = dom(|Jer)
and for each (Iy,Ty) € UT'1, there exists (Iy,vo) € [J&1 such that F vg : T, where Ty < Tp.

Lemma 4.19 (Substitution) If T', Tng = E : T and T = {(Iy, Ty)} and T'y; Tng + Ey : Tgl and Té < Ty, then
To;Tng - [Ip — Eo]E:T' and T' < T.

Proof By (strong) induction on the depth of the derivation of I', Tng - E : T. Case analysis of the last rule
used in the derivation.

e Case T-Ip. Then £ = I and (I,T) € I', so I = I; and T = T}, for some 1 < j < k, where
Iy =n,...,Iy and Ty =T1,...,T and Ey = Ei,...,E}. Therefore [Iy — Ey|E = E;. Since we're
given that I'o; Tng F Ej : T]f and T]f < Tj, the result is shown.

e Case T-NEW. Then E = CHE) and T = Ct and Tny + CHE) OK and Ct = (T1 Bn.Cn) and
concrete(Bn.Cn). Then by T-SUPER we have Tng - Ct OK and (<abstract> class Tny Cn(I : T)
..) € BT(Bn) and I'; Tng + E : T" and T" < [Tmy — T4|T. Since [Iy — Ep|Ct = Ct and [Ij
Ep|Bn.Cn = Bn.Cn, we have Tng - [I — Eo]Ct OK and concrete([Iy — Eg]Bn.Cn). By induction we
have Ty; Tng F [Ip — Eo]E : T" and T" < T'. Then by SUBTTRANS we have T" < [Tny — Ty|T".

17

Therefore by T-SuPER we have T'o; Tno F [Io — Ep)E OK, so by T-NEw we have [g; Tng + [Ip —
Ey|E : T. By SUBTREF we have T' < T, so the result is shown.

e Case T-Rep. Then E = Ct{V = E} and T = Ct and Tny + Ct OK and Ct = (T; Bn.Cn) and
concrete(Bn.Cn) and repType(Ct) = {V : T} and I'; Tng = E : T" and T" < T Since [Iy — Eo]Ct = Ct
and [Iy — Eg]Bn Cn = Bn.Cn, we have Tny - [Iy — Ep]Ct OK and concrete([Ig — Eg]Bn .Cn) and
and repType([ly — Ey|Ct) = {V T} By induction we have Ty; Tng - [Iy — Eo]E : T" and T < T'.
Then by SUBTTRANS we have 7" < T, so by T-Rep we have I'g; Tng - [I — Eo]E : T. By SUBTREF
we have T' < T, so the result is shown.

e Case T-FUN. Then since I' is not used at all in T-Fun and I'; Tng = E : T', also I'p; Tng = £ : T'.
Further, we have E = Fu, so [Iy — Ey|E = E. Therefore I'y; Tng - [Iy — Ep)E : T, and by SUBTREF
T < T, so the result is shown.

e Case T-Tup. Then E = (Ey,...,E;) and T =T} % - -+ # T}, and for all 1 < j < k we have T;Tny
E; : T;. Then by induction, for all 1 < j < k we have [y; Tng & [ly — Ey|Ej : TJ(and T]f < Tj. Then
by T-Tup we have I'g; Tng & [lp — Eo|(E1,...,Eg) : T{ % --- % T}. Finally, by SUBTTUP we have
T{ %« Ty <Tyx---x Ty,

e Case T-App. Then E = Ey By and I; Tng - Ey : Ty — T and T;Tng F Ey : T and Ty < To.
By induction we have T'g; Tng F [Iy — EO]E]_ Ty and Ty < Ty — T. Also by induction we have
To; Tng F [Iy — Eo]E> : Ty and Ty < T4. Then by SUBTTRANS we have T < Th. By Lemma 4.13
Tp has the form T4rg — Thres, where Ty < Torg and Tyes < 1. Therefore by SUBTTRANS we have
T3 < Turg. Therefore by T-FuN we have Lo; Tng = [Ip — FEol(E} E}) : Tyes. We saw above that
Tres < T, so the result is shown.

Lemma 4.20 If Lo; Ty = CH(E) OK and rep(CHE)) = {Vo = Ey} and repType(Ct) = {Vj : To}, then

Fo, T’no F E() and T < TO

Proof Since Fg, Tny Ct() OK, by T-SUPER we have Ty - Ct OK and Ct = (T Bn.Cn) and (<abstract>
class Tn Cn(I, : T1) ...) € BT(Bn) and T'y; Tng - E : T] and T] < [Tn — T|T}. Since Tng - Ct OK, by

CrLassTyPEOK we have Tng T OK and |T'| = |Tn|. We prove the lemma by induction on the depth of

the derivation of rep(CtE)) = {Vp = Eq}.

By REP we have (<<abstract>> class Tn Cn(I; : T1) <extends Ct(E;) > of {Vn : Ty = E})
€ BT(Bn) and <rep(Ct(E1)) = {Vs = Es3} > and {Vy = Ep} is equivalent to [} — E][Tn — TH{<
Vs = E3,> Bn.Vn = Ez} Since repType(Ct) = {Vo : Tv}, by REPTYPE and Lemma 4.14 we have that
<repType(Ct) = {V5: T} > and {V; : To} is equivalent to [Tn — T|{< V5 : T5,> Bn.Vn.: T»}.

Let T' = {(Il,Tl)} By CLAssOK we have < I'; Tn = Ct'(Ey) OK >. Therefore by induction we have
<I;Tnt E3: T) > and < T’ < T3 >. Also by CrassOK we have ['; Tn - E» : Ty and T’ < T,. Then
by Lemmas 4.16 and 4.15 we have < [Tn — T|T;Tng - [Tn +— T]E3 : [Tn — T]T’ > and < [Tn —
T|Ty < [Tn+— T|T3 > and [Tn — T|T; Tny F [Tn — T]EZ : [Tn — T|T} and [Tn — T]T’ [Tn — T|Ts.
Then by Lemma 4.19 we have < To; Tng = [I, — E|[Tn — T|Es : T > and < T§' < [Tn — T|T} > and
To; Tng b [l — B)[Tn s T|Es : Ty and 7§ < [Tn — T|T3. By SUBTRANS we have < 17 < [Tn i T|T; >

and Ty < [Tn+ T]Ts. Therefore we have shown To; Trng F Ep : T4 and T < Tp.

Theorem 4.1 (Subject Reduction) If - E : T and E — E' then - E' : T", for some T" such that 7" < T
Proof By (strong) induction on the depth of the derivation of E — E'. Case analysis of the last rule used
in the derivation.

e Case E-NEw. Then E has the form_Ct(E)_and E' has the form Ct {V; = Ey} and Ct = (T C)
and concrete(C) and rep(CHE)) = {Vo = Ep}. Since v E : T, by T-NEw we have T' = Ct and

18

e - Ct(E) OK. Then by T-SUPER we have o F Ct OK. Therefore by Lemmas 4.8 and 4.14 we have
repType(Ct) = {Vp : To}. So we have - CH(E) OK and rep(CHE)) = {Vo = Eo} and repType(Ct) =
{Vo : Tv}, so by Lemma 4.20 we have F Ej : T} and T < Tp. Then by T-REP we have - Ct {V =
Ep} : Ct, and by SUBTREF we have Ct < Ct.

Case E-REP. Then E has the form Ct {V; = Ey,Vy = Ey,Vi = E;} and E' has the form Ct
{(Vo = Ey,Vo = E), V1 = E_l} and Ey — Ej. Since - E : T, by T-REP we have T' = Ct and o F Ct OK
and repType(Ct) = {VO To,Vo : To, V1 : 11} and - Ej : T and T’ <Tpand + Ey : T} and T} < Tp and
F By : T} and T] < Ty. By induction we have - Ej : T}/, for some Ty such that T} < T§. Therefore by
SUBTTRANS we have that 73’ < Tp. Then by T-REP we have C’t {Vo = Eo,Vp = E(’),Vl =FE}: Ct,
and by SUBTREF we have Ct < Ct.

Case E-TUP. Then E has the form (E1, ..., E;) and E' has the form (E1,...,E;_1, E}, Eiy1,..., Ey)
and E; — E!, where 1 <4 < k. Since - E : T, by T-TuP we have that T has the form T} *---%T}, and
F E; : Tj for all 1 < j < k. Therefore by induction we have - Ej : T} for some T} such that I} < Tj.
Then by T-Tup we have - (E1,...,E;i_1,E},Eiy1,...,Ey) : Ty % Tj_1 T % Ty1q % - % T}. Finally,
by SUBTREF we have that T; < Tj for all 1 < j < k, so by SUBTTuUP we have T * - - % T;_1 % T}
Ti+1>l<--->ka §T1>I<>I<T]h

Case E-Appl. Then E has the form E; E, and E’ has the form E] E, and By — Ej. Since - E : T,
by (T-App) we have F Ey : Ty — T and + E» : Ty and T3 < T». Therefore by induction we have
F Ej{ : T', for some T' such that 7" < T» — T. By Lemma 4.13 7" has the form 73 — T, where
T, <Ty and T" < T. Therefore by SUBTTRANS we have Ty < T, so by T-APp we have - Ef Ey : T",
where T” <T.

Case E-APpP2. Then E has the form E; E» and E' has the form E; E) and E; — E}. Since - E : T,
by T-App we have - E; : To — T and + E> : Ty and T3 < T5. Therefore by induction we have
F E} : TY, for some Ty such that Ty < Tj. By SUBTTRANS we have T < T3, so by T-APP we have
FE, E}: T, and by SUBTREF we have T' < T'.

Case E-ApPRED. Then E = (T F) v and E' = [Iy — %p]Ey and most-specific-case-for((T F),v) =
({(o,70)}, Ey). Since b E : T', by T-APP we have - (T F): T, — T and + v : Ty and Ty < T,. Then
by T-FUN we have and F' = Bn.Fn and Ty — T = [Tn — T)(Mt — Ty) and (fun Tn Fn : Mt — Tp)
€ BT(Bn) and o - T OK. Therefore we have 7> = [Tn — T|Mt and T = [Tn — T|Ty. By Lookup
we have Ey = [Tng — T|Ej and (extend fun,, Tny F Pat = Ej) € _BT(Bn') and match(v, Pat)
= {(Ig,vg)} Then by CASEOK we have Tng F matchType([Tn — Tng]Mt, Pat) = (T,T") and
[;Tng - B}y : Ty and T} < [Tn — Tng|Typ.

By Lemma 4.16 we have [Tng — T|I;e & [Tng — T)Ej : [Tng — T|Tj. By Lemma 4.15 we have
[Tno — T|Ty < [Ty — T][Tn — Tng]Tg By FuNOK we have Tn T OK, so by Lemma 4.1 all type
variables in Ty are in Tn. Therefore [Tng — T|[Tn — Tno|Ty is equivalent to [Tn — T|Ty = T, so we
have [Tng — T|T) < T.

By Lemma 4.17 we have o - matchType([T—ng +— T|[Tn — Tne|Mt, Pat) = ([Tng — T|T, [Tng — T]T").
By FUNOK we have Tn F Mt OK, so by Lemma 4.1 all type variables in Mt are in Tn. Therefore
[Tng +— T|[Tn — Tne)Mt is equivalent to [Tn — T|Mt = Ty, so we have o - matchType(Ty, Pat) =
([Tng — T)T,[Tng — T)T").

By Lemma 4.18 we have T4 < [Tny — T|T" and dom([Tny — T|T') = dom({(Ip,Dp)}) and for each
(I;,T.) € [Tng — TJT, there exists (I, v,) € {(Io, D)} such that - v, : T/, where T, < T,. Then by
Lemma 4.19 we have - [Iy — Tp][Tng — T|E}) : Tsup and Tsyp < [Tno — T]T We saw above that

19

[Tng — T)Ty < T, so by SUBTTRANS we have Ty, < T. Therefore we have shown - E' : Ty, and
Tsub S T.

5 Progress

5.1 Preliminaries and Simple Lemmas

We say that S C S’, where S is either a set or a sequence and similarly for S’, if for every element d such
that d € S, also d € S'. The notation Pat < Pat is shorthand for Pat < Pat' and Pat £ pat.

Lemma 5.1 If T < (T C), then T has the form (77 C'). .
Proof By (strong) induction on the depth of the derivation of 7' < (T C). Case analysis of the last rule
used in the derivation.

e Case SUBTREF. Then T = (T C).

e Case SUBTTRANS. Then 7' < 7" and 17" < (T C). By induction 7" has the form (75 C"). Then by
induction again, T has the form (77 C").

e Case SUBTEXT. Then T has the form (7} Bn.Cn), which is also of the form (T; C").

Lemma 5.2 If) — 15 < T, then T has the form T| — Tj.
Proof By (strong) induction on the depth of the derivation of T} — T» < T. Case analysis of the last rule
used in the derivation.

e Case SUBTREF. Then T' =1, — T5.

e Case SUBTTRANS. Then T3 — T5 < T' and 7" < T'. By induction 7" has the form 77" — T3'. Then
by induction again, T" has the form 7| — T3.

e Case SUBTFUN. Then T has the form 77 — T}.

Lemma 5.3 If T} % -- -« Ty < T, then T has the form T7 % -+ T}, where for all 1 < i < k we have T; < T}.
Proof By (strong) induction on the depth of the derivation of T} * --- T}, < T. Case analysis of the last
rule used in the derivation.

e Case SUBTREF. Then T' =1Tj % --- % T},. By SUBTREF, for all 1 <i <k we have T; < Tj.

o Case SUBTTRANS. Then Ty #---x T < T’ and T' < T. By induction 7" has the form 77" % --- « T},
where for all 1 <¢ < k we have T; < T/'. Then by induction again, T" has the form T7 - - - T}, where
for all 1 <i < k we have T}" < T]. By SUBTTRANS, for all 1 <i < k we have T; < T7.

e Case SuBTTup. Then T has the form 77 - -- % T}, where for all 1 <4 < k we have T; < T}.

Lemma 5.4 If C; < (5 and C, < (3, then either Cy < C3 or C5 < Cs.
Proof By induction on the depth of the derivation of €y < C3. Case analysis of the last rule used in the
derivation.

e Case SUBREF. Then C = Cs. Since C; < (3, also Cy < (5.

e Case SUBTRANS. Then C; < Cy and Cy < C5. So we have C; < Cy and C; < (3, and by induction
either C4 S 03 or 03 S C4.

20

— Case Cy < (5. Then we have Cy < Cs and Cy < Cf3, so by induction either Cs < C3 or C3 < Cs.
— Case C3 < Cy. Then we have (3 < Cy and Cy < (5, so by SUBTRANS C3 < Cs.

e Case SUBEXT. Then C) = Bn;.Cn; and (<abstract> class Tn Cni(Iy : Tp) extends T Cs ...)
€ BT(Bn,). Case analysis of the last rule used in the derivation of C; < Cj.

— Case SUBREF. Then C; = C3. Since C) < Cs, also C5 < Cs.

— Case SUBTRANS. Then C; < C4 and Cy < C3. Assume WLOG that_the_derivation of_01 < Cy
ends with a use of SUBEXT. Then (<abstract> class Tn Cny(lp : Tp) extends T Cy ...)
€ BT(Bn), so Co = C4. Since Cy < (s, also Cy < Cf.

— Case SUBEXT. Then (<abstract> class Tn Cn(Iy : Tp) extends T C3 ...) € BT(Bny), so
02 = 03. Then by SubRef 02 S 03.

Lemma 5.5 If C; < (5, then there is a path in the declared inheritance graph from C; to Cs.
Proof By induction on the depth of the derivation of C; < (3. Case analysis of the last rule used in the
derivation.

e Case SUBREF. Then C; = (3, so there is a trivial path in the inheritance graph from C to Cl.

e Case SUBTRANS. Then C; < C3 and C3 < (5. By induction, there is a path in the inheritance graph
from C; to C3 and from C3 to Csy, so the concatenation of these paths is a path from C; to Cs.

e Case SUBEXT. Then C; = Bn;.Cn; and <abstract> class Tn; Cny(Iy : Tp) extends T Cs ...)
€ BT(Bn;). Therefore there is an edge from C; to Cs in the declared inheritance graph, so there is
also a path from C; to Cs.

Lemma 5.6 If C;, < (5 and Cs < (4, then Cy = Cs.
Proof By Lemma 5.5, there is a path in the declared inheritance graph from C; to Cs> and a path from C5
to Cy. By assumption, the declared inheritance graph is acyclic, so it must be the case that C; = Cs.

Lemma 5.7 If match(v, Pat) = e and Pat < Pat', then there exists ¢/ such that match(v, Pat’) = €'
Proof By induction on the depth of the derivation of Pat < Pat'. Case analysis of the last rule used in the
derivation:

e Case SPECWILD. Then Pat has the form _, so by E-MATCHWILD we have match(v,_) = {}.

e Case SPECBIND1.: Then Pat has the form (I as Pat;) and we have Pat; < Pat'. Since we're given
that match(v, I as Pat;) = e, by E-MATCHBIND we also have that match(v, Pat;) = e — {(I,v)}.
Therefore by induction there exists €’ such that match(v, Pat’) = €'.

e Case SPECBIND2.: Then Pat’ has the form (I as Paty) and we have Pat < Paty. Therefore by induction
we have that there exists e’ such that match(v, Paty) = €”. Then by E-MATCHBIND we have match(v,
I as Paty) = e" U{I,v}.

e Case SPECTUP. Then Pat has the form (Pat) and Pat' has the form (Pat’) and Pat < Pat’. Since
we’re given that match(v,(Pat)) = e, by E-MATCHTUP we have that v = (7) and match(v, Pat) = €.

Therefore by induction we have match (7, Pat') = e’. Then by E-MATCHTUP we have match((7), (Pat))

~ U@

21

e Case SPECCLASS. Then Pat has the form (Cy {V = Pat;, V3 = Pat3}) and Pat’ has the form (Cy {V =
Paty}) and C; < Cy and Pat; < pats. Since we're given that match(v,Cy {V = Pat;, V3 = Patz}) = e,
by E-MATCHCLASS we have that v = (T Cy) {V =9,V =13, V4 = v3}) and Cy < C; and match(w,
Paty) = e1. Since Cp < C; and €y < Cy, by SUBTRANS we have Cy < C». By induction we have
match(v, Paty) = €. Therefore by E-MATCHCLASS we have match((T Cy) {V =7, Vs = 73, V4 = 11}),
Cy {V = Patg}) = Ua

Lemma 5.8 If Bn C transExtended and C' < Bn'.Cn/, then Bn' € Bn.
Proof By induction on the depth of the derivation of C < Bn'.Cn'. Case analysis of the last rule in the
derivation.

e Case SUBREF. Then C' = Bn/.Cr. Since we’re given that Bn - C transExtended, by CLASSTRANSEXT
we have Bn' € Bn.

e Case SUBTRANS. Then C < Bn''.Cn’" and Bn'".Cn" < Bn'.Cn/. Assume WLOG that the derivation
of C < Bn".Cn" ends with a use of SUBEXT. Let C = Bn.Cn. Therefore by SUBEXT we have
(<abstract> class Tn Cn(ly : Ty) extends T» Bn''.Cn" ...) € BT(Bn). Since we’re given that
Bn F C transExtended, by CLASSTRANSEXT we have Bn - Bn".Cn' transExtended. In addition, we
showed above that Bn"".Cn"" < Bn'.Cn/, so by induction we have Bn' € Bn.

e Case SUBEXT. Then (<abstract> class In Cn(ly : Ty) extends T} Bn'.Cn’ ...) € BT(Bn). Since
we're given that Bn - C transExtended, by CLASSTRANSEXT we have Bn F Bn'.Cn' transExtended.
Therefore by CLASSTRANSEXT we have Bn' € Bn.

Lemma 5.9 If Tnt+ Ct OK and Ct = (T Bn.Cn) and (<abstract> class Tny Cn(ly : Ty) ...) € BT(Bn)
and |Ey| = |Iy| then rep(Ct(Ey)) is well-defined and has the form {V = E}.

Proof We prove this lemma by induction on the length of the longest path in the superclass graph from
Bn.Cn (in other words, the number of non-trivial superclasses of Bn.Cn). By CLAsSTYPEOK we have
Tnt T OK and (<<abstract>> class Ing Cn(I : Tp) <extends Ct(E') > of Vn:Ty = E»}) € BT(Bn)
and | Tng| = |T|. There are two cases to consider.

e The length of the longest path in the superclass graph from Bn.Cn is 0. Then Bn.Cn has no non-trivial
superclasses, so the extends clause in the declaration of Bn.Cn is absent. Then by REP we have that
rep(Ct(Ep)) is well-defined and has the form {V = E}.

e The length of the longest path in the superclass graph from Bn.Cn is ¢ > 0. Then Bn.Cn has at
least one non-trivial superclass, so the extends clause in the declaration of Bn.Cn is present. Then by
CLASSOK we have Tng - Ct'(E") OK, so by T-SuPER we have Tng - Ct OK and Ct' = (Tny Bn'.Cn')

and (<abstract> class Tng Cn'(I} : T}) ...) € BT(Bn') and |I}| = [E'|. Since C¢ must have the
form (Ty Bn'.Cn'), where the length of the longest path in the superclass graph from Bn'.Cn' is i — 1,
by induction we have that rep(Ct (E")) is well-defined and has the form {V = E}. Then by REP we

have that rep(C#(Ep)) is well-defined and also has the appropriate form.

5.2 Completeness

These lemmas prove that all functions are complete.

Lemma 5.10 If F v : 7" and 7" < T and T' = [Tn — T|T, and defaultPat(7Ty, Co,d) = Pat, then there
exists e such that match(v, Pat) = e.

Proof By strong induction on the depth of the derivation of defaultPat(7g, Co,d) = Pat. Case analysis of
the last rule in the derivation.

22

e Case DEFZERO or DEFTYPEVAR or DEFFUNTYPE. Then Pat has the form _, so by E-MATCHWILD
we have match(v,.) = {}.

e Case DEFCLASSTYPE. Then Ty has the form (7y C) and Pat has the form (C {V = Pat}) and
repType(Ty C) = {V : T} and defaultPat(T,Co,d — 1) = Pat and d > 0. Since T = |
by Lemma 4.11 we have repType(T) = [Tn — T|{V : T}. Further, T = [Tn+— T|(Tp C) = ([Tn
T|Ty C). Since T' < T, by Lemma 5.1 T" has the form (7} C"). Since F v : T', by T-REP v has
the form (T; C') {Vi = 77} and e I (T} C') OK and repType(T; C') = {V; : T1} and F 77 : T} and
T] <Ti.
Since (T} C') < ([Tn — T|Ty C), by Lemma 4.5 we have C' < C. Further, by Lemma 4.12 we
have that {Vy : 71} = {V : [Tn — T|T, V5 : T5}. Therefore there is some prefix 75 of 7] such that
T3 < [Tn — T]T. Therefore there is some prefix o3 of 77 such that - 73 : T3 and T3 < [Tn — T|T
and defaultPat(T,Cy,d — 1) = Pat. Therefore by induction, match(vz, Pat) = €. Therefore by E-
MaTcHCLASS we have match((Ty C') {V1 =1}, (C {V = Pat})) Ue.

e Case DEFTUPTYPE. Then Ty has the form T4 * - - - x T}, and Pat has the form (Patl, .. Patk) and for
all 1 < i < k we have defaultPat(T};, Cy,d—1) = Pat; and d > 0. Since T" < [Tn T](T1 * - *TA) by
Lemma 4.6 we have that T" has the form T7 *-- -+ T}, where for all 1 <{ < 'k we have T! <[Tnw TT;.
Since F v : T', by T-Tup we have that v has the form (vy,...,v;) and for all 1 < i < k we have
F v; : T}. Therefore by induction, for all 1 < i < k we have that there exists some e; such that
match(v;, Pat;) = e;. Then by E-MATCHTUP we have match(v, Pat) = e; U --- U ey.

Lemma 5.11 If CP(Mt,v) = Cy and Cy < C and - v : 7" and T < T and T = [Tn T]Mt and
defaultPat(Mt, C,d) = Pat, then there exists e such that match(v, Pat) =

Proof By strong induction on the depth of the derivation of defaultPat(Mt, C,d) = Pat. Case analysis of
the last rule in the derivation.

e Case DEFZERO. Then Pat has the form _, so by E-MATCHWILD we have match(v,) = {}.

e Case DEFCPCLASSTYPE. Then Mt has the form #(7y C') and Pat has the form (C {V = Pat}) and
repType(Ty C) = {V : T} and defaultPat(T,C,d — 1) = Pat and d > 0. By Lemma 4.11 we have
repType([Tn — T|Ty C) = [Tn — T|{V : T}. Since CP(#(T1 C'),v) = Cy, by CPlInstance we have
that v is of the form (T Cp) {Vi = vr}.

Since we're given that - v : T', by T-REP we have that T" = (T, Cp) and e (T Cp) OK and
repType(Ty Cp) = {Va : T5} and - 77 : Ty and Ty < Tp. We're given that 7' < T, so that means
(Ty Cp) < ([Tn — T)T1 C'), and by Lemma 4.4 we have Ty = [Tn — T|T;. Since Cp < C and
e = (Ty Cy) OK, by Lemma 4.7 we have (Ty Cy) < (Tp C). Therefore by Lemma 4.12 we have
(V220 = {V : [Tn. TIT, Vs : T3},

Therefore there is some prefix 73 of 77 and some prefix T3 of Ty such that - T3 : T3 and T3 < [T~ T|T
and defaultPat(T C,d — 1) = Pat, so by Lemma 5.10, there exists € such that match(vz, Pat) = (Je.
Finally, we're given Cy < C, so by E-MATCHCLASS we have match((Ty Cy) {Vi =1}, (C {V = Pat}))

= e

e Case DEFTUPTYPE. Then Mt has the form Ty *---« T; 1 % Mt; * T; 41 % - - - % T}, and Pat has the form
(Pati, ..., Paty) and for all 1 < j < k such that j # ¢ we have defaultPat(T},C,d — 1) = Pat; and we
have defaultPat(Mt;, C,d — 1) = Pat;. Let T; = Mt;. Since T' < [Tn— T)(Ty *-- -*TA) by Lemma 4.6
we have that T" has the form T7 - -+ T}, where for all 1 < j < k we have T} < [Tn — T|Tj. Since
Fov:T' by T-TuP we have that v has the form (v1,...,v;) and for all 1 < j < k we have - v; : T7.

J
Therefore by Lemma 5.10, for all 1 < j < k such that j # ¢ we have that there exists some e; such

23

that match(v;, Pat;) = e;. We're given that CP(Mt,v) = Cj, so by CPTUPVAL we have CP(Mt;, v;)
= (. Therefore by induction we have that there exists some e; such that match(v;, Pat;) = €;. Then
by E-MATCHTUP we have match(v, Pat) = e; U--- U ey.

Lemma 5.12 If - v : T} and T} < Ty and Ty = [Tn +— T|Mt and (fun Tn Fn : Mt — Ty) € BT(Bn) and
CP(Mt,v) = Cy and Cy < C and Bn F Bn.Fn has-default-for C, then there exists some Bn' € Bn, some
(extend fun,, Ty Bn.Fn Pat = E) € BT(Bn'), and some environment e such that match(v, Pat) = e.
Proof Since Bn Bn.Fn has-default-for C', by DEFAULT we have defaultPat(Mt,C) = Pat' and by DEFPAT
we have defaultPat(Mt,C,d) = Pat'. Therefore we have CP(Mt,v) = Cy and Cy < C and + v : Ty and
T} < Ty and Ty = [Tn — T)Mt and defaultPat(Mt, C,d) = Pat’, so by Lemma 5.11 there exists e’ such that
match(v, Pat') = €'.

Also by DEFAULT we have (extend fun,, Tn; Bn.Fn Pat= E) € BT(Bn') and Pat' < Pat and Bn' € Bn.
By Lemma 5.7 there exists e such that match(v, Pat) = e, so the result follows.

Lemma 5.13 If - v : 7" and 7" < T and T = [Tn — T|Mt and CP(Mt) = C", then there exists some class
C such that CP(Mt,v) = C and concrete(C) and C < C'.

Proof By induction on the depth of the derivation of - v : T'. Case analysis of the last rule used in the
derivation.

e Case T-REP. Then v has the form (Ty C) {V =0} and T" = (T C) and concrete(C) and repType(Ty C)
= {V :T}. Since T' < T, by Lemma 4.3 T has the form (71 C"). Since T = [Tn +— T|Mt, Mt has the
form (T C"), and by the grammar for marked types Mt must be #(T5 C"). Then by CPINSTANCE
we have CP(#(Ty C"),(Tp C) {V =w}) = C. We're given 7" < T', so by Lemma 4.5 we have C < C".
Since CP(Mt) = C', by CPCLASS we have C' = C",s0 C < C".

e Case T-FuN. Then v has the form @ F)_anc} T’ Ahas the form 77 — T5. Therefore by Lemma 5.2 T
has the form 7| — Tj. Since T' = [Tn — T|Mt, Mt has the form T{' — T3, but this contradicts the
grammar of marked types. Therefore, T-FUN cannot be the last rule in the derivation.

e Case T-Tup: Then v has the form (v1,...,v;) and T' has the form 77 --- « T} and forall 1 < j <k
we have - v; : ij. Therefore by Lemma 5.3 7" has the form 77 % --- % T}, where for all 1 < 5 < k we

have T/ < Tj. Since T' = [Tn + T|Mt, Mt has the form T}' % -+ x T}/, and by the grammar for marked
types Mt must have the form T7" % -+« T}" | * Mt; T}, | *--- % T}/, where 1 <4 < k and Mt; = T!".
We're given CP(Mt) = C', so by CPTUP we have CP(Mt;) = C'.

Therefore we have & v; : T/ and T! < T; and T; = [Tn — T]Mt; and CP(Mt;) = C", so by induction
there exists C' such that CP(Mt;,v;) = C and concrete(C) and C < C’. By CPTUPVAL we have
CP(T{ - xT{" |« Mt; T | % --- T}, (v1,...,vr)) = C, so the result follows.

Lemma 5.14 If - (T F): Ty — T and F v : T and T4 < Ty, then there exists some Bn' € dom(BT), some
(extend fun,, Tny F Pat= E) € BT(Bn'), and some environment e such that match(v, Pat) = e.

Proof Since - (T F): Ty — T, by T-FuN we have F = Bn.Fn and (fun Tn Fn : Mt — Ty) € BT(Bn)
and [Tn| = |T| and Ty — T = [Tn — T)(Mt — Tp). Let BT(Bn) = block Bn = blk extends Bn Ood end.
Then by BLocKOK we have Bnt (fun Tn Fn: Mt — Ty) OK in Bn, so by FUNOK we have that CP(M¢)
= Bn".Cn. Then by Lemma 5.13 there exists some class C such that CP(Mt,v) = C and concrete(C) and
C < Bn'".Cn. Also by FUNOK we have either Bn I F has-gdefault or Bn = Bn''. We consider these cases

separately.

e Case Bn I F has-gdefault. By GDerauLT we have CP(F) = C' and Bn i F has-default-for C'. By
CPFuN, C' = Bn".Cn. Then by Lemma 5.12 there exists some Bn' € Bn, some (extend fun,, Tm

24

F Pat = E) € BT(Bn'), and some environment e such that match(v, Pat) = e. Since BT(Bn) =
block Bn = blk extends Bn Ood end, each member of Bn is mentioned in the program, so by sanity
condition 2 we have Bn C dom(BT). Therefore Bn' € dom(BT), and the result is shown.

e Case Bn = Bn". Let C' = Bny.Cny. Since concrete(c), by CONCRETE we have (class Tng Cny ...)
€ BT@O). Let BT(Bny) = block Bn = blk Bny extends Bny Oody end. Then by BLOCKOK we

have Bng class Tng Cng ... OK in Bng, so by CLASSOK we have concrete(C) = Bng + funs-

have-ldefault-for C. Since we have shown that concrete(C) holds, we have Bng - funs-have-ldefault-for
C.

Also by CLassOK we have Bng - C' transExtended. Since C' < Bn".Cn and Bn"" = Bn, by Lemma 5.8
we have Bn € Bny.

Since F' = Bn.Fn and Bn € Bng, by FUNEXT we have Bng - F extended. Since (fun Tn Fn :
Mt — Ty) € BT(Bn) and CP(Mt) = Bn.Cn, by CPFUN we have CP(F) = Bn.Cn. Also, we showed
above that C' < Bn.Cn. Therefore, since Bny F funs-have-ldefault-for C', by LDEFAULT we have
Bng - F has-default-for C. By SUBREF C < C, so by Lemma 5.12 there exists some Bn' € Bngy, some
(extend fun,, Tn; Bn.Fn Pat = E) € BT(Bn'), and some environment e such that match(v, Pat) =
e. Since BT(Bny) = block Bny = blk extends Bny Oody end, each member of Bny is mentioned in
the program, so by sanity condition (2) we have Bng C dom(BT). Therefore Bn' € dom(BT), and the

result is shown.

5.3 Ambiguity

These lemmas ensure that all functions are unambiguous.

5.3.1 Pattern Specificity and Intersection

Lemma 5.15 If Pat < Pat’ and Pat' < Pat" then Pat < Pat”.
Proof By induction on the depth of the derivation of Pat' < Pat’. Case analysis of the last rule used in
the derivation.

e Case SPECWILD. Then Pat’ has the form _, and by SPECWILD we have Pat < Pat’.

e Case SPECBIND1. Then Pat' has the form (I as Paty) and we have Paty < Pat’. We prove this case
by induction on the number of consecutive uses of rule SPECBIND1 ending the derivation of Pat < (I
as Paty). Case analysis of the last rule used in the derivation.

— Case SPECBIND1. Then Pat has the form (I' as Paty) and Paty < Pat'. By the inner induction
Paty < Pat”, and by SPECBIND1 Pat < Pat”.

— Case SPECBIND2. Then Pat < Paty. Since also Paty < Pat”, by the outer induction we have
Pat < Pat".

e Case SPECBIND2. Then Pat” has the form (I as Paty) and we have Pat’ < Paty. By induction
Pat < Patyy, and by SPECBIND2 Pat < Pat”.

e Case SPECTUP. Then Pat' has the form (Pat') and Pat” has the form (Pat") and Pat' < Pat”’. We
prove this case by induction on the number of consecutive uses of rule SPECBIND1 ending the derivation
of Pat < Pat'. Case analysis of the last rule used in the derivation.

— Case SPECBIND1. Then Pat has the form (I as Paty) and we have Paty < Pat'. By the inner
induction Paty < Pat’, so by SPECBIND1 Pat < Pat”.

25

— Case SPECTUP. Then Pat has the form (Pat) Pat < Pat'. Therefore by the outer induction,
Pat < Pat”. Therefore by SpEcTup Pat < Pat”.

e Case SPECCLASS. Then Pat' has the form C' {V; = Pat|, Vs = Pat,} and Pat” has the form C" {V} =
Pat]} and C' < C” and Pat; < Pat]. We prove this case by induction on the number of consecutive
uses of the rule SPECBIND1 ending the derivation of Pat < Pat'. Case analysis of the last rule used in
the derivation.

— Case SPECBIND1. Then Pat has the form (I as Palp) and we have Paty < Pat'. By the inner
induction Paty < Pat’, so by SPECBIND1 Pat < Pat”.

— Case SPECCLASS. Then Pat has the form C {V; = Pat;, V> = Pats, V3 = Pat3} and C < C' and
Pat; < Pat, and Pat, < Pat,. Since C < C" and C' < C", by SUBTRANS we have C < C". By
the outer induction we have Pat; < ﬁt’l'. Therefore by SPECCLASS Pat < Pat”.

Lemma 5.16 If CP(Mt, Pat') = C' and CP(Mt, Pat") = C" and Pat' N Pat" = Pat, then either C' < C" or
cr<c.

Proof By induction on the depth of the derivation of Pat' N Pat” = Pat. Case analysis of the last rule used
in the derivation.

e Case PATINTWILD. Then Pat' has the form _. But then it cannot be the case that CP(Mt, Pat') =
C', because none of the three associated rules applies to a wildcard pattern.

e Case PATINTBIND. Then Pat’ has the form I as Paty and Paty N Pat’ = Pat. Since CP(Mt, Pat') =
C', by CPBINDPAT we have CP(Mt, Paty) = C'. Therefore by induction we have that either C' < C"
or C" <.

e Case PATINTTUP. Then Pat' has the form (Pat),..., Pat},) and Pat' has the form (Pat},..., Pat})
and for all 1 < j < k we have Pat;- N Pat}' = Pat;. Since CP(Mt, Pat’) = C', by CPTUPPAT we have
Mt =Ty %% Tiy % Mt; * Tiy1 % --- % T, and CP(Mt;, Pat;) = C'. Since CP(Mt, Pat") = C", by
CPTuPPAT we have CP(Mt;, Pat]) = C". Therefore by induction we have that either C' < C" or
c'<c.

e Case PATINTCLASS. Then Pat has the form (Cy {V = Pat',Va = Patz}) and Pat” has the form

(C2 {V = Pat"}) and C; < Cy. Since CP(Mt, Pat') = C', by CPCrassPaT C' = C;. Since
CP(Mt, Pat") = C", by CPCLASSPAT C" = Cs. Therefore C' < C".

e Case PATINTREV. Then Pat’ N Pat' = Pat, so by induction we have that either C" < C" or C' < C".

Lemma 5.17 If - v : T and match(v, Pat') = ¢’ and match(v, Pat") = €’ and matchType(T”, Pat') =T", T}
and matchType(T"”, Pat") = T, T}, then there exists some Pat such that Pat' N Pat" = Pat.

Proof By induction on the depth of the derivation of match(v, Pat') = ¢’. Case analysis of the last rule
used in the derivation.

e Case E-MATCHWILD. Then Pat' has the form _, so by PATINTWILD we have Pat' N Pat" = Pat".

e Case E-MATCHBIND. Then Pat’ has the form I as Pat; and match(v, Paty) = e}, for some efy. Since
matchType(T', Pat') = I", T}, by T-MATCHBIND we have matchType(1’, Paty) = 'y, T{. Then by
induction there exists some Pat such that Pat,N Pat" = Pat, so by PATINTBIND we have Pat' N Pat’ =
Pat.

26

e Case E-MATCHTUP. Then v = (vy,...,v)) and Pat' has the form (Pat), ..., Pat},) and forall 1 <i < k
we have match(v;, Pat;) = €}, for some e;. We prove this case by induction on the number of consecutive

uses

of E-MATCHBIND ending the derivation of match(v, Pat") = €’’. Case analysis of the last rule

used in the derivation.

Case E-MATCHWILD. Then Pat” has the form _, so by PATINTWILD we have Pat' N Pat' = Pat',
and by PATINTREV Pat' N Pat' = Pat'.

Case E-MATCHBIND. Then Pat’ has the form I as Pat; and match(v, Paty) = efj, for some
efy. Since matchType(T", Pat") = T, T}, by T-MATCHBIND we have matchType(T", Paty) =
Ty, 7. Then by the inner induction there exists some Pat such that Pat' N Paty = Pat. Then by
PATINTREV Paty N Pat' = Pat, by PATINTBIND Pat’ N Pat' = Pat, and again by PATINTREV
Pat' N Pat" = Pat.

Case E-MATCHTUP. Then Pat” has the form (Pat/,..., Pat}) and for all 1 < i < k we have
match(v;, Pat]) = e, for some e/. Since - v : T, by T-TuP we have T' = T} * --- * T}, and
oo, : T; for all 1 < i < k. Since matchType(T", Pat') = I'",T; and matchType(T", Pat") =
", 1y, by T-MATcHTUP we have " =T % -+ -« T} and 7" =T} % -- -« T} and for all 1 <i < k
matchType(T}, Pat') = T, T!" and matchType(T}’, Pat") = T%,T!"'. Then by the outer induction,
for all 1 < i < k there exists Pat; such that Pat; N Pat; = Pat;. Then by PATINTTUP there exists
Pat such that Pat' N Pat" = Pat.

Case E-MATcHCLASS. Then v = ((T C) {V = ©}), contradicting our assumption that v =
(vla"';vk)'

e Case E-MaATCcHCLASS. Then v = (T C) {Vi = v1,...,Vi, = v}) and Pat' has the form (C' {V; =

Paty, ...

,Vin = Pat),,}) and C < C" and m < k and for all 1 <4 < m we have match(v;, Pat}) = €} for

some ef. We prove this case by induction on the number of consecutive uses of E-MATCHBIND ending
the derivation of match(v, Pat") = €. Case analysis of the last rule used in the derivation.

Case E-MATCHWILD. Then Pat” has the form _, so by PATINTWILD we have Pat" N Pat' = Pat',
and by PATINTREV Pat' N Pat' = Pat'.

Case E-MATCHBIND. Then Pat’ has the form I as Pat, and match(v, Paty) = efj, for some
ef. Since matchType(T", Pat") = I, T}/, by T-MATCHBIND we have matchType(T”, Paty) =
I'y,Ty. Then by the inner induction there exists some Pat such that Pat' N Paty = Pat. Then by
PATINTREV Paty N Pat' = Pat, by PATINTBIND Pat’ N Pat' = Pat, and again by PATINTREV
Pat' N Pat" = Pat.

Case E-MarcuTup. Then v = (v), contradicting our assumption that v = ((T C) {V; =
’U1,...,Vk :’Uk}).

Case E-MaTcHCLASS. Then Pat” has the form (C" {Vi = Paty,...,V, = Pat;}) and C < C"
and p < k and for all 1 <4 < p we have match(v;, Pat]) = e/ for some e!/. Since v : T, by T-REP
we have o - (T C) OK and for all 1 < i < k we have v; : T} for some T}. Since C < C' and
C < C", by Lemma 4.7 we have o - (T C') OK and ¢ - (T C") OK. Since matchType(1", Pat')
= I, T} and matchType(T", Pat") = I, Ty, by T-MaTcHCLASS we have repType(Tp C’) has
the form {V; : 1Y{,..., Vi, : T} } and repType(Ty C") has the form {V; : T{,...,V, : T},
for some Ty and T;. Therefore by inspection of REPTYPE, also repType(T C’) has the form
Vi :T{",..., Vi : T)}'} and repType(T C") has the form {V; : T{",...,V, : T;"}. Also by T-
MaTcHCLASS, for all 1 < i < m we have matchType(T7, Pat') = I';, T!" and for all 1 <i < p we
have matchType(T)', Pat") = T}, T!"". Since C < C' and C' < C", by Lemma 5.4 either C' < C"
or C" < (.

27

% Case C' < C". Since o F (T C') OK, by Lemma 4.7 we have (T' C'") < (T C"). Then by
Lemma 4.12 we have that p < m. Then by the outer induction we have that forall 1 <: <p
there exists Pat; such that Pat; N Pat] = Pat;. Then by PATINTCLASS there exists Pat such
that Pat' N Pat" = Pat.

x Case C" < (C'. Since o - (T C") OK, by Lemma 4.7 we have (T' C") < (T C"). Then by
Lemma 4.12 we have that m < p. Then by the outer induction we have that forall 1 <i <m
there exists Pat; such that Pat; N Pat; = Pat;. Then by PATINTREV we have that for all
1 < i < m there exists Pat; such that Pat; N Pat; = Pat;. Then by PATINTCLASS there exists
Pat such that Pat" N Pat' = Pat, and the result follows by PATINTREV.

Lemma 5.18 If match(v, Pat') = e’ and match(v, Pat") = ¢” and Pat' N Pat" = Pat, then there exists some
e such that match(v, Pat) = e.

Proof By induction on the depth of the derivation of Pat' N Pat”’ = Pat. Case analysis of the last rule used
in the derivation.

Case PATINTWILD. Then Pat is identical to Pat”, so match(v, Pat) = €".

Case PATINTBIND. Then Pat’ has the form I as Paty and Paty N Pat’" = Pat. Since match(v, Pat')
= €', by E-MATCHBIND there exists some e, such that match(v, Paty) = ef. Therefore by induction
there exists some e such that match(v, Pat) = e.

Case PATINTTUP. Then Pat has the form (Pat') and Pat” has the form (Pat”) and Pat has the form
(Pat) and Pat’ N Pat” = Pat. Since match(v, Pat’) = €', by E-MATCHTUP v = (T) and match(7, Pat))
= ¢/. Since match(v, Pat") = e, by E-MarcuTup match(v, Pat”) = €”. Therefore by induction
match(v, Pat) = €. Then by E-MATCHTUP there exists e such that match(v, Pat) = e.

Case PATINTCLASS. Then Pat' has the form (C' {V; = Pat,,...,V,, = Pat,,}) and Pat" has the
form (C" {V1 = Pat{,...,V, = Pat;}) and m > p and Pat has the form (C' {Vi = Paty,...,V, =
Pat,,Vpy1 = Pat,, ..., Vi, = Paty,}) and C' < C" and Pat; N Pat] = Pat; for all 1 <i < m. Since
match(v, Pat') = €', by E-MATCHCLASS v = (T C) {Vi = v1,...,Vpx =v}) and C < C" and k > m
and match(v;, Pat;) = e} for all 1 < i < m. Since match(v, Pat”") = €', by E-MATCHCLASS we have
match(v;, Pat]) = el for all 1 <i < p. Then by induction, there exists e; such that match(v;, Pat;) =
e;, for all 1 <7 < p. Then by E-MATCHCLASS there exists e such that match(v, Pat) = e.

Case PATINTREV. Then Pat’ N Pat' = Pat. Then by induction there exists e such that match(v, Pat)
=e.

5.3.2 Ambiguity

Lemma 5.19 If CP(Mt, Pat) = Bn.Cn and Tn + matchType(T, Pat) = (I',T"), then there exists some
(<abstract> class Tny Cn...) € BT(Bn).

Proof By induction on the depth of the derivation of CP(Mt, Pat) = Bn.Cn. Case analysis of the last rule
used in the derivation.

Case CPBINDPAT. Then Pat has the form I as Pat' and CP(Mt, Pat') = Bn.Cn. Since Tn +
matchType(T, Pat) = (I',T"), by T-MATCHBIND we have that there exists some I such that Tn
matchType(T, Pat') = (I',T"). Therefore by induction there exists some (<abstract> class Tngy
Cn...) € BT(Bn).

28

e Case CPTurPar. Then Pat has the form (Paty, ..., Paty) and Mt =Ty s« - -x Ty« Mg« Typq % - - x T,
and CP(Mt;, Pat;) = Bn.Cn. Since Tn - matchType(T, Pat) = (I',T"), by T-MATCHTUP there exist
some T;, [';, and T} such that Tn + matchType(T;, Pat;) = (I';,T}). Therefore by induction there
exists some (<abstract> class Tny Cn...) € BT(Bn).

e Case CPCLASSPAT. Then Pat has the form Bn.Cn {V = ﬁﬁ. Since_T_ni matchType(T, Pat) =
(I, T'), by T-MarcuCLAss we have T' = (T' C') and repType(T C) = {V : T1}. Then by REP there
exists some (<abstract> class Tny Cn...) € BT(Bn).

The following lemma says that the modular ambiguity checks for a function case are enough to ensure
global unambiguity of the function case.

Lemma 5.20 If (extend fun,, Tn F Pat = E) € BT(Bn), then dom(BT) - extend fun,, Tn F Pat=FE
unambiguous in Bn.

Proof Suppose not. Then we have (extend fun,, Tn F Pat = E) € W, but it is not the case that
dom(BT) + extend fun,, Tn F Pat = E unambiguous in Bn. Then by BLAMB we have that there
exists some Bn' € dom(BT), some (extend fun,, Tn; F Pat' = E') € BT(Bn'), and some Paty such that
Pat N Pat' = Paty A Bn.Mn # Bn'.Mn' A -3Bn" € dom(BT).3(extend fun,, Tny F Pat' = E") €
BT(Bn'").(Paty < Pat" A Pat" < Pat A Pat" < Pat' A (Pat £ Pat" v Pat' £ Pat")).

Let BT(Bn) be (block Bn = blk extends Bn Ood end). Since (extend fun,, Tn F' Pat = E) € BT(Bn),
by BLockOK we have Bn I (extend fun,, Tn F' Pat = E) OK in Bn, so by CASEOK we have Bn; Bn
extend fun,, Tn F Pat = E unambiguous. Let BT(Bn') = (block Bn' = blk extends Bn' Qod end).
Since (block Bn' = blk extends Bn' Ood end) = BT(Bn') and (extend fun,, Tm F Paf = E')
€ BT(Bn'), by BLOcKOK we have Bn' - (extend fun,, Tn; F Pat' = E') OK in Bn, so by CASEOK we
have Bn'; Bn' - extend fun,, Tn, F Pat = E' unambiguous.

We divide the proof into several cases.

e Case Bn' € Bn. Since Bn;Bn - extend fun,, Tn F Pat = E unambiguous, by AMB we have
Bn F extend fun,, Tn F Pat = E unambiguous in Bn. Since Bn' € Bn and we saw above that
(extend fun,, Tny F Pat = E') € BT(Bn') and PatnPat' = Paty and Bn.Mn # Bn'.Mn', by BLAMB
we have 3Bn" € Bn.3(extend fun,, Tny, F Pat’ = E") € BT(Bn").(Paty < Pat" A Pat" < Pat A
Pat" < Pat' A (Pat £ Pat" V Pat' £ Pat")). Since (block = blk Bn extends Bn Ood end) = BT(Bn),
each block name in Bn appears in the program, so by sanity condition 2 we have Bn C dom(BT).
Therefore we have 3Bn” € dom(BT).3(extend fun,, Tny F Pat' = E") € BT(Bn").(Paty < Pat" A
Pat" < Pat A Pat" < Pat' A (Pat £ Pat" vV Pat' £ Pat")), and we have a contradiction.

e Case Bn € Bn'. Since Bn'; Bn' + extend fun,, Tn; F Pat = E' unambiguous, by AMB we have
Bn' b extend fun,, Tn; F Pat’ = E' unambiguous in Br'. By assumption Bn € Br/, and we’re given
that (extend fun,, Tn F Pat = E) € BT(Bn). We're also given PatN Pat' = Paty, so by PATINTREV
also Pat' N Pat = Paty. Finally, we're given Bn.Mn # Bn'.Mn'. Therefore by BLAMB we have
IBn" € Bn'3(extend fun,, Tny F Pat' = E") € BT(Bn").(Paty < Pat’ A Pat" < Paf A Pat’ <
PatA (Pat £ Pat" vV Pat' £ Pat")). Since (block = blk Bn' extends Bn' Qod end) = BT(Bn'), each
block name in Br' appears in the program, so by sanity condition 2 we have Bn' C dom(BT). Therefore
we have 3Bn” € dom(BT).3(extend fun,, Tny F Pat' = E") € BT(Bn").(Paty < Pat' A Pat" <
Pat A Pat" < Pat' A (Pat £ Pat" vV Pat' £ Pat")), and we have a contradiction.

e Case Bn' ¢ Bn and Bn ¢ Bn'. Sian;E I extend fun,, Tn F Pat = E unambiguous, by AMB
we have F' = Bn;.Fn and (fun Tng Fn : Mt — T) € BT(Bn;) and CP(Mt, Pat) = Bny.Cn and

29

Bn = Bn; V Bn = Bny. Since Bn’;B_n' F extend fun,, Tn; F Pat = E' unambiguous, by AMB we
have CP(Mt, Pat') = Bn3.Cn' and Bn' = Bny V Bn' = Bng. We have three sub-cases.

- %se Bn' = Bn,. Since Bn I (extend fun,, Tn F Pat = E) OK in Bn, by CASEOIgve have
Bn F F extended, so by FUNEXT we have Bn; € Bn. Therefore we’'ve shown Brn' € Bn, so we
have a contradiction.

— Case Bn = Bn,. Since Bn' F (extend fun,, Tn; F Pat' = E') OK in Bn', by CASEOK we have
Bn' - F extended, so by FUNEXT we have Bn; € Bn'. Therefore we’ve shown Bn € Bn', so we
have a contradiction.

— Case Bn' # Bny; and Bn # Bny. Since Bn = Bn; V Bn = Bny, we have Bn = Bn,. Since
Bn' = Bny V Bn' = Bng, we have Bn' = Bng. Since CP(Mt, Pat) = Bny.Cn and CP(Mt, Pat')
= Bnz.Cn' and PatN Pat = Paty, by Lemma 5.16 we have that either Bny.Cn < Bns.Cn' or
Bns.Cn' < Bny.Cn. Equivalently, either Bn.Cn < Bn'.Cn' or Bn'.Cn' < Bn.Cn. There are two
subcases.

x Case Bn.Cn < Bn'.Cn’'. Since Bn I (extend fun,, Tn F Pat = E) OK in Bn, by CASEOK we
have Tng - match(Ty, Pat) = (o, Ty), for some Tng, Ty, Pat,T'y, and Tj. Since CP(Mt, Pat)
= Bn.Cn, by Lemma 5.19 there exists some (<abstract> class Tny Cn...) € BT(Bn).
Therefore by BLOCKOK we have Bn F (<abstract> class Tns Cn...) OK in Bn, so by
CLASSOK we have Bn F Bn.Cn transExtended. Since Bn.Cn < Bn'.Cn/, by Lemma 5.8 we
have Bn' € Bn, which is a contradiction.

% Case Bn'.Cn' < Bn.Cn. Since Bn' I (extend fun,, Tny F Pat = E') OK in Bn/, by
CASEOK we have Tng F match(Ty, Pat') = (I'y,T}), for some Tng, Ty, Pat, Ty, and T}. Since
CP(Mt, Pat') = Bn'.Cn/, by Lemma 5.19 there exists some (<abstract> class Tny Cn ...)
€ BT(Bn'). Therefore by BLOCKOK we have Bn' I (<abstract> class Tny Cn' ...) OK
in Bn', so by CLASSOK we have Bn' - Bn'.Cn' transExtended. Since Bn'.Cn' < Bn.Cn, by
Lemma 5.8 we have Bn € Bn', which is a contradiction.

Lemma 5.21 If- v : T and Bn € dom(BT) and (extend fun,, Tn F Pat = E) € BT(Bn) and match(v, Pat)
= e, then there exists some Bn' € dom(BT), some (extend fun,, Tn; F Pat' = E') € BT(Bn'), and some
e/ such that match(v, Pat') = e and VBn" € dom(BT).Y(extend fun,, Iny F Pat’ = E") € BT(Bn").
Ve".((match(v, Pat") = €' A Bn'.Mn' # Bn'" .Mn") = Pat’ < Pat").

Proof By (strong) induction on the number of function cases of the form (extend fun,,, Tny F Paty = Ey)
such that (extend fun,,, Tng F' Paty = Ey) € BT(Bny) for some block Bny € dom(BT), and match(v, Paty)
= ¢g for some ey, and Pat £ Paty.

e Case there are zero function cases of the form (extend fun,,, Tng F Paty = Ep) such that (extend
fun,,, T'ng F Paty = Ey) € BT(Bny) for some block Bny € dom(BT), and match(v, Paty) = eg for
some eg, and Pat £ Paty.

We're given that Bn € dom(BT) and (extend fun,, Tn F Pat = E) € BT(Bn) and match(v, Pat)
= e. Further, since it cannot both be the case that Pat < Pat and Pat £ Pat, we have Pat £ Pat.
Therefore, we have found a function case that contradicts the initial assumption of this case.

e Case there is exactly one function case of the form (extend fun,,, Tny F Paty = Ep) such that
(extend funy,, Tng F' Paty = Ey) € BT(Bny) for some block Bny € dom(BT), and match(v, Paty) =
eo for some ey, and Pat £ Paly.

As we saw in the previous case, (extend fun,, Tn F Pat = E) € BT(Bn) and match(v, Pat) =
e and Pat £ Pat, so Bn.Mn is the single case satisfying all the conditions. Therefore it follows

30

that VBn" € dom(BT).V(extend fun,, Tny F Pat' = E") € BT(Bn").Ve" .((match(v, Pat") = €' A
Bn.Mn # Bn''.Mn'") = Pat < Pat"). Then the result follows.

There are k > 1 function cases of the form (extend fun,,, Tng F' Paty = Ep) such that (extend
fun,,, Tng F Paty = Ey) € BT(Bny) for some block Bng € dom(BT), and match(v, Paty) = eq for
some eg, and Pat ¢ Paty. Let (extend fun,,, Tnz F Pat; = E;) be one such function case, so (extend
fun,,, Tns F Paty = Ey) € BT(Bny) for some block Bny € dom(BT), and match(v, Pat;) = e; for
some e1, and Pat £ Pat;. Since k > 1, at least one of the function cases satisfying the conditions is
not Bn.Mn, so assume WLOG that Bn.Mn # Bny.Mn;.

Since (extend fun,, Tn F Pat = E) € BT(Bn) and (extend fun,, Inz F Pat; = E;) € BT(Bn,)
and Bn € dom(BT) and Bny € dom(BT), by CASEOK we have matchType(Tp, Pat) = T, T and
matchType(Ty, Pat;) = 'y, T{. We're given that - v : T. Finally, we saw above that match(v, Pat)
= e and match(v, Pat;) = e;. Therefore by Lemma 5.17 there exists some Pat;,; such that Pat N
Pat; = Pat;,;. We're given that (extend fun,, Tn F Pat = E) € BT(Bn), so by Lemma 5.20 we
have dom(BT) extend fun,, ITn F Pat = E unambiguous in Bn. Therefore by BLAMB there
exists some Bny € dom(BT) and some (extend fun,,, Ins F Pat, = E;) € BT(Bny) such that
Pat;ne < Pate and Pate < Pat and Paty < Paty and (Pat £ Paty or Pat; € Pats). Since match(v, Pat)
= ¢ and match(v, Pat;) = e; and Pat N Paty = Patjpe, by Lemma 5.18 there exists some e;,; such
that match(v, Pat;n:) = eie- Then since Paty; < Paty, by Lemma 5.7 there exists es such that
match(v, Paty) = es.

So we have shown there exists some Bny € dom(BT) and some (extend fun,,, Tny F Paty = E»)
€ BT(Bny) and some ey such that match(v, Pata) = es. Suppose there are [function cases of the form
(extend fun,,, Tnyg F Paty = E) such that (extend fun,, Tng F Paty = Ey) € BT(Bng) for some
block Bny € dom(BT), and match(v, Paty) = ey for some ey, and Paty £ Paty. If | < k, then this case
is proven by induction.

Consider some block Bngy € dom(BT), some (extend fun,,, Tng F Paty = Ey) € BT(Bny), and some
eo such that match(v, Paty) = ep and Paty £ Paty. I claim that also Pat £ Paty. Since Paty £ Paty,
we have that (Paty € Paty or Paty < Paly), so we consider these cases in turn.

— Case Paty £ Paty. Then I claim that Pat £ Paty, so also Pat £ Paty. Suppose not, so Pat < Paly.
Since Pat, < Pat, by Lemma 5.15 we have Pats < Paty, contradicting the assumption of this case.

— Case Paty < Pat,. We showed above that Paty; < Pat, so by Lemma 5.15 Paty < Pat, so
Pat &£ Paty.

Therefore we have shown that every function case of the appropriate form with respect to Bny.Mns is
also of the appropriate form with respect to Bn.Mn, so [< k.

To finish the proof, we show that there exists a function case of the appropriate form w.r.t. Bn.Mn
that is not of the appropriate form w.r.t. Bny.Mny. In particular, we showed in the first case above
that Bn.Mn is of the appropriate form w.r.t. itself, since Pat £ Pat. To show that Bn.Mn is not of the
appropriate form w.r.t Bny.Mns, we must show that Paty < Pat. We showed above that Paty < Pat,
so we simply need to prove that Pat £ Pat,. We showed above that either Pat € Paty or Pat; £ Pats,
so we consider each case.

— Case Pat £ Paty. Then Pat £ Pats.

— Case Pat; £ Pats and Pat < Pat;. We're given above that Pat £ Paty, so either Pat £ Pat; or
Pat; < Pat. We saw above that Paty < Paty, so since we assume Pat < Pats, by Lemma 5.15 we
have Pat < Pat;. Therefore Pat; < Pat. Again since we assume Pat < Paly, by Lemma 5.15 we
have Pat; < Paty, contradicting the assumption of this case.

31

Lemma 5.22 If - (T F) : Ty, — T and - v : T and Ty < T5 then there exist eg and Ey such that most-
specific-case-for ((T' F'),v) = (eo, Eo).

Proof By Lemma 5.14, there exists some Bn € dom(BT), some (extend fun,, Tn F Pat = E) € BT(Bn),
and some environment e such that match(v, Pat) = e. Then by Lemma 5.21 there exists some Bn' €
dom(BT), some (extend fun,, Tn; F Pat = E') € BT(Bn'), and some e’ such that match(v, Pat') = e and
VBn'" € dom(BT).Y(extend fun,, Tny F Pat' = E") € BT(Bn'").Ve".((match(v, Pat") = €' A Bn'.Mn' #
Bn'' .Mn") = Pat < Pat" A Pat" £ Pat'). Since - (T F) : Ty — T, by T-FUuN we have F' = Bngy.Fng
and (fun Tng Fng : Mty — Ty) and |Tng| = |T|. Since (extend fun,, Tn; F Pat = E') € BT(Bn'), by
CASEOK we have |Tn;| = |Tng|. Therefore we have |Tn;| = |T|, so by LOOKUP there exists some ey and
Ey such that most-specific-case-for (T F)v) = (eq, Ep).

5.4 Progress

Theorem 5.1 (Progress): If H E : T and E is not a value, then there exists an E’ such that E — E'.
Proof By (strong) induction on the depth of the derivation of - E : T'. Case analysis of the last rule used
in the derivation.

e Case T-Ip. Then E =T and (I,T) € {}, so we have a contradiction. Therefore this rule could not be
the last rule used in the derivation.

e Case T-NEW. Then E = Ct(E) and Ct = (T Bn.Cn) and e - Ct(E) OK and concrete(Bn.Cn). Then
by T-SUPER also e + (T Bn.Cn) OK and and (<abstract> class Tng Cn(ly : Tp) ...) € BT(Bn)
and |Iy| = |E|. Therefore by Lemma 5.9 rep(Ct(E) is well-defined and has the form {V; = E;}. Then
by E-NEwW we have E — Ct {V}; = E }.

e Case T-REP. Then E = Ct {V} = Ei,..., Vi = E;} and for all 1 < ¢ < k we have - E; : T; for some
T;. We have two subcases:
— Forall 1 <i <k, E; is a value. Then FE is a value, contradicting our assumption.

— There exists 1 < j < k such that E; is not a value. By induction, there exists an E} such
that E; — E} Therefore by E-REP we have Ct{Vy, = E,...,V, = Ex} — Ct{V} =
By, .. Visi=Ej1,Vy = E},Vijy1 = Ejq,..., Vi = B}

e Case T-FuN. Then E =T Bn.Fn. Then E is a value, contradicting our assumption.

e Case T-Tup. Then E = (E1,...,E;) and T =Ty % -+« Tj, and for all 1 < ¢ < k we have - E; : T;.
We have two subcases:
— Forall 1 <i <k, E; is a value. Then E is a value, contradicting our assumption.
— There exists 1 < j < k such that E; is not a value. By induction, there exists an E; such that
Ej — E}. Therefore by E-TUP we have (E1,...,Ey) — (E1,...,Ej1,E}, Eji1, ..., Eg).

e Case T-App. Then E = E; Ey and - Ey : Ty, — T and F Ey : T4 and Tj < T». We have three
subcases:

— E; is not a value. Then by induction, there exists an E{ such that Ey — Ej. Therefore by
E-APP1 we have E, By, — Ei Es5.

— E, is not a value. Then by induction, there exists an E} such that Ey — EY}. Therefore by
E-APP2 we have E, By — B, Eé

32

— Both E; and E-» are values. Since - E; : T, — T and E; is a value, the last rule in the derivation
of H Ey : T, — T must be T-FuN, so E; has the form Fv. Therefore by Lemma 5.22 we_have
that there exist ep and Ey such that most-specific-case-for (Fv,Es) = (ep, Ey). Let eq = {(1,7)}.

Then by E-ApPRED we have Fv E; — [I — 7] Ej.

33

