
Modular Typeheking for Hierarhially Extensible Datatypes and

Funtions

Todd Millstein Craig Chambers

Department of Computer Siene and Engineering

University of Washington

ftodd,hambersg�s.washington.edu

Tehnial Report UW-CSE-01-07-02

July 2001, revised Marh 2002

Abstrat

This tehnial report provides the formal details of Mini-Eml, a ore language for Eml. Eml is an

ML-like language ontaining hierarhially, extensible datatypes and funtions while retaining modular

typeheking. Setion 1 presents the syntax of Mini-Eml. Setion 2 presents its dynami semantis and

setion 3 presents its stati semantis. Setion 4 gives the subjet redution proof, and setion 5 gives

the progress proof.

1

T ::= Tn j Ct j T

1

! T

2

j T

1

� � � � � T

k

Mt ::= # Ct j T

1

� � � � � T

i�1

�Mt � T

i+1

� � � � � T

k

E ::= I j Fv j E

1

E

2

j Ct(E) j (E) j Ct fV = Eg

Pat ::= j I as Pat j C fV = Patg j (Pat)

Ct ::= T C Fv ::= T F

C ::= Bn:Cn V ::= Bn:Vn

F ::= Bn:Fn

B ::= blok Bn = blk extends Bn Ood end

Ood ::= <abstrat> lass Tn Cn(I : T)

<<extends Ct(E) >> of fVn : T

0

= E

0

g

j fun Tn Fn : Mt! T

j extend fun

Mn

Tn F Pat = E

(a) (b)

Figure 1: (a) Mini-Eml types, expressions, and patterns; (b) Mini-Eml bloks. Metavariable Tn ranges

over type variable names, I over identi�er names, Cn over lass names, Vn over instane variable names,

Fn over funtion names, and Mn over ase names. D denotes a omma-separated list of elements (and is

independent of any variable named D). Angle brakets (<>) and double angle brakets (<<>>) denote

independent optional piees of syntax. The notation V = E abbreviates V

1

= E

1

; : : : ; V

k

= E

k

where V is

V

1

; : : : ; V

k

and E is E

1

; : : : ; V

k

for some k � 0, and similarly for V = Pat, Vn : T

0

= E

0

, and I : T .

1 Syntax

1.1 Types, Expressions, and Patterns

Figure 1a de�nes the syntax of types, expressions, and patterns in Mini-Eml. Mini-Eml types inlude

type variables, lass types, funtion types, and tuple types. The domain Mt represents marked types, whih

ontain a # mark on a single omponent lass type. Marked types are used to implement our modular type

system disussed in setion 3.

Expressions inlude identi�ers, funtion values, funtion appliation, onstrutor alls, tuples, and in-

stane expressions. The instane expression Ct fV = Eg is not available at the soure level, as instanes

may only be reated via a onstrutor all. Patterns inlude the wildard pattern, identi�er binding, lass

patterns, and tuple patterns. We assume that all identi�ers bound in a given pattern are distint.

The subset of expressions that are Mini-Eml values is desribed by the following grammar:

v ::= Ct fV = vg j Fv j (v)

Values inlude lass instanes, funtion values, and tuple values.

1.2 Delarations, Bloks and Programs

The syntax of Mini-Eml bloks and delarations is shown in �gure 1(b). A blok onsists of a sequene

of lass, extensible funtion, and funtion ase delarations. The lass (funtion, ase) names introdued

in a given blok are assumed to be distint. The type variables parameterizing a given OO delaration are

assumed to be distint. The instane variable names introdued in a given lass delaration are assumed to

be distint.

A Mini-Eml program is a pair of a blok table and an expression. A blok table is a �nite funtion from

blok names to bloks. The semantis assumes a �xed blok table denoted BT. The domain of a blok table

BT is denoted dom(BT). The blok table is assumed to satisfy some sanity onditions: (1) BT(Bn) = blok

Bn = blk : : : for every Bn 2 dom(BT); (2) for every blok name Bn appearing anywhere in the program,

we have Bn 2 dom(BT).

2

2 Dynami Semantis

2.1 Preliminaries

Mini-Eml's dynami semantis is de�ned as a mostly standard small-step operational semantis. The blok

table BT is aessed when information about a given OO delaration is required in the evaluation of an

expression. In addition, several side judgments are neessary to express the funtion-ase lookup semantis.

The metavariable e ranges over environments, whih are �nite funtions from identi�ers to values. We use

jDj to denote the length of the sequene D. The notation [I

1

7! E

1

; : : : ; I

k

7! E

k

℄D denotes the expression

resulting from the simultaneous substitution of E

i

for eah ourrene of I

i

in D, for 1 � i � k, and similarly

for [Tn

1

7! T

1

; : : : ;Tn

k

7! T

k

℄D. We use [I 7! v℄D as a shorthand for [I

1

7! v

1

; : : : ; I

k

7! v

k

℄D, where

I = I

1

; : : : ; I

k

and v = v

1

; : : : ; v

k

, and similarly for [Tn 7! T ℄D. In a given inferene rule, fragments enlosed

in <> must either be all present or all absent, and similarly for <<>>. We sometimes treat sequenes

as if they were sets. For example, Ood 2 Ood means that Ood is one of the delarations in Ood. We use

Ood 2 BT(Bn) as shorthand for BT(Bn) = blok Bn = blk extends Bn Ood end and Ood 2 Ood.

2.2 Expressions

E �! E

0

Ct = (T C) onrete(C) rep(Ct(E

0

)) = fV = E

1

g

Ct(E

0

) �! Ct fV = E

1

g

E-New

E �! E

0

Ct fV

0

= E

0

; V = E; V

1

= E

1

g �! Ct fV

0

= E

0

; V = E

0

; V

1

= E

1

g

E-Rep

E �! E

0

(E

0

; E;E

1

) �! (E

0

; E

0

; E

1

)

E-Tup

E

1

�! E

0

1

E

1

E

2

�! E

0

1

E

2

E-App1

E

2

�! E

0

2

E

1

E

2

�! E

1

E

0

2

E-App2

most-spei�-ase-for(Fv; v) = (f(I; v)g; E)

Fv v �! [I 7! v℄E

E-AppRed

Rule E-AppRed: The notation (I; v) abbreviates (I

1

; v

1

); : : : ; (I

k

; v

k

).

2.3 Funtion Appliation

These auxiliary judgments are used to speify the funtion-ase lookup semantis. Some of these judgments

are used by the stati semantis as well.

most-spei�-ase-for (Fv; v) = (e; E)

(extend fun

Mn

Tn F Pat = E) 2 BT(Bn) math(v;Pat) = e

8Bn

0

2 dom(BT):8(extend fun

Mn

0

Tn

0

F Pat

0

: : :) 2 BT(Bn

0

):8e

0

:

(math(v;Pat

0

) = e

0

^ Bn:Mn 6= Bn

0

:Mn

0

) Pat � Pat

0

^ Pat

0

6� Pat)

most-spei�-ase-for ((T F); v) = (e; [Tn 7! T ℄E)

Lookup

3

math(v;Pat) = e

math(v;) = fg

E-MathWild

math(v;Pat) = e

math(v; I as Pat) = e [f(I; v)g

E-MathBind

C � C

0

math(v;Pat) = e

math(T C fV = v; V

1

= v

1

g; C

0

fV = Patg) =

[

e

E-MathClass

Rule E-MathClass: The notation math(v;Pat) = e abbreviates math(v

1

;Pat

1

) = e

1

� � �math(v

k

;Pat

k

) =

e

k

.

math(v;Pat) = e

math((v); (Pat)) =

[

e

E-MathTup

Pat � Pat

0

Pat �

SpeWild

Pat

1

� Pat

2

I as Pat

1

� Pat

2

SpeBind1

Pat

1

� Pat

2

Pat

1

� I as Pat

2

SpeBind2

C � C

0

Pat

1

� Pat

2

C fV = Pat

1

; V

3

= Pat

3

g � C

0

fV = Pat

2

g

SpeClass

Rule SpeClass: The notation Pat � Pat

0

abbreviates Pat

1

� Pat

0

1

� � � Pat

k

� Pat

0

k

.

Pat

1

� Pat

2

(Pat

1

) � (Pat

2

)

SpeTup

C � C

0

C � C

SubRef

C

1

� C

2

C

2

� C

3

C

1

� C

3

SubTrans

(<abstrat> lass (Tn Cn)(I

1

: T

1

) extends (T C) : : :) 2 BT(Bn)

Bn:Cn � C

SubExt

4

2.4 Auxiliary Judgments

onrete(C)

(lass Tn Cn : : :) 2 BT(Bn)

onrete(Bn:Cn)

Conrete

rep(Ct(E

0

)) = fV = Eg

(<<abstrat>> lass Tn Cn(I : T

1

) <extends Ct(E

0

) >of fVn : T

2

= E

2

g) 2 BT(Bn)

< rep(Ct(E

0

)) = fV = E

1

g >

rep((T Bn:Cn)(E)) = [I 7! E℄[Tn 7! T ℄f< V = E

1

; > Bn:Vn = E

2

g

Rep

Rule Rep: The notation Bn:Vn = E abbreviates Bn:Vn

1

= E

1

; : : : ;Bn:Vn

k

= E

k

.

3 Stati Semantis

3.1 Preliminaries

� is a type environment, mapping identi�ers to types. The metavariable Tm ranges over both types and

marked types. The notation

^

Mt denotes the type T equivalent to Mt, but with the # mark removed.

3.2 Bloks

B OK

Bn ` Ood OK in Bn

blok Bn = blk extends Bn Ood end OK

BlokOK

RuleBlokOK: The notation Bn ` Ood OK in Bn abbreviatesBn ` Ood

1

OK in Bn � � � Bn ` Ood

k

OK in Bn.

3.3 OO Delarations

Bn ` Ood OK in Bn

< Ct = Tn Bn:Cn > < �;Tn ` Ct(E) OK >

Tn ` T OK Tn ` T

0

OK � = f(I; T)g �;Tn ` E

0

: T

1

T

1

� T

0

Bn ` Bn:Cn transExtended onrete(Bn:Cn)) Bn ` funs-have-ldefault-for Bn:Cn

Bn ` <<abstrat>> lass Tn Cn(I : T) <extends Ct(E) > of fVn : T

0

= E

0

g OK in Bn

ClassOK

Rule ClassOK: The notation Tn ` T OK abbreviates Tn ` T

1

OK � � � Tn ` T

k

OK. The notation (I; T)

abbreviates (I

1

; T

1

); : : : ; (I

k

; T

k

). The notation �;Tn ` E : T abbreviates �;Tn ` E

1

: T

1

� � � �;Tn ` E

k

: T

k

.

The notation T

1

� T

0

abbreviates T

11

� T

01

� � � T

1k

� T

0k

.

Tn `

^

Mt OK Tn ` T OK CP(Bn:Fn) = Bn

0

:Cn Bn = Bn

0

_ Bn ` Bn:Fn has-gdefault

Bn ` fun Tn Fn : Mt! T OK in Bn

FunOK

5

(fun Tn

0

Fn : Mt! T) 2 BT(Bn

0

)

mathType([Tn

0

7! Tn℄

^

Mt;Pat) = (�; T

0

) �;Tn ` E : T

0

T

0

� [Tn

0

7! Tn℄T

Bn ` Bn

0

:Fn extended Bn;Bn ` extend fun

Mn

Tn Bn

0

:Fn Pat = E unambiguous

Bn ` extend fun

Mn

Tn Bn

0

:Fn Pat = E OK in Bn

CaseOK

3.4 Types

Tn ` T OK

Tn 2 Tn

Tn ` Tn OK

TVarOK

(<abstrat> lass Tn

0

Cn : : :) 2 BT(Bn) Tn ` T OK jTn

0

j = jT j

Tn ` T Bn:Cn OK

ClassTypeOK

Tn ` T

1

OK Tn ` T

2

OK

Tn ` T

1

! T

2

OK

FunTypeOK

Tn ` T

1

OK � � � Tn ` T

k

OK

Tn ` T

1

� � � � � T

k

OK

TupTypeOK

3.5 Subtyping

T � T

0

T � T

SubTRef

T

1

� T

2

T

2

� T

3

T

1

� T

3

SubTTrans

(<abstrat> lass Tn Cn(I

1

: T

1

) extends Ct : : :) 2 BT(Bn)

T Bn:Cn � [Tn 7! T ℄Ct

SubTExt

T

0

1

� T

1

T

2

� T

0

2

T

1

! T

2

� T

0

1

! T

0

2

SubTFun

T

1

� T

0

1

� � � T

k

� T

0

k

T

1

� � � � � T

k

� T

0

1

� � � � � T

0

k

SubTTup

6

3.6 Patterns

mathType(T;Pat) = (�; T

0

)

mathType(T;) = (fg; T)

T-MathWild

mathType(T;Pat) = (�; T

0

)

mathType(T; I as Pat) = (� [f(I; T

0

)g; T

0

)

T-MathBind

C � C

0

repType(T C) = fV : T

0

g mathType(T

0

;Pat) = (�; T

1

)

mathType((T C

0

); C fV = Patg) = (

[

�; (T C))

T-MathClass

Rule T-MathClass: The notation mathType(T

0

;Pat) = (�; T

1

) abbreviates mathType(T

1

;Pat

1

) =

(�

1

; T

0

1

) � � � mathType(T

k

;Pat

k

) = (�

k

; T

0

k

).

mathType(T

1

;Pat

1

) = (�

1

; T

0

1

) � � � mathType(T

k

;Pat

k

) = (�

k

; T

0

k

)

mathType(T

1

� � � � � T

k

; (Pat

1

; : : : ;Pat

k

)) = (�

1

[: : : [�

k

; T

0

1

� � � � � T

0

k

)

T-MathTup

3.7 Expressions

�;Tn ` E : T

(I; T) 2 �

�;Tn ` I : T

T-Id

(fun Tn

0

Fn : Mt! T) 2 BT(Bn) Tn ` T

0

OK

�;Tn ` T

0

Bn:Fn : [Tn

0

7! T

0

℄(

^

Mt! T)

T-Fun

�;Tn ` E

1

: T

2

! T �;Tn ` E

2

: T

0

2

T

0

2

� T

2

�;Tn ` E

1

E

2

: T

T-App

�;Tn ` Ct(E) OK Ct = (T C) onrete(C)

�;Tn ` Ct(E) : Ct

T-New

�;Tn ` E

1

: T

1

� � � �;Tn ` E

k

: T

k

�;Tn ` (E

1

; : : : ; E

k

) : T

1

� � � � � T

k

T-Tup

Tn ` Ct OK

Ct = (T

0

C) onrete(C) repType(Ct) = fV : Tg �;Tn ` E : T

1

T

1

� T

�;Tn ` Ct fV = Eg : Ct

T-Rep

7

3.8 Construtor Calls

�;Tn ` Ct(E) OK

Tn ` Ct OK Ct = (T

0

Bn:Cn)

(<abstrat> lass Tn

0

Cn(I : T) : : :) 2 BT(Bn) �;Tn ` E : T

1

T

1

� [Tn

0

7! T

0

℄T

�;Tn ` Ct(E) OK

T-Super

3.9 Class Representation Types

repType(Ct) = fV : Tg

(<<abstrat>> lass Tn Cn(I : T

1

) <extends Ct(E

0

) > of fVn : T

2

= E

2

g) 2 BT(Bn)

< repType(Ct) = fV : T

3

g >

repType(T Bn:Cn) = [Tn 7! T ℄f< V : T

3

; > Bn:Vn : T

2

g

RepType

Rule RepType: The notation Bn:Vn : T abbreviates Bn:Vn

1

: T

1

; : : : ;Bn:Vn

k

: T

k

.

3.10 Completeness Cheking

3.10.1 Cheking for Loal and Global Default Cases

Bn ` funs-have-ldefault-for C

8F;C

0

:[(Bn ` F extended ^ CP(F) = C

0

^ C � C

0

)) Bn ` F has-default-for C℄

Bn ` funs-have-ldefault-for C

LDefault

Bn ` F has-gdefault

CP(F) = C Bn ` F has-default-for C

Bn ` F has-gdefault

GDefault

Bn ` F has-default-for C

(fun Tn Fn : Mt! T) 2 BT(Bn) defaultPat(Mt; C) = Pat

(extend fun

Mn

Tn

0

Bn:Fn Pat

0

= E) 2 BT(Bn

0

) Pat � Pat

0

Bn

0

2 Bn

Bn ` Bn:Fn has-default-for C

Default

3.10.2 Generating the Default Pattern

defaultPat(Mt; C) = Pat

defaultPat(Mt; C; d) = Pat

defaultPat(Mt; C) = Pat

DefPat

Rule DefPat: The metavariable d ranges over nonnegative integers. It represents the \depth" of the

resulting default pattern. For example, a default pattern of depth 0 is simply the wildard, while a default

pattern of depth 1 for a lass type has the form C . The higher the depth, the more preise the hek

8

for loal/global defaults is. This type system does not ompute the best depth to use, instead hoosing it

non-deterministially. It is straightforward to �nd the appropriately preise depth | it is the maximum

depth of any pattern in an available ase of the funtion being heked.

defaultPat(Tm; C; d) = Pat

The metavariable Tm ranges over both types and marked types.

defaultPat(Tm; C; 0) =

DefZero

d > 0

defaultPat(Tn; C; d) =

DefTypeVar

repType(T C

0

) = fV : T

0

g defaultPat(T

0

; C; d � 1) = Pat d > 0

defaultPat((T C

0

); C; d) = (C

0

fV = Patg)

DefClassType

Rule DefClassType: The notation defaultPat(T

0

; C; d� 1) = Pat abbreviates defaultPat(T

1

; C; d� 1) =

Pat

1

� � � defaultPat(T

k

; C; d� 1) = Pat

k

.

repType(T C) = fV : T

0

g defaultPat(T

0

; C; d� 1) = Pat d > 0

defaultPat(#(T C

0

); C; d) = (C fV = Patg)

DefCPClassType

defaultPat(Tm

1

; C; d� 1) = Pat

1

� � � defaultPat(Tm

k

; C; d� 1) = Pat

k

d > 0

defaultPat(Tm

1

� : : : � Tm

k

; C; d) = (Pat

1

; : : : ;Pat

k

)

DefTupType

d > 0

defaultPat(T

1

! T

2

; C; d) =

DefFunType

3.11 Ambiguity Cheking

3.11.1 The Top-Level Rule

Bn;Bn ` extend fun : : : unambiguous

Bn ` extend fun

Mn

Tn Bn

0

:Fn Pat = E unambiguous in Bn

(fun Tn

0

Fn : Mt! T) 2 BT(Bn

0

) CP(Mt;Pat) = Bn

00

:Cn Bn = Bn

0

_ Bn = Bn

00

Bn;Bn ` extend fun

Mn

Tn Bn

0

:Fn Pat = E unambiguous

Amb

9

3.11.2 Ambiguity With Available Cases

Bn ` extend fun : : : unambiguous in Bn

8Bn

0

2 Bn:8(extend fun

Mn

0

Tn

1

F Pat

0

= E

0

) 2 BT(Bn

0

):

8Pat

0

:[(Pat \ Pat

0

= Pat

0

^ Bn:Mn 6= Bn

0

:Mn

0

))

9Bn

00

2 Bn:9(extend fun

Mn

00

Tn

2

F Pat

00

= E

00

) 2 BT(Bn

00

):

(Pat

0

� Pat

00

^ Pat

00

� Pat ^ Pat

00

� Pat

0

^ (Pat 6� Pat

00

_ Pat

0

6� Pat

00

))℄

Bn ` extend fun

Mn

Tn F Pat = E unambiguous in Bn

BlAmb

Rule BlAmb: This rule ensures that a funtion ase is not ambiguous with any other funtion ases delared

in Bn: for eah suh ase that has a non-empty intersetion with the urrent ase's pattern, there must exist

a resolving ase. The resolving ase must over the intersetion, be at least as spei� as the other two ases,

and be stritly more spei� than one of them.

3.11.3 Pattern Intersetion

Pat

1

\ Pat

2

= Pat

\ Pat = Pat

PatIntWild

Pat

1

\ Pat

2

= Pat

I as Pat

1

\ Pat

2

= Pat

PatIntBind

C � C

0

Pat

1

\ Pat

2

= Pat

C fV = Pat

1

; V

3

= Pat

3

g \ C

0

fV = Pat

2

g = C fV = Pat; V

3

= Pat

3

g

PatIntClass

Rule PatIntClass: The notation Pat

1

\Pat

2

= Pat abbreviates Pat

0

1

\Pat

00

1

= Pat

1

� � � Pat

0

k

\Pat

00

k

= Pat

k

.

Pat

1

\ Pat

2

= Pat

(Pat

1

) \ (Pat

2

) = (Pat)

PatIntTup

Pat

2

\ Pat

1

= Pat

Pat

1

\ Pat

2

= Pat

PatIntRev

3.12 Blok Extension

Bn ` Bn:Cn transExtended

(<<abstrat>> lass (Tn Cn)(I : T)<extends (T

0

C)(E) > : : :) 2 BT(Bn)

Bn 2 Bn < Bn ` C transExtended >

Bn ` Bn:Cn transExtended

ClassTransExt

Bn ` F extended

Bn 2 Bn

Bn ` Bn:Fn extended

FunExt

10

3.13 Aessing the CP

3.13.1 The CP of a Funtion's Argument Type

CP(F) = C

(fun Tn Fn : Mt! T) 2 BT(Bn) CP(Mt) = C

CP(Bn:Fn) = C

CPFun

CP(Mt) = C

CP(# T C) = C

CPClass

CP(Mt) = C

CP(T

1

� � � � � T

i�1

�Mt � T

i+1

� � � � � T

k

) = C

CPTup

3.13.2 The CP of a Pattern

CP(Mt;Pat) = C

CP(Mt;Pat) = C

CP(Mt; I as Pat) = C

CPBindPat

CP(Mt;Pat

i

) = C

CP(T

1

� � � � � T

i�1

�Mt � T

i+1

� � � � � T

k

; (Pat

1

; : : : ;Pat

k

)) = C

CPTupPat

CP(#Ct; C fV = Patg) = C

CPClassPat

3.13.3 The CP of a Value

CP(Mt; v) = C

These rules are used only in the proof of progress.

CP(Mt; v

i

) = C

CP(T

1

� � � � � T

i�1

�Mt � T

i+1

� � � � � T

k

; (v

1

; : : : ; v

k

)) = C

CPTupVal

CP(#Ct; (T C) fV = vg) = C

CPInstane

11

4 Subjet Redution

4.1 Shared Preliminaries and Lemmas

These preliminaries and lemmas are also used in the progress proof in setion 5.

As in the inferene rules, we assume a global blok table BT. We further assume that for eah Bn 2

dom(BT) we have BT(Bn) OK. The empty sequene is denoted �. The notation ` E : T is shorthand for

fg; � ` E : T .

Lemma 4.1 If Tn ` T OK, then all type variables in T are in Tn.

Proof By (strong) indution on the depth of the derivation of Tn ` T OK. Case analysis on the last rule

used in the derivation. For TVarOK, T has the form Tn and the premise ensures that Tn 2 Tn. All other

ases are easily proven by indution.

Lemma 4.2 If Tn ` T OK and jTnj = jT j and Tn

0

` T OK, then Tn

0

` [Tn 7! T ℄T OK.

Proof By (strong) indution on the depth of the derivation of Tn ` T OK. Case analysis on the last rule

used in the derivation. For TVarOK, T has the form Tn and the premise ensures that Tn 2 Tn. Therefore

[Tn 7! T ℄T is some T

0

in T . By assumption Tn

0

` T

0

OK so the result follows. All other ases are easily

proven by indution.

Lemma 4.3 If (T C) � T , then T has the form (T

1

C

0

).

Proof By (strong) indution on the depth of the derivation of (T C) � T . Case analysis of the last rule

used in the derivation.

� Case SubTRef. Then T = (T C).

� Case SubTTrans. Then (T C) � T

0

and T

0

� T . By indution T

0

has the form (T

2

C

00

). Then by

indution again, T has the form (T

1

C

0

).

� Case SubTExt. Then T has the form [Tn 7! T ℄Ct, whih is also of the form (T

1

C

0

).

Lemma 4.4 If (T C) � (T

1

C

0

), then T = T

1

.

Proof By (strong) indution on the depth of the derivation of (T C) � (T

1

C

0

). Case analysis of the last

rule used in the derivation.

� Case SubTRef. Then (T C) = (T

1

C

0

), so T = T

1

.

� Case SubTTrans. Then (T C) � T and T � (T

1

C

0

). By Lemma 4.3, T has the form (T

2

C

00

). Then

by indution we have T = T

2

and T

2

= T

1

, so T = T

1

.

� Case SubTExt. Then C = Bn:Cn and (T

1

C

0

) = [Tn 7! T ℄(T

2

C

0

) and (<abstrat> lass Tn

Cn(I

1

: T

1

; : : : ; I

m

: T

m

) extends (T

2

C

0

) : : :) 2 BT(Bn). By ClassOK, we have T

2

= Tn. Therefore

(T

1

C

0

) = [Tn 7! T ℄(Tn C

0

) = (T C

0

). Therefore T = T

1

.

Lemma 4.5 If (T C) � (T

1

C

0

) then C � C

0

.

Proof By (strong) indution on the depth of the derivation of (T C) � (T

1

C

0

). Case analysis of the last

rule used in the derivation.

� Case SubTRef. Then (T C) = (T

1

C

0

), so C = C

0

. Then the result holds by SubRef.

� Case SubTTrans. Then (T C) � T and T � (T

1

C

0

). By Lemma 4.3 T has the form (T

2

C

00

). Then

by indution we have that C � C

00

and C

00

� C

0

. Therefore the result follows by SubTrans.

12

� Case SubTExt. Then C = Bn:Cn and (<abstrat> lass Tn Cn(I

0

: T

0

) extends (T

2

C

0

) : : :)

2 BT(Bn). Then the result follows by SubExt.

Lemma 4.6 If T � T

1

� � � � �T

k

, then T has the form T

0

1

� � � � �T

0

k

, where for all 1 � i � k we have T

0

i

� T

i

.

Proof By (strong) indution on the depth of the derivation of T � T

1

� � � � � T

k

. Case analysis of the last

rule used in the derivation.

� Case SubTRef. Then T = T

1

� � � � � T

k

. By SubTRef, for all 1 � i � k we have T

i

� T

i

, so the result

follows.

� Case SubTTrans. Then T � T

0

and T

0

� T

1

� � � � � T

k

. By indution T

0

has the form T

00

1

� � � � � T

00

k

,

where for all 1 � i � k we have T

00

i

� T

i

. Then by indution again, T has the form T

0

1

� � � � � T

0

k

, where

for all 1 � i � k we have T

0

i

� T

00

i

. Then by SubTTrans, for all 1 � i � k we have T

0

i

� T

i

.

� Case SubTTup. Then T has the form T

0

1

� � � � � T

0

k

, where for all 1 � i � k we have T

0

i

� T

i

.

Lemma 4.7 If Bn:Cn � Bn

0

:Cn

0

and Tn

0

` (T Bn:Cn) OK then (1) (T Bn:Cn) � (T Bn

0

:Cn

0

); and (2)

Tn

0

` (T Bn

0

:Cn

0

) OK.

Proof By (strong) indution on the depth of the derivation of Bn:Cn � Bn

0

:Cn

0

. Case analysis of the last

rule used in the derivation.

� Case SubRef. Then Bn

0

:Cn

0

= Bn:Cn. Then ondition 1 follows from SubTRef, and ondition 2

follows by assumption.

� Case SubTrans. Then Bn:Cn � Bn

00

:Cn

00

and Bn

00

:Cn

00

� Bn

0

:Cn

0

. By indution we have (T Bn:Cn) �

(T Bn

00

:Cn

00

) and Tn

0

` (T Bn

00

:Cn

00

) OK. Then by indution again we have (T Bn

00

:Cn

00

) � (T Bn

0

:Cn

0

)

and Tn

0

` (T Bn

0

:Cn

0

) OK. Therefore ondition 2 is shown, and ondition 1 follows from SubTTrans.

� Case SubExt. Then (<abstrat> lass Tn Cn(I

0

: T

0

) extends (T

0

Bn

0

:Cn

0

)(E) : : :) 2 BT(Bn).

Then by ClassOK we have T

0

= Tn. Sine Tn

0

` (T Bn:Cn) OK, by ClassTypeOK we have jTnj =

jT j and Tn

0

` T OK. Therefore by SubTExt we have (T Bn:Cn) � [Tn 7! T ℄(Tn Bn

0

:Cn

0

). Sine

[Tn 7! T ℄(Tn Bn

0

:Cn

0

) = (T Bn

0

:Cn

0

), ondition 1 is shown. Also byClassOK Tn ` (Tn Bn

0

:Cn

0

)(E) OK,

so by T-Super we have have Tn ` (Tn Bn

0

:Cn

0

) OK. Therefore by Lemma 4.2 we have Tn

0

`

(T Bn

0

:Cn

0

) OK, so ondition 2 is shown.

Lemma 4.8 If Tn ` Ct OK then repType(Ct) is well-de�ned and has the form fV

0

: T

0

g.

Proof Let Ct = (T Bn:Cn). We prove this lemma by indution on the length of the longest path in

the superlass graph from Bn:Cn (in other words, the number of non-trivial superlasses of Bn:Cn). By

ClassTypeOK we have Tn ` T OK and (<abstrat> lass Tn

0

Cn(I

1

: T

1

) <<extends Ct

0

(E) >> of

fVn : T

2

= E

2

g) 2 BT(Bn) and jTn

0

j = jT j. There are two ases to onsider.

� The length of the longest path in the superlass graph from Bn:Cn is 0. Then Bn:Cn has no non-trivial

superlasses, so the extends lause in the delaration of Bn:Cn is absent. Then by RepType we have

repType(Ct) = [Tn

0

7! T ℄fBn:Vn : T

2

g, so the result follows.

� The length of the longest path in the superlass graph from Bn:Cn is i > 0. Then Bn:Cn has at

least one non-trivial superlass, so the extends lause in the delaration of Bn:Cn is present. Then by

ClassOK we have Tn

0

` Ct

0

(E) OK, so by T-Super we have Tn

0

` Ct

0

OK. Sine Ct

0

must have

the form (T

1

Bn

0

:Cn

0

), where the length of the longest path in the superlass graph from Bn

0

:Cn

0

is

i � 1, by indution we have that repType(Ct

0

) has the form fV

0

: T

0

g. Then by RepType we have

repType(Ct) = [Tn

0

7! T ℄fV

0

: T

0

;Bn:Vn : T

2

g, so the result follows.

13

Lemma 4.9 If Tn ` Ct OK and Ct � Ct

0

, then Tn ` Ct

0

OK.

Proof By (strong) indution on the depth of the derivation of Ct � Ct

0

. Case analysis of the last rule used

in the derivation.

� Case SubTRef. Then Ct = Ct

0

, so the result follows by assumption.

� Case SubTTrans. Then Ct � T and T � Ct

0

. By Lemma 4.3 T has the form Ct

00

. Therefore by

indution we have Tn ` Ct

00

OK, and by indution again we have Tn ` Ct

0

OK.

� Case SubTExt. Then Ct = (T Bn:Cn) and Ct

0

= [Tn

0

7! T ℄Ct

00

and (<abstrat> lass Tn

0

Cn(I

0

: T

0

) extends Ct

00

(E) : : :) 2 BT(Bn). By ClassOK we have Tn

0

` Ct

00

(E) OK, so by T-Super

we have Tn

0

` Ct

00

OK. Sine Tn ` Ct OK, by ClassTypeOK we have Tn ` T OK. Therefore by

Lemma 4.2 we have Tn ` [Tn

0

7! T ℄Ct

00

OK.

Lemma 4.10 If repType(Ct) = fV : Tg and Tn ` Ct OK, then Tn ` T OK.

Proof By indution on the depth of the derivation of repType(Ct) = T . Then by RepType Ct = (T

0

Bn:Cn)

and fV : Tg = [Tn

0

7! T

0

℄f< V

1

: T

1

; > Bn:Vn : T

2

g and (<<abstrat>> lass Tn

0

Cn(I

0

: T

0

) <extends

Ct

0

(E) > of fVn : T

2

= E

2

g) 2 BT(Bn) and < repType(Ct

0

) = fV

1

: T

1

g. By ClassOK we have < Tn

0

`

Ct

0

(E) OK >, so by T-Super we have < Tn

0

` Ct

0

OK >. Then by indution we have have < Tn

0

` T

1

OK.

Also by ClassOK we have Tn

0

` T

2

OK. Sine Tn ` Ct OK, by ClassTypeOK we have that Tn ` T

0

OK.

Therefore by Lemma 4.2 we have < Tn ` [Tn

0

7! T

0

℄T

1

OK > and Tn ` [Tn

0

7! T

0

℄T

2

OK, so the result

follows.

Lemma 4.11 If repType(Ct) = fV : Tg and jTnj = jT j, then repType([Tn 7! T ℄Ct) = [Tn 7! T ℄fV : Tg.

Proof By indution on the depth of the derivation of repType(Ct) = fV : Tg. Then by RepType

Ct = (T

0

Bn:Cn) and fV : Tg = [Tn

0

7! T

0

℄f< V

1

: T

1

; > Bn:Vn : T

2

g and (<<abstrat>> lass Tn

0

Cn(I

4

: T

4

) <extendsCt

0

(E) > of fVn : T

2

= E

2

g) 2 BT(Bn) and< repType(Ct

0

) = fV

1

: T

1

g >. Therefore

by RepType we have repType([Tn 7! T ℄(T

0

Bn:Cn)) = [Tn

0

7! [Tn 7! T ℄T

0

℄f< V

1

: T

1

; > Bn:Vn : T

2

g.

By ClassOK we have < Tn

0

` Ct

0

(E) OK >, so by T-Super we have < Tn

0

` Ct

0

OK >. Then

by Lemma 4.10 we have < Tn

0

` T

1

OK >, so by Lemma 4.1 all type variables T

1

are in Tn

0

. Also

by ClassOK we have Tn

0

` T

2

OK, so by Lemma 4.1 all type variables in T

2

are in Tn

0

. Therefore

[Tn

0

7! [Tn 7! T ℄T

0

℄fV

1

: T

1

;Bn:Vn : T

2

g is equivalent to [Tn 7! T ℄[Tn

0

7! T

0

℄fV

1

: T

1

;Bn:Vn : T

2

g, so the

result follows.

Lemma 4.12 If � ` Ct OK and Ct � Ct

0

then repType(Ct) = fV

1

: T

1

; V

2

: T

2

g and repType(Ct

0

) =

fV

1

: T

1

g.

Proof By indution on the depth of the derivation of Ct � Ct

0

. Case analysis of the last rule used in the

derivation.

� Case SubTRef. Then Ct = Ct

0

. Sine � ` Ct OK, by Lemma 4.8 we have that repType(Ct) is

well-de�ned and has the form fV : Tg. Therefore, repType(Ct

0

) = fV : Tg as well, so the result

follows.

� Case SubTTrans. Then Ct � T and T � Ct

0

. By Lemma 4.3 T has the form Ct

00

. Then by

Lemma 4.9 we have � ` Ct

00

OK and � ` Ct

0

OK. Therefore by indution we have repType(Ct)

= fV

1

: T

1

; V

3

: T

3

; V

4

: T

4

g and repType(Ct

00

) = fV

1

: T

1

; V

3

: T

3

g. By indution again we have

repType(Ct

0

) = fV

1

: T

1

g, so the result is shown.

� Case SubTExt. Then Ct = (T Bn:Cn) and Ct

0

= [Tn 7! T ℄Ct

00

and (<abstrat> lass Tn Cn(I

0

:

T

0

) extends Ct

00

(E) of fVn : T

2

= E

2

g) 2 BT(Bn). Sine � ` Ct OK, by Lemma 4.8 we have that

repType(Ct) is well de�ned and has the form fV

3

: T

3

g. Then by RepType we have fV

3

: T

3

g =

[Tn 7! T ℄fV

1

: T

1

;Bn:Vn : T

2

g and repType(Ct

00

) = fV

1

: T

1

g. Then by Lemma 4.11 we have

repType(Ct

0

) = [Tn 7! T ℄fV

1

: T

1

g, so the result follows.

14

4.2 Simple Lemmas

Lemma 4.13 If T � T

1

! T

2

, then T has the form T

0

1

! T

0

2

, where T

1

� T

0

1

and T

0

2

� T

2

.

Proof By (strong) indution on the depth of the derivation of T � T

1

! T

2

. Case analysis on the last rule

used in the derivation.

� Case SubTRef. Therefore T = T

1

! T

2

, so T

0

1

= T

1

and T

0

2

= T

2

. By SubTRef we have T

1

� T

0

1

and T

0

2

� T

2

.

� Case SubTTrans. Therefore T � T

0

and T

0

� T

1

! T

2

. By indution T

0

has the form T

00

1

! T

00

2

,

where T

1

� T

00

1

and T

00

2

� T

2

. Therefore, again by indution T has the form T

0

1

! T

0

2

, where T

00

1

� T

0

1

and T

0

2

� T

00

2

. By SubTTrans we have T

1

� T

0

1

and T

0

2

� T

2

.

� Case SubTFun. Then T has the form T

0

1

! T

0

2

, where T

1

� T

0

1

and T

0

2

� T

2

.

Lemma 4.14 If rep(Ct(E)) = fV

1

= E

1

g and repType(Ct) = fV

2

: T

2

g then V

1

= V

2

.

Proof By indution on the depth of the derivation of rep(Ct(E)) = fV

1

= E

1

g. By Rep we have Ct =

(T Bn:Cn) and (<<abstrat>> lass Tn Cn(I

0

: T

0

) <extends Ct

0

(E

0

) > of fVn : T

2

= E

2

g) 2 BT(Bn)

and <rep(Ct

0

(E

0

)) = fV

3

= E

3

g > and V

1

is equivalent to < V

3

; > Bn:Vn. Sine repType(Ct) = fV

2

: T

2

g,

by RepType we have <repType(Ct

0

) = fV

4

: T

4

g >, so by indution < V

3

= V

4

>. Then by RepType V

2

is equivalent to < V

3

; > Bn:Vn.

4.3 Type Substitution

Lemma 4.15 If T � T

0

and jTnj = jT j, then [Tn 7! T ℄T � [Tn 7! T ℄T

0

.

Proof By (strong) indution on the depth of the derivation of T � T

0

. Case analysis of the last rule used

in the derivation. The only interesting ase is SubTExt.

� Case SubTExt. Then T has the form T

0

Bn:Cn and T

0

has the form [Tn

0

7! T

0

℄Ct and (<abstrat>

lassTn

0

Cn(I

3

: T

3

) extendsCt(E) : : :) 2 BT(Bn). Then by SubTExtwe have ([Tn 7! T ℄T

0

) Bn:Cn �

[Tn

0

7! [Tn 7! T ℄T

0

℄Ct. Note that ([Tn 7! T ℄T

0

) Bn:Cn is equivalent to [Tn 7! T ℄(T

0

Bn:Cn). Fur-

ther, by ClassOK we have that Tn

0

` Ct(E) OK, so by T-Super also Tn

0

` Ct OK. Therefore,

by Lemma 4.1 all type variables in Ct are in Tn

0

. Therefore we have that [Tn

0

7! [Tn 7! T ℄T

0

℄Ct is

equivalent to [Tn 7! T ℄[Tn

0

7! T

0

℄Ct. Therefore the result follows.

Lemma 4.16 If �;Tn ` E : T and jTnj = jT j and Tn

0

` T OK, then [Tn 7! T ℄�;Tn

0

` [Tn 7! T ℄E :

[Tn 7! T ℄T .

Proof By (strong) indution on the depth of the derivation of �;Tn ` E : T . Case analysis of the last rule

used in the derivation.

� Case T-Id. Then E = I and (I; T) 2 �. Therefore, (I; [Tn 7! T ℄T) 2 [Tn 7! T ℄�. Also, I = [Tn 7!

T ℄I . So by T-Id we have [Tn 7! T ℄�;Tn

0

` [Tn 7! T ℄E : [Tn 7! T ℄T .

� Case T-New. Then E = Ct(E) and T = Ct and Tn ` Ct(E) OK and Ct = (T

1

Bn:Cn) and

onrete(Bn:Cn). By T-Super we have Tn ` Ct OK and (<abstrat> lass Tn

1

Cn(I

0

: T

0

) : : :)

2 BT(Bn) and �;Tn ` E : T

0

0

and T

0

0

� [Tn

1

7! T

1

℄T

0

. By Lemma 4.2 we have Tn

0

` [Tn 7! T ℄Ct OK.

Sine Ct = (T

1

Bn:Cn) we have [Tn 7! T ℄Ct = [Tn 7! T ℄(T

1

Bn:Cn) = ([Tn 7! T ℄T

1

Bn:Cn), whih

is of the form (T

2

Bn:Cn). By indution we have [Tn 7! T ℄�;Tn

0

` [Tn 7! T ℄E : [Tn 7! T ℄T

0

0

. By

Lemma 4.15 we have [Tn 7! T ℄T

0

0

� [Tn 7! T ℄[Tn

1

7! T

1

℄T

0

. By ClassOK we have Tn

1

` T

0

OK, so

by Lemma 4.1 all type variables in eah T

0

are in Tn

1

. Therefore [Tn 7! T ℄[Tn

1

7! T

1

℄T

0

is equivalent

to [Tn

1

7! [Tn 7! T ℄T

1

℄T

0

. Therefore by T-Super we have [Tn 7! T ℄�;Tn

0

` [Tn 7! T ℄E OK, and

the result follows by T-New.

15

� Case T-Rep. Then E = Ct fV = Eg and T = Ct and Tn ` Ct OK and Ct = (T

1

Bn:Cn) and

onrete(Bn:Cn) repType(Ct) = fV

0

: T

0

g and �;Tn ` E : T

0

0

and T

0

0

� T

0

. By Lemma 4.2 we have

Tn

0

` [Tn 7! T ℄Ct OK. Sine Ct = (T

1

Bn:Cn) we have [Tn 7! T ℄Ct = [Tn 7! T ℄(T

1

Bn:Cn) =

([Tn 7! T ℄T

1

Bn:Cn), whih is of the form (T

2

Bn:Cn). By Lemma 4.11 we have repType([Tn 7! T ℄Ct)

= [Tn 7! T ℄fV

0

: T

0

g. By indution we have [Tn 7! T ℄�;Tn

0

` [Tn 7! T ℄E : [Tn 7! T ℄T

0

0

. By

Lemma 4.15 we have [Tn 7! T ℄T

0

0

� [Tn 7! T ℄T

0

. Therefore by T-Rep the result follows.

� Case T-Fun. Then E = T

1

Bn:Fn and T = [Tn

1

7! T

1

℄(

^

Mt ! T

0

) and Tn ` T

1

OK and (fun Tn

1

Fn : Mt ! T

0

) 2 BT(Bn). By Lemma 4.2 we have Tn

0

` [Tn 7! T ℄T

1

OK. Therefore by T-Fun we

have [Tn 7! T ℄�;Tn

0

` [Tn 7! T ℄(T

1

Bn:Fn) : [Tn 7! T ℄[Tn

1

7! T

1

℄(

^

Mt ! T

0

). By FunOK we have

Tn `

^

Mt OK and Tn ` T

0

OK. Therefore by Lemma 4.1 we have that all type variables in

^

Mt and T

0

are in Tn. Therefore, [Tn 7! T ℄[Tn

1

7! T

1

℄(

^

Mt! T

0

) is equivalent to [Tn

1

7! [Tn 7! T ℄T

1

℄(

^

Mt ! T

0

),

so the result follows.

� Case T-Tup. Then E = (E

1

; : : : ; E

k

) and T = T

1

�� � ��T

k

and for all 1 � i � k we have �;Tn ` E

i

: T

i

.

Therefore by indution, for all 1 � i � k we have [Tn 7! T ℄�;Tn

0

` [Tn 7! T ℄E

i

: [Tn 7! T ℄T

i

, and

the result follows by T-Tup.

� Case T-App. Then E = E

1

E

2

and �;Tn ` E

1

: T

2

! T and �;Tn ` E

2

: T

0

2

and T

0

2

� T

2

. By

indution we have [Tn 7! T ℄�;Tn

0

` [Tn 7! T ℄E

1

: [Tn 7! T ℄(T

2

! T) and [Tn 7! T ℄�;Tn

0

` [Tn 7!

T ℄E

2

: [Tn 7! T ℄T

0

2

. By Lemma 4.15 we have [Tn 7! T ℄T

0

2

� [Tn 7! T ℄T

2

, so the result follows by

T-App.

Lemma 4.17 If mathType(T;Pat) = (�; T

0

) and jTnj = jT j, then mathType([Tn 7! T ℄T;Pat) = ([Tn 7!

T ℄�; [Tn 7! T ℄T

0

).

Proof By (strong) indution on the depth of the derivation of mathType(T;Pat) = (�; T

0

). Case analysis

of the last rule used in the derivation.

� Case T-MathWild. Then Pat has the form and � = fg and T

0

= T . Then [Tn 7! T ℄T = [Tn 7!

T ℄T

0

and [Tn 7! T ℄� = fg, so the result follows by T-MathWild.

� CaseT-MathBind. Then Pat has the form I as Pat

0

and � = �

0

[f(I; T

0

)g and mathType(T;Pat

0

) =

(�

0

; T

0

). By indution we have mathType([Tn 7! T ℄T;Pat

0

) = ([Tn 7! T ℄�

0

; [Tn 7! T ℄T

0

). There-

fore by T-MathBind we have mathType([Tn 7! T ℄T; (I as Pat

0

) = [Tn 7! T ℄�

0

[f(I; [Tn 7!

T ℄T

0

)g; [Tn 7! T ℄T

0

). Sine [Tn 7! T ℄�

0

[f(I; [Tn 7! T ℄T

0

)g is equivalent to [Tn 7! T ℄(�

0

[f(I; T

0

)g),

the result follows.

� Case T-MathTup. Then T = T

1

�� � ��T

k

and Pat has the form (Pat

1

; : : : ;Pat

k

) and � = �

1

[: : :[�

k

and T

0

= T

0

1

� � � � � T

0

k

and for all 1 � i � k we have mathType(T

i

;Pat

i

) = (�

i

; T

0

i

). By indution,

for all 1 � i � k we have mathType([Tn 7! T ℄T

i

;Pat

i

) = ([Tn 7! T ℄�

i

; [Tn 7! T ℄T

0

i

). Therefore, the

result follows by T-MathTup.

� Case T-MathClass. Then Pat has the form C fV = Patg and T = (T

1

C

0

) and T

0

= (T

1

C) and

� =

S

� and C � C

0

and repType(T

1

C) = fV : Tg and mathType(T ;Pat) = (�; T

0

). By Lemma 4.11

we have repType([Tn 7! T ℄(T

1

C)) = [Tn 7! T ℄fV : Tg. By indution we have mathType([Tn 7!

T ℄T ;Pat) = ([Tn 7! T ℄�; [Tn 7! T ℄T

0

). Therefore the result follows by T-MathClass.

4.4 Subjet Redution

Lemma 4.18 If ` v : T

00

and T

00

� T and math(v;Pat) = e and mathType(T;Pat) = (�; T

0

), then (1)

T

00

� T

0

; and (2) dom(�) = dom(e) and for eah (I

0

; T

0

) 2 �, there exists (I

0

; v

0

) 2 e suh that ` v

0

: T

0

0

,

16

where T

0

0

� T

0

.

Proof By (strong) indution on the length of the derivation of math(v;Pat) = e. Case analysis of the last

rule used in the derivation:

� Case E-MathWild. Then Pat has the form and e = fg. By T-MathWild we have � = fg

and T

0

= T . Therefore, ondition 1 follows from the assumption that T

00

� T , and ondition 2 holds

vauously.

� Case E-MathBind. Then Pat has the form I as Pat

0

and e = e

0

[f(I; v)g and math(v;Pat

0

) = e

0

.

By T-MathBind we have � = �

0

[f(I; T

0

)g and mathType(T;Pat

0

) = (�

0

; T

0

). By indution we

have that T

00

� T

0

and dom(�

0

) = dom(e

0

) and for eah (I

0

; T

0

) 2 �

0

, there exists (I

0

; v

0

) 2 e

0

suh

that ` v

0

: T

0

0

, where T

0

0

� T

0

. Therefore, we have T

00

� T

0

and dom(�

0

[f(I; T

0

)g) = dom(e

0

[f(I; v)g)

and for eah (I

0

; T

0

) 2 �

0

[f(I; T

0

)g, there exists (I

0

; v

0

) 2 e

0

[f(I; v)g suh that ` v

0

: T

0

0

, where

T

0

0

� T

0

.

� Case E-MathTup. Then v = (v

1

; : : : ; v

k

) and Pat has the form (Pat

1

; : : : ;Pat

k

) and e = e

1

[� � �[e

k

and for all 1 � i � k we have math(v

i

;Pat

i

) = e

i

. By T-MathTup we have T = T

1

� � � � � T

k

and

� = �

1

[: : : [�

k

and T

0

= T

0

1

� � � � T

0

k

and for all 1 � i � k we have math(T

i

;Pat

i

) = (�

i

; T

0

i

).

Sine we're given that ` v : T

00

, by T-Tup we have that T

00

= T

00

1

�� � ��T

00

k

and for all 1 � i � k we have

` v

i

: T

00

i

. Sine we're given that T

00

� T , by Lemma 4.6 we have T

00

i

� T

i

for all 1 � i � k. Then by

indution, for all 1 � i � k we have T

00

i

� T

0

i

. Then by SubTTup we have T

00

1

� � � � �T

00

k

� T

0

1

� : : : � T

0

k

,

proving ondition 1. Also by indution, dom(�

i

) = dom(e

i

) and for eah (I

0

; T

0

) 2 �

i

, there exists

(I

0

; v

0

) 2 e

i

suh that ` v

0

: T

0

0

, where T

0

0

� T

0

, so ondition 2 follows.

� Case E-MathClass. Then v = ((T C) fV

1

= v

1

; V

2

= v

2

g) and Pat has the form (C

0

fV

1

= Pat

1

)

and C � C

0

and e =

S

e

1

and math(v

1

;Pat

1

) = e

1

. By T-MathClass we have T = (T

0

C

00

) and

T

0

= (T

0

C

0

) and �

S

�

1

and C

0

� C

00

and repType(T

0

C

0

) = fV

1

: T

1

g and mathType(T

1

;Pat

1

) =

(�

1

; T

0

1

).

Sine ` v : T

00

and v = ((T C) fV

1

= v

1

; V

2

= v

2

g), by T-Rep we have that T

00

= (T C) and

� ` (T C) OK and and repType(T C) = fV

1

: T

00

1

; V

2

: T

00

2

g and ` v

1

: T

000

1

and T

000

1

� T

00

1

. Sine

T

00

� T , we have (T C) � (T

1

C

00

), so by Lemma 4.4 we have T = T

1

. Sine C � C

0

and � `

(T C) OK, by Lemma 4.7 we have (T C) � (T C

0

), and sine T = T

1

, ondition 1 is shown. By

Lemma 4.12 we have T

00

1

= T

1

. Therefore ` v

1

: T

000

1

and T

000

1

� T

1

and math(v

1

;Pat

1

) = e

1

and

mathType(T

1

;Pat

1

) = (�

1

; T

0

1

), so by indution we have that T

000

1

� T

0

1

and dom(

S

�

1

) = dom(

S

e

1

)

and for eah (I

0

; T

0

) 2

S

�

1

, there exists (I

0

; v

0

) 2

S

e

1

suh that ` v

0

: T

0

0

, where T

0

0

� T

0

.

Lemma 4.19 (Substitution) If �;Tn

0

` E : T and � = f(I

0

; T

0

)g and �

0

;Tn

0

` E

0

: T

0

0

and T

0

0

� T

0

, then

�

0

;Tn

0

` [I

0

7! E

0

℄E : T

0

and T

0

� T .

Proof By (strong) indution on the depth of the derivation of �;Tn

0

` E : T . Case analysis of the last rule

used in the derivation.

� Case T-Id. Then E = I and (I; T) 2 �, so I = I

j

and T = T

j

, for some 1 � j � k, where

I

0

= I

1

; : : : ; I

k

and T

0

= T

1

; : : : ; T

k

and E

0

= E

1

; : : : ; E

k

. Therefore [I

0

7! E

0

℄E = E

j

. Sine we're

given that �

0

;Tn

0

` E

j

: T

0

j

and T

0

j

� T

j

, the result is shown.

� Case T-New. Then E = Ct(E) and T = Ct and Tn

0

` Ct(E) OK and Ct = (T

1

Bn:Cn) and

onrete(Bn:Cn). Then by T-Super we have Tn

0

` Ct OK and (<abstrat> lass Tn

1

Cn(I : T)

: : :) 2 BT(Bn) and �;Tn

0

` E : T

0

and T

0

� [Tn

1

7! T

1

℄T . Sine [I

0

7! E

0

℄Ct = Ct and [I

0

7!

E

0

℄Bn:Cn = Bn:Cn, we have Tn

0

` [I

0

7! E

0

℄Ct OK and onrete([I

0

7! E

0

℄Bn:Cn). By indution we

have �

0

;Tn

0

` [I

0

7! E

0

℄E : T

00

and T

00

� T

0

. Then by SubTTrans we have T

00

� [Tn

1

7! T

1

℄T

0

.

17

Therefore by T-Super we have �

0

;Tn

0

` [I

0

7! E

0

℄E OK, so by T-New we have �

0

;Tn

0

` [I

0

7!

E

0

℄E : T . By SubTRef we have T � T , so the result is shown.

� Case T-Rep. Then E = Ct fV = Eg and T = Ct and Tn

0

` Ct OK and Ct = (T

1

Bn:Cn) and

onrete(Bn:Cn) and repType(Ct) = fV : Tg and �;Tn

0

` E : T

0

and T

0

� T . Sine [I

0

7! E

0

℄Ct = Ct

and [I

0

7! E

0

℄Bn:Cn = Bn:Cn, we have Tn

0

` [I

0

7! E

0

℄Ct OK and onrete([I

0

7! E

0

℄Bn:Cn) and

and repType([I

0

7! E

0

℄Ct) = fV : Tg. By indution we have �

0

;Tn

0

` [I

0

7! E

0

℄E : T

00

and T

00

� T

0

.

Then by SubTTrans we have T

00

� T , so by T-Rep we have �

0

;Tn

0

` [I

0

7! E

0

℄E : T . By SubTRef

we have T � T , so the result is shown.

� Case T-Fun. Then sine � is not used at all in T-Fun and �;Tn

0

` E : T , also �

0

;Tn

0

` E : T .

Further, we have E = Fv, so [I

0

7! E

0

℄E = E. Therefore �

0

;Tn

0

` [I

0

7! E

0

℄E : T , and by SubTRef

T � T , so the result is shown.

� Case T-Tup. Then E = (E

1

; : : : ; E

k

) and T = T

1

� � � � � T

k

and for all 1 � j � k we have �;Tn

0

`

E

j

: T

j

. Then by indution, for all 1 � j � k we have �

0

;Tn

0

` [I

0

7! E

0

℄E

j

: T

0

j

and T

0

j

� T

j

. Then

by T-Tup we have �

0

;Tn

0

` [I

0

7! E

0

℄(E

1

; : : : ; E

k

) : T

0

1

� � � � � T

0

k

. Finally, by SubTTup we have

T

0

1

� � � � � T

0

k

� T

1

� � � � � T

k

.

� Case T-App. Then E = E

1

E

2

and �;Tn

0

` E

1

: T

2

! T and �;Tn

0

` E

2

: T

0

2

and T

0

2

� T

2

.

By indution we have �

0

;Tn

0

` [I

0

7! E

0

℄E

1

: T

0

and T

0

� T

2

! T . Also by indution we have

�

0

;Tn

0

` [I

0

7! E

0

℄E

2

: T

00

2

and T

00

2

� T

0

2

. Then by SubTTrans we have T

00

2

� T

2

. By Lemma 4.13

T

0

has the form T

arg

! T

res

, where T

2

� T

arg

and T

res

� T . Therefore by SubTTrans we have

T

00

2

� T

arg

. Therefore by T-Fun we have �

0

;Tn

0

` [I

0

7! E

0

℄(E

0

1

E

0

2

) : T

res

. We saw above that

T

res

� T , so the result is shown.

Lemma 4.20 If �

0

;Tn

0

` Ct(E) OK and rep(Ct(E)) = fV

0

= E

0

g and repType(Ct) = fV

0

: T

0

g, then

�

0

;Tn

0

` E

0

: T

0

0

and T

0

0

� T

0

.

Proof Sine �

0

;Tn

0

` Ct(E) OK, byT-Super we haveTn

0

` Ct OK and Ct = (T Bn:Cn) and (<abstrat>

lass Tn Cn(I

1

: T

1

) : : :) 2 BT(Bn) and �

0

;Tn

0

` E : T

0

1

and T

0

1

� [Tn 7! T ℄T

1

. Sine Tn

0

` Ct OK, by

ClassTypeOK we have Tn

0

` T OK and jT j = jTnj. We prove the lemma by indution on the depth of

the derivation of rep(Ct(E)) = fV

0

= E

0

g.

By Rep we have (<<abstrat>> lass Tn Cn(I

1

: T

1

) <extends Ct

0

(E

1

) > of fVn : T

2

= E

2

g)

2 BT(Bn) and <rep(Ct

0

(E

1

)) = fV

3

= E

3

g > and fV

0

= E

0

g is equivalent to [I

1

7! E℄[Tn 7! T ℄f<

V

3

= E

3

; > Bn:Vn = E

2

g. Sine repType(Ct) = fV

0

: T

0

g, by RepType and Lemma 4.14 we have that

<repType(Ct

0

) = fV

3

: T

3

g > and fV

0

: T

0

g is equivalent to [Tn 7! T ℄f< V

3

: T

3

; > Bn:Vn : T

2

g.

Let � = f(I

1

; T

1

)g. By ClassOK we have < �;Tn ` Ct

0

(E

1

) OK >. Therefore by indution we have

< �;Tn ` E

3

: T

0

3

> and < T

0

3

� T

3

>. Also by ClassOK we have �;Tn ` E

2

: T

0

2

and T

0

2

� T

2

. Then

by Lemmas 4.16 and 4.15 we have < [Tn 7! T ℄�;Tn

0

` [Tn 7! T ℄E

3

: [Tn 7! T ℄T

0

3

> and < [Tn 7!

T ℄T

0

3

� [Tn 7! T ℄T

3

> and [Tn 7! T ℄�;Tn

0

` [Tn 7! T ℄E

2

: [Tn 7! T ℄T

0

2

and [Tn 7! T ℄T

0

2

� [Tn 7! T ℄T

2

.

Then by Lemma 4.19 we have < �

0

;Tn

0

` [I

1

7! E℄[Tn 7! T ℄E

3

: T

00

3

> and < T

00

3

� [Tn 7! T ℄T

0

3

> and

�

0

;Tn

0

` [I

1

7! E℄[Tn 7! T ℄E

2

: T

00

2

and T

00

2

� [Tn 7! T ℄T

0

2

. By SubTrans we have < T

00

3

� [Tn 7! T ℄T

3

>

and T

00

2

� [Tn 7! T ℄T

2

. Therefore we have shown �

0

;Tn

0

` E

0

: T

0

0

and T

0

0

� T

0

.

Theorem 4.1 (Subjet Redution) If ` E : T and E �! E

0

then ` E

0

: T

0

, for some T

0

suh that T

0

� T .

Proof By (strong) indution on the depth of the derivation of E �! E

0

. Case analysis of the last rule used

in the derivation.

� Case E-New. Then E has the form Ct(E) and E

0

has the form Ct fV

0

= E

0

g and Ct = (T C)

and onrete(C) and rep(Ct(E)) = fV

0

= E

0

g. Sine ` E : T , by T-New we have T = Ct and

18

� ` Ct(E) OK. Then by T-Super we have � ` Ct OK. Therefore by Lemmas 4.8 and 4.14 we have

repType(Ct) = fV

0

: T

0

g. So we have ` Ct(E) OK and rep(Ct(E)) = fV

0

= E

0

g and repType(Ct) =

fV

0

: T

0

g, so by Lemma 4.20 we have ` E

0

: T

0

0

and T

0

0

� T

0

. Then by T-Rep we have ` Ct fV

0

=

E

0

g : Ct, and by SubTRef we have Ct � Ct.

� Case E-Rep. Then E has the form Ct fV

0

= E

0

; V

0

= E

0

; V

1

= E

1

g and E

0

has the form Ct

fV

0

= E

0

; V

0

= E

0

0

; V

1

= E

1

g and E

0

�! E

0

0

. Sine ` E : T , by T-Rep we have T = Ct and � ` Ct OK

and repType(Ct) = fV

0

: T

0

; V

0

: T

0

; V

1

: T

1

g and ` E

0

: T

0

0

and T

0

0

� T

0

and ` E

0

: T

0

0

and T

0

0

� T

0

and

` E

1

: T

0

1

and T

0

1

� T

1

. By indution we have ` E

0

0

: T

00

0

, for some T

00

0

suh that T

00

0

� T

0

0

. Therefore by

SubTTrans we have that T

00

0

� T

0

. Then by T-Rep we have ` Ct fV

0

= E

0

; V

0

= E

0

0

; V

1

= E

1

g : Ct,

and by SubTRef we have Ct � Ct.

� Case E-Tup. Then E has the form (E

1

; : : : ; E

k

) and E

0

has the form (E

1

; : : : ; E

i�1

; E

0

i

; E

i+1

; : : : ; E

k

)

and E

i

�! E

0

i

, where 1 � i � k. Sine ` E : T , by T-Tup we have that T has the form T

1

�� � ��T

k

and

` E

j

: T

j

for all 1 � j � k. Therefore by indution we have ` E

0

i

: T

0

i

for some T

0

i

suh that T

0

i

� T

i

.

Then by T-Tup we have ` (E

1

; : : : ; E

i�1

; E

0

i

; E

i+1

; : : : ; E

k

) : T

1

� � � � �T

i�1

�T

0

i

�T

i+1

� � � � �T

k

. Finally,

by SubTRef we have that T

j

� T

j

for all 1 � j � k, so by SubTTup we have T

1

� � � � � T

i�1

� T

0

i

�

T

i+1

� � � � � T

k

� T

1

� � � � � T

k

.

� Case E-App1. Then E has the form E

1

E

2

and E

0

has the form E

0

1

E

2

and E

1

�! E

0

1

. Sine ` E : T ,

by (T-App) we have ` E

1

: T

2

! T and ` E

2

: T

0

2

and T

0

2

� T

2

. Therefore by indution we have

` E

0

1

: T

0

, for some T

0

suh that T

0

� T

2

! T . By Lemma 4.13 T

0

has the form T

00

2

! T

00

, where

T

2

� T

00

2

and T

00

� T . Therefore by SubTTrans we have T

0

2

� T

00

2

, so by T-App we have ` E

0

1

E

2

: T

00

,

where T

00

� T .

� Case E-App2. Then E has the form E

1

E

2

and E

0

has the form E

1

E

0

2

and E

2

�! E

0

2

. Sine ` E : T ,

by T-App we have ` E

1

: T

2

! T and ` E

2

: T

0

2

and T

0

2

� T

2

. Therefore by indution we have

` E

0

2

: T

00

2

, for some T

00

2

suh that T

00

2

� T

0

2

. By SubTTrans we have T

00

2

� T

2

, so by T-App we have

` E

1

E

0

2

: T , and by SubTRef we have T � T .

� Case E-AppRed. Then E = (T F) v and E

0

= [I

0

7! v

0

℄E

0

and most-spei�-ase-for((T F); v) =

(f(I

0

; v

0

)g; E

0

). Sine ` E : T , by T-App we have ` (T F) : T

2

! T and ` v : T

0

2

and T

0

2

� T

2

. Then

by T-Fun we have and F = Bn:Fn and T

2

! T = [Tn 7! T ℄(

^

Mt ! T

0

) and (fun Tn Fn : Mt ! T

0

)

2 BT(Bn) and � ` T OK. Therefore we have T

2

= [Tn 7! T ℄

^

Mt and T = [Tn 7! T ℄T

0

. By Lookup

we have E

0

= [Tn

0

7! T ℄E

0

0

and (extend fun

Mn

Tn

0

F Pat = E

0

0

) 2 BT(Bn

0

) and math(v;Pat)

= f(I

0

; v

0

)g. Then by CaseOK we have Tn

0

` mathType([Tn 7! Tn

0

℄

^

Mt;Pat) = (�; T

00

) and

�;Tn

0

` E

0

0

: T

0

0

and T

0

0

� [Tn 7! Tn

0

℄T

0

.

By Lemma 4.16 we have [Tn

0

7! T ℄�; � ` [Tn

0

7! T ℄E

0

0

: [Tn

0

7! T ℄T

0

0

. By Lemma 4.15 we have

[Tn

0

7! T ℄T

0

0

� [Tn

0

7! T ℄[Tn 7! Tn

0

℄T

0

. By FunOK we have Tn ` T

0

OK, so by Lemma 4.1 all type

variables in T

0

are in Tn. Therefore [Tn

0

7! T ℄[Tn 7! Tn

0

℄T

0

is equivalent to [Tn 7! T ℄T

0

= T , so we

have [Tn

0

7! T ℄T

0

0

� T .

By Lemma 4.17 we have � `mathType([Tn

0

7! T ℄[Tn 7! Tn

0

℄

^

Mt;Pat) = ([Tn

0

7! T ℄�; [Tn

0

7! T ℄T

00

).

By FunOK we have Tn `

^

Mt OK, so by Lemma 4.1 all type variables in

^

Mt are in Tn. Therefore

[Tn

0

7! T ℄[Tn 7! Tn

0

℄

^

Mt is equivalent to [Tn 7! T ℄

^

Mt = T

2

, so we have � ` mathType(T

2

;Pat) =

([Tn

0

7! T ℄�; [Tn

0

7! T ℄T

00

).

By Lemma 4.18 we have T

0

2

� [Tn

0

7! T ℄T

00

and dom([Tn

0

7! T ℄�) = dom(f(I

0

; v

0

)g) and for eah

(I

x

; T

x

) 2 [Tn

0

7! T ℄�, there exists (I

x

; v

x

) 2 f(I

0

; v

0

)g suh that ` v

x

: T

0

x

, where T

0

x

� T

x

. Then by

Lemma 4.19 we have ` [I

0

7! v

0

℄[Tn

0

7! T ℄E

0

0

: T

sub

and T

sub

� [Tn

0

7! T ℄T

0

0

. We saw above that

19

[Tn

0

7! T ℄T

0

0

� T , so by SubTTrans we have T

sub

� T . Therefore we have shown ` E

0

: T

sub

and

T

sub

� T .

5 Progress

5.1 Preliminaries and Simple Lemmas

We say that S � S

0

, where S is either a set or a sequene and similarly for S

0

, if for every element d suh

that d 2 S, also d 2 S

0

. The notation Pat < Pat

0

is shorthand for Pat � Pat

0

and Pat

0

6� pat.

Lemma 5.1 If T � (T C), then T has the form (T

1

C

0

).

Proof By (strong) indution on the depth of the derivation of T � (T C). Case analysis of the last rule

used in the derivation.

� Case SubTRef. Then T = (T C).

� Case SubTTrans. Then T � T

0

and T

0

� (T C). By indution T

0

has the form (T

2

C

00

). Then by

indution again, T has the form (T

1

C

0

).

� Case SubTExt. Then T has the form (T

1

Bn:Cn), whih is also of the form (T

1

C

0

).

Lemma 5.2 If T

1

! T

2

� T , then T has the form T

0

1

! T

0

2

.

Proof By (strong) indution on the depth of the derivation of T

1

! T

2

� T . Case analysis of the last rule

used in the derivation.

� Case SubTRef. Then T = T

1

! T

2

.

� Case SubTTrans. Then T

1

! T

2

� T

0

and T

0

� T . By indution T

0

has the form T

00

1

! T

00

2

. Then

by indution again, T has the form T

0

1

! T

0

2

.

� Case SubTFun. Then T has the form T

0

1

! T

0

2

.

Lemma 5.3 If T

1

� � � � �T

k

� T , then T has the form T

0

1

� � � � �T

0

k

, where for all 1 � i � k we have T

i

� T

0

i

.

Proof By (strong) indution on the depth of the derivation of T

1

� � � � � T

k

� T . Case analysis of the last

rule used in the derivation.

� Case SubTRef. Then T = T

1

� � � � � T

k

. By SubTRef, for all 1 � i � k we have T

i

� T

i

.

� Case SubTTrans. Then T

1

� � � � � T

k

� T

0

and T

0

� T . By indution T

0

has the form T

00

1

� � � � � T

00

k

,

where for all 1 � i � k we have T

i

� T

00

i

. Then by indution again, T has the form T

0

1

� � � � � T

0

k

, where

for all 1 � i � k we have T

00

i

� T

0

i

. By SubTTrans, for all 1 � i � k we have T

i

� T

0

i

.

� Case SubTTup. Then T has the form T

0

1

� � � � � T

0

k

, where for all 1 � i � k we have T

i

� T

0

i

.

Lemma 5.4 If C

1

� C

2

and C

1

� C

3

, then either C

2

� C

3

or C

3

� C

2

.

Proof By indution on the depth of the derivation of C

1

� C

2

. Case analysis of the last rule used in the

derivation.

� Case SubRef. Then C

1

= C

2

. Sine C

1

� C

3

, also C

2

� C

3

.

� Case SubTrans. Then C

1

� C

4

and C

4

� C

2

. So we have C

1

� C

4

and C

1

� C

3

, and by indution

either C

4

� C

3

or C

3

� C

4

.

20

{ Case C

4

� C

3

. Then we have C

4

� C

2

and C

4

� C

3

, so by indution either C

2

� C

3

or C

3

� C

2

.

{ Case C

3

� C

4

. Then we have C

3

� C

4

and C

4

� C

2

, so by SubTrans C

3

� C

2

.

� Case SubExt. Then C

1

= Bn

1

:Cn

1

and (<abstrat> lass Tn Cn

1

(I

0

: T

0

) extends T C

2

: : :)

2 BT(Bn

1

). Case analysis of the last rule used in the derivation of C

1

� C

3

.

{ Case SubRef. Then C

1

= C

3

. Sine C

1

� C

2

, also C

3

� C

2

.

{ Case SubTrans. Then C

1

� C

4

and C

4

� C

3

. Assume WLOG that the derivation of C

1

� C

4

ends with a use of SubExt. Then (<abstrat> lass Tn Cn

1

(I

0

: T

0

) extends T C

4

: : :)

2 BT(Bn

1

), so C

2

= C

4

. Sine C

4

� C

3

, also C

2

� C

3

.

{ Case SubExt. Then (<abstrat> lass Tn Cn

1

(I

0

: T

0

) extends T C

3

: : :) 2 BT(Bn

1

), so

C

2

= C

3

. Then by SubRef C

2

� C

3

.

Lemma 5.5 If C

1

� C

2

, then there is a path in the delared inheritane graph from C

1

to C

2

.

Proof By indution on the depth of the derivation of C

1

� C

2

. Case analysis of the last rule used in the

derivation.

� Case SubRef. Then C

1

= C

2

, so there is a trivial path in the inheritane graph from C

1

to C

2

.

� Case SubTrans. Then C

1

� C

3

and C

3

� C

2

. By indution, there is a path in the inheritane graph

from C

1

to C

3

and from C

3

to C

2

, so the onatenation of these paths is a path from C

1

to C

2

.

� Case SubExt. Then C

1

= Bn

1

:Cn

1

and <abstrat> lass Tn

1

Cn

1

(I

0

: T

0

) extends T C

2

: : :)

2 BT(Bn

1

). Therefore there is an edge from C

1

to C

2

in the delared inheritane graph, so there is

also a path from C

1

to C

2

.

Lemma 5.6 If C

1

� C

2

and C

2

� C

1

, then C

1

= C

2

.

Proof By Lemma 5.5, there is a path in the delared inheritane graph from C

1

to C

2

and a path from C

2

to C

1

. By assumption, the delared inheritane graph is ayli, so it must be the ase that C

1

= C

2

.

Lemma 5.7 If math(v;Pat) = e and Pat � Pat

0

, then there exists e

0

suh that math(v;Pat

0

) = e

0

.

Proof By indution on the depth of the derivation of Pat � Pat

0

. Case analysis of the last rule used in the

derivation:

� Case SpeWild. Then Pat

0

has the form , so by E-MathWild we have math(v;) = fg.

� Case SpeBind1.: Then Pat has the form (I as Pat

1

) and we have Pat

1

� Pat

0

. Sine we're given

that math(v, I as Pat

1

) = e, by E-MathBind we also have that math(v, Pat

1

) = e � f(I; v)g.

Therefore by indution there exists e

0

suh that math(v;Pat

0

) = e

0

.

� Case SpeBind2.: Then Pat

0

has the form (I as Pat

2

) and we have Pat � Pat

2

. Therefore by indution

we have that there exists e

00

suh that math(v;Pat

2

) = e

00

. Then by E-MathBind we have math(v,

I as Pat

2

) = e

00

[fI; vg.

� Case SpeTup. Then Pat has the form (Pat) and Pat

0

has the form (Pat

0

) and Pat � Pat

0

. Sine

we're given that math(v,(Pat)) = e, by E-MathTup we have that v = (v) and math(v;Pat) = e.

Therefore by indution we have math(v;Pat

0

) = e

0

. Then by E-MathTup we have math((v); (Pat))

=

S

e

0

.

21

� Case SpeClass. Then Pat has the form (C

1

fV = Pat

1

; V

3

= Pat

3

g) and Pat

0

has the form (C

2

fV =

Pat

2

g) and C

1

� C

2

and Pat

1

� pat

2

. Sine we're given that math(v,C

1

fV = Pat

1

; V

3

= Pat

3

g) = e,

by E-MathClass we have that v = ((T C

0

) fV = v; V

3

= v

3

; V

4

= v

4

g) and C

0

� C

1

and math(v,

Pat

1

) = e

1

. Sine C

0

� C

1

and C

1

� C

2

, by SubTrans we have C

0

� C

2

. By indution we have

math(v, Pat

2

) = e

2

. Therefore by E-MathClass we have math((T C

0

) fV = v; V

3

= v

3

; V

4

= v

4

g),

C

2

fV = Pat

2

g) =

S

e

2

.

Lemma 5.8 If Bn ` C transExtended and C � Bn

0

:Cn

0

, then Bn

0

2 Bn.

Proof By indution on the depth of the derivation of C � Bn

0

:Cn

0

. Case analysis of the last rule in the

derivation.

� Case SubRef. Then C = Bn

0

:Cn

0

. Sine we're given that Bn ` C transExtended, byClassTransExt

we have Bn

0

2 Bn.

� Case SubTrans. Then C � Bn

00

:Cn

00

and Bn

00

:Cn

00

� Bn

0

:Cn

0

. Assume WLOG that the derivation

of C � Bn

00

:Cn

00

ends with a use of SubExt. Let C = Bn:Cn. Therefore by SubExt we have

(<abstrat> lass Tn Cn(I

0

: T

0

) extends T

2

Bn

00

:Cn

00

: : :) 2 BT(Bn). Sine we're given that

Bn ` C transExtended, by ClassTransExt we have Bn ` Bn

00

:Cn

00

transExtended. In addition, we

showed above that Bn

00

:Cn

00

� Bn

0

:Cn

0

, so by indution we have Bn

0

2 Bn.

� Case SubExt. Then (<abstrat> lass Tn Cn(I

0

: T

0

) extends T

1

Bn

0

:Cn

0

: : :) 2 BT(Bn). Sine

we're given that Bn ` C transExtended, by ClassTransExt we have Bn ` Bn

0

:Cn

0

transExtended.

Therefore by ClassTransExt we have Bn

0

2 Bn.

Lemma 5.9 If Tn ` Ct OK and Ct = (T Bn:Cn) and (<abstrat> lass Tn

0

Cn(I

0

: T

0

) : : :) 2 BT(Bn)

and jE

0

j = jI

0

j then rep(Ct(E

0

)) is well-de�ned and has the form fV = Eg.

Proof We prove this lemma by indution on the length of the longest path in the superlass graph from

Bn:Cn (in other words, the number of non-trivial superlasses of Bn:Cn). By ClassTypeOK we have

Tn ` T OK and (<<abstrat>> lass Tn

0

Cn(I

0

: T

0

) <extends Ct

0

(E

0

) > of Vn : T

2

= E

2

g) 2 BT(Bn)

and jTn

0

j = jT j. There are two ases to onsider.

� The length of the longest path in the superlass graph from Bn:Cn is 0. Then Bn:Cn has no non-trivial

superlasses, so the extends lause in the delaration of Bn:Cn is absent. Then by Rep we have that

rep(Ct(E

0

)) is well-de�ned and has the form fV = Eg.

� The length of the longest path in the superlass graph from Bn:Cn is i > 0. Then Bn:Cn has at

least one non-trivial superlass, so the extends lause in the delaration of Bn:Cn is present. Then by

ClassOK we have Tn

0

` Ct

0

(E

0

) OK, so by T-Super we have Tn

0

` Ct

0

OK and Ct

0

= (Tn

1

Bn

0

:Cn

0

)

and (<abstrat> lass Tn

0

Cn

0

(I

0

0

: T

0

0

) : : :) 2 BT(Bn

0

) and jI

0

0

j = jE

0

j. Sine Ct

0

must have the

form (T

1

Bn

0

:Cn

0

), where the length of the longest path in the superlass graph from Bn

0

:Cn

0

is i� 1,

by indution we have that rep(Ct

0

(E

0

)) is well-de�ned and has the form fV = Eg. Then by Rep we

have that rep(Ct(E

0

)) is well-de�ned and also has the appropriate form.

5.2 Completeness

These lemmas prove that all funtions are omplete.

Lemma 5.10 If ` v : T

0

and T

0

� T and T = [Tn 7! T ℄T

0

and defaultPat(T

0

; C

0

; d) = Pat, then there

exists e suh that math(v;Pat) = e.

Proof By strong indution on the depth of the derivation of defaultPat(T

0

; C

0

; d) = Pat. Case analysis of

the last rule in the derivation.

22

� Case DefZero or DefTypeVar or DefFunType. Then Pat has the form , so by E-MathWild

we have math(v;) = fg.

� Case DefClassType. Then T

0

has the form (T

0

C) and Pat has the form (C fV = Patg) and

repType(T

0

C) = fV : Tg and defaultPat(T ;C

0

; d � 1) = Pat and d > 0. Sine T = [Tn 7! T ℄T

0

,

by Lemma 4.11 we have repType(T) = [Tn 7! T ℄fV : Tg. Further, T = [Tn 7! T ℄(T

0

C) = ([Tn 7!

T ℄T

0

C). Sine T

0

� T , by Lemma 5.1 T

0

has the form (T

1

C

0

). Sine ` v : T

0

, by T-Rep v has

the form (T

1

C

0

) fV

1

= v

1

g and � ` (T

1

C

0

) OK and repType(T

1

C

0

) = fV

1

: T

1

g and ` v

1

: T

0

1

and

T

0

1

� T

1

.

Sine (T

1

C

0

) � ([Tn 7! T ℄T

0

C), by Lemma 4.5 we have C

0

� C. Further, by Lemma 4.12 we

have that fV

1

: T

1

g = fV : [Tn 7! T ℄T ; V

2

: T

2

g. Therefore there is some pre�x T

3

of T

0

1

suh that

T

3

� [Tn 7! T ℄T . Therefore there is some pre�x v

3

of v

1

suh that ` v

3

: T

3

and T

3

� [Tn 7! T ℄T

and defaultPat(T ;C

0

; d � 1) = Pat. Therefore by indution, math(v

3

;Pat) = e. Therefore by E-

MathClass we have math((T

1

C

0

) fV

1

= v

1

g, (C fV = Patg)) =

S

e.

� Case DefTupType. Then T

0

has the form T

1

� � � � �T

k

and Pat has the form (Pat

1

; : : : ;Pat

k

) and for

all 1 � i � k we have defaultPat(T

i

; C

0

; d�1) = Pat

i

and d > 0. Sine T

0

� [Tn 7! T ℄(T

1

� � � � �T

k

), by

Lemma 4.6 we have that T

0

has the form T

0

1

� � � ��T

0

k

, where for all 1 � i � k we have T

0

i

� [Tn 7! T ℄T

i

.

Sine ` v : T

0

, by T-Tup we have that v has the form (v

1

; : : : ; v

k

) and for all 1 � i � k we have

` v

i

: T

0

i

. Therefore by indution, for all 1 � i � k we have that there exists some e

i

suh that

math(v

i

;Pat

i

) = e

i

. Then by E-MathTup we have math(v;Pat) = e

1

[� � � [e

k

.

Lemma 5.11 If CP(Mt; v) = C

0

and C

0

� C and ` v : T

0

and T

0

� T and T = [Tn 7! T ℄

^

Mt and

defaultPat(Mt; C; d) = Pat, then there exists e suh that math(v;Pat) = e.

Proof By strong indution on the depth of the derivation of defaultPat(Mt; C; d) = Pat. Case analysis of

the last rule in the derivation.

� Case DefZero. Then Pat has the form , so by E-MathWild we have math(v;) = fg.

� Case DefCPClassType. Then Mt has the form #(T

1

C

0

) and Pat has the form (C fV = Patg) and

repType(T

1

C) = fV : Tg and defaultPat(T ;C; d � 1) = Pat and d > 0. By Lemma 4.11 we have

repType([Tn 7! T ℄T

1

C) = [Tn 7! T ℄fV : Tg. Sine CP(#(T

1

C

0

); v) = C

0

, by CPInstane we have

that v is of the form (T

0

C

0

) fV

1

= v

1

g.

Sine we're given that ` v : T

0

, by T-Rep we have that T

0

= (T

0

C

0

) and � ` (T

0

C

0

) OK and

repType(T

0

C

0

) = fV

2

: T

2

g and ` v

1

: T

0

2

and T

0

2

� T

2

. We're given that T

0

� T , so that means

(T

0

C

0

) � ([Tn 7! T ℄T

1

C

0

), and by Lemma 4.4 we have T

0

= [Tn 7! T ℄T

1

. Sine C

0

� C and

� ` (T

0

C

0

) OK, by Lemma 4.7 we have (T

0

C

0

) � (T

0

C). Therefore by Lemma 4.12 we have

fV

2

: T

2

g = fV : [Tn 7! T ℄T ; V

3

: T

3

g.

Therefore there is some pre�x v

3

of v

1

and some pre�x T

3

of T

0

2

suh that ` v

3

: T

3

and T

3

� [Tn 7! T ℄T

and defaultPat(T;C; d � 1) = Pat, so by Lemma 5.10, there exists e suh that math(v

3

;Pat) =

S

e.

Finally, we're given C

0

� C, so by E-MathClass we have math((T

0

C

0

) fV

1

= v

1

g, (C fV = Patg))

=

S

e.

� Case DefTupType. Then Mt has the form T

1

� � � � � T

i�1

�Mt

i

� T

i+1

� � � � � T

k

and Pat has the form

(Pat

1

; : : : ;Pat

k

) and for all 1 � j � k suh that j 6= i we have defaultPat(T

j

; C; d� 1) = Pat

j

and we

have defaultPat(Mt

i

; C; d�1) = Pat

i

. Let T

i

=

^

Mt

i

. Sine T

0

� [Tn 7! T ℄(T

1

� � � � �T

k

), by Lemma 4.6

we have that T

0

has the form T

0

1

� � � � � T

0

k

, where for all 1 � j � k we have T

0

j

� [Tn 7! T ℄T

j

. Sine

` v : T

0

, by T-Tup we have that v has the form (v

1

; : : : ; v

k

) and for all 1 � j � k we have ` v

j

: T

0

j

.

Therefore by Lemma 5.10, for all 1 � j � k suh that j 6= i we have that there exists some e

j

suh

23

that math(v

j

;Pat

j

) = e

j

. We're given that CP(Mt; v) = C

0

, so by CPTupVal we have CP(Mt

i

; v

i

)

= C

0

. Therefore by indution we have that there exists some e

i

suh that math(v

i

;Pat

i

) = e

i

. Then

by E-MathTup we have math(v;Pat) = e

1

[� � � [e

k

.

Lemma 5.12 If ` v : T

0

2

and T

0

2

� T

2

and T

2

= [Tn 7! T ℄

^

Mt and (fun Tn Fn : Mt ! T

0

) 2 BT(Bn) and

CP(Mt; v) = C

0

and C

0

� C and Bn ` Bn:Fn has-default-for C, then there exists some Bn

0

2 Bn, some

(extend fun

Mn

Tn

1

Bn:Fn Pat = E) 2 BT(Bn

0

), and some environment e suh that math(v;Pat) = e.

Proof Sine Bn ` Bn:Fn has-default-for C, by Default we have defaultPat(Mt; C) = Pat

0

and by DefPat

we have defaultPat(Mt; C; d) = Pat

0

. Therefore we have CP(Mt; v) = C

0

and C

0

� C and ` v : T

0

2

and

T

0

2

� T

2

and T

2

= [Tn 7! T ℄

^

Mt and defaultPat(Mt; C; d) = Pat

0

, so by Lemma 5.11 there exists e

0

suh that

math(v;Pat

0

) = e

0

.

Also by Default we have (extend fun

Mn

Tn

1

Bn:Fn Pat = E) 2 BT(Bn

0

) and Pat

0

� Pat and Bn

0

2 Bn.

By Lemma 5.7 there exists e suh that math(v;Pat) = e, so the result follows.

Lemma 5.13 If ` v : T

0

and T

0

� T and T = [Tn 7! T ℄

^

Mt and CP(Mt) = C

0

, then there exists some lass

C suh that CP(Mt; v) = C and onrete(C) and C � C

0

.

Proof By indution on the depth of the derivation of ` v : T

0

. Case analysis of the last rule used in the

derivation.

� CaseT-Rep. Then v has the form (T

0

C) fV = vg and T

0

= (T

0

C) and onrete(C) and repType(T

0

C)

= fV : Tg. Sine T

0

� T , by Lemma 4.3 T has the form (T

1

C

00

). Sine T = [Tn 7! T ℄

^

Mt,

^

Mt has the

form (T

2

C

00

), and by the grammar for marked types Mt must be #(T

2

C

00

). Then by CPInstane

we have CP(#(T

2

C

00

); (T

0

C) fV = vg) = C. We're given T

0

� T , so by Lemma 4.5 we have C � C

00

.

Sine CP(Mt) = C

0

, by CPClass we have C

0

= C

00

, so C � C

0

.

� Case T-Fun. Then v has the form (T

1

F) and T

0

has the form T

1

! T

2

. Therefore by Lemma 5.2 T

has the form T

0

1

! T

0

2

. Sine T = [Tn 7! T ℄

^

Mt,

^

Mt has the form T

00

1

! T

00

2

, but this ontradits the

grammar of marked types. Therefore, T-Fun annot be the last rule in the derivation.

� Case T-Tup: Then v has the form (v

1

; : : : ; v

k

) and T

0

has the form T

0

1

� � � � � T

0

k

and for all 1 � j � k

we have ` v

j

: T

0

j

. Therefore by Lemma 5.3 T has the form T

1

� � � � � T

k

, where for all 1 � j � k we

have T

0

j

� T

j

. Sine T = [Tn 7! T ℄

^

Mt,

^

Mt has the form T

00

1

� � � � � T

00

k

, and by the grammar for marked

types Mt must have the form T

00

1

� � � � � T

00

i�1

�Mt

i

� T

00

i+1

� � � � � T

00

k

, where 1 � i � k and

^

Mt

i

= T

00

i

.

We're given CP(Mt) = C

0

, so by CPTup we have CP(Mt

i

) = C

0

.

Therefore we have ` v

i

: T

0

i

and T

0

i

� T

i

and T

i

= [Tn 7! T ℄

^

Mt

i

and CP(Mt

i

) = C

0

, so by indution

there exists C suh that CP(Mt

i

; v

i

) = C and onrete(C) and C � C

0

. By CPTupVal we have

CP(T

00

1

� � � � � T

00

i�1

�Mt

i

� T

00

i+1

� � � � � T

00

k

; (v

1

; : : : ; v

k

)) = C, so the result follows.

Lemma 5.14 If ` (T F) : T

2

! T and ` v : T

0

2

and T

0

2

� T

2

, then there exists some Bn

0

2 dom(BT), some

(extend fun

Mn

Tn

1

F Pat = E) 2 BT(Bn

0

), and some environment e suh that math(v;Pat) = e.

Proof Sine ` (T F) : T

2

! T , by T-Fun we have F = Bn:Fn and (fun Tn Fn : Mt ! T

0

) 2 BT(Bn)

and jTnj = jT j and T

2

! T = [Tn 7! T ℄(

^

Mt ! T

0

). Let BT(Bn) = blok Bn = blk extends Bn Ood end.

Then by BlokOK we have Bn ` (fun Tn Fn : Mt! T

0

) OK in Bn, so by FunOK we have that CP(Mt)

= Bn

00

:Cn. Then by Lemma 5.13 there exists some lass C suh that CP(Mt; v) = C and onrete(C) and

C � Bn

00

:Cn. Also by FunOK we have either Bn ` F has-gdefault or Bn = Bn

00

. We onsider these ases

separately.

� Case Bn ` F has-gdefault. By GDefault we have CP(F) = C

0

and Bn ` F has-default-for C

0

. By

CPFun, C

0

= Bn

00

:Cn. Then by Lemma 5.12 there exists some Bn

0

2 Bn, some (extend fun

Mn

Tn

1

24

F Pat = E) 2 BT(Bn

0

), and some environment e suh that math(v;Pat) = e. Sine BT(Bn) =

blok Bn = blk extends Bn Ood end, eah member of Bn is mentioned in the program, so by sanity

ondition 2 we have Bn � dom(BT). Therefore Bn

0

2 dom(BT), and the result is shown.

� Case Bn = Bn

00

. Let C = Bn

0

:Cn

0

. Sine onrete(), by Conrete we have (lass Tn

0

Cn

0

: : :)

2 BT(Bn

0

). Let BT(Bn

0

) = blok Bn = blk Bn

0

extends Bn

0

Ood

0

end. Then by BlokOK we

have Bn

0

` lass Tn

0

Cn

0

: : : OK in Bn

0

, so by ClassOK we have onrete(C)) Bn

0

` funs-

have-ldefault-for C. Sine we have shown that onrete(C) holds, we have Bn

0

` funs-have-ldefault-for

C.

Also by ClassOK we have Bn

0

` C transExtended. Sine C � Bn

00

:Cn and Bn

00

= Bn, by Lemma 5.8

we have Bn 2 Bn

0

.

Sine F = Bn:Fn and Bn 2 Bn

0

, by FunExt we have Bn

0

` F extended. Sine (fun Tn Fn :

Mt ! T

0

) 2 BT(Bn) and CP(Mt) = Bn:Cn, by CPFun we have CP(F) = Bn:Cn. Also, we showed

above that C � Bn:Cn. Therefore, sine Bn

0

` funs-have-ldefault-for C, by LDefault we have

Bn

0

` F has-default-for C. By SubRef C � C, so by Lemma 5.12 there exists some Bn

0

2 Bn

0

, some

(extend fun

Mn

Tn

1

Bn:Fn Pat = E) 2 BT(Bn

0

), and some environment e suh that math(v;Pat) =

e. Sine BT(Bn

0

) = blok Bn

0

= blk extends Bn

0

Ood

0

end, eah member of Bn

0

is mentioned in

the program, so by sanity ondition (2) we have Bn

0

� dom(BT). Therefore Bn

0

2 dom(BT), and the

result is shown.

5.3 Ambiguity

These lemmas ensure that all funtions are unambiguous.

5.3.1 Pattern Spei�ity and Intersetion

Lemma 5.15 If Pat � Pat

0

and Pat

0

� Pat

00

then Pat � Pat

00

.

Proof By indution on the depth of the derivation of Pat

0

� Pat

00

. Case analysis of the last rule used in

the derivation.

� Case SpeWild. Then Pat

00

has the form , and by SpeWild we have Pat � Pat

00

.

� Case SpeBind1. Then Pat

0

has the form (I as Pat

0

0

) and we have Pat

0

0

� Pat

00

. We prove this ase

by indution on the number of onseutive uses of rule SpeBind1 ending the derivation of Pat � (I

as Pat

0

0

). Case analysis of the last rule used in the derivation.

{ Case SpeBind1. Then Pat has the form (I

0

as Pat

0

) and Pat

0

� Pat

0

. By the inner indution

Pat

0

� Pat

00

, and by SpeBind1 Pat � Pat

00

.

{ Case SpeBind2. Then Pat � Pat

0

0

. Sine also Pat

0

0

� Pat

00

, by the outer indution we have

Pat � Pat

00

.

� Case SpeBind2. Then Pat

00

has the form (I as Pat

00

0

) and we have Pat

0

� Pat

00

0

. By indution

Pat � Pat

00

0

, and by SpeBind2 Pat � Pat

00

.

� Case SpeTup. Then Pat

0

has the form (Pat

0

) and Pat

00

has the form (Pat

00

) and Pat

0

� Pat

00

. We

prove this ase by indution on the number of onseutive uses of rule SpeBind1 ending the derivation

of Pat � Pat

0

. Case analysis of the last rule used in the derivation.

{ Case SpeBind1. Then Pat has the form (I as Pat

0

) and we have Pat

0

� Pat

0

. By the inner

indution Pat

0

� Pat

00

, so by SpeBind1 Pat � Pat

00

.

25

{ Case SpeTup. Then Pat has the form (Pat) Pat � Pat

0

. Therefore by the outer indution,

Pat � Pat

00

. Therefore by SpeTup Pat � Pat

00

.

� Case SpeClass. Then Pat

0

has the form C

0

fV

1

= Pat

0

1

; V

2

= Pat

0

2

g and Pat

00

has the form C

00

fV

1

=

Pat

00

1

g and C

0

� C

00

and Pat

0

1

� Pat

00

1

. We prove this ase by indution on the number of onseutive

uses of the rule SpeBind1 ending the derivation of Pat � Pat

0

. Case analysis of the last rule used in

the derivation.

{ Case SpeBind1. Then Pat has the form (I as Pat

0

) and we have Pat

0

� Pat

0

. By the inner

indution Pat

0

� Pat

00

, so by SpeBind1 Pat � Pat

00

.

{ Case SpeClass. Then Pat has the form C fV

1

= Pat

1

; V

2

= Pat

2

; V

3

= Pat

3

g and C � C

0

and

Pat

1

� Pat

0

1

and Pat

2

� Pat

0

2

. Sine C � C

0

and C

0

� C

00

, by SubTrans we have C � C

00

. By

the outer indution we have Pat

1

� Pat

00

1

. Therefore by SpeClass Pat � Pat

00

.

Lemma 5.16 If CP(Mt;Pat

0

) = C

0

and CP(Mt;Pat

00

) = C

00

and Pat

0

\Pat

00

= Pat, then either C

0

� C

00

or

C

00

� C

0

.

Proof By indution on the depth of the derivation of Pat

0

\Pat

00

= Pat. Case analysis of the last rule used

in the derivation.

� Case PatIntWild. Then Pat

0

has the form . But then it annot be the ase that CP(Mt;Pat

0

) =

C

0

, beause none of the three assoiated rules applies to a wildard pattern.

� Case PatIntBind. Then Pat

0

has the form I as Pat

0

and Pat

0

\ Pat

00

= Pat. Sine CP(Mt;Pat

0

) =

C

0

, by CPBindPat we have CP(Mt;Pat

0

) = C

0

. Therefore by indution we have that either C

0

� C

00

or C

00

� C

0

.

� Case PatIntTup. Then Pat

0

has the form (Pat

0

1

; : : : ;Pat

0

k

) and Pat

00

has the form (Pat

00

1

; : : : ;Pat

00

k

)

and for all 1 � j � k we have Pat

0

j

\ Pat

00

j

= Pat

j

. Sine CP(Mt;Pat

0

) = C

0

, by CPTupPat we have

Mt = T

1

� � � � � T

i�1

� Mt

i

� T

i+1

� � � � � T

k

and CP(Mt

i

;Pat

0

i

) = C

0

. Sine CP(Mt;Pat

00

) = C

00

, by

CPTupPat we have CP(Mt

i

;Pat

00

i

) = C

00

. Therefore by indution we have that either C

0

� C

00

or

C

00

� C

0

.

� Case PatIntClass. Then Pat

0

has the form (C

1

fV = Pat

0

; V

2

= Pat

2

g) and Pat

00

has the form

(C

2

fV = Pat

00

g) and C

1

� C

2

. Sine CP(Mt;Pat

0

) = C

0

, by CPClassPat C

0

= C

1

. Sine

CP(Mt;Pat

00

) = C

00

, by CPClassPat C

00

= C

2

. Therefore C

0

� C

00

.

� Case PatIntRev. Then Pat

00

\ Pat

0

= Pat, so by indution we have that either C

00

� C

0

or C

0

� C

00

.

Lemma 5.17 If ` v : T and math(v;Pat

0

) = e

0

and math(v;Pat

00

) = e

00

and mathType(T

0

;Pat

0

) = �

0

; T

0

0

and mathType(T

00

;Pat

00

) = �

00

; T

00

0

, then there exists some Pat suh that Pat

0

\ Pat

00

= Pat.

Proof By indution on the depth of the derivation of math(v;Pat

0

) = e

0

. Case analysis of the last rule

used in the derivation.

� Case E-MathWild. Then Pat

0

has the form , so by PatIntWild we have Pat

0

\ Pat

00

= Pat

00

.

� Case E-MathBind. Then Pat

0

has the form I as Pat

0

0

and math(v;Pat

0

0

) = e

0

0

, for some e

0

0

. Sine

mathType(T

0

;Pat

0

) = �

0

; T

0

0

, by T-MathBind we have mathType(T

0

;Pat

0

0

) = �

0

0

; T

0

0

. Then by

indution there exists some Pat suh that Pat

0

0

\Pat

00

= Pat, so by PatIntBind we have Pat

0

\Pat

00

=

Pat.

26

� Case E-MathTup. Then v = (v

1

; : : : ; v

k

) and Pat

0

has the form (Pat

0

1

; : : : ;Pat

0

k

) and for all 1 � i � k

we have math(v

i

;Pat

0

i

) = e

0

i

, for some e

0

i

. We prove this ase by indution on the number of onseutive

uses of E-MathBind ending the derivation of math(v;Pat

00

) = e

00

. Case analysis of the last rule

used in the derivation.

{ Case E-MathWild. Then Pat

00

has the form , so by PatIntWild we have Pat

00

\Pat

0

= Pat

0

,

and by PatIntRev Pat

0

\ Pat

00

= Pat

0

.

{ Case E-MathBind. Then Pat

00

has the form I as Pat

00

0

and math(v;Pat

00

0

) = e

00

0

, for some

e

00

0

. Sine mathType(T

00

;Pat

00

) = �

00

; T

00

0

, by T-MathBind we have mathType(T

00

;Pat

00

0

) =

�

00

0

; T

00

0

. Then by the inner indution there exists some Pat suh that Pat

0

\Pat

00

0

= Pat. Then by

PatIntRev Pat

00

0

\ Pat

0

= Pat, by PatIntBind Pat

00

\ Pat

0

= Pat, and again by PatIntRev

Pat

0

\ Pat

00

= Pat.

{ Case E-MathTup. Then Pat

00

has the form (Pat

00

1

; : : : ;Pat

00

k

) and for all 1 � i � k we have

math(v

i

;Pat

00

i

) = e

00

i

, for some e

00

i

. Sine ` v : T , by T-Tup we have T = T

1

� � � � � T

k

and

` v

i

: T

i

for all 1 � i � k. Sine mathType(T

0

;Pat

0

) = �

0

; T

0

0

and mathType(T

00

;Pat

00

) =

�

00

; T

00

0

, by T-MathTup we have T

0

= T

0

1

� � � � � T

0

k

and T

00

= T

00

1

� � � � � T

00

k

and for all 1 � i � k

mathType(T

0

i

;Pat

0

) = �

0

i

; T

000

i

and mathType(T

00

i

;Pat

00

) = �

00

i

; T

0000

i

. Then by the outer indution,

for all 1 � i � k there exists Pat

i

suh that Pat

0

i

\Pat

00

i

= Pat

i

. Then by PatIntTup there exists

Pat suh that Pat

0

\ Pat

00

= Pat.

{ Case E-MathClass. Then v = ((T C) fV = vg), ontraditing our assumption that v =

(v

1

; : : : ; v

k

).

� Case E-MathClass. Then v = ((T C) fV

1

= v

1

; : : : ; V

k

= v

k

g) and Pat

0

has the form (C

0

fV

1

=

Pat

0

1

; : : : ; V

m

= Pat

0

m

g) and C � C

0

and m � k and for all 1 � i � m we have math(v

i

;Pat

0

i

) = e

0

i

for

some e

0

i

. We prove this ase by indution on the number of onseutive uses of E-MathBind ending

the derivation of math(v;Pat

00

) = e

00

. Case analysis of the last rule used in the derivation.

{ Case E-MathWild. Then Pat

00

has the form , so by PatIntWild we have Pat

00

\Pat

0

= Pat

0

,

and by PatIntRev Pat

0

\ Pat

00

= Pat

0

.

{ Case E-MathBind. Then Pat

00

has the form I as Pat

00

0

and math(v;Pat

00

0

) = e

00

0

, for some

e

00

0

. Sine mathType(T

00

;Pat

00

) = �

00

; T

00

0

, by T-MathBind we have mathType(T

00

;Pat

00

0

) =

�

00

0

; T

00

0

. Then by the inner indution there exists some Pat suh that Pat

0

\Pat

00

0

= Pat. Then by

PatIntRev Pat

00

0

\ Pat

0

= Pat, by PatIntBind Pat

00

\ Pat

0

= Pat, and again by PatIntRev

Pat

0

\ Pat

00

= Pat.

{ Case E-MathTup. Then v = (v), ontraditing our assumption that v = ((T C) fV

1

=

v

1

; : : : ; V

k

= v

k

g).

{ Case E-MathClass. Then Pat

00

has the form (C

00

fV

1

= Pat

00

1

; : : : ; V

p

= Pat

00

p

g) and C � C

00

and p � k and for all 1 � i � p we have math(v

i

;Pat

00

i

) = e

00

i

for some e

00

i

. Sine ` v : T , by T-Rep

we have � ` (T C) OK and for all 1 � i � k we have ` v

i

: T

i

for some T

i

. Sine C � C

0

and

C � C

00

, by Lemma 4.7 we have � ` (T C

0

) OK and � ` (T C

00

) OK. Sine mathType(T

0

;Pat

0

)

= �

0

; T

0

0

and mathType(T

00

;Pat

00

) = �

00

; T

00

0

, by T-MathClass we have repType(T

0

C

0

) has

the form fV

1

: T

0

1

; : : : ; V

m

: T

0

m

g and repType(T

1

C

00

) has the form fV

1

: T

00

1

; : : : ; V

p

: T

00

p

g,

for some T

0

and T

1

. Therefore by inspetion of RepType, also repType(T C

0

) has the form

fV

1

: T

000

1

; : : : ; V

m

: T

000

m

g and repType(T C

00

) has the form fV

1

: T

0000

1

; : : : ; V

p

: T

0000

p

g. Also by T-

MathClass, for all 1 � i � m we have mathType(T

0

i

;Pat

0

) = �

0

i

; T

000

i

and for all 1 � i � p we

have mathType(T

00

i

;Pat

00

) = �

00

i

; T

0000

i

. Sine C � C

0

and C � C

00

, by Lemma 5.4 either C

0

� C

00

or C

00

� C

0

.

27

� Case C

0

� C

00

. Sine � ` (T C

0

) OK, by Lemma 4.7 we have (T C

0

) � (T C

00

). Then by

Lemma 4.12 we have that p � m. Then by the outer indution we have that for all 1 � i � p

there exists Pat

i

suh that Pat

0

i

\ Pat

00

i

= Pat

i

. Then by PatIntClass there exists Pat suh

that Pat

0

\ Pat

00

= Pat.

� Case C

00

� C

0

. Sine � ` (T C

00

) OK, by Lemma 4.7 we have (T C

00

) � (T C

0

). Then by

Lemma 4.12 we have that m � p. Then by the outer indution we have that for all 1 � i � m

there exists Pat

i

suh that Pat

0

i

\ Pat

00

i

= Pat

i

. Then by PatIntRev we have that for all

1 � i � m there exists Pat

i

suh that Pat

00

i

\Pat

0

i

= Pat

i

. Then by PatIntClass there exists

Pat suh that Pat

00

\ Pat

0

= Pat, and the result follows by PatIntRev.

Lemma 5.18 If math(v;Pat

0

) = e

0

and math(v;Pat

00

) = e

00

and Pat

0

\Pat

00

= Pat, then there exists some

e suh that math(v;Pat) = e.

Proof By indution on the depth of the derivation of Pat

0

\Pat

00

= Pat. Case analysis of the last rule used

in the derivation.

� Case PatIntWild. Then Pat is idential to Pat

00

, so math(v;Pat) = e

00

.

� Case PatIntBind. Then Pat

0

has the form I as Pat

0

0

and Pat

0

0

\ Pat

00

= Pat. Sine math(v;Pat

0

)

= e

0

, by E-MathBind there exists some e

0

0

suh that math(v;Pat

0

0

) = e

0

0

. Therefore by indution

there exists some e suh that math(v;Pat) = e.

� Case PatIntTup. Then Pat

0

has the form (Pat

0

) and Pat

00

has the form (Pat

00

) and Pat has the form

(Pat) and Pat

0

\ Pat

00

= Pat. Sine math(v;Pat

0

) = e

0

, by E-MathTup v = (v) and math(v;Pat

0

)

= e

0

. Sine math(v;Pat

00

) = e

00

, by E-MathTup math(v;Pat

00

) = e

00

. Therefore by indution

math(v;Pat) = e. Then by E-MathTup there exists e suh that math(v;Pat) = e.

� Case PatIntClass. Then Pat

0

has the form (C

0

fV

1

= Pat

0

1

; : : : ; V

m

= Pat

0

m

g) and Pat

00

has the

form (C

00

fV

1

= Pat

00

1

; : : : ; V

p

= Pat

00

p

g) and m � p and Pat has the form (C

0

fV

1

= Pat

1

; : : : ; V

p

=

Pat

p

; V

p+1

= Pat

0

p+1

; : : : ; V

m

= Pat

0

m

g) and C

0

� C

00

and Pat

0

i

\ Pat

00

i

= Pat

i

for all 1 � i � m. Sine

math(v;Pat

0

) = e

0

, by E-MathClass v = ((T C) fV

1

= v

1

; : : : ; V

k

= v

k

g) and C � C

0

and k � m

and math(v

i

;Pat

0

i

) = e

0

i

for all 1 � i � m. Sine math(v;Pat

00

) = e

00

, by E-MathClass we have

math(v

i

;Pat

00

i

) = e

00

i

for all 1 � i � p. Then by indution, there exists e

i

suh that math(v

i

;Pat

i

) =

e

i

, for all 1 � i � p. Then by E-MathClass there exists e suh that math(v;Pat) = e.

� Case PatIntRev. Then Pat

00

\ Pat

0

= Pat. Then by indution there exists e suh that math(v;Pat)

= e.

5.3.2 Ambiguity

Lemma 5.19 If CP(Mt;Pat) = Bn:Cn and Tn ` mathType(T;Pat) = (�; T

0

), then there exists some

(<abstrat> lass Tn

0

Cn: : :) 2 BT(Bn).

Proof By indution on the depth of the derivation of CP(Mt;Pat) = Bn:Cn. Case analysis of the last rule

used in the derivation.

� Case CPBindPat. Then Pat has the form I as Pat

0

and CP(Mt;Pat

0

) = Bn:Cn. Sine Tn `

mathType(T;Pat) = (�; T

0

), by T-MathBind we have that there exists some �

0

suh that Tn `

mathType(T;Pat

0

) = (�

0

; T

0

). Therefore by indution there exists some (<abstrat> lass Tn

0

Cn: : :) 2 BT(Bn).

28

� Case CPTupPat. Then Pat has the form (Pat

1

; : : : ;Pat

k

) and Mt = T

1

� � � ��T

i�1

�Mt

i

�T

i+1

� � � ��T

k

and CP(Mt

i

;Pat

i

) = Bn:Cn. Sine Tn ` mathType(T;Pat) = (�; T

0

), by T-MathTup there exist

some T

i

, �

i

, and T

0

i

suh that Tn ` mathType(T

i

;Pat

i

) = (�

i

; T

0

i

). Therefore by indution there

exists some (<abstrat> lass Tn

0

Cn: : :) 2 BT(Bn).

� Case CPClassPat. Then Pat has the form Bn:Cn fV = Patg. Sine Tn ` mathType(T;Pat) =

(�; T

0

), by T-MathClass we have T = (T C

0

) and repType(T C) = fV : T

1

g. Then by Rep there

exists some (<abstrat> lass Tn

0

Cn: : :) 2 BT(Bn).

The following lemma says that the modular ambiguity heks for a funtion ase are enough to ensure

global unambiguity of the funtion ase.

Lemma 5.20 If (extend fun

Mn

Tn F Pat = E) 2 BT(Bn), then dom(BT) ` extend fun

Mn

Tn F Pat = E

unambiguous in Bn.

Proof Suppose not. Then we have (extend fun

Mn

Tn F Pat = E) 2 Ood, but it is not the ase that

dom(BT) ` extend fun

Mn

Tn F Pat = E unambiguous in Bn. Then by BlAmb we have that there

exists some Bn

0

2 dom(BT), some (extend fun

Mn

0

Tn

1

F Pat

0

= E

0

) 2 BT(Bn

0

), and some Pat

0

suh that

Pat \ Pat

0

= Pat

0

^ Bn:Mn 6= Bn

0

:Mn

0

^ :9Bn

00

2 dom(BT):9(extend fun

Mn

00

Tn

2

F Pat

00

= E

00

) 2

BT(Bn

00

):(Pat

0

� Pat

00

^ Pat

00

� Pat ^ Pat

00

� Pat

0

^ (Pat 6� Pat

00

_ Pat

0

6� Pat

00

)).

Let BT(Bn) be (blok Bn = blk extendsBn Ood end). Sine (extend fun

Mn

Tn F Pat = E) 2 BT(Bn),

by BlokOK we have Bn ` (extend fun

Mn

Tn F Pat = E) OK in Bn, so by CaseOK we have Bn;Bn `

extend fun

Mn

Tn F Pat = E unambiguous. Let BT(Bn

0

) = (blok Bn

0

= blk extends Bn

0

Ood

0

end).

Sine (blok Bn

0

= blk extends Bn

0

Ood

0

end) = BT(Bn

0

) and (extend fun

Mn

0

Tn

1

F Pat

0

= E

0

)

2 BT(Bn

0

), by BlokOK we have Bn

0

` (extend fun

Mn

0

Tn

1

F Pat

0

= E

0

) OK in Bn, so by CaseOK we

have Bn

0

;Bn

0

` extend fun

Mn

0

Tn

1

F Pat

0

= E

0

unambiguous.

We divide the proof into several ases.

� Case Bn

0

2 Bn. Sine Bn;Bn ` extend fun

Mn

Tn F Pat = E unambiguous, by Amb we have

Bn ` extend fun

Mn

Tn F Pat = E unambiguous in Bn. Sine Bn

0

2 Bn and we saw above that

(extend fun

Mn

0

Tn

1

F Pat

0

= E

0

) 2 BT(Bn

0

) and Pat\Pat

0

= Pat

0

and Bn:Mn 6= Bn

0

:Mn

0

, byBlAmb

we have 9Bn

00

2 Bn:9(extend fun

Mn

00

Tn

2

F Pat

00

= E

00

) 2 BT(Bn

00

):(Pat

0

� Pat

00

^ Pat

00

� Pat ^

Pat

00

� Pat

0

^ (Pat 6� Pat

00

_Pat

0

6� Pat

00

)). Sine (blok = blk Bn extends Bn Ood end) = BT(Bn),

eah blok name in Bn appears in the program, so by sanity ondition 2 we have Bn � dom(BT).

Therefore we have 9Bn

00

2 dom(BT):9(extend fun

Mn

00

Tn

2

F Pat

00

= E

00

) 2 BT(Bn

00

):(Pat

0

� Pat

00

^

Pat

00

� Pat ^ Pat

00

� Pat

0

^ (Pat 6� Pat

00

_ Pat

0

6� Pat

00

)), and we have a ontradition.

� Case Bn 2 Bn

0

. Sine Bn

0

;Bn

0

` extend fun

Mn

0

Tn

1

F Pat

0

= E

0

unambiguous, by Amb we have

Bn

0

` extend fun

Mn

0

Tn

1

F Pat

0

= E

0

unambiguous in Bn

0

. By assumption Bn 2 Bn

0

, and we're given

that (extend fun

Mn

Tn F Pat = E) 2 BT(Bn). We're also given Pat\Pat

0

= Pat

0

, so by PatIntRev

also Pat

0

\ Pat = Pat

0

. Finally, we're given Bn:Mn 6= Bn

0

:Mn

0

. Therefore by BlAmb we have

9Bn

00

2 Bn

0

:9(extend fun

Mn

00

Tn

2

F Pat

00

= E

00

) 2 BT(Bn

00

):(Pat

0

� Pat

00

^ Pat

00

� Pat

0

^ Pat

00

�

Pat^ (Pat 6� Pat

00

_Pat

0

6� Pat

00

)). Sine (blok = blk Bn

0

extends Bn

0

Ood

0

end) = BT(Bn

0

), eah

blok name in Bn

0

appears in the program, so by sanity ondition 2 we have Bn

0

� dom(BT). Therefore

we have 9Bn

00

2 dom(BT):9(extend fun

Mn

00

Tn

2

F Pat

00

= E

00

) 2 BT(Bn

00

):(Pat

0

� Pat

00

^ Pat

00

�

Pat ^ Pat

00

� Pat

0

^ (Pat 6� Pat

00

_ Pat

0

6� Pat

00

)), and we have a ontradition.

� Case Bn

0

62 Bn and Bn 62 Bn

0

. Sine Bn;Bn ` extend fun

Mn

Tn F Pat = E unambiguous, by Amb

we have F = Bn

1

:Fn and (fun Tn

3

Fn : Mt ! T) 2 BT(Bn

1

) and CP(Mt;Pat) = Bn

2

:Cn and

29

Bn = Bn

1

_ Bn = Bn

2

. Sine Bn

0

;Bn

0

` extend fun

Mn

0

Tn

1

F Pat

0

= E

0

unambiguous, by Amb we

have CP(Mt;Pat

0

) = Bn

3

:Cn

0

and Bn

0

= Bn

1

_ Bn

0

= Bn

3

. We have three sub-ases.

{ Case Bn

0

= Bn

1

. Sine Bn ` (extend fun

Mn

Tn F Pat = E) OK in Bn, by CaseOK we have

Bn ` F extended, so by FunExt we have Bn

1

2 Bn. Therefore we've shown Bn

0

2 Bn, so we

have a ontradition.

{ Case Bn = Bn

1

. Sine Bn

0

` (extend fun

Mn

0

Tn

1

F Pat

0

= E

0

) OK in Bn

0

, by CaseOK we have

Bn

0

` F extended, so by FunExt we have Bn

1

2 Bn

0

. Therefore we've shown Bn 2 Bn

0

, so we

have a ontradition.

{ Case Bn

0

6= Bn

1

and Bn 6= Bn

1

. Sine Bn = Bn

1

_ Bn = Bn

2

, we have Bn = Bn

2

. Sine

Bn

0

= Bn

1

_ Bn

0

= Bn

3

, we have Bn

0

= Bn

3

. Sine CP(Mt;Pat) = Bn

2

:Cn and CP(Mt;Pat

0

)

= Bn

3

:Cn

0

and Pat \ Pat

0

= Pat

0

, by Lemma 5.16 we have that either Bn

2

:Cn � Bn

3

:Cn

0

or

Bn

3

:Cn

0

� Bn

2

:Cn. Equivalently, either Bn:Cn � Bn

0

:Cn

0

or Bn

0

:Cn

0

� Bn:Cn. There are two

subases.

� Case Bn:Cn � Bn

0

:Cn

0

. Sine Bn ` (extend fun

Mn

Tn F Pat = E) OK in Bn, byCaseOK we

have Tn

0

` math(T

0

;Pat) = (�

0

; T

0

0

), for some Tn

0

; T

0

;Pat;�

0

, and T

0

0

. Sine CP(Mt;Pat)

= Bn:Cn, by Lemma 5.19 there exists some (<abstrat> lass Tn

4

Cn: : :) 2 BT(Bn).

Therefore by BlokOK we have Bn ` (<abstrat> lass Tn

4

Cn: : :) OK in Bn, so by

ClassOK we have Bn ` Bn:Cn transExtended. Sine Bn:Cn � Bn

0

:Cn

0

, by Lemma 5.8 we

have Bn

0

2 Bn, whih is a ontradition.

� Case Bn

0

:Cn

0

� Bn:Cn. Sine Bn

0

` (extend fun

Mn

0

Tn

1

F Pat

0

= E

0

) OK in Bn

0

, by

CaseOK we have Tn

0

` math(T

0

;Pat

0

) = (�

0

; T

0

0

), for some Tn

0

; T

0

;Pat;�

0

, and T

0

0

. Sine

CP(Mt;Pat

0

) = Bn

0

:Cn

0

, by Lemma 5.19 there exists some (<abstrat> lass Tn

4

Cn

0

: : :)

2 BT(Bn

0

). Therefore by BlokOK we have Bn

0

` (<abstrat> lass Tn

4

Cn

0

: : :) OK

in Bn

0

, so by ClassOK we have Bn

0

` Bn

0

:Cn

0

transExtended. Sine Bn

0

:Cn

0

� Bn:Cn, by

Lemma 5.8 we have Bn 2 Bn

0

, whih is a ontradition.

Lemma 5.21 If ` v : T and Bn 2 dom(BT) and (extend fun

Mn

Tn F Pat = E) 2 BT(Bn) and math(v;Pat)

= e, then there exists some Bn

0

2 dom(BT), some (extend fun

Mn

0

Tn

1

F Pat

0

= E

0

) 2 BT(Bn

0

), and some

e

0

suh that math(v;Pat

0

) = e and 8Bn

00

2 dom(BT):8(extend fun

Mn

00

Tn

2

F Pat

00

= E

00

) 2 BT(Bn

00

):

8e

00

:((math(v;Pat

00

) = e

0

^ Bn

0

:Mn

0

6= Bn

00

:Mn

00

)) Pat

0

< Pat

00

).

Proof By (strong) indution on the number of funtion ases of the form (extend fun

Mn

0

Tn

0

F Pat

0

= E

0

)

suh that (extend fun

Mn

0

Tn

0

F Pat

0

= E

0

) 2 BT(Bn

0

) for some blok Bn

0

2 dom(BT), and math(v;Pat

0

)

= e

0

for some e

0

, and Pat 6< Pat

0

.

� Case there are zero funtion ases of the form (extend fun

Mn

0

Tn

0

F Pat

0

= E

0

) suh that (extend

fun

Mn

0

Tn

0

F Pat

0

= E

0

) 2 BT(Bn

0

) for some blok Bn

0

2 dom(BT), and math(v;Pat

0

) = e

0

for

some e

0

, and Pat 6< Pat

0

.

We're given that Bn 2 dom(BT) and (extend fun

Mn

Tn F Pat = E) 2 BT(Bn) and math(v;Pat)

= e. Further, sine it annot both be the ase that Pat � Pat and Pat 6� Pat, we have Pat 6< Pat.

Therefore, we have found a funtion ase that ontradits the initial assumption of this ase.

� Case there is exatly one funtion ase of the form (extend fun

Mn

0

Tn

0

F Pat

0

= E

0

) suh that

(extend fun

Mn

0

Tn

0

F Pat

0

= E

0

) 2 BT(Bn

0

) for some blok Bn

0

2 dom(BT), and math(v;Pat

0

) =

e

0

for some e

0

, and Pat 6< Pat

0

.

As we saw in the previous ase, (extend fun

Mn

Tn F Pat = E) 2 BT(Bn) and math(v;Pat) =

e and Pat 6< Pat, so Bn:Mn is the single ase satisfying all the onditions. Therefore it follows

30

that 8Bn

00

2 dom(BT):8(extend fun

Mn

00

Tn

2

F Pat

00

= E

00

) 2 BT(Bn

00

):8e

00

:((math(v;Pat

00

) = e

0

^

Bn:Mn 6= Bn

00

:Mn

00

)) Pat < Pat

00

). Then the result follows.

� There are k > 1 funtion ases of the form (extend fun

Mn

0

Tn

0

F Pat

0

= E

0

) suh that (extend

fun

Mn

0

Tn

0

F Pat

0

= E

0

) 2 BT(Bn

0

) for some blok Bn

0

2 dom(BT), and math(v;Pat

0

) = e

0

for

some e

0

, and Pat 6< Pat

0

. Let (extend fun

Mn

1

Tn

3

F Pat

1

= E

1

) be one suh funtion ase, so (extend

fun

Mn

1

Tn

3

F Pat

1

= E

1

) 2 BT(Bn

1

) for some blok Bn

1

2 dom(BT), and math(v;Pat

1

) = e

1

for

some e

1

, and Pat 6< Pat

1

. Sine k > 1, at least one of the funtion ases satisfying the onditions is

not Bn:Mn, so assume WLOG that Bn:Mn 6= Bn

1

:Mn

1

.

Sine (extend fun

Mn

Tn F Pat = E) 2 BT(Bn) and (extend fun

Mn

1

Tn

3

F Pat

1

= E

1

) 2 BT(Bn

1

)

and Bn 2 dom(BT) and Bn

1

2 dom(BT), by CaseOK we have mathType(T

0

;Pat) = �

0

; T

0

0

and

mathType(T

1

;Pat

1

) = �

1

; T

0

1

. We're given that ` v : T . Finally, we saw above that math(v;Pat)

= e and math(v;Pat

1

) = e

1

. Therefore by Lemma 5.17 there exists some Pat

int

suh that Pat \

Pat

1

= Pat

int

. We're given that (extend fun

Mn

Tn F Pat = E) 2 BT(Bn), so by Lemma 5.20 we

have dom(BT) ` extend fun

Mn

Tn F Pat = E unambiguous in Bn. Therefore by BlAmb there

exists some Bn

2

2 dom(BT) and some (extend fun

Mn

2

Tn

4

F Pat

2

= E

2

) 2 BT(Bn

2

) suh that

Pat

int

� Pat

2

and Pat

2

� Pat and Pat

2

� Pat

1

and (Pat 6� Pat

2

or Pat

1

6� Pat

2

). Sine math(v;Pat)

= e and math(v;Pat

1

) = e

1

and Pat \ Pat

1

= Pat

int

, by Lemma 5.18 there exists some e

int

suh

that math(v;Pat

int

) = e

int

. Then sine Pat

int

� Pat

2

, by Lemma 5.7 there exists e

2

suh that

math(v;Pat

2

) = e

2

.

So we have shown there exists some Bn

2

2 dom(BT) and some (extend fun

Mn

2

Tn

4

F Pat

2

= E

2

)

2 BT(Bn

2

) and some e

2

suh that math(v;Pat

2

) = e

2

. Suppose there are l funtion ases of the form

(extend fun

Mn

0

Tn

0

F Pat

0

= E

0

) suh that (extend fun

Mn

0

Tn

0

F Pat

0

= E

0

) 2 BT(Bn

0

) for some

blok Bn

0

2 dom(BT), and math(v;Pat

0

) = e

0

for some e

0

, and Pat

2

6< Pat

0

. If l < k, then this ase

is proven by indution.

Consider some blok Bn

0

2 dom(BT), some (extend fun

Mn

0

Tn

0

F Pat

0

= E

0

) 2 BT(Bn

0

), and some

e

0

suh that math(v;Pat

0

) = e

0

and Pat

2

6< Pat

0

. I laim that also Pat 6< Pat

0

. Sine Pat

2

6< Pat

0

,

we have that (Pat

2

6� Pat

0

or Pat

0

� Pat

2

), so we onsider these ases in turn.

{ Case Pat

2

6� Pat

0

. Then I laim that Pat 6� Pat

0

, so also Pat 6< Pat

0

. Suppose not, so Pat � Pat

0

.

Sine Pat

2

� Pat, by Lemma 5.15 we have Pat

2

� Pat

0

, ontraditing the assumption of this ase.

{ Case Pat

0

� Pat

2

. We showed above that Pat

2

� Pat, so by Lemma 5.15 Pat

0

� Pat, so

Pat 6< Pat

0

.

Therefore we have shown that every funtion ase of the appropriate form with respet to Bn

2

:Mn

2

is

also of the appropriate form with respet to Bn:Mn, so l � k.

To �nish the proof, we show that there exists a funtion ase of the appropriate form w.r.t. Bn:Mn

that is not of the appropriate form w.r.t. Bn

2

:Mn

2

. In partiular, we showed in the �rst ase above

that Bn:Mn is of the appropriate form w.r.t. itself, sine Pat 6< Pat. To show that Bn:Mn is not of the

appropriate form w.r.t Bn

2

:Mn

2

, we must show that Pat

2

< Pat. We showed above that Pat

2

� Pat,

so we simply need to prove that Pat 6� Pat

2

. We showed above that either Pat 6� Pat

2

or Pat

1

6� Pat

2

,

so we onsider eah ase.

{ Case Pat 6� Pat

2

. Then Pat 6� Pat

2

.

{ Case Pat

1

6� Pat

2

and Pat � Pat

2

. We're given above that Pat 6< Pat

1

, so either Pat 6� Pat

1

or

Pat

1

� Pat. We saw above that Pat

2

� Pat

1

, so sine we assume Pat � Pat

2

, by Lemma 5.15 we

have Pat � Pat

1

. Therefore Pat

1

� Pat. Again sine we assume Pat � Pat

2

, by Lemma 5.15 we

have Pat

1

� Pat

2

, ontraditing the assumption of this ase.

31

Lemma 5.22 If ` (T F) : T

2

! T and ` v : T

0

2

and T

0

2

� T

2

then there exist e

0

and E

0

suh that most-

spei�-ase-for ((T F),v) = (e

0

; E

0

).

Proof By Lemma 5.14, there exists some Bn 2 dom(BT), some (extend fun

Mn

Tn F Pat = E) 2 BT(Bn),

and some environment e suh that math(v;Pat) = e. Then by Lemma 5.21 there exists some Bn

0

2

dom(BT), some (extend fun

Mn

0

Tn

1

F Pat

0

= E

0

) 2 BT(Bn

0

), and some e

0

suh that math(v;Pat

0

) = e and

8Bn

00

2 dom(BT):8(extend fun

Mn

00

Tn

2

F Pat

00

= E

00

) 2 BT(Bn

00

):8e

00

:((math(v;Pat

00

) = e

0

^ Bn

0

:Mn

0

6=

Bn

00

:Mn

00

)) Pat

0

� Pat

00

^ Pat

00

6� Pat

0

). Sine ` (T F) : T

2

! T , by T-Fun we have F = Bn

0

:Fn

0

and (fun Tn

0

Fn

0

: Mt

0

! T

0

) and jTn

0

j = jT j. Sine (extend fun

Mn

0

Tn

1

F Pat

0

= E

0

) 2 BT(Bn

0

), by

CaseOK we have jTn

1

j = jTn

0

j. Therefore we have jTn

1

j = jT j, so by Lookup there exists some e

0

and

E

0

suh that most-spei�-ase-for ((T F),v) = (e

0

; E

0

).

5.4 Progress

Theorem 5.1 (Progress): If ` E : T and E is not a value, then there exists an E

0

suh that E �! E

0

.

Proof By (strong) indution on the depth of the derivation of ` E : T . Case analysis of the last rule used

in the derivation.

� Case T-Id. Then E = I and (I; T) 2 fg, so we have a ontradition. Therefore this rule ould not be

the last rule used in the derivation.

� Case T-New. Then E = Ct(E) and Ct = (T Bn:Cn) and � ` Ct(E) OK and onrete(Bn:Cn). Then

by T-Super also � ` (T Bn:Cn) OK and and (<abstrat> lass Tn

0

Cn(I

0

: T

0

) : : :) 2 BT(Bn)

and jI

0

j = jEj. Therefore by Lemma 5.9 rep(Ct(E) is well-de�ned and has the form fV

1

= E

1

g. Then

by E-New we have E �! Ct fV

1

= E

1

g.

� Case T-Rep. Then E = Ct fV

1

= E

1

; : : : ; V

k

= E

k

g and for all 1 � i � k we have ` E

i

: T

i

for some

T

i

. We have two subases:

{ For all 1 � i � k, E

i

is a value. Then E is a value, ontraditing our assumption.

{ There exists 1 � j � k suh that E

j

is not a value. By indution, there exists an E

0

j

suh

that E

j

�! E

0

j

. Therefore by E-Rep we have Ct fV

1

= E

1

; : : : ; V

k

= E

k

g �! Ct fV

1

=

E

1

; : : : ; V

j�1

= E

j�1

; V

j

= E

0

j

; V

j+1

= E

j+1

; : : : ; V

k

= E

k

g.

� Case T-Fun. Then E = T Bn:Fn. Then E is a value, ontraditing our assumption.

� Case T-Tup. Then E = (E

1

; : : : ; E

k

) and T = T

1

� � � � � T

k

and for all 1 � i � k we have ` E

i

: T

i

.

We have two subases:

{ For all 1 � i � k, E

i

is a value. Then E is a value, ontraditing our assumption.

{ There exists 1 � j � k suh that E

j

is not a value. By indution, there exists an E

0

j

suh that

E

j

�! E

0

j

. Therefore by E-Tup we have (E

1

; : : : ; E

k

) �! (E

1

; : : : ; E

j�1

; E

0

j

; E

j+1

; : : : ; E

k

).

� Case T-App. Then E = E

1

E

2

and ` E

1

: T

2

! T and ` E

2

: T

0

2

and T

0

2

� T

2

. We have three

subases:

{ E

1

is not a value. Then by indution, there exists an E

0

1

suh that E

1

�! E

0

1

. Therefore by

E-App1 we have E

1

E

2

�! E

0

1

E

2

.

{ E

2

is not a value. Then by indution, there exists an E

0

2

suh that E

2

�! E

0

2

. Therefore by

E-App2 we have E

1

E

2

�! E

1

E

0

2

.

32

{ Both E

1

and E

2

are values. Sine ` E

1

: T

2

! T and E

1

is a value, the last rule in the derivation

of ` E

1

: T

2

! T must be T-Fun, so E

1

has the form Fv. Therefore by Lemma 5.22 we have

that there exist e

0

and E

0

suh that most-spei�-ase-for (Fv,E

2

) = (e

0

; E

0

). Let e

0

= f(I; v)g.

Then by E-AppRed we have Fv E

2

�! [I 7! v℄E

0

.

33

