
An Empirical Study of Code Clone Genealogies

Miryung Kim, Vibha Sazawal,
David Notkin

Computer Science & Engineering
University of Washington
Seattle, Washington, USA

{miryung,vibha,notkin}@cs.washington.edu

Gail C. Murphy
Department of Computer Science

University of British Columbia
Vancouver, B.C., Canada

murphy@cs.ubc.ca

Note to Reviewers: This paper extends and expands upon the
paper appearing in the ICSE 2005 Mining Software Reposi-
tories Workshop [22]. In particular, this paper presents the
formal model of clone genealogy, provides complete analy-
sis at a finer granularity (analyzing check-ins instead of re-
leases), and assesses the analysis in many additional dimen-
sions.

ABSTRACT
There has been a broad assumption that code clones are
inherently bad and that eliminating clones by refactoring
would solve the problems of code clones. To investigate
whether this assumption is valid, we developed a formal def-
inition of clone evolution and built a clone genealogy tool
that automatically extracts the history of code clones from
a source code repository. Using our clone genealogy extrac-
tor, we studied the evolution of code clones in two Java open
source projects.

Our study of clone evolution contradicts some conventional
wisdom about clones; refactoring may not benefit many
clones for two reasons. First, many code clones exist in
the system for only a short time, disappearing soon after;
extensive refactoring of such short-lived clones may not be
worthwhile if they are to diverge from one another very soon.
Second, many clones, especially long-lived clones that have
changed consistently with other elements in the same group,
are not locally refactorable due to the programming lan-
guage limitations. Our study discovers that there are types
of clones that refactoring would not help, and it opens up
opportunities for clone maintenance tools that target unad-
dressed classes of clones using clone genealogy information.

1. INTRODUCTION
The presence of code clones—code snippets that are similar
in syntax and semantics—is generally considered to be an
indication of poor software quality. The primary concern is
that programmers may introduce bugs when changing code

if they inadvertently neglect to change related clones.

This view has directed the goals of previous research ef-
forts—finding code clones and aggressively removing them.
Several efforts have focused on automatically identifying
code clones [6, 10, 13, 19, 20, 23, 25, 27, 31] and using
the output of clone detection as a basis for refactoring [8,
18, 24]. Some methodologists have educated programmers
about how to avoid or remove code clones. For example,
Fowler [15] argues that code duplicates are bad smells of
poor design and programmers should aggressively use refac-
toring techniques. As another example, the Extreme Pro-
gramming (XP) [11] community has integrated frequent refac-
toring as a part of the development process and has argued
that fewer clones are found in XP process software [31].

We became skeptical about the universal validity of this con-
ventional wisdom after studying copy and paste program-
ming practices in industry [21]. In the study, we found that
skilled programmers often created and managed code clones
with clear intent. Subjects copied and pasted code snippets
to reuse logic that could not be abstracted due to the limi-
tations of the Java programming language. In addition, our
subjects often appeared to discover a shared abstraction of
similar code through the process of copying, pasting, and
modifying code; they kept and maintained clones for some
period of time before they realized how to abstract the com-
mon part of the clones.

Our previous study suggested that the practice of creating
and managing clones is not necessarily bad and motivated us
to investigate how clones evolve over time. So we performed
a longitudinal analysis of how clones change over the lifetime
of software. To enable this analysis, we defined a formal
model of clone evolution and built a tool that automatically
extracts clone genealogies—the history of how each element
in a group of clones has changed with respect to other ele-
ments in the same group—from a set of program versions.
Using this tool, we studied, in two Java open source projects,
(1) how long clones survive in a system and (2) how often
and in which way clones change.

In summary, we found the following:

• Consistent with conventional wisdom, clones impose
obstacles during software evolution because they of-
ten change consistently with their counterparts in the
same group. In our study, 27% to 38% of clone ge-

nealogies consist of clones that have changed consis-
tently with other elements in the same group.

• Contrary to conventional wisdom, popular refactoring
techniques [15] cannot easily remove long-lived clones
that change consistently with other clones. In the sys-
tems we studied, we found that 64% to 69% of clone
genealogies consist of clones that cannot be easily re-
moved using standard refactoring techniques. In fact,
the longer code clones survive in the system, the more
they represent this type of unfactorable clones that
have changed consistently with other clones.

• In the systems that we studied, we found that many
clones were volatile; among the clone genealogies that
disappeared during evolution, 54% to 72% disappeared
within an average of eight check-ins out of over 160
check-ins. If clones in the same group are to change
differently from one another in a short time, aggres-
sive, immediate refactoring may not be necessary or
beneficial.

The results suggest understanding the characteristics of how
clones actually evolve may open new approaches to clone
management. We describe some of these possible approaches
near the end of this paper.

The rest of this paper is organized as follows. Section 2 de-
scribes related work. Section 3 formally defines the model
of clone evolution, which serves as the basis of our clone
genealogy extractor described in Section 4. Section 5 de-
scribes our study procedure, and Section 6 presents analysis
of clone evolution patterns and discusses implications of our
results. Section 7 discusses our study limitations. Section 8
proposes clone maintenance tools that use clone genealogy
information, and Section 9 summarizes our study.

2. RELATED WORK
Automatic Detection of Code Clones
Although most consider code clones as identical or near iden-
tical fragments of source code [9, 20], code clones have no
consistent definition in the literature. Indeed, a “clone” has
been defined operationally based on the computation of in-
dividual clone detectors.

Clone detectors can be grouped into four basic approaches,
each of which uses a different representation of source code
and a different algorithm for comparing the representation
of potential clones.

First, some detectors are based on lexical analysis. For in-
stance, Baker’s [6] Dup uses a lexer and a line-based string
matching algorithm. Dup removes white spaces and com-
ments; replaces identifiers of functions, variables, and types
with a special parameter; concatenates all files to be ana-
lyzed into a single text file; hashes each line for comparison;
and extracts a set of pairs of longest matches using a suffix
tree algorithm. Kamiya et al., improved Dup’s algorithm
and developed CCFinder [20], which transforms tokens of a
program according to a language-specific rule and performs
a token-by-token comparison. CCFinder is recognized as a
state of the art clone detector that handles industrial size
programs; it is reported to produce higher recall although its

precision is lower than some other tools [12]. CP-Miner [27]
identifies a similar sequence of tokenized statements using a
frequent subsequence mining technique.

Second, Baxter et al., developed a CloneDr [10], which parses
source code to build an abstract syntax tree and compares
its subtrees by characterization metrics (hash functions).

Third, some detectors find clones by identifying an isomor-
phic program dependence graph. Komondoor and Horwitz’s
clone detector finds isomorphic PDG subgraphs using pro-
gram slicing [23]. Krinke uses a k-length patch matching to
find similar PDG subgraphs [25]. PDG-based clone detec-
tion is robust to reordered statements, insertion and deletion
of code, intertwined code, and non-contiguous code, but it
is not scalable to large size programs.

Finally, metric-based clone detectors [19, 14, 28, 29] com-
pare various software metrics called fingerprinting functions.
These clone detectors find clones in a particular syntactic
granularity such as a class, a function, or a method, because
fingerprinting functions are often defined for a particular
syntactic unit.

Reengineering the Output of a Clone Detector
Researchers have also used the output of a clone detector
as a basis for refactoring. For example, Balazinska et al.,
developed a clone reengineering tool, called CloRT [7, 8].
CloRT finds clones using software metrics and a dynamic
pattern matching algorithm, determines whether the Strat-
egy or Template design pattern applies to these clones, fac-
tors out the common parts of methods, and parametrizes the
differences with respect to the design patterns. As another
example, Komondoor and Horwitz developed a semantics-
preserving procedure extraction algorithm that runs on PDG-
based clones [23, 24]. Finally, CCShaper [18] filters the out-
put of CCFinder to find good candidates for the Extract
Method and Pull Up Method refactoring patterns.

Studies of Clone Coverage
Several studies have investigated the extent of code clones
using a clone detector. Comparing the result of these studies
is difficult because the definition of a clone depends on the
computation of individual clone detectors and many detec-
tion algorithms take adjustable parameters. Nearly as much
as 10% to 30% of the code in many large scale projects was
identified as code clones (e.g., gcc-8.7% [13], JDK -29% [20],
Linux -22.7% [27], etc). Antoniol et al., [5] and Li et al., [27]
studied changes in clone coverage (the ratio of cloned code
to the total lines of code) in Linux and found that clone cov-
erage increased in the beginning but became fairly stable.
They interpreted these data that the design of Linux is not
deteriorating due to copy and paste practices. These quan-
titative studies of clones do not address how clones change
over time and whether it is difficult for developers to manage
code clones.

A Study of Changes of Clones
Evolution of code clones was studied for the first time by
Laguë et al., [26]. They studied clones in six versions of a
large telecommunication software and found that a signifi-
cant number of clones were removed but the overall number
of clones increased over time in the system. Their approach

SAME
 SHIFT

INCONSISTENT

CHANGE

ADD

CONSISTENT

CHANGE

SUBTRACT

Figure 1: The relationship among evolution patterns

traces code clones in consecutive versions using a metric-
based clone detector and classifies clones into four cate-
gories: new clones, modified clones, never modified clones,
and deleted clones. Their analysis does not address how ele-
ments in a group of code clones change with respect to other
elements in the group. To the best of our knowledge, our
clone genealogy extractor (detailed in Section 4) is the first
tool that systematically analyzes clone evolution patterns
by monitoring how a clone group evolves.

Techniques for Analyzing Structural Changes
Origin analysis [16, 37] is similar to our genealogy analysis
(described in detail in Section 3 and 4) because it employs
a cloning relationship to trace code fragments across ver-
sions. The goal of origin analysis is to understand structural
changes during evolution, and it has been applied to detect
splitting and merging of code fragments. However it differs
from our analysis that (1) it semi-automatically traces only
code fragments specified by a user and (2) it does not mon-
itor operational changes to a group of code clones, such as
whether clones change consistently (or inconsistently) with
other elements in the same group.

Antoniol et al., proposed an automatic approach, based on
vector space information retrieval, to identify several refac-
toring events, namely class renaming, replacement, merge,
and split [4]. A similar approach was used to identify “move
method” refactoring events [32]. These analyses do not fo-
cus on structural changes of code clones.

3. MODEL OF CLONE GENEALOGY
To study clone evolution structurally and semantically rather
than quantitatively, we defined a model of clone genealogy.
The genealogy of code clones describes how groups of code
clones change over multiple versions of a program. In a
clone’s genealogy, the origin of a group to which the clone
belongs is traced to the previous version. The model as-
sociates related clone groups that have originated from the
same ancestor clone group. In addition, the genealogy con-
tains information about how each element in a group of
clones has changed with respect to other elements in the
same group.

We wrote our model in the Alloy modeling language [3] to
check whether several evolution patterns can describe all
possible changes to a clone group and to clarify the rela-
tionship among evolution patterns. (Our entire model is
available on the web [1].)

The basic unit in our model is a Code Snippet, which has

two attributes, Text and Location. Text is an internal repre-
sentation of code that a clone detector uses to compare code
snippets. For example, when using CCFinder [20], text is a
parametrized token sequence, whereas when using CloneDr
[10], text is an isomorphic AST. A Location is used to trace
code snippets across multiple versions of a program; thus,
every code snippet in a particular version of a program has a
unique location. To determine how much the text of a code
snippet has changed across versions, we define a TextSimi-
larity function that measures the text similarity between two
texts t1 and t2 (0 ≤ TextSimilarity(t1, t2) ≤ 1). To trace a
code snippet across versions, we define a LocationOverlap-
ping function that measures how much two locations l1 and
l2 overlap each other (0 ≤ LocationOverlapping(l1, l2) ≤ 1).
A Clone Group is a set of code snippets with identical text.
CG.text is a syntactic sugar for the text of any code snippet
in a clone group CG. A Cloning Relationship is defined be-
tween two clone groups CG1 and CG2 if and only if TextSim-
ilarity(CG1.text,CG2.text) ≥ simth, where simth is a con-
stant between 0 and 1. An Evolution Pattern is defined be-
tween an old clone group OG in the k − 1th version and a
new clone group NG in the kth version such that there exists
a cloning relationship between NG and OG.

We defined several evolution patterns that describe all pos-
sible changes to a clone group. The relationship among evo-
lution patterns is shown in the Venn diagram in Figure 1.

• Same: all code snippets in NG did not change from
OG.
TextSimilarity(NG.text,OG.text) = 1
all cn:CodeSnippet | some co:CodeSnippet | cn in NG ⇒
co in OG && LocationOverlapping(cn,co) = 1
all co:CodeSnippet | some cn:CodeSnippet | co in OG ⇒
cn in NG && LocationOverlapping(cn,co) = 1

• Add: at least one code snippet in NG is a newly added
one. For example, programmers added a new code
snippet to NG by copying an old code snippet in OG.
TextSimilarity(NG.text,OG.text) ≥ simth

some cn:CodeSnippet | all co:CodeSnippet | co in OG ⇒
cn in NG && LocationOverlapping(cn,co) = 0

• Subtract: at least one code snippet in OG does not
appear in NG. For example, programmers refactored
or removed a code clone.
TextSimilarity(NG.text,OG.text) ≥ simth

some co:CodeSnippet | all cn:CodeSnippet | cn in NG ⇒
co in OG && LocationOverlapping(cn,co) = 0

• Consistent Change: all code snippets in OG have changed
consistently; thus they belong to NG together. For
example, programmers applied the same change con-
sistently to all code clones in OG.
simth ≤TextSimilarity(NG.text,OG.text)< 1
all co:CodeSnippet | some cn:CodeSnippet | co in OG ⇒
cn in NG && LocationOverlapping(cn,co) > 0

• Inconsistent Change: at least one code snippet in OG
changed inconsistently; thus it does not belong to NG
anymore. For example, a programmer forgot to change
one code snippet in OG.
simth ≤TextSimilarity(NG.text,OG.text)< 1

A

B

A

B

D

C

A

B

D

C

C

V
i
 V
i+1
 V
i+2
 V
i+3

A

B

D

Clone Group

Code Snippet

Location Overlapping

Relationship

Consistent Change
Add
 Inconsistent Change

Subtract

Evolution Patterns

A

D

V
i+4

Subtract

Figure 2: An example clone lineage

some co:CodeSnippet | all cn:CodeSnippet | cn in NG ⇒
co in OG && LocationOverlapping(cn,co) = 0

• Shift: at least one code snippet in NG partially over-
laps with at least one code snippet in OG.1

TextSimilarity(NG.text,OG.text) = 1
some cn:CodeSnippet | some co:CodeSnippet | cn in NG
&& co in OG && (1 >LocationOverlapping(cn,co) > 0)

A Clone Lineage is a directed acyclic graph that describes the
evolution history of a sink node (clone group). In a clone
lineage, a clone group in the kth version is connected by an
evolution pattern from a clone group in the k − 1th version.
For example, Figure 2 shows a clone lineage including Add,
Subtract, Consistent Change, and Inconsistent Change. In
the figure, code snippets with the same text are filled with
the same color.

A Clone Genealogy is a set of clone lineages that have orig-
inated from the same clone group. A clone genealogy is a
connected component where every clone group is connected
by at least one evolution pattern.2 A clone genealogy ap-
proximates how programmers create, propagate, and evolve
code clones. For example, Figure 3 shows a clone genealogy
that comprises two clone lineages.

4. CLONE GENEALOGY EXTRACTOR
Based on the clone genealogy model in Section 3, we built
a tool that automatically extracts clone genealogies over a
project’s lifetime. Our clone genealogy extractor (CGE) re-
quires three inputs: (1) multiple versions of a program in
a chronological order, {Vk | 1 < k ≤ n}, (2) a clone detec-
tor, and (3) a location tracker that traces a code snippet’s
location across versions.

To assist a user of CGE to prepare multiple versions of a pro-

1This unintuitive pattern was found when we used Alloy to
check whether the combination of patterns can describe all
possible changes to a clone group.
2A clone genealogy is a connected component in the sense
that there exists an undirected path for every pair of clone
groups. Although a clone genealogy is often an inverted tree
in practice, it is a connected component in theory because
the in-degree of a new clone group can be greater than one
when it is ambiguous to determine the most likely origin of
a new clone group.

Consistent Change
Add
 Inconsistent Change

& Subtract

Subtract

A

B

A

B

D

C

A

B

D

C

A

B

D

A

D

F

G

E

F

G

F

G

H

A

B

A

B

D

C

A

B

D

C

A

B

D

A

D

F

G

E

F

G

F

G

H

V
i
 V
i+1
 V
i+2
 V
i+3

V
i+4

Subtract & Add

Inconsistent Change

& Subtract

Add &

Consistent Change

Figure 3: An example clone genealogy

gram, CGE automatically extracts all versions of a project in
a chronological order from its source code repository (CVS).
Because CVS records individual file versions but not which
files were changed together, CGE uses Kenyon’s [17] front-
end to identify CVS check-in transactions and to check out
the source code that corresponds to each check-in. Depend-
ing on the granularity of evolution analysis, a user can se-
lect a subset of versions. For example, a user can select all
versions corresponding to all check-ins or only the versions
that increased (or decreased) the total number of lines of
code clones (LOCC).

CGE identifies clone groups in each version Vk using a clone
detector. Currently we use CCFinder [20] described in Sec-
tion 2, but any clone detector can be used.

CGE also implements the TextSimilarity function using a
clone detector. CGE currently identifies the common part
between two texts t1 and t2 using CCFinder and calculates
the common part’s relative proportion to the size of t1 and
t2.

TextSimilarity(t1, t2) =
2|t1

T

t2|

|t1| + |t2|
(1)

where |t| is the size of text t and t1
T

t2 is the common part
of t1 and t2.

CGE uses a location tracker to implement the LocationOver-
lapping function, which computes an overlapping score be-
tween a location Li in Vk−1 and a location Lj in Vk. CGE
currently uses a file and line based location tracker that we
built on top of diff. The diff-based location tracker maps
the line numbers of Lj to old line numbers in the same file
f in Vk−1 based on the differences caused by insertion or
deletion of code. Then it computes the relative proportion
of an overlapped region between Li and the calibrated Lj .

LocationOverlapping(Li, Lj) =
min(ne, oe) − max(ns, os)

ne − ns

(2)
where Li spans from the line os to the line oe, and the
calibrated location of Lj in Vk−1 spans from the line ns to
the line ne.

Using the same clone detector, CGE finds cloning relation-
ships between the clone groups in Vk−1 and the clone groups
in Vk for 1 < k ≤ n. Given a clone group in Vk, a clone detec-
tor may find several cloning relationships to clone groups in
Vk−1. CGE applies a heuristic to determine the most likely

origin (a clone group in Vk−1) and to remove less interesting
cloning relationships. Our heuristic first selects a cloning
relationship with the best location overlapping score. If a
cloning relationship with the best similarity score is differ-
ent from the one with the best location overlapping score,
our heuristic selects both because of ambiguity.

After applying the heuristic, CGE separates each connected
component of cloning relationships. Then, it labels evolu-
tion patterns in each connected component. Each connected
component is called a clone genealogy. CGE visualizes a ge-
nealogy graph using the Graphviz package [2] and allows a
user to browse code relevant to a selected genealogy.

5. STUDY PROCEDURE
Our CGE captures various kinds of clone evolution patterns
and thus allows us to explore a wide variety of research ques-
tions about clone evolution such as, “how often do program-
mers copy an existing clone and modify it later?” and “how
often do programmers forget to update clones consistently?”
In this study, we focused on the following questions: (1)
how often do programmers update clones consistently? (2)
how long do clones live in the system? and (3) what are
evolutionary characteristics of clones that cannot be easily
removed with refactoring techniques in Java?

To determine these characteristics, we chose two subject pro-
grams with a long evolutionary history and applied our tool
to extract clone genealogies from those programs. Because
the clone detector can introduce false positives, we manu-
ally removed some of the extracted genealogies. We then
analyzed the remaining genealogies and computed how old
genealogies are and what kind of evolution patterns they
include.

Since our previous copy and paste study [21] had focused
on Java programs, we decided to focus on subject programs
written in Java. We selected carol and dnsjava because they
met this condition and both had CVS history for over a
year and a half. In addition, their code size allowed us to
manually inspect genealogies if necessary. Carol is a library
that allows clients to use different RMI implementations and
has evolved over 26 months from August 2002 to October
2004. Dnsjava is an implementation of DNS in Java that
has evolved over 68 months from March 1999 to November
2004. Table 1 describes the programs’ size in lines of code
(LOC), the period that we studied, and the number of CVS
check-ins during the period.3 We studied the history of dns-
java between April 2003 to November 2004 because its CVS
history is available only from April 2003.

For our analysis, we focused on versions of the programs in
which the LOCC (the total number of lines of code clones)
increased or decreased from the preceding version. We chose
this set of program versions because it approximates a set of
program versions that added or deleted code clones or made
changes to code clones. Versions of a program that do not
touch code clones do not directly impact evolution patterns
in clone genealogies. For our target programs, this resulted

3A check-in in our analysis corresponds to a single logical
CVS transaction that commits a set of revisions together
within a time window of 200 seconds [36].

Table 1: Description of Two Java Subject Programs
Program carol dnsjava

URL carol.objectweb.org www.dnsjava.org
LOC 7878 ∼ 23731 16754 ∼ 21188

duration 26 months 19 months
of check-ins 164 248

Table 2: Clone Genealogies in carol and dnsjava

(mintoken =30, simth = 0.3)
of genealogies carol dnsjava

total 122 71
false positive 13 22
true positive 109 49

locally unfactorable 70 (64%) 34 (69%)
consistently changed 41 (38%) 13 (27%)

in studying 37 versions out of 164 versions of carol and 48
versions out of 248 versions of dnsjava.

We used 30 tokens as a minimum token length for CCFinder
because programmers do not generally consider very short
clones as code clones. Setting the minimum at 30 tokens
resulted in an average clone size of four lines in carol and
dnsjava. With this setting, CCFinder found clone coverage
ratio of 6% to 15% in carol and 5% to 8% in dnsjava.

We set the threshold simth of TextSimilarity function to be
0.3 because we empirically found that 0.3 does not underesti-
mate nor overestimate the size and the length of genealogies.
We discuss how simth affects our results in detail in Section
7.1.

CCFinder occasionally detects false positive clones that are
similar in a token sequence, although common sense says
that they are not clones. We used our previously defined
concept of a “syntactic template” to identify clones as false
positives. The idea of a syntactic template comes from our
study of copy and paste programming [21]. A syntactic tem-
plate is a template of repeated code appearing in a row be-
cause a programmer often copies and pastes a code fragment
when writing a series of syntactically similar code fragments.
For example, a programmer often copies a field declaration
statement when writing a block of field declaration, an in-
vocation statement when writing a static initializer, or a
case statement when writing a series of case statements in
a switch-case block. We manually removed 13 out of 122
genealogies in carol and 22 out of 71 genealogies in dnsjava
because they consist of only syntactic templates (see Ta-
ble 2). Although there could be false negative clones that
CCFinder cannot find, we do not think there are many false
negatives because a previous comparison of clone detectors
[12] suggests that CCFinder has much higher recall than
CloneDr (AST-based) [10] or Covet (metric-based) [28], al-
though its precision is lower than the CloneDr.

6. STUDY RESULTS
This section presents the evolution patterns of code clones
in carol and dnsjava and answers the questions raised in
Section 5.

Avg Lifetime of K-Volatile Clone Genealogies

0

10

20

30

40

50

60

70

1
 4
 7
 10
13
16
19
22
25
28
31
34
37
40
43
46

K (in Version)

C
he

ck
-i

ns

0

20

40

60

80

100

120

140

D
ay

s

Avg #

Checkins(dnsjava

)

Avg #

Checkins(carol)

Avg #

Days(dnsjava)

Avg #

Days(carol)

Figure 4: The average lifetime of k-volatile clone
genealogies

6.1 Consistently Changing Clones
To determine how often code clones change with other clones
in the same clone group consistently, we measured the num-
ber of genealogies with a consistent change pattern. We
define that a clone genealogy includes a consistently chang-
ing pattern if and only if all lineages in the clone genealogy
include at least one “consistent change” pattern. Our defini-
tion is conservative because, if one lineage in the genealogy
does not include a consistent change pattern, the genealogy
is considered not to have a consistent change pattern.

Out of 109 genealogies in carol, 41 genealogies (38%) include
a consistently changing pattern. Out of 49 genealogies in
dnsjava, 13 genealogies (27%) include a consistently chang-
ing pattern. Consistent with conventional wisdom, many of
the clones in the study impose the challenge of consistent
update.

6.2 Volatile Clones
To understand how long clones survive in the systems, we
measured the age of a clone genealogy—how many versions
(generations) a genealogy spans. In our analysis, we classi-
fied genealogies in two groups, dead genealogies that do not
include clone groups of the last version and alive genealogies
that include clone groups of the last version. We differen-
tiate a dead genealogy from an alive genealogy because the
age of a dead genealogy provides information about how
long clones stayed in the system before they disappeared.
On the other hand, for an alive genealogy, we cannot de-
cide how long its clones would survive because they are still
evolving. At the end point of our analysis, in carol, out of
109 clone genealogies, 53 of them are dead and 56 of them
are alive. In dnsjava, out of 49 clone genealogies, 31 of them
are dead and 18 of them are alive.

To reason about how long genealogies survived in the unit of
an absolute time rather than in the number of versions used
in our analysis, we define k-volatile genealogies and measure
the average lifetime of k-volatile genealogies. K-volatile ge-
nealogies are clone genealogies that have disappeared within
k versions, i.e., k-volatile genealogies = {g|g is a dead ge-
nealogy and 0 ≤ g.age ≤ k}. Figure 4 shows the average
lifetime of k-volatile genealogies in the number of check-ins
(left axis) and the number of days (right axis). Let f(k) be

CDF_dead and R_volatile (carol, sim_th=0.3)

0

0.2

0.4

0.6

0.8

1

1.2

1
 3
 5
 7
 9
 11
13
15
17
19
21
23
25
27
29
31
33
35
37

K (Age in Versions)

R
at

io

CDF dead

R volatile

CDF_dead and R_volatile (dnsjava, sim_th=0.3)

0

0.2

0.4

0.6

0.8

1

1.2

1
 4
 7
 10
 13
 16
 19
 22
 25
 28
 31
 34
 37
 40
 43
 46

K (Age in Versions)

R

at
io

CDF dead

R volatile

Figure 5: CDFdead(k) and Rvolatile(k) of carol and dns-

java

the number of genealogies with the age k and fdead(k) be the
number of dead genealogies with the age k. CDFdead(k) is
a cumulative distribution function of fdead(k) and it means
the ratio of k-volatile genealogies among all dead genealo-
gies. Let Rvolatile(k) be the ratio of k-volatile genealogies
among all genealogies in the system.

CDFdead(k) =

Pk

i=0
fdead(k)

Pn

i=0
fdead(i)

(3)

Rvolatile(k) =

Pk

i=0
fdead(k)

Pn

i=0
f(i)

(4)

Figure 5 presents CDFdead(k) and Rvolatile(k) for carol and
dnsjava. In carol, 75% of dead genealogies (37% of all ge-
nealogies) have disappeared within 5 versions, and 79% of
dead genealogies (39% of all genealogies) have disappeared
within 10 versions. When we interpret these data in the
number of check-ins or in the number of days by referring
to Figure 4, they mean that 75% of dead genealogies lasted
an average of 9.6 check-ins and 41.7 days and 79% lasted an
average of 10.8 checkins and 45.6 days during the evolution
period of 164 check-ins and 800 days in carol.

In dnsjava, 48% of dead genealogies (31% of all genealogies)
have disappeared within 5 versions, and 61% of dead ge-
nealogies (39% of all genealogies) have disappeared within
10 versions. These data mean that 48% of dead genealo-
gies lasted an average of 5.1 check-ins and 5.3 days and 61%
lasted an average of 14.2 check-ins and 22.4 days during the
evolution period of 248 check-ins and 575 days in dnsjava.

Table 3: Code Example of Locally Unfactorable Clones

public void exportObject(Remote obj)
throws RemoteException{

if (TraceCarol.isDebugRmiCarol()) {
TraceCarol.debugRmiCarol(

"MultiPRODelegate.exportObject("
}
try {
if (init) {
for (Enumeration e = activePtcls.elements(); ...
((ObjDlgt)e.nextElement()).exportObject(obj);
}

} else {
initProtocols();
//iterate protocol elements and export obj
}
}

}catch (Exception e) {
String msg = "exportObject(Remote obj) fail";
TraceCarol.error(msg,e);
throw new RemoteException(msg);

}
}

public void unexportObject(Remote obj)
throws NoSuchObjectException {
if (TraceCarol.isDebugRmiCarol()) {

TraceCarol.debugRmiCarol(
"MultiPRODelegate.unexportObject("

}
try {

if (init) {
for (Enumeration e = activePtcls.elements(); ...
((ObjDlgt)e.nextElement()).unexportObject(obj);
}

} else {
initProtocols();
//iterate protocol elements and unexport obj
}
}

} catch (Exception e) {
String msg = "unexportObject(Remote obj) fail";
TraceCarol.error(msg,e);
throw new NoSuchObjectException(msg);

}
}

In both systems, surprisingly, a large number of clones were
volatile. The large extent of volatile clones suggests that
a substantial amount of the work done by a developer ap-
plying a strategy of aggressive, immediate refactoring may
not be cost-effective in some cases. When we manually in-
spected all dead lineages, we found that 26% (carol) to 56%
(dnsjava) of them were discontinued because of divergent
changes in the clone group, meaning that all code snippets
in the group survived but they changed differently from one
another. Refactoring of such volatile clones may not be nec-
essary and can be counterproductive if a programmer has to
undo refactoring in some cases.4

6.3 Locally Unfactorable Clones
We define that a clone group is “locally refactorable” if a
programmer can remove duplication with standard refactor-
ing techniques, such as pull up a method, extract a method,
remove a method, replace conditional with polymorphism, etc
[15]. On the other hand, (1) if a programmer cannot use
standard refactoring techniques to remove clones, (2) if a
programmer must deal with cascading non-local changes in
the design to remove duplication (for example, modifications
to publicized interfaces), or (3) if a programmer cannot re-
move duplication due to programming language limitations,
we define that the clone group is locally unfactorable.5

Table 3 presents a code example of a locally unfactorable
clone group that we found in carol. In this example, ex-
portObject and unexportObject are paired operations that
have identical control logic (if-else logic, iterator logic, and

4This observation is consistent with the general notion that
delaying some design decisions in software development may
at times add value [33].
5Our previous work [21] describes a taxonomy of locally un-
factorable clones that are often created by copy and paste
in Java. Basit et al., also summarize the characteristic of
locally unfactorable clones that are difficult to remove using
abstractions in C++ [9].

exception handling logic) but throw different types of ex-
ceptions, pass different messages to the tracing module, and
invoke different methods. In addition, they include code
duplication that corresponds to crosscutting concerns [34],
debugging and tracing. It is difficult to remove this duplica-
tion because Java 1.4 does not provide a unit of abstraction
that encapsulates similar logic involving different types or
different method invocations inside the logic.

We define that a clone lineage is locally unfactorable if the
latest clone group (a sink node of the lineage) is locally un-
factorable. We define that a clone genealogy is locally un-
factorable if and only if all clone lineages in the genealogy
are locally unfactorable. A locally unfactorable genealogy
means that a programmer cannot discontinue any of its clone
lineages by refactoring.

In the two subject programs, we inspected all clone lineages
and manually labeled them as “locally refactorable” or “lo-
cally unfactorable.” Then, we measured how many clone
genealogies are locally unfactorable. 70 genealogies (64%) in
carol and 34 genealogies (69%) in dnsjava comprise locally
unfactorable clone groups; this result indicates that stan-
dard refactoring techniques would not remove most clones
easily.

6.4 Long-Lived Clones
Programmers would get a good return on their refactoring
investment if clones live for a long time and if they tend
to change with other clones. But even if they are good
refactoring candidates, if they are locally unfactorable, it
may not be feasible to refactor them.

Out of 37 genealogies that lasted more than 20 versions in
carol, 29 of them include consistent change patterns, 24 of
them comprise locally unfactorable clones, and 19 of them
include both consistent change patterns and locally unfac-
torable clones. Out of 19 genealogies that lasted more than

Ratio of Consistently Changed and Locally Unfactorable Genealogies

with the age (0<=i<=k)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1
 5
 9
 13
 17
 21
 25
 29
 33
 37
 41
 45

K (in Versions)

R
at

io

Consistently Changed(carol)

Locally Unfactorable(carol)

Consistently Changed and

Locally Unfactorable(carol)

Consistently Changed(dnsjava)

Locally Unfactorable(dnsjava)

Consistently Changed and

Locally Unfactorable(dnsjava)

Figure 6: Cumulative ratio of consistently changed
and locally unfactorable genealogies

20 versions in dnsjava, 10 of them include consistent change
patterns, 15 of them comprise locally unfactorable clones,
and 9 of them include both consistent change patterns and
locally unfactorable clones.

Figure 6 shows the cumulative ratio of (1) consistently changed
genealogies, (2) locally unfactorable genealogies, and (3) lo-
cally unfactorable genealogies that include consistent change
patterns. As k increases (meaning that the older genealo-
gies get), the more genealogies include a consistently chang-
ing pattern and comprise locally unfactorable clones. This
result suggests that refactoring techniques cannot improve
many trouble-making clones, which are long-lived and con-
sistently changing clones.

7. DISCUSSION
Section 7.1 discusses how the text similarity threshold affects
our analysis results and Section 7.2 describes limitations of
our study.

7.1 Similarity Threshold
The text similarity threshold, simth, sets the bar for defining
a cloning relationship, so it could affect the size and length
(age) of clone genealogies. Ultimately simth could affect the
number of volatile clones and consistently changing clones
because a low simth would find a consistent change pattern
between OG and NG while a high simth would consider that
OG’s lineage is discontinued.

Table 4 shows that, when 0.1 is used, CGE finds fewer ge-
nealogies with a larger size and a longer length because it
finds more cloning relationships and thus combines several
genealogies to one. When 0.5 is used, CGE finds more ge-
nealogies with a smaller size and a shorter length because
it breaks a long clone genealogy into many short and small
genealogies. When simth is 0.1, the ratio of consistently
changed genealogies is 8% higher in dnsjava and 26% higher
in carol than using 0.3. Figure 7 shows CDF (k) in carol
and dnsjava when simth is 0.1, 0.3, and 0.5. CDF (k) of
0.3 and CDF (k) of 0.5 are not much different. CDF (k) of
0.1 shows a coarse-grained distribution because simth 0.1
reduces the total number of genealogies. Figure 7 shows
that our choice of simth 0.3 generates a finer-grained distri-
bution than using 0.1 and estimates the number of volatile

Table 4: The Average Size and Length of Genealo-
gies with Varying simth

simth

0.1 0.3 0.5
of genealogies carol 27 122 153
including false positives dnsjava 49 71 78
of consistently carol 16 41 53
changed genealogies dnsjava 10 13 14
avg size carol 117.52 26.00 20.74
(in # of clone groups) dnsjava 60.39 41.68 37.94
avg age carol 25.19 12.57 12.56
(length) dnsjava 29.51 22.66 21.62

Cumulative Distribution Function of Dead Genealogies

with Different sim_th

0

0.2

0.4

0.6

0.8

1

1.2

1
 4
 7
 10
 13
16
 19
22
25
 28
31
34
37
40
 43
 46

Age (in Versions)

C

um
ul

at
iv

e
D

is
tr

ib
ut

io
n

Fu
nc

tio
n
 sim_th=0.

1(dnsjava

)

sim_th=0.

3(dnsjava

)

sim_th=0.

5(dnsjava

)

sim_th=0.

1(carol)

sim_th=0.

3(carol)

sim_th=0.

5(carol)

Figure 7: Cumulative distribution function of dead
genealogies with varying simth

genealogies more conservatively than using 0.5.

7.2 Study Limitations
Clone Detection Technique. CGE incorrectly counts
the number of consistent change patterns in some cases be-
cause CCFinder detects only a contiguous token string as
a clone. For example, when code is inserted in the mid-
dle of one clone in a clone group, the existing clone group
is broken into two new clone groups with shorter contigu-
ous text; thus the change pattern would be identified as
two consistent patterns rather than one inconsistent change
pattern. As another example, even if a programmer con-
sistently modified OG to create NG, CCFinder does not
find a cloning relationship between OG and NG if they do
not share a contiguous token string greater than the size of
simth(|OG.text|+ |NG.text|)/2. In this case, the absence of
a cloning relationship can be interpreted as a discontinuation
of a lineage in our analysis. We speculate that this limita-
tion can be overcome by plugging in clone detectors that find
non-contiguous code clones, such as CP-Miner [27], PDG-
based detectors [25, 23], and metric-based detectors [19, 14,
28, 29].

Location Tracking Technique. We implemented a file
and line based location tracker based on the diff algorithm;
thus our location tracking algorithm is limited in two ways.
First, it depends on diff to resolve ambiguity in finding a
corresponding line. For example, when a file A contains abc
in the k−1th version and contains cba in the kth version, diff

considers that ab is deleted before c and ba is inserted after
c, even if a programmer replaced a to c and c to a. Second,
our algorithm considers that two files are not related when
their file names do not match. For example, when a file A
is renamed to B or A is split into two files B1 and B2, the
evolution patterns between A and B or A and B1(B2) would
be identified as add and subtract patterns. We speculate
that code entity tracing techniques in Section 2 can improve
our location tracker by inferring how classes were renamed,
split, or merged.

Subject Programs. Our two subject programs are carol
and dnsjava; both programs’ sizes are about 20,000 lines
of code. The clone coverage ratio of these programs was
smaller than many programs reported in the literature. We
speculate that carol and dnsjava may have fewer locally un-
factorable and consistently changing clones than larger pro-
grams whose duplication is difficult to remove without com-
promising many existing design decisions. Both carol and
dnsjava have been maintained by a small number of people:
two developers for dnsjava and six developers for carol. The
small team size may have affected our study results.

The granularity of our analysis was a check-in; thus we could
not observe the changes between each check-in. Based on
our experience of observing programmers copy and paste, we
suspect that programmers create more clones temporarily
before finding an appropriate level of an abstraction.

Our definition of locally unfactorable clones is Java language
dependent; thus our claims about the locally unfactorable
clones may not apply to other languages. We speculate that,
in other programming languages, different types of locally
unfactorable clones would be found depending on the lan-
guage constructs.

8. CLONE MAINTENANCE TOOLS
Our study results indicate that the problems of code clones
are not so black and white as previous research has assumed
and that there are several types of clones that refactoring
would not help. We propose to use clone genealogy infor-
mation to identify clones that may benefit from new clone
maintenance approaches. In our previous workshop paper
[22], we proposed several clone maintenance tools. We dis-
cuss which types of clones the proposed tools target.

Suggesting When to Refactor. For locally refactorable
clones, we believe that there may be an optimal time to
refactor them. If programmers refactor code clones too early,
they might not get the best return on their investment be-
cause the code clones may diverge or disappear. On the
other hand, if programmers wait too long before they re-
structure code, they would get only marginal benefit on their
investment. To differentiate volatile clones from long-lived
clones, programmers can employ clone genealogy informa-
tion to determine the age of code clones.

Simultaneous Text Editing. Our result indicates that
the longer clones live, the more they represent locally unfac-
torable and consistently changing clones. Refactoring tech-
niques would not help maintaining this type of clones con-
sistently. Thus, we propose simultaneous editing of locally
unfactorable and consistently changing clones. Simultane-

ous text editing is proposed for automating repetitive text
editing and prototyped by Miller and Myers [30]. After de-
scribing a set of regions to edit, a user can edit any one
record and see equivalent edits applied simultaneously to all
other records. A similar editing technique, called linked edit-
ing, applies the same editing change to a set of code clones
specified by a user [35]. These editing techniques require
a user to manually specify what must be edited simultane-
ously. We envision that clone genealogy information can be
used to automatically select clones that would benefit most
from simultaneous editing.

Furthermore, we believe that many software engineering tools
could leverage a rich set of evolution patterns in our clone ge-
nealogy model. For example, information about clones that
have changed consistently for a long time but then change in-
consistently later could be used to automatically place con-
cerns to watch for in a bug database. As another exam-
ple, information about the propagation of a copied snippet
through a codebase could provide visual links in an inte-
grated software development environment.

9. CONCLUSIONS
There has been a broad assumption that code clones are
inherently bad and refactoring would remove the problems
of clones. Thus, previous research efforts focused on mainly
two areas: automatically detecting code clones and educat-
ing programmers on how to remove or avoid clones. To
investigate the validity of this assumption, we built a clone
genealogy extractor and investigated clone evolution struc-
turally and semantically rather than quantitatively.

Our study of clone genealogy contradicts some conventional
wisdom about code clones: (1) aggressive, immediate refac-
toring may not be necessary for many volatile clones, and (2)
refactoring techniques cannot assist in removing many long-
lived, consistently changing clones. We conclude that there
are classes of clones that require different types of mainte-
nance support than conventional refactoring. We propose
that clone genealogy information can be used to identify
clones that may benefit from new approaches to clone man-
agement.

10. ACKNOWLEDGMENTS
We thank Software Engineering Laboratory at the Osaka
University for providing CCFinder and GRASE lab at the
University of California, Santa Cruz for providing Kenyon.
We also thank Annie Ying and Andreas Zeller for their
detailed comments on our draft and Robert DeLine, Dan
Grossman, Philippe Kruchten, and Tessa Lau for discussions
that helped us refine our ideas.

11. REFERENCES
[1] http://www.cs.washington.edu/homes/miryung/cge.

[2] http://www.graphviz.org.

[3] Micromodels of Software: Lightweight Modelling and
Analysis with Alloy. http://alloy.mit.edu, 2004.

[4] G. Antoniol, M. D. Penta, and E. Merlo. An
automatic approach to identify class evolution
discontinuities. In IWPSE, pages 31–40, 2004.

[5] G. Antoniol, U. Villano, E. Merlo, and M. D. Penta.
Analyzing cloning evolution in the Linux kernel.
Information & Software Technology, 44(13):755–765,
2002.

[6] B. S. Baker. A program for identifying duplicated
code. Computing Science and Statistics, 24:49–57,
1992.

[7] M. Balazinska, E. Merlo, M. Dagenais, B. Laguë, and
K. Kontogiannis. Measuring clone based reengineering
opportunities. In IEEE METRICS, pages 292–303,
1999.

[8] M. Balazinska, E. Merlo, M. Dagenais, B. Laguë, and
K. Kontogiannis. Partial redesign of Java software
systems based on clone analysis. In WCRE, pages
326–336, 1999.

[9] H. A. Basit, D. C. Rajapakse, and S. Jarzabek.
Beyond templates: a study of clones in the STL and
some general implications. In ICSE, 2005.

[10] I. D. Baxter, A. Yahin, L. M. de Moura,
M. Sant’Anna, and L. Bier. Clone detection using
abstract syntax trees. In ICSM, pages 368–377, 1998.

[11] K. Beck. extreme Programming explained, embrace
change. Addison-Wesley, 2000.

[12] E. Burd and J. Bailey. Evaluating clone detection
tools for use during preventative maintenance. In
SCAM, pages 36–43, 2002.

[13] S. Ducasse, M. Rieger, and S. Demeyer. A language
independent approach for detecting duplicated code.
In ICSM, pages 109–118, 1999.

[14] F. Fioravanti, G. Migliarese, and P. Nesi.
Reengineering analysis of object-oriented systems via
duplication. In ICSE, pages 577–586, 2001.

[15] M. Fowler. Refactoring: Improving the Design of
Existing Code. Addison-Wesley, 2000.

[16] M. Godfrey and Q. Tu. Tracking structural evolution
using origin analysis. In IWPSE, pages 117–119, 2002.

[17] GRASE-Lab. User Manual: Kenyon.
http://dforge.cse.ucsc.edu/projects/kenyon, 2005.

[18] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue.
Refactoring support based on code clone analysis. In
PROFES, pages 220–233, 2004.

[19] J. H. Johnson. Identifying redundancy in source code
using fingerprints. In CASCON.

[20] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A
multilinguistic token-based code clone detection
system for large scale source code. IEEE Trans.
Software Eng., 28(7):654–670, 2002.

[21] M. Kim, L. Bergman, T. A. Lau, and D. Notkin. An
ethnographic study of copy and paste programming
practices in OOPL. In ISESE, pages 83–92, 2004.

[22] M. Kim and D. Notkin. Using a clone genealogy
extractor for understanding and supporting evolution
of code clones. In the Workshop on Mining Software
Repositories (http://msr.uwaterloo.ca/msr2005), 2005.

[23] R. Komondoor and S. Horwitz. Using slicing to
identify duplication in source code. In SAS, pages
40–56, 2001.

[24] R. Komondoor and S. Horwitz. Effective, automatic
procedure extraction. In IWPC, pages 33–43, 2003.

[25] J. Krinke. Identifying similar code with program
dependence graphs. In WCRE, pages 301–309, 2001.

[26] B. Laguë, D. Proulx, J. Mayrand, E. Merlo, and J. P.
Hudepohl. Assessing the benefits of incorporating
function clone detection in a development process. In
ICSM, pages 314–321, 1997.

[27] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. CP-Miner: A
tool for finding copy-paste and related bugs in
operating system code. In OSDI, pages 289–302, 2004.

[28] J. Mayrand, C. Leblanc, and E. Merlo. Experiment on
the automatic detection of function clones in a
software system using metrics. In ICSM, page 244,
1996.

[29] E. Merlo, G. Antoniol, M. D. Penta, and V. F. Rollo.
Linear complexity object-oriented similarity for clone
detection and software evolution analyses. In ICSM,
pages 412–416, 2004.

[30] R. C. Miller and B. A. Myers. Interactive
simultaneous editing of multiple text regions. In
USENIX Annual Technical Conference, General
Track, pages 161–174, 2001.

[31] E. Nickell and I. Smith. Extreme programming and
software clones. In the Proceedings of the International
Workshop on Software Clones, 2003.

[32] F. V. Rysselberghe and S. Demeyer. Reconstruction of
successful software evolution using clone detection. In
IWPSE, pages 126–130, 2003.

[33] K. Sullivan, P. Chalasani, S. Jha, and V. Sazawal.
Software Design as an Investment Activity: A Real
Options Perspective in Real Options and Business
Strategy: Applications to Decision Making. Risk
Books, November 1999.

[34] P. L. Tarr, H. Ossher, W. H. Harrison, and S. M. S.
Jr. N degrees of separation: Multi-dimensional
separation of concerns. In ICSE, pages 107–119, 1999.

[35] M. Toomim, A. Begel, and S. L. Graham. Managing
duplicated code with linked editing. In the Proceedings
of the International Symposium on Visual Languages
and Human-Centric Computing, 2004.

[36] T. Zimmermann and P. Weißgerber. Preprocessing
CVS data for fine-grained analysis. In the Proceedings
of the Workshop on Mining Software Repositories,
pages 2–6, 2004.

[37] L. Zou and M. W. Godfrey. Detecting merging and
splitting using origin analysis. In WCRE, pages
146–154, 2003.

