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Figure 1: From (a) 10 photographs of an object taken under varying illumination, we can reconstruct (b) its normals and materials, represented
as (c) a material weight map controlling a mixture of (d,e) fundamental materials. Using this representation we can (f) rerender the object
under novel lighting.

Abstract

We describe a suite of techniques for extracting shape and materi-
als from multiple photographs of an object captured from the same
viewpoint but with differing illumination. Our method extracts per-
pixel BRDFs along with 3D shape, under an assumption that the
materials can be described as a convex combination of a small num-
ber of fundamental materials. We also show examples of interac-
tive lighting and editing operations made possible by our methods,
including direct manipulation of material coefficients and material
transfer between models.

1 Introduction

Producers of computer graphic content rely heavily upon manual
labor for creating digital models of 3D shape and materials. The
ubiquity and affordability of high-resolution digital cameras has
fueled an interest in acquiring these models from images. For
opaque objects, the problem is to reconstruct shape (2D manifold)
plus spatially-varying reflectance (6D) from just a few images. Ex-
pressed this way, the full problem of reconstructing an 8D function
from sparse 2D samples is extremely challenging.

Previous authors have generally limited the scope of the problem by
assuming either known shape or known reflectance. For example,
laser range scanners work best when acquiring the shape of Lam-
bertian objects of uniform color and intensity. To scan a shiny ob-
ject with a laser range scanner, one often must coat it with a flat gray
paint for scanning [Lensch et al. 2001; Wood et al. 2000; Sato et al.
1997]. Similarly, devices and techniques for acquiring bidirectional
reflectance distribution functions (BRDFs) rely on having a flat sur-
face sample, or at the very least a sample of known shape [Sato
et al. 1997; Marschner et al. 1999]. However, for real-world ob-
jects – which are neither flat or homogenous nor Lambertian – this
presents a “chicken or the egg” problem.

Our objective is to devise a very simple scanning technique that re-
quires a minimal amount of equipment and effort but reconstructs
both shape and spatially-varying materials for a wide range of real-
world objects. We pose this problem in an optimization framework,
in which both the objective function and optimization procedure
must be carefully chosen. The wrong choice of objective function
can lead to overfitting, in which the global optimum may match the
data perfectly but fail to predict new samples (e.g. new lighting or
viewing conditions). Due to the strong nonlinear terms in BRDFs,
even a good choice of objective function presents a rocky optimiza-
tion landscape, so the wrong choice of optimization procedure can

end in local optima far from the global optimum. In this paper,
we present an objective function and optimization procedure which
generally avoids overfitting and finds a plausible optimum solution.

Our approach is based on the observation that many real-world sur-
faces actually consist of relatively few distinct materials. Under
this assumption, we model the object’s appearance in terms of a
small number of constant fundamental materials, each described by
the small number of parameters in the isotropic Ward reflectance
model [Larson 1992]. The spatial variation of the surface is de-
scribed by a constrained mixture of these materials across the sur-
face. This model is narrow enough to eliminate many ambiguities
of interpretation, but flexible enough to reasonably approximate a
wide variety of real-world objects. We have also employed an ef-
fective mechanism that exploits user “hints” to resolve intrinsic am-
biguities.

Our capture mechanism is inexpensive and fast, requiring only a
high-resolution digital camera, tripod, and shutter release. The cap-
ture environment is a room with black walls and multiple indepen-
dently controllable light sources, but, in principle, a closed garage
and flashlight will suffice. We require a relatively small number of
light sources in arbitrary locations (8 to 10 in our examples), but
each additional widely spaced light source improves the quality of
the reconstruction. Furthermore, we require no camera calibration,
and lighting calibration is easily performed using simple objects of
known shape and material.

Using the data acquired by our technique, many novel object editing
techniques are made possible. For example, in addition to changes
of lighting and limited changes of viewpoint, the fundamental ma-
terials of the object can be adjusted to change color, specularity
or other parameters of the BRDF. The materials can be painted or
adjusted using operations similar to those available in commercial
image editing software such as Adobe Photoshop. Finally, a num-
ber of surface property transfer operations are made possible by our
representation.

Our approach belongs to the class of methods known as photometric
stereo. In our experience, photometric stereo methods can produce
higher-resolution geometric detail than triangulation-based meth-
ods. To date, computer graphics research has almost solely em-
phasized triangulation for shape reconstruction, but we believe the
high availability and low cost of high-resolution digital still cam-
eras makes photometric stereo an appealing alternative for shape
capture.

Figure 1 illustrates our model reconstruction and an example of re-
lighting made possible by our approach.
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2 Related Work

BRDF acquisition from photographic data has been widely re-
searched in the computer graphics community. Sato et al. [1997]
captured shape using a laser range scanner and separately captured
varying BRDF measurements over the surface from photographs.
Marschner et al. [1999] also took advantage of known shape – ei-
ther from simple geometry or using laser range scans – to recover
high-confidence BRDFs from homogenous surfaces.

More recent works attempt to improve upon this process or cap-
ture more BRDF variation across surfaces, but still assume that the
geometry is known a priori. For example, Matusik et al. [2003]
attempt to reduce the number of necessary photographs by deter-
mining the best viewpoints for BRDF recovery. A system that re-
covers BRDFs accounting for interreflections is described by Yu
et al. [1999]. Lensch et al. [2001; 2003] have proposed a clus-
tering approach that aggregates material estimates over a known
surface. In this work they also refine the scanned geometry us-
ing extracted normal maps. However, they require approximate
scanned geometry as input. The theoretical limits of factorizing
lighting and reflectance have been explored by Ramamoorthi and
Hanrahan [2001]. Another interesting variation was presented by
Jaroszkiewicz and McCool [2003], in which BRDFs are specified
via a painting interface.

Some work has been done to recover reflectance fields without
knowing the geometry in advance [Gortler et al. 1996; Matusik
et al. 2002], and even without reconstructing it at all [Debevec et al.
2000; Chuang et al. 2000; Levoy and Hanrahan 1996; Malzbender
et al. 2001]. These approaches require vast numbers of observa-
tions and some do not explicitly capture shape or materials, and
therefore have limited flexibility and more expensive representa-
tions. However, they can often capture more complex physical phe-
nomena than our method. Gardner et al. [2003] presented a method
for extracting both shape and reflectance from a set of photographic
measurements for nearly flat objects. Akers et al. [2003] proposed
an interactive relighting technique for emphasizing notable features
in technical illustrations, by blending pixels from input images of
the object under various illumination conditions.

Our work draws most immediately from the photometric stereo lit-
erature. In the seminal works [Woodham 1980; Silver 1980; Tagare
and deFigueiredo 1991], the surface materials are assumed to be
of constant BRDF, but more recent work has begun to extend the
range of this approach to surfaces with more complex, spatially-
varying BRDFs [Georghiades 2003; Hertzmann and Seitz 2003;
Nayar et al. 1990]. In contrast to the approach taken by Hertz-
mann and Seitz [2003], we recover shape and material without re-
quiring sample objects composed of the same material as the target.
This allows us to reconstruct natural objects for which samples of
known shape are not always available. Furthermore, our approach
reconstructs BRDFs as well as shape, which allows rendering from
other illuminants and viewing directions. Georghiades [2003] de-
scribes a method that accomodates variation of diffuse reflectance
across a surface, but models the specular properties as being con-
stant, whereas our linear combination model allows for variation
of all parameters of the material across the surface. Our approach
permits reconstruction of more complex surface properties, such
as natural objects with variable surface roughness, or mixtures of
man-made materials such as metallic and non-metallic paints.

We also note the success of Helmholtz stereopsis in shape re-
construction on arbitrary surfaces [Zickler et al. 2002; Tu and
Mendonça 2003]. These methods avoid reconstructing BRDFs ex-
plicitly, by exploiting the reciprocity property of BRDFs. However,
our approach recovers not only shape but also a BRDF representa-

tion that can be edited, relit and viewed from different viewpoints.
Our method also uses a simpler capture mechanism requiring only
a single uncalibrated camera position.

3 Problem Statement

The input to our system is a set of images of a static target object
taken from a distant camera using a zoom lens under a different dis-
tant illuminant in each image. We assume the lighting is known, and
only local illumination effects are present (no cast shadows, inter-
reflections, transparency, or translucency). We assume that the sur-
face does not contain significant depth discontinuities in the cam-
era’s view. We also provide the system with hand-drawn mattes
of the target object to limit computation to interesting regions of
the images. From these inputs, we seek to reconstruct shape and
BRDFs with a constrained material model.

Our material model is motivated by the observation that real world
variations in BRDF across a surface are often a result of the sur-
face’s composition from several different substances. For example,
a block of wood with light and dark grain can be viewed as hav-
ing two different substances that are blended in different amounts
across the surface. This decomposition approach is also commonly
used in the effects and animation industry to describe complex
surfaces as spatially-varying mixtures of uniform materials [Cook
1984; Foley et al. 1990]. We call these substances fundamental ma-
terials, and the mixtures of these materials at each pixel are speci-
fied by material weight maps.

To reconstruct the surface and materials using this model, we pro-
vide the number of fundamental materials for which the system is
to solve, and a few “hints” to constrain the solution and improve
convergence, which will be discussed in later sections.

The output of the reconstruction system is a set of BRDF parame-
ters for each of the fundamental materials, and a surface normal and
material weights at each pixel. We can then reconstruct the surface
by integrating the normal field.

3.1 Model

Figure 2: A schematic illustration of our appearance model, in
which a normal map (a) is used to remap fundamental materials
(b), and the results are modulated by material maps (c) and summed
together (d).

We model the lights as distant directional sources, so the lighting
direction Li is constant over each image. We also model the camera
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as orthographic, so the view direction V is constant for all samples
(and is therefore elided in the formulation which follows). We can
model the color at pixel p as if generated from a convex combina-
tion of fundamental materials:

Ii,p,c←∑
m

γp,m fc(np,Li,αm) (1)

We use the symbol Ii,p,c to represent the color of channel c of pixel
p of image i. The function fc represents color channel c of the pa-
rameterized lighting model with normal np, lighting condition Li
and BRDF parameter vector αm; there is one αm for each funda-
mental material. In this paper, we have used the isotropic Ward
reflectance model because it has low dimensionality, but in theory
other parametric models could be substituted.

Note that since our light sources are single distant directional illu-
minants, the function fc is simply the BRDF, with a constant view-
ing direction. But in general we believe our approach could be
applied to general distant light sources by allowing fc to represent
an integral over all sources.

The material weights γp,m are subject to pairwise convexity con-
straints

0≤ γp,m ≤ 1,

∑m γp,m = 1, (2)

∃m1,m2 s.t. γp,m1
+ γp,m2

= 1

Although the fundamental materials are constant over the image,
the material weight maps γ are spatially varying. For example, Fig-
ure 1a shows a cast iron teapot with speckled green paint. Figure
1c shows two material weight maps (encoded in the red and green
channels), and Figures 1d and e illustrate samples of the two fun-
damental materials, corresponding to the cast iron and green paint
respectively.

Based on this model, we formulate the following objective function
to solve for shape and materials:

Q(n,α,γ) = ∑
i,p,c

(
Ii,p,c−∑

m
γp,m fc(np,Li,αm)

)2

(3)

in which Q is to be minimized with respect to the normals, mate-
rial parameters, and material weight maps (denoted by n, α and γ
without subscripts, respectively).

Although this objective function is easy to express, it can lead to
gross overfitting if the material weights γ are left unconstrained. We
have found that the use of pairwise convexity constraints for these
material weights (Equations 2) largely prevents this overfitting.

Optimization of Equation 3 is non-trivial; most black-box optimiza-
tion algorithms become easily trapped in local minima due to the
nonlinear terms of f and integrability constraints for the normal
field n. Our optimization approach, described in Section 4, is tailor-
made to avoid these problems.

4 Approach

Our approach has six components, each of which is described in
detail in the sections which follow.

Light calibration. The light sources’ directions and intensities
are estimated using diffuse grey and chrome spheres captured under
the same illumination as the target object. The calibration method
is described in Section 4.1.

Initialize. We propose two different approaches to initialize nor-
mals and materials. One is appropriate for objects whose materials
are similar and vary continuously, without uniform regions (Section
4.5.1), and the other is appropriate for objects with more widely-
varying and distinct regions (Section 4.5.2). Combinations of these
strategies are possible for objects of mixed type.

After initialization, we optimize the objective function iteratively
by repeating the following three steps:

1. Compute surface normals and material weight maps. To
compute the normals and material weight maps, while holding the
BRDF parameters constant, we optimize Equation 3 jointly over
normals and material weights. The normal optimization is per-
formed as a discrete search, and the material weights are optimized
by linear projection (Section 4.2).

2. Enforce integrability. The normals generated in the previ-
ous step are not guaranteed to be consistent with a 3D surface, so
we enforce integrability by solving a Poisson equation to obtain a
least-squares surface reconstruction, and subsequently recompute
the normals (Section 4.3).

3. Optimize BRDF parameters. We optimize the BRDF pa-
rameters while holding the normals and material weights constant
(Section 4.4).

Steps one through three are iterated until convergence. In some
instances we found that an early result before termination gave
slightly better reconstructions than the final converged result.

4.1 Light Calibration

In order to calibrate the directions of the light sources with respect
to the camera and their relative intensities, we use two spherical
calibration objects: a chrome and diffuse grey sphere. In princi-
ple only one of these – a chrome sphere – suffices to recover both
direction and intensity of a distant light source: the direction is re-
covered by reflecting the viewing vector about the normal at the
point of greatest brightness, and the relative intensity by integrating
the measured radiance.

However, we have found that a large number of exposures may be
necessary to obtain an intensity estimate with low variance from an
image of a chrome sphere alone. A more economical method is
to use a diffuse calibration object to measure the intensity, after the
direction has been determined from the image of the chrome sphere.
Thus, only one low-dynamic-range exposure for each calibration
object is required to reconstruct both intensity and direction.

Given the correct lighting direction Li, the intensity of the diffuse
sphere in image i is Ii,p = �iρnT

p Li, where ρ is the diffuse albedo of
the sphere and �i is the intensity of the light in image i. So given the
known normals, we can solve for the relative light intensity �iρ =
∑p Ii,p/∑p nT

p Li.

(If ρ is known, the absolute intensity can be recovered. However,
in this paper we have used the relative intensities �iρ to solve for
materials, so the linear BRDF parameters we have recovered are
actually scaled by the unknown constant scale factor ρ .)

These calibration objects may appear similar to those used by
Hertzmann and Seitz [2003], but they are used in a different way.

3



University of Washington Technical Report 04-05-03

In particular, we do not require or expect that the BRDFs of our tar-
get objects are composed of a linear combination of the calibration
materials.

4.2 Computing Normals and Material Weight Maps

After initialization, covered in Section 4.5, we jointly optimize the
normals (np) and material weights (γp,m) of Equation 3. We first
precompute the function fc over a discrete sampling of normals n
for each of the lighting samples Li and fundamental material pa-
rameters αm. In practice, this simply means rendering a small “vir-
tual sphere” of each fundamental material under each lighting con-
dition.

Given these samples of the appearance functions f , and the pair-
wise convex combination constraint, weights γp,m are computed
by linear projection and brute force search over all normals and
all pairwise combinations of fundamental materials. Let φ c

m(np) =
fc(np,Li,αm) denote the virtual sphere images for material m. For
a given choice of normal np and pair of fundamental materials
m1,m2, the objective function reduces to

Qp = ∑
i,c

(
Ii,p,c− γp,m1

φ c
m1,i

(np)− γp,m2
φ c

m2,i
(np)

)2
(4)

If γp,m2
= 1−γp,m1

, this is minimized by differentiating with respect
to γp,m1

and evaluating at zero:

γp,m1
←

∑i,c

(
Ii,p,c−φ c

m2,i
(np)

)(
φ c

m2,i
(np)−φ c

m1,i
(np)

)

∑i,c

(
φ c

m2,i
(np)−φ c

m1,i
(np)

)2 (5)

Since we wish to constrain the solution to convex combinations, we
also clamp γp,m1

to lie between 0 and 1. We solve for these optimal
convex weights for each normal and pair of materials, and select the
pair and normal with the lowest objective Qp.

Note that if three or more different materials in the scene are not
linearly independent, the fundamental materials are not uniquely
defined. For example, the object in Figure 3 has several materi-
als which can plausibly described by many linear combinations.
In such cases, we prefer the fundamental materials to correspond
to specific materials visible in the scene, i.e. these pixels should
have weights of 1 for one material and 0 for all others. To enforce
this preference, the user may paint constraint maps which fix the
weights of particular pixels throughout the optimization procedure.
At such pixels, only the normal is optimized, again by brute force
search over the normal samples. The middle and bottom rows of
Figure 3 show the fundamental materials solved with and without
such material weight constraints, respectively. (See Figure 7b to
see the painted constraints for this object.)

4.2.1 Acceleration

Depending on the resolution of the virtual calibration objects, the
full brute force normal search described in Section 4.2 can be quite
slow; a single pass over the image may take several hours to com-
plete.

In order to accelerate the computation, we limit the brute-force
search to normals which lie close to the previous normal for each
pixel. This can result in small areas which become “trapped” at the
wrong normal values, so after the algorithm converges, we perform
a final pass of normal/weight optimization using the full global nor-
mal search.

Figure 3: Fundamental materials recovered for the ornament model
(top image) without weight constraints (middle row), and with
weight constraints (bottom row).

Although in principle this approximation could cause the algorithm
to converge to a less-than-optimal solution, in practice we have
found it gives good results with dramatically less computation than
the full normal search. Most of the examples shown here converged
after 10-20 iterations of the full alternating optimization algorithm,
in about 5-10 hours on a 2.8GHz Xeon processor.

In addition, we also have found it useful to disable the weight con-
straints in this final cleanup pass. This removes discontinuities
along boundaries between constrained and unconstrained regions.

4.3 Enforcing Integrability

To compute a 3D surface from the estimated surface orientations,
given the normal {nx,ny,nz} for each point, we solve for the height
field z(x,y) that minimizes

Ψ(z) = ∑
x,y

(
nz

∂ z(x,y)
∂x

+nx

)2

+
(

nz
∂ z(x,y)

∂y
+ny

)2

(6)

using the approximations ∂ z(x,y)
∂x = (z(x + 1,y)− z(x,y)), ∂ z(x,y)

∂y =
(z(x,y + 1)− z(x,y)) [Forsyth and Ponce 2003; Trucco and Verri
1998]. This gives rise to a large but sparse system of linear equa-
tions which can be solved by conjugate gradient or multigrid meth-
ods [Press et al. 1992].

The normals are then recomputed from this surface approximation.
This step can be viewed as projecting the normal field into the sub-
space of feasible normal fields.

4.4 BRDF Parameter Optimization

The BRDFs of the fundamental materials, denoted as f in Equa-
tion 3, are generally nonlinear functions of their parameters α . We
optimize the objective function over all α simultaneously, using
the Levenberg-Marquardt nonlinear optimization algorithm. [Press
et al. 1992]

To keep the solution space highly constrained, we use the isotropic
Ward model [Larson 1992] as our parametric reflectance model.
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Using the original notation:

ρbd,iso(θi,φi;θr,φr) =
ρd

π
+

ρs√
cosθi cosφr

· exp[− tan2 δ/α2]
4πα2

(7)
where ρd and ρs are the diffuse and specular reflectance coeffi-
cients, α is a measure of roughness, and δ is the angle between
n and the halfway vector h = (V + L)/||V + L||. This model has
a very small number of parameters – seven, if ρd and ρs are RGB
values – and is thus well-suited to our problem.

Also, in order to keep the fundamental materials from diverging
too far from observed materials in the scene, we have added a small
spring term between each pair of fundamental materials to our ob-
jective function. This takes the form

Qs(α) = ε ∑
i�= j

||αi−α j||2 (8)

where i and j loop over all pairs of materials.

4.5 Initialization

For all our datasets, the first step is to initialize the normals us-
ing Lambertian photometric stereo [Woodham 1980]. Since this
method fails in the presence of specular highlights, the user chooses
intensity threshholds to reject shadow and specular highlight pix-
els from consideration. For particular configurations of lights and
shiny objects, some pixels may have fewer than 4 inlier samples
with which to estimate a normal, and for these pixels we simply
choose an arbitrary plausible normal.

Figure 4: RGB-encoded normals acquired using the Lambertian
photometric stereo method, with threshholding to exclude shadows
and highlights.

Although the resulting normal map is quite poor (see Figure 4) it
suffices as an initial guess.

The next stage of initialization treats large regions as if they were
homogenous but non-Lambertian. At this point we have slightly
different strategies for different types of objects. For objects with
continuous variation of material across their surface, we find that
the materials are often similar enough that an initial approximation
as a single homogenous material can be successful. But for objects
with more widely differing materials, we segment the images into
multiple homogenous regions.

4.5.1 Similar Materials

For surfaces with multiple similar and intermixed materials, we
initially constrain the solution to use just a single constant mate-
rial, and apply the optimization algorithm described in Sections 4.2
through 4.4. This produces an approximation of an “average” ma-
terial over the surface. Then we manually perturb the parameters
of that single “average” material in order to generate two or more

slightly different materials, and resume the optimization using the
normals generated in this initialization step.

For example, the normals and material estimates for the single-
material estimate of our teapot example are shown in Figure 5. We
note that the final materials shown in Figure 1 are actually quite dif-
ferent from each other, suggesting that a fairly large class of objects
may be initialized in this way.

Figure 5: Normals (left), virtual sphere (middle) and reconstruction
(right), using only a single material to initialize.

4.5.2 Widely Varying Materials

For widely varying material regions, we first segment the object
into regions of constant or nearly-constant material. If the material
boundaries are simple enough, the segmentation is performed man-
ually as in the candlestick example shown in Figure 6. If they are
more complex, we apply an automatic segmentation algorithm to
an estimate of diffuse reflectance, assuming that the diffuse colors
are distinct between material regions.

Many approaches to estimating diffuse reflectance and automatic
segmentation can be found in the computer vision literature, and we
believe that our algorithm is not especially sensitive to the quality
of this initial segmentation. However, for the examples used in this
paper, we have used the intrinsic images algorithm proposed by
Weiss [2001] to obtain our estimate of diffuse reflectance, and an
EM optimization for mixtures-of-Gaussians to segment the intrinsic
image into separate regions [Yamazaki 1998; Belongie et al. 1998].
To help guide this clustering we also apply cluster constraints, in a
similar manner to the weight constraints described in Section 4.2.

Figure 6: Initial segmentation (upper left), materials (upper right),
normals (lower left) and reconstruction (lower right), using two fun-
damental materials.

We use this segmentation to initialize the material weights, and ap-
ply the optimization algorithm described in Sections 4.2 through 4.4
while holding these material weights fixed. After a few iterations of
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the alternating optimization, we free the weights to be optimized,
or sparser weight constraints as in the example of Figure 3.

Figure 7 shows the intrinsic image, constraints, and initial segmen-
tation for the ornament dataset.

Figure 7: Ornament: a) Intrinsic image, b) constraints c) initial
segmentation, using five fundamental materials.

5 Applications and Results

A few of our reconstructions, with different viewpoints and com-
parisons to new sources, are shown in Figures 8, 9, 10, and 11.
Note that, for each object, the algorithm estimates a detailed nor-
mal map, accurately segments the surface materials, estimates the
reflectance properties of the materials, and faithfully reproduces the
input imagery. A few artifacts still occur, however, in regions of the
surface that were had highlights in most of the views, such as the
frontal portion of the candlestick, and the lower part of the leaf. The
presence in highlights in all of the images causes the algorithm to
over-esimate the diffuse component. These artifacts do not have a
significant impact on rerendering and relighting of these objects.

5.1 Capture Mechanism

To capture our source images, we programmed a Lutron lighting
control system and Canon 10D camera with a 400mm zoom lens to
automatically capture multiple exposures of multiple lighting sam-
ples. (Although our algorithm assumes an orthographic camera and
parallel light rays, we have obtained good results using this long
focal length, with distances from target to camera and lights of only
5 feet.) Our images are captured at the full resolution of the camera
(3072 × 2048), but most of the examples in this paper were com-
puted at a downsampled resolution of 768× 512. A typical capture
session with 12 light sources takes about 25 minutes, most of which
is simply the time to download the high-resolution images to disk
via the camera’s USB 1.0 interface.

The multiple exposures of each lighting sample are then combined
into high-dynamic range images using the technique of Debevec
and Malik [1997].

Since we use multiple fixed light sources, we can capture our cali-
bration images once for an entire capture session. Figure 12 shows
several images from the teapot capture session.

5.2 Editing Operations

Direct Manipulation. For our reconstructions we have used the
Ward BRDF model, which has a small number of parameters that
can be directly manipulated to change one or more of the funda-
mental materials without modifying the others.

For example, in Figure 13, we have manually edited the BRDF pa-
rameters of the green paint of our teapot to appear as gold leaf.

Figure 9: Alternate viewpoints of our reconstructions of a cheri-
moya (a tropical fruit) and a leaf.

Figure 10: Left column: Models under novel lighting conditions.
Right column: Photographs of real object under the same lighting
condition.
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(a) (b) (c) (d) (e)

Figure 8: Input, model, and reconstructions for candlestick data. a) Source image (1 of 10). b) Material weight constraints, in false color. c)
Recovered material weights, in false color. d) Recovered normal map, RGB-encoded. e) Virtual spheres for fundamental materials.

(a) (b) (c)
(d)

(e)

(a) (b) (c)
(d)

(e)

(a) (b) (c)
(d)

(e)

(a) (b) (c)
(d)

(e)

(a) (b) (c)
(d)

(e)

Figure 11: Input, model, and reconstructions for leaf, cabbage, woodweave, cherimoya, squash. a) Source image (1 of 10). b) Recovered
normal map, RGB-encoded. c) Recovered material weights, in false color. d) Virtual spheres for fundamental materials. e) Model under
original lighting condition.
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Figure 12: Two of ten target, gray and chrome calibration images.

Figure 13: A pot of gold, created by manually editing the BRDF
parameters of the teapot to appear as gold leaf.

Material Transfer. BRDF parameters captured from one object
can easily be transferred to another.

Figure 14 illustrates materials captured from a lacquered wood
tabletop, applied to the rerendering of our teapot.

Note that in both Figures 13 and 14, the normals and material
weights are unchanged from the original, retaining the pattern of
paint splotches from the real teapot.

Material/shape extraction and transfer. One application of
our method is to extract surface texture and detail for transfer to
new objects; we show an example using a portion of the cherimoya
in Figure 11. We first cropped a portion of the image containing
roughly uniform texture, and applied the following steps.

Our first goal was to remove large-scale variations in shape, while
keeping the fine-scale “textural” detail. We applied Gaussian
smoothing to the depth map z(x,y) to produce a base surface
z′(x,y). We additionally define a target surface, in our case a flat
plane z′′(x,y) = 0. Since the source patch is relatively flat, we did
not need to reparameterize it, although reparameterization could be
used for more highly-curved surfaces. A conventional approach
would be to transfer displacement vectors from their local coor-
dinate frames on the base mesh to the corresponding coordinate
frames on the target mesh (e.g. [Biermann et al. 2002]); this change-
of-basis amounts to a rotation for each displacement vector. We
chose an alternative approach of instead transferring surface nor-
mals, i.e. applying to each surface normal a change-of-basis from
the base surface to the target surface. This gives us a new normal

Figure 14: A lacquered wooden teapot, created by applying the
BRDF parameters from the wood table top to the shape and weights
of the teapot.

field with global shape variations removed; a new depth map is ob-
tained by surface integration as in Section 4.3 (the target surface is
discarded). In this example, we found that our approach preserved
more high-frequency detail than transferring displacements. The
material weight map is unchanged by this process.

This gives us a planar patch of surface texture that may be rendered,
or used as source data for texture synthesis. We used texture synthe-
sis to produce a much larger patch from just the normal map (Fig-
ure 16f), and then used Image Analogies [Hertzmann et al. 2001] to
produce a corresponding weight map from the normal map (Figure
16g). (An alternative approach would be to perform texture synthe-
sis by directly comparing pixel neighborhoods between the source
and target surfaces, similar to [Tong et al. 2002; Turk 2001; Wei
and Levoy 2001; Ying et al. 2001].)

Finally, the synthesized normals are integrated again to form a
depth map which can be used for bump or displacement mapping.
In Figure 18, we applied much larger maps synthesized in this fash-
ion to a polygon mesh obtained from a Cybwerware scan, and ren-
dered the resulting model using Pixar’s Photorealistic RenderMan
with a 70-line surface shader.

6 Discussion and Future Work

We have demonstrated a method which acquires both shape and
spatially-varying BRDFs from a set of photographs under varying
illumination. Although our shape and material reconstructions are
lower fidelity than those attainable using methods that assume one
or the other is given and use large numbers of observations, we can
nonetheless acquire a wide range of models which can be reused
under various lighting and viewing conditions. The spatially vary-
ing BRDFs that we acquire enable a host of useful and interesting
editing operations. We believe this represents an important step
towards acquisition and reconstruction of both shape and material
from a single set of photographic data.

In particular, the increasing resolution of consumer-grade digital
cameras suggests that very high-resolution shape reconstruction
may be attainable at low cost using photometric stereo methods, es-
pecially when one considers that we have used only one-sixteenth
of the available pixels in our images. To illustrate this point, Figure
15 shows a submillimeter surface reconstruction for one of our data
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Figure 17: The normal map from Figure 16(c), integrated and
viewed from the side.

sets. Although this reconstruction has extraordinary resolution, it
has some geometric distortions due primarily to the inaccuracy of
the distant light source and orthographic camera assumptions. We
would like to remove these assumptions in future work.

Our approach is able to capture shape and BRDFs of reflective ob-
jects using a small number of photos and without modification of
the objects for scanning. However, our method still requires more
user input than we would like. We hypothesize that an objective
function which includes a term that prefers sparsity for material
weights may reduce the need for manually painted weight con-
straint maps.

Also, the objective function in Equation 3 is still subject to some
overfitting, usually in the case where pixels appear in specular high-
light in most image samples. In such cases, these pixels may be
assigned a brighter diffuse material instead of the correct specular
material. This type of artifact appears as noise in the material maps
for the leaf and cabbage datasets of Figure 11. For some inputs,
these overfit pixels begin to dominate the fundamental material op-
timization, skewing towards brighter, washed out colors, as in the
woodweave datasets in Figure 11. We suspect that adding a smooth-
ness term for material weight maps to our objective function may
reduce this problem, but such an objective function will require a
new optimization approach.

Finally, because we employ a local reflectance model, our acquisi-
tions are confounded by the presence of shadows, interreflections
and subsurface scattering. Few real-world objects are free of these
effects, therefore future work must address techniques to compen-
sate for their appearance.

Despite these limitations, we believe our method will enable more
rapid acquisition of computer models suitable for use as back-
ground or set dressing objects, from source material at a range of
scales which are inaccessible to laser range scanners. We have also
demonstrated editing tools made possible by this unique surface
representation.
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Figure 15: Top left: wooden tabletop with ruler for scale (in centimeters). Top center: plastic shaded reconstruction. Bottom left: oblique
view photograph. Bottom center: oblique view reconstruction. Top right: closeup of inset. Bottom right: depth profile of red line in inset,
with z-axis scaled up for clarity (axes units are millimeters).
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Figure 16: Intermediate steps in the construction of Figure 18. (a) Normals extracted using our methods are integrated to construct (b) depths,
and smoothed. The smoothed normals are used to create a “flattened” normal map (c) which retains high-frequency texture. This is combined
with (d) the recovered weight map to render (e) a flattened swatch of cherimoya skin. (f) Larger normal maps and (g) weight maps can be
constructed using texture synthesis to create (h) novel renderings.
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