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Abstract

We present a statistical approach to adapting the sample setsize of particle filters on-the-
fly. The key idea of the KLD-sampling method is to bound the error introduced by the sample-
based representation of the particle filter. Thereby, our approach chooses a small number of
samples if the density is focused on a small subspace of the state space, and it chooses a large
number of samples if the state uncertainty is high. Both the implementation and computation
overhead of this approach are small. Extensive experimentsusing mobile robot localization as
a test application show that our approach yields drastic improvements over particle filters with
fixed sample set sizes and over a previously introduced adaptation technique.

1 Introduction

Estimating the state of a dynamic system based on noisy sensor measurements is extremely im-
portant in areas as different as speech recognition, targettracking, mobile robot navigation, and
computer vision. Since many of these applications impose real-time constraints on the estimation
process,efficiencyis an important aspect of state estimation. Furthermore, since the underlying
uncertainties can vary dramatically over time, another important aspect of state estimation is the
need to deal with awide range of probability densities.

Over the last years, particle filters have been applied with great success to a variety of state
estimation problems [4, 11, 7, 16, 21, 25]. Particle filters estimate the posterior probability density
over the complete state space of a dynamic system [5, 17, 19].The key idea of this technique is to
represent probability densities by sets of samples, or particles. It is due to this representation, that
particle filters combine efficiency with the ability to represent a wide range of probability densities.
The efficiency of particle filters lies in the way they place computational resources. By sampling
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in proportion to likelihood, particle filters focus the computational resources on regions of the state
space with high likelihood, where things really matter.

So far, however, an important source for increasing the efficiency of particle filters has only
rarely been studied:Adapting the number of samples over time. Most existing approaches use a
fixed number of samples during the whole state estimation process. However, this can be highly
inefficient, since the complexity of the probability densities can vary drastically over time. An
exception is the adaptive sampling approach applied by [14]and [7]. Both approaches adjust the
number of samples based on the likelihood of observations. Unfortunately, this method has some
important shortcomings, as we will show.

In this paper we introduce a novel approach to adapting the number of samples over time. In
contrast to previous approaches, our technique determinesthe number of samples based on the
complexity of the sampling distribution. Extensive experiments using a mobile robot indicate that
our approach yields drastic improvements over particle filters with fixed sample set sizes and over
the previously introduced adaptation technique.

The remainder of this paper is organized as follows: In the next section we will outline the
basics of particle filters and their application to mobile robot localization. In Section 3, we will
introduce our novel technique to adaptive particle filters.Experimental results are presented in
Section 4 before we conclude in Section 5.

2 Particle filters for Bayesian filtering and robot localization

In this section we will review the basics of Bayes filters and particle filters, and their application to
mobile robot localizaion (further details can be found in [9, 5]).

Bayes filters

Bayes filters address the problem of estimating the statex of a dynamical system from sensor
measurements. The key idea of Bayes filtering is to recursively estimate the posterior probability
density over the state space conditioned on the data collected so far. Without loss of generality,
we assume that the data consists of an alternating sequence of time indexed observationso

t

and
control measurementsu

t

, which describe the dynamics of the system. The posterior attime t is
called the beliefBel(x

t

), defined by

Bel(x

t

) = p(x

t

j y

t

; u

t�1

; y

t�1

; u

t�2

: : : ; u

0

; y

0

)

Bayes filters make the assumption that the dynamic system is Markov, i.e. observationsy
t

and
control measurementsu

t

are conditionally independent of past measurements and control readings
given knowledge of the statex

t

. Under this assumption the posterior can be determined efficiently
using the following two update rules: Whenever a new controlmeasurementu
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Here,� is a normalizing constant which ensures that the belief overthe entire state space sums up
to one. The state right after the prediction and before the observation is called thepredictivebelief
Bel

�

(x

t

).
Implementations of Bayes filters mostly differ in the way they represent densities over the state

x

t

. For example, Kalman filters are Bayes filters which make the restrictive assumption that the
posterior can be represented by Gaussian distributions [10, 22].

Particle filters

Particle filters are a variant of Bayes filters which represent the beliefBel(x

t

) by a setS
t

of n
weighted samples distributed according toBel(x

t

):

S

t

= fhx

(i)

t

; w

(i)

t

i j i = 1; : : : ; ng

Here eachx(i)
t

is a state, and thew(i)

t

are non-negative numerical factors calledimportance weights,
which sum up to one. The basic form of the particle filter realizes the recursive Bayes filter accord-
ing to a sampling procedure, often referred to as sequentialimportance sampling with resampling
(SISR, see also [17, 5, 4]). A time update of one possible implementation of this algorithm is
outlined in Table 1.
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) */
for i := 1; : : : ; n do

/* Resampling */
Sample an indexj(i) from the discrete distribution given by the weights inS
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/* Normalize importance weights */
for i := 1; : : : ; n do

w

(i)

t

:= w

(i)

t

=�

return S

t

Table 1: The basic particle filter algorithm.

In the resampling step, the algorithm basically generates samples drawn according to the prior
belief Bel(x

t�1

) represented by the weighted sample setS

t�1

. The next state of these samples
is predicted by sampling from the model of the systems dynamics, using the control information
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. After this sampling step, the samples are distributed according to the predictive density
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importance sampling is applied, withBel(x
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as proposal distribution. By dividing these two distributions, we getp(y
t

j x

(j)

t

) as the importance
weight for each sample [9]. After generatingn samples, these weights are normalized so that they
sum up to one. It can be shown that this procedure in fact implements the Bayes filter, using an
(approximate) sample-based representation [5, 4].

Particle filters for mobile robot localization

In this paper, we use the problem of mobile robot localization to illustrate and test our novel
approach to adaptive particle filters. Mobile robot localization is the problem of estimating a
robot’s pose relative to a map of its environment. Robot localization has been recognized as one
of the most fundamental problems in mobile robotics [2, 1, 15]. The mobile robot localization
problem comes in different flavors. The simplest localization problem—which has received by far
the most attention in the literature—isposition tracking. Here the initial robot pose is known, and
localization seeks to correct small, incremental errors ina robot’s odometry. More challenging
is the global localization problem, where a robot is not told its initial pose, but instead has to
determine it from scratch. The global localization problemis more difficult, since the robot’s
initial uncertainty can be arbitrarily large.

Robot localization can be phrased as a state estimation problem. In this context, the statex
t

of
the system is typically specified by the robot’s position in atwo-dimensional Cartesian space and
the robot’s heading direction�. Measurementsy

t

may include range measurements and camera im-
ages, and control informationu

t

usually consists of the robot’s odometry readings. The nextstate
probabilityp(x

t

j x

t�1

; u

t�1

) describes how the position of the robot changes based on information
collected by the robot’s wheel encoders. This conditional probability is typically a model of robot
kinematics annotated with uncertainty. The perceptual model p(y

t

j x

t

) describes the likelihood
of making the observationy

t

given that the robot is at locationx
t

. For proximity sensors such as
sonar sensors, this probability can be computed from the mapusing ray-tracing and a model of the
sensor uncertainty (see also [1, 8]).

Particle filters have been applied with great practical success to a variety of mobile robot sys-
tems [7, 3, 16, 6, 12]. Fig. 1 illustrates the application of particle filters to mobile robot localization.
Shown there is a map of a hallway environment along with a sequence of sample sets during global
localization. The pictures demonstrate the ability of particle filters to represent a wide variety of
distributions, ranging from uniform to highly focused. Especially in symmetric environments, the
ability to represent ambiguous situations is of utmost importance for the success of global local-
ization. In this example, all sample sets contain 100,000 samples. While such a high number of
samples is necessary to accurately represent the belief during early stages of localization (cf. 1(a)),
it is obvious that only a small fraction of this number suffices to track the position of the robot once
it knows where it is (cf. 1(c)). Unfortunately, it is not straightforward how the number of samples
can be adapted on-the-fly, and this problem has only rarely been addressed so far.
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Robot position

Start (a)

Start

Robot position

(b)

Robot position

Start (c)

Fig. 1: Map of the UW CSE Department along with a series of sample sets representing the robot’s belief
during global localization using sonar sensors (samples are projected into 2D). The size of the environment
is 54m� 18m. a) After moving 5m, the robot is still highly uncertain about its position and the samples are
spread trough major parts of the free-space. b) Even as the robot reaches the upper left corner of the map,
its belief is still concentrated around four possible locations. c) Finally, after moving approximately 55m,
the ambiguity is resolved and the robot knows where it is. Allcomputation is carried out in real-time on a
low-end PC.

3 Adaptive sampling for particle filters

The localization example in the previous section illustrates that the efficiency of particle filters
can be greatly increased by changing the number of samples over time: While a large number of
samples is necessary to accurately represent the belief during early stages of localization (cf. 1(a)),
it is obvious that only a small fraction of this number suffices to track the position of the robot once
it knows where it is (cf. 1(c)). Before we introduce our novelapproach to adaptive particle filters,
let us first discuss and analyze an existing technique to adapting the number of samples.

3.1 Likelihood-based adaptation

We call this approach likelihood-based adaptation since itis based on the idea of determining the
number of samples such that the non-normalized sum of likelihoods (importance weights) exceeds
a pre-specified threshold. This approach has been applied todynamic Bayesian networks [14] and
mobile robot localization [7]. The intuition behind this approach can be illustrated in the robot
localization context: If the sample set is well in tune with the sensor reading, each individual
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importance weight is large and the sample set remains small.This is typically the case during
position tracking (cf. 1(c)). If, however, the sensor reading carries a lot of surprise, as is the case
when the robot is globally uncertain or when it lost track of its position, the individual sample
weights are small and the sample set becomes large.

The likelihood-based adaptation directly relates to the property that the variance of the im-
portance sampler is a function of the mismatch of the proposal distribution and the distribution
that is being approximated with the weighted samples [23]. Unfortunately, this method doesnot
consider thecomplexityof the underlying density. Consider, for example, the ambiguous belief
state consisting of four distinctive sample clusters shownin Fig. 1(b). Due to the symmetry of
the environment, the average likelihood of a sensor measurement observed in this situation is ap-
proximately the same as if the robot knew its position unambiguously (cf. 1(c)). Therefore, the
likelihood-based approach would fail to distinguish between these two situations. Nevertheless, it
is obvious that an accurate approximation of the belief shown in Fig. 1(b) requires a multiple of
the samples needed to represent the belief in Fig. 1(c).

3.2 KLD-sampling

The key idea of our approach is to bound the error introduced by the sample-based representa-
tion of the particle filter. To derive this bound, we assume that the true posterior is given by a
discrete, piecewise constant distribution such as a discrete density tree or a multi-dimensional his-
togram [14, 18, 24, 8]. For such a representation we can determine the number of samples so that
the distance between the maximum likelihood estimate (MLE)based on the samples and the true
posterior does not exceed a pre-specified threshold". We denote the resulting approach the KLD-
sampling algorithm since the distance between the MLE and the true distribution is measured by
the Kullback-Leibler distance. In what follows, we will first derive the equation for determining
the number of samples needed to approximate a discrete probability distribution (see also [20, 13]).
Then we will show how to modify the basic particle filter algorithm so that it realizes our adaptation
approach.

To see, suppose thatn samples are drawn from a discrete distribution withk different bins.
Let the vectorX = (X

1

; : : : ; X

k

) denote the number of samples drawn from each bin.X is
distributed according to a multinomial distribution, i.e.X =� Multinomial

k

(n; p), wherep =

p
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: : : p
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specifies the probability of each bin. The maximum likelihood estimate ofp is given by
b
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Whenp is the true distribution, the likelihood ratio converges toa chi-square distribution:

2 log�

n

!

d

�

2

k�1

as n!1 (4)

Please note that the sum in the rightmost term of Eq. (3) specifies the K-L distanceK(

b

p; p)

between the MLE and the true distribution. Now we can determine the probability that this distance
is smaller than", given thatn samples are drawn from the true distribution:

P

p

(K(

b

p; p) � �) = P

p

(2nK(

b

p; p) � 2n�)

:

= P (�

2
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� 2n�) (5)
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The second step in Eq. (5) follows by replacingnK(

b

p; p) with the likelihood ratio statistic, and
by using the convergence result stated in Eq. (4). The quantiles of the chi-square distribution are
given by

P (�

2

k�1

� �

2

k�1;1�Æ

) = 1� Æ : (6)

Now if we choosen such that2n� is equal to�2

k�1;1�Æ

, we can combine Eq. (5) and Eq. (6) to get

P

p

(K(

b

p; p) � �)

:

= 1� Æ : (7)

This derivation can be summarized as follows: If we choose the number of samplesn as

n =

1

2�

�

2

k�1;1�Æ

; (8)

then we can guarantee that with probability1 � Æ, the K-L distance between the MLE and the
true distribution is less than". In order to determinen according to Eq. (8), we need to compute
the quantiles of the chi-square distribution. A good approximation is given by the Wilson-Hilferty
transformation [13], which yields

n =

1

2�

�

2

k�1;1�Æ

:

=

k � 1

2�

(

1�

2

9(k � 1)

+

s

2

9(k � 1)

z

1�Æ

)

3

; (9)

wherez
1�Æ

is the upper1� Æ quantile of the standard normalN(0; 1) distribution.
This concludes the derivation of the sample size needed to approximate a discrete distribution

with an upper bound" on the K-L distance. From Eq. (9) we see that the required number of
samples is proportional to the inverse of the" bound, and to first order linear in the numberk of
bins with non-zero probability (support).

It remains to be shown how to apply this result to particle filters. The problem is that we do not
know the true posterior distribution (note that the estimation of this posterior is the main goal of the
particle filter). Fortunately, Eq. (9) shows that we do not need the complete discrete distribution
but that it suffices to determine the numberk of bins with non-zero probability. We estimate this
quantity by counting the number of bins with support during sampling. To be more specific, we
estimatek for the proposal distributionp(x

t

j x

t�1

; u

t�1

)Bel(x

t�1

) resulting from the first two
steps of the particle filter update. The determination ofk can be done efficiently by checking for
each generated sample whether it falls into an empty bin or not. Sampling is stopped as soon as
the number of samples exceeds the threshold specified in Eq. (9). An update step of the resulting
KLD-sampling particle filter is given in Table 2.

As can be seen there, the implementation of this modified particle filter is trivial. The only
difference to the original algorithm is that we have to keep track of the numberk of supported bins.
The bins can be implemented either as a fixed, multi-dimensional grid [8], or more efficiently as
a tree structure [14, 18]. Please note that the sampling process is guaranteed to stop, since for a
given bin size�, the numberk of possible bins is limited.

4 Experimental results

We evaluated our approach using data collected with one of our robots. The robot and the map used
for localization are shown in Fig. 2. The data consists of a sequence of sonar scans and odometry

7



Inputs: S
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/* Update number of bins with support */

if (x

(n)

t

falls into an empty binb) then
k := k + 1

b := non-empty

n := n+ 1

while (n <

1

2�

�
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k�1;1�Æ

)

/* Normalize importance weights */
for i := 1; : : : ; n do

w

(i)

t

:= w

(i)

t

=�

return S

t

Table 1: The KLD-sampling particle filter algorithm.

measurements annotated with time-stamps to allow systematic real-time evaluations. In all exper-
iments we compared our KLD-sampling approach to the likelihood-based approach discussed in
Section 3.1, and to particle filters with fixed sample set sizes. Throughout the experiments we
used different parameters for the three approaches. For thefixed approach we varied the number
of samples, for the likelihood-based approach we varied theweight threshold used to determine
the number of samples, and for our approach we varied", the bound on the K-L distance. In all
experiments, we used a value of 0.99 forÆ and a fixed bin size� of 50cm� 50cm� 10deg. We
furthermore limited the maximum number of samples for all approaches to 100,000.

Approximation of the true posterior

In the first set of experiments we evaluated how accurately our adaptive approach approximates
the true posterior density. Since ground truth for these posteriors is not available, we compared
the sample sets generated by the different approaches with reference sample sets. These reference
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(a)

18
 m

54 m (b)

Fig. 2: a) Pioneer II robot used throughout the experiments.b) Map used for localization along with the
path followed by the robot during data collection. The smallcircles mark the different start points for the
global localization experiments.

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

0 20000 40000 60000 80000 100000

Fixed sampling
Likelihood−based adaptation

KLD−based adaptation

K
L 

di
st

an
ce

Number of samples

0

50

100

150

200

0 20000 40000 60000 80000

Fixed sampling
Likelihood−based adaptation

KLD−based adaptation

Number of samples

Lo
ca

liz
at

io
n 

er
ro

r 
[c

m
]

Fig. 3: Thex-axis represents the average sample set size for different parameters of the three approaches.
a) They-axis plots the K-L distance between the reference densities and the sample sets generated by
the different approaches. b) They-axis represents the average localization error measured by the distance
between estimated positions and reference positions.

sets were generated using a particle filter with a fixed numberof 200,000 samples (far more than
actually needed for position estimation). The comparison was done by computing the K-L distance
between the sets and their corresponding reference sets, using histograms for both sets. Note that
in these experiments the time-stamps were ignored and the algorithms was given as much time as
needed to process the data. Fig. 3(a) plots the average K-L distance along with 95% confidence
intervals against the number of samples for the different algorithms (for clarity, we omitted the
large error bars for K-L distances above 1.0). Each data point represents the average of 16 global
localization runs with different start positions of the robot (each run itself consists of approximately
150 sample set comparisons at the different points in time).As expected, the more samples are
used, the better the approximation. The curves show the superior performance of our approach:
While the fixed approach requires about 50,000 samples before it converges to a K-L distance
below 0.25, our approach converges to the same level using only 3,000 samples on average. This
is also an improvement by a factor of 12 compared to the approximately 36,000 samples needed
by the likelihood-based approach. In essence, these experiments indicate that our approach, even
though based on several approximations, is able to accurately track the true posterior using only a
small number of samples.
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Real-time performance

In these experiments we investigated the real-time localization performance of our approach. This
time we performed multiple global localization experiments under real-time considerations and we
estimated at each iteration the distance between the estimated robot position and the corresponding
reference position1. The results are shown in Fig. 3(b). The U-shape of all three graphs nicely
illustrates the trade-off involved in choosing the number of samples under real-time constraints:
Choosing not enough samples results in a poor approximationof the underlying posterior and the
robot frequently fails to localize itself. On the other hand, if we choose too many samples, each up-
date of the algorithm takes several seconds and valuable sensor data has to be discarded. Fig. 3(b)
also shows that our KLD-sampling approach yields drastic improvements over both fixed sampling
and likelihood-based sampling. The smallest average localization error is 44cm in contrast to an
average error of 79cm and 114cm for the likelihood-based andthe fixed approach, respectively.
Due to the smaller sample sets, our approach also needs significantly less processing power than
any of the other approaches.

5 Conclusions

We presented a statistical approach to adapting the sample set size of particle filters on-the-fly.
The key idea of the KLD-sampling approach is to bound the error introduced by the sample-based
belief representation of the particle filter. At each iteration, our approach generates samples until
their number is large enough to guarantee that the K-L distance between the maximum likelihood
estimate and the underlying posterior does not exceed a pre-specified bound. Thereby, our ap-
proach chooses a small number of samples if the density is focused on a small subspace of the
state space, and chooses a large number of samples if the samples have to cover a major part of the
state space.

Both the implementational and computational overhead of this approach are small. Extensive
experiments using mobile robot localization as a test application show that our approach yields
drastic improvements over particle filters with fixed samplesets and over a previously introduced
adaptation approach [14, 7]. For example, our KLD-samplingmethod yields better approxima-
tions using less than 6% of the samples required by particle filters with fixed sample set sizes,
and using less than 9% of the samples required by the adaptation approach based on observa-
tion likelihoods. Our algorithm typically uses all available samples during early stages of lo-
calization and reduces the sample set size to several hundred samples once the position of the
robot is determined. Animations illustrating the effectiveness of the approach can be found under
http://www.cs.washington.edu/homes/fox/animations.html.

Despite these encouraging results, several open questionsneed to be addressed in future re-
search. In our current implementation we use a discrete distribution with afixedbin size to esti-
mate the number of samples. It needs to be evaluated whether the performance of the filter can be
further improved by changing the discretization over time and space (e.g. one might be interested
in more accurate estimates in certain areas of the state space). So far, the KLD-sampling approach
has been tested using robot localization only. However, we conjecture that many other applications
of particle filters can benefit from this method. Investigating this technique in the context of other

1The position estimate is generated from a sample set using histograming and local averaging, and the reference
positions were determined by evaluating the robot’s laser range-finder information.
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applications is part of future work.
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