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Abstract

We present a statistical approach to adapting the sampgizeedf particle filters on-the-
fly. The key idea of the KLD-sampling method is to bound theeimtroduced by the sample-
based representation of the particle filter. Thereby, opr@xrh chooses a small number of
samples if the density is focused on a small subspace ofdke space, and it chooses a large
number of samples if the state uncertainty is high. Both ing@émentation and computation
overhead of this approach are small. Extensive experimesiig mobile robot localization as
a test application show that our approach yields drasticorgments over particle filters with
fixed sample set sizes and over a previously introduced atilaptechnique.

1 Introduction

Estimating the state of a dynamic system based on noisy sereasurements is extremely im-
portant in areas as different as speech recognition, tégeking, mobile robot navigation, and
computer vision. Since many of these applications imposktime constraints on the estimation
processgfficiencyis an important aspect of state estimation. Furthermoneesithe underlying
uncertainties can vary dramatically over time, anotherartemnt aspect of state estimation is the
need to deal with avide range of probability densities

Over the last years, patrticle filters have been applied wigatgsuccess to a variety of state
estimation problems [4, 11, 7, 16, 21, 25]. Particle filtesgneate the posterior probability density
over the complete state space of a dynamic system [5, 17Th8]key idea of this technique is to
represent probability densities by sets of samples, oigiest It is due to this representation, that
particle filters combine efficiency with the ability to repeat a wide range of probability densities.
The efficiency of particle filters lies in the way they placenputational resources. By sampling



in proportion to likelihood, particle filters focus the coutgtional resources on regions of the state
space with high likelihood, where things really matter.

So far, however, an important source for increasing theieffay of particle filters has only
rarely been studiedAdapting the number of samples over tinhost existing approaches use a
fixed number of samples during the whole state estimationga® However, this can be highly
inefficient, since the complexity of the probability derestcan vary drastically over time. An
exception is the adaptive sampling approach applied byadhd][7]. Both approaches adjust the
number of samples based on the likelihood of observation$ortiinately, this method has some
important shortcomings, as we will show.

In this paper we introduce a novel approach to adapting thaxeu of samples over time. In
contrast to previous approaches, our technique deterntireesumber of samples based on the
complexity of the sampling distribution. Extensive expgents using a mobile robot indicate that
our approach yields drastic improvements over particleréltvith fixed sample set sizes and over
the previously introduced adaptation technique.

The remainder of this paper is organized as follows: In thd section we will outline the
basics of particle filters and their application to mobileablocalization. In Section 3, we will
introduce our novel technique to adaptive particle filteExperimental results are presented in
Section 4 before we conclude in Section 5.

2 Particle filters for Bayesian filtering and robot localization

In this section we will review the basics of Bayes filters aadiple filters, and their application to
mobile robot localizaion (further details can be found ing3y.

Bayes filters

Bayes filters address the problem of estimating the staté a dynamical system from sensor
measurements. The key idea of Bayes filtering is to recuysestimate the posterior probability
density over the state space conditioned on the data cedlestd far. Without loss of generality,
we assume that the data consists of an alternating sequétioeedndexed observationg and
control measurements, which describe the dynamics of the system. The posteribmatt is
called the belieBBel(x;), defined by

BEZ(ZL’t) - p(xt | ytaut—layt—laut—Q'"JU’OJyO)

Bayes filters make the assumption that the dynamic systemarkdy, i.e. observationg, and
control measurements are conditionally independent of past measurements artdotoeadings
given knowledge of the statg. Under this assumption the posterior can be determinedesftig
using the following two update rules: Whenever a new contreasurement, ; is received, the
state of the system redictedaccording to

Bel (x;) <«— /p(xt | 2y 1, up 1) Bel(xy 1) dxy (1)

and whenever an observationis made, the state estimatecisrrectedaccording to

Bel(z;) «— ap(y | x¢)Bel (x). (2)



Here,« is a normalizing constant which ensures that the belief theeentire state space sums up
to one. The state right after the prediction and before tlseation is called thpredictivebelief
Bel™(xy).

Implementations of Bayes filters mostly differ in the wayythepresent densities over the state
x;. For example, Kalman filters are Bayes filters which make #sgrictive assumption that the
posterior can be represented by Gaussian distributionp0

Particle filters

Particle filters are a variant of Bayes filters which représka beliefBel(x,) by a setS, of n
weighted samples distributed accordingiel(x,):

Se={(, w®) |i=1,...,n}

Here eacm(f) is a state, and th@éi) are non-negative numerical factors callegbortance weights
which sum up to one. The basic form of the particle filter madithe recursive Bayes filter accord-
ing to a sampling procedure, often referred to as sequentrtance sampling with resampling
(SISR, see also [17, 5, 4]). A time update of one possible @amgintation of this algorithm is
outlined in Table 1.

Inputs: S; 1 = {(a:@l,wﬁ?ﬁ |i=1,...,n} representing belieBel(z;_1)
St = @, a=0

I* Generate n samples representififyl (x;) */

fori:=1,...,n do

[* Resampling */
Sample an indey(z) from the discrete distribution given by the weightsdn

/* Sampling: Predict next state using the control inforroati,, | */

Sampleccgi) fromp(z; | zp—1,ur—1) usingxgi(f)) andu;

/* Importance sampling: Compute importance weight basetikatihood ofy; */
V= ply | 24”)

o=+ wgz)

(i
Wy

/* Insert sample into sample set */
Sei= 51U () wf”)}

/* Normalize importance weights */

fori:=1,...,n do
w,ﬁ‘) = wgl)/a
return S;

Table 1: The basic particle filter algorithm.

In the resampling step, the algorithm basically generasgptes drawn according to the prior
belief Bel(z,_,) represented by the weighted sample Set;. The next state of these samples
is predicted by sampling from the model of the systems dyngmising the control information
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us_q1. After this sampling step, the samples are distributed ralicg to the predictive density
p(xy | x4—1,u,—1)Bel(z,_1). In order to generate samples according to the next bBli¢fz;),
importance sampling is applied, wiBel(z;) as target distribution angz; | x; 1, u; 1)Bel(z; 1)

as proposal distribution. By dividing these two distrilous, we gep(y; | x,ﬁ”)) as the importance
weight for each sample [9]. After generatinggamples, these weights are normalized so that they
sum up to one. It can be shown that this procedure in fact imeigs the Bayes filter, using an
(approximate) sample-based representation [5, 4].

Particle filters for mobile robot localization

In this paper, we use the problem of mobile robot localizatio illustrate and test our novel
approach to adaptive particle filters. Mobile robot locatian is the problem of estimating a
robot’s pose relative to a map of its environment. Robotlleation has been recognized as one
of the most fundamental problems in mobile robotics [2, 1, TBhe mobile robot localization
problem comes in different flavors. The simplest localmaroblem—which has received by far
the most attention in the literature—pgsition tracking Here the initial robot pose is known, and
localization seeks to correct small, incremental errora nobot’s odometry. More challenging
is the global localization problemwhere a robot is not told its initial pose, but instead has to
determine it from scratch. The global localization problestmore difficult, since the robot's
initial uncertainty can be arbitrarily large.

Robot localization can be phrased as a state estimatiotgpnoln this context, the statg of
the system is typically specified by the robot’s position imva-dimensional Cartesian space and
the robot’s heading directich Measurementg, may include range measurements and camera im-
ages, and control informatiar usually consists of the robot’s odometry readings. The ste
probabilityp(x; | ;_1,u;_1) describes how the position of the robot changes based omiatfmn
collected by the robot’s wheel encoders. This conditiomabpbility is typically a model of robot
kinematics annotated with uncertainty. The perceptualehp@d); | x;) describes the likelihood
of making the observatiop, given that the robot is at locatior}. For proximity sensors such as
sonar sensors, this probability can be computed from theusisg ray-tracing and a model of the
sensor uncertainty (see also [1, 8]).

Particle filters have been applied with great practical sssdo a variety of mobile robot sys-
tems[7, 3, 16, 6, 12]. Fig. 1l illustrates the applicationarttjzle filters to mobile robot localization.
Shown there is a map of a hallway environment along with aeecgiof sample sets during global
localization. The pictures demonstrate the ability of igéatfilters to represent a wide variety of
distributions, ranging from uniform to highly focused. Esfally in symmetric environments, the
ability to represent ambiguous situations is of utmost irtgpace for the success of global local-
ization. In this example, all sample sets contain 100,008péas. While such a high number of
samples is necessary to accurately represent the beliafycdearly stages of localization (cf. 1(a)),
itis obvious that only a small fraction of this number suféi¢e track the position of the robot once
it knows where it is (cf. 1(c)). Unfortunately, it is not stgatforward how the number of samples
can be adapted on-the-fly, and this problem has only rarely bddressed so far.
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Fig. 1. Map of the UW CSE Department along with a series of darepts representing the robot’s belief
during global localization using sonar sensors (samplkep@ajected into 2D). The size of the environment
is 54mx 18m. a) After moving 5m, the robot is still highly uncertaimoat its position and the samples are
spread trough major parts of the free-space. b) Even as It reaches the upper left corner of the map,
its belief is still concentrated around four possible lama. c) Finally, after moving approximately 55m,

the ambiguity is resolved and the robot knows where it is.cAlhputation is carried out in real-time on a
low-end PC.

3 Adaptive sampling for particle filters

The localization example in the previous section illugtsathat the efficiency of particle filters
can be greatly increased by changing the number of sampédiowe: While a large number of
samples is necessary to accurately represent the beliafydearly stages of localization (cf. 1(a)),
itis obvious that only a small fraction of this number suféi¢e track the position of the robot once
it knows where it is (cf. 1(c)). Before we introduce our noapproach to adaptive particle filters,
let us first discuss and analyze an existing technique toteggghe number of samples.

3.1 Likelihood-based adaptation

We call this approach likelihood-based adaptation sintebtised on the idea of determining the
number of samples such that the non-normalized sum ofti&etis (importance weights) exceeds
a pre-specified threshold. This approach has been applaythtamic Bayesian networks [14] and
mobile robot localization [7]. The intuition behind this@pach can be illustrated in the robot
localization context: If the sample set is well in tune wittetsensor reading, each individual



importance weight is large and the sample set remains smihlk is typically the case during
position tracking (cf. 1(c)). If, however, the sensor regdcarries a lot of surprise, as is the case
when the robot is globally uncertain or when it lost track tsfposition, the individual sample
weights are small and the sample set becomes large.

The likelihood-based adaptation directly relates to th@pprty that the variance of the im-
portance sampler is a function of the mismatch of the prdpdis&ribution and the distribution
that is being approximated with the weighted samples [23]fodunately, this method doesot
consider thecomplexityof the underlying density. Consider, for example, the ambig belief
state consisting of four distinctive sample clusters shawhig. 1(b). Due to the symmetry of
the environment, the average likelihood of a sensor meamneobserved in this situation is ap-
proximately the same as if the robot knew its position ungmbisly (cf. 1(c)). Therefore, the
likelihood-based approach would fail to distinguish beswéhese two situations. Nevertheless, it
is obvious that an accurate approximation of the belief showFig. 1(b) requires a multiple of
the samples needed to represent the belief in Fig. 1(c).

3.2 KLD-sampling

The key idea of our approach is to bound the error introdugethb sample-based representa-
tion of the particle filter. To derive this bound, we assumet the true posterior is given by a
discrete, piecewise constant distribution such as a desdensity tree or a multi-dimensional his-
togram [14, 18, 24, 8]. For such a representation we canrmdaterthe number of samples so that
the distance between the maximum likelihood estimate (Mh&Sed on the samples and the true
posterior does not exceed a pre-specified thresholde denote the resulting approach the KLD-
sampling algorithm since the distance between the MLE aedrtte distribution is measured by
the Kullback-Leibler distance. In what follows, we will firderive the equation for determining
the number of samples needed to approximate a discretelplippdistribution (see also [20, 13]).
Then we will show how to modify the basic patrticle filter alglbom so that it realizes our adaptation

approach.
To see, suppose thatsamples are drawn from a discrete distribution withifferent bins.
Let the vectorX = (Xj,...,X;) denote the number of samples drawn from each hih.is

distributed according to a multinomial distribution, i.8. =~ Multinomial,(n, p), wherep =
p1 - - . pi Specifies the probability of each bin. The maximum likelid@stimate op is given by
p= n~'X. Furthermore, the likelihood ratio statistig for testingp is

: Dj d p;
log \n = Y X;log (—J> =n)Y_ pjlog (—‘7> : 3
j=1 Dj j=1 Pj

Whenp is the true distribution, the likelihood ratio convergestohi-square distribution:
2log A\, =4 Xz_1 as n — 00 4)

Please note that the sum in the rightmost term of Eq. (3) psthe K-L distances (p, p)
between the MLE and the true distribution. Now we can deteerttie probability that this distance
is smaller tharz, given that, samples are drawn from the true distribution:

P(K(p,p) <€) = P,(2nK(p,p) < 2ne) = P(x; , < 2ne) (5)



The second step in Eq. (5) follows by replacing (p, p) with the likelihood ratio statistic, and
by using the convergence result stated in Eq. (4). The deandf the chi-square distribution are
given by

P(X%—l < XZ—I,I—&) =1-9. (6)
Now if we choose: such thatne is equal toxﬁ,m,g, we can combine Eq. (5) and Eg. (6) to get

P,(K(p,p) <€) = 1-96. (7

This derivation can be summarized as follows: If we choosentimber of samples as

1

n= 2_€X%—1,1—67 (8)

then we can guarantee that with probability- §, the K-L distance between the MLE and the
true distribution is less than In order to determine according to Eq. (8), we need to compute
the quantiles of the chi-square distribution. A good appraion is given by the Wilson-Hilferty
transformation [13], which yields

3
1, k—1 2 2
- — = - ] -—" _ 9
T geNh-t1-e e { o —1) Vo —n™ ‘5} ’ ©

wherez;_; is the upperl — § quantile of the standard normal(0, 1) distribution.

This concludes the derivation of the sample size neededpmainate a discrete distribution
with an upper bound on the K-L distance. From Eq. (9) we see that the required murob
samples is proportional to the inverse of thbound, and to first order linear in the numiieof
bins with non-zero probability (support).

It remains to be shown how to apply this result to particlefdt The problem is that we do not
know the true posterior distribution (note that the estiorabf this posterior is the main goal of the
particle filter). Fortunately, Eq. (9) shows that we do noddhéhe complete discrete distribution
but that it suffices to determine the numlaeof bins with non-zero probability. We estimate this
guantity by counting the number of bins with support duriagnpling. To be more specific, we
estimatek for the proposal distributiorp(x; | x; 1, u; 1)Bel(z; 1) resulting from the first two
steps of the particle filter update. The determinatio® ofin be done efficiently by checking for
each generated sample whether it falls into an empty bin br ®mpling is stopped as soon as
the number of samples exceeds the threshold specified ifEAK update step of the resulting
KLD-sampling particle filter is given in Table 2.

As can be seen there, the implementation of this modifiedgbafilter is trivial. The only
difference to the original algorithm is that we have to keeph of the numbek of supported bins.
The bins can be implemented either as a fixed, multi-dimexasigrid [8], or more efficiently as
a tree structure [14, 18]. Please note that the samplingepsois guaranteed to stop, since for a
given bin sizeA, the numbetf of possible bins is limited.

4 Experimental results

We evaluated our approach using data collected with onerabbots. The robot and the map used
for localization are shown in Fig. 2. The data consists ofqueace of sonar scans and odometry
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Inputs: S;_; = {@E?l,wg? ) li=1,...,n}representing belieBel(x;_;)
Control measurement; 1, observationy;
boundss andd, bin sizeA

S;=0,n=0,k=0,a=0

[* Generate samples until K-L bound is reached */
do
/* Predict next state using the control informatiaip_, */
Sample an index(n) from the discrete distribution given by the weightsSin |

samplez{™ from p(z; | zi—1,ur—1) usingz ") andu,_;

/* Compute importance weight and update normalizationdatt
wi™ == plye | 24"

a:=o+ wt(n)
/* Insert sample into sample set */
Sp = SeU{(",wi™)}

/* Update number of bins with support */
if (x§"> falls into an empty birb) then
k=k+1
b := non-empty
n:=n-+1

while (n < ixz_m_&)

/* Normalize importance weights */

fori:=1,...,n do
wt(l) = w,gz)/oz
return S;

Table 1: The KLD-sampling particle filter algorithm.

measurements annotated with time-stamps to allow sysieneat-time evaluations. In all exper-
iments we compared our KLD-sampling approach to the likeldtbased approach discussed in
Section 3.1, and to particle filters with fixed sample setssiZEhroughout the experiments we
used different parameters for the three approaches. Fdixtdteapproach we varied the number
of samples, for the likelihood-based approach we variedubight threshold used to determine
the number of samples, and for our approach we varjede bound on the K-L distance. In all
experiments, we used a value of 0.99 daand a fixed bin size\ of 50cmx 50cm x 10deg. We
furthermore limited the maximum number of samples for afirapches to 100,000.

Approximation of the true posterior

In the first set of experiments we evaluated how accuratetyadaptive approach approximates
the true posterior density. Since ground truth for thesegpimss is not available, we compared
the sample sets generated by the different approachesefgttence sample sets. These reference
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Fig. 2: a) Pioneer Il robot used throughout the experimehjsMap used for localization along with the
path followed by the robot during data collection. The smaaltles mark the different start points for the
global localization experiments.
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Fig. 3: Thezx-axis represents the average sample set size for diffeegatreters of the three approaches.
a) They-axis plots the K-L distance between the reference dessitiedl the sample sets generated by
the different approaches. b) Theaxis represents the average localization error measwyréideldistance
between estimated positions and reference positions.

sets were generated using a patrticle filter with a fixed nurab200,000 samples (far more than
actually needed for position estimation). The comparisas @done by computing the K-L distance
between the sets and their corresponding reference setg,histograms for both sets. Note that
in these experiments the time-stamps were ignored and gbeitaims was given as much time as
needed to process the data. Fig. 3(a) plots the average Ktandie along with 95% confidence
intervals against the number of samples for the differegorhms (for clarity, we omitted the
large error bars for K-L distances above 1.0). Each datat pepresents the average of 16 global
localization runs with different start positions of the ablfeach run itself consists of approximately
150 sample set comparisons at the different points in timds)expected, the more samples are
used, the better the approximation. The curves show theisugperformance of our approach:
While the fixed approach requires about 50,000 samples d@f@onverges to a K-L distance
below 0.25, our approach converges to the same level usigg3d@00 samples on average. This
is also an improvement by a factor of 12 compared to the ajppetely 36,000 samples needed
by the likelihood-based approach. In essence, these exgets indicate that our approach, even
though based on several approximations, is able to actytedek the true posterior using only a
small number of samples.



Real-time performance

In these experiments we investigated the real-time loatdin performance of our approach. This
time we performed multiple global localization experimgenhder real-time considerations and we
estimated at each iteration the distance between the éstimzbot position and the corresponding
reference positioh. The results are shown in Fig. 3(b). The U-shape of all thraphp nicely
illustrates the trade-off involved in choosing the numbkesamples under real-time constraints:
Choosing not enough samples results in a poor approximetfitre underlying posterior and the
robot frequently fails to localize itself. On the other haifive choose too many samples, each up-
date of the algorithm takes several seconds and valualdesdata has to be discarded. Fig. 3(b)
also shows that our KLD-sampling approach yields drastfironements over both fixed sampling
and likelihood-based sampling. The smallest averageiatadn error is 44cm in contrast to an
average error of 79cm and 114cm for the likelihood-basedthedixed approach, respectively.
Due to the smaller sample sets, our approach also needficagtly less processing power than
any of the other approaches.

5 Conclusions

We presented a statistical approach to adapting the sarapkze of particle filters on-the-fly.
The key idea of the KLD-sampling approach is to bound thereéntooduced by the sample-based
belief representation of the patrticle filter. At each itemat our approach generates samples until
their number is large enough to guarantee that the K-L distéetween the maximum likelihood
estimate and the underlying posterior does not exceed apme@fied bound. Thereby, our ap-
proach chooses a small number of samples if the density iséaton a small subspace of the
state space, and chooses a large number of samples if théesdmape to cover a major part of the
state space.

Both the implementational and computational overheadisfdhproach are small. Extensive
experiments using mobile robot localization as a test appbin show that our approach yields
drastic improvements over particle filters with fixed sangeés and over a previously introduced
adaptation approach [14, 7]. For example, our KLD-sampimeghod yields better approxima-
tions using less than 6% of the samples required by partitéesfiwith fixed sample set sizes,
and using less than 9% of the samples required by the adaptapproach based on observa-
tion likelihoods. Our algorithm typically uses all availaksamples during early stages of lo-
calization and reduces the sample set size to several hdisdraples once the position of the
robot is determined. Animations illustrating the effeetiess of the approach can be found under
http://ww. cs. washi ngt on. edu/ hones/ f ox/ ani mati ons. ht i .

Despite these encouraging results, several open questamtsto be addressed in future re-
search. In our current implementation we use a discretahisibn with afixedbin size to esti-
mate the number of samples. It needs to be evaluated whethpetformance of the filter can be
further improved by changing the discretization over timd apace (e.g. one might be interested
in more accurate estimates in certain areas of the state)sg@e far, the KLD-sampling approach
has been tested using robot localization only. However,omecture that many other applications
of particle filters can benefit from this method. Investiggtihis technique in the context of other

1The position estimate is generated from a sample set ussggnaming and local averaging, and the reference
positions were determined by evaluating the robot’s lazege-finder information.
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applications is part of future work.
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