
A Latency and Fault-Tolerance Optimizer
for Parallel Data Processing Systems

Prasang Upadhyaya, YongChul Kwon, and Magdalena Balazinska

University of Washington, Seattle, USA
{prasang,yongchul,magda}@cs.washington.edu

Abstract— An important problem faced by today’s parallel
data processing systems is fault-tolerance: how to handle failures
during the execution of long-running queries. Existing systems
either restart queries when failures occur or materialize inter-
mediate results in a blocking fashion. The problem is that the
former leads to expensive recovery while the latter slows-down
normal processing and prevents pipelining.

In this paper, we address the above problem of intra-query
fault-tolerance in parallel data processing systems. Our key hy-
pothesis is that a parallel system can achieve best performance by
supporting efficient fault-tolerance strategies that do not require
blocking but also by supporting the use of different strategies
at different operators within a single query plan. Enabling each
operator to use a different fault tolerance strategy leads to a
space of possible fault tolerance plans amenable to cost-based
optimization.

To test our hypothesis, we first develop a framework that
enables the mixing and matching of fault-tolerance techniques
in a single query plan. Second, we develop FTOpt, a cost-
based fault-tolerance optimizer that, given a failure model,
automatically selects the best strategy for each operator in a
query plan in a manner that minimizes the expected processing
time with failures for the entire query. We implement our
approach in a prototype parallel query-processing engine. Our
experiments demonstrate that (1) there is no single best fault-
tolerance strategy for all query plans, (2) often hybrid strategies
that mix-and-match different recovery techniques outperform
any uniform strategy, and (3) our optimizer is able to correctly
identify the winning fault-tolerance configurations.

I. INTRODUCTION

The ability to analyze large-scale datasets has become a
critical requirement for modern business and science today.
To carry out their analyses, users are increasingly turning
toward parallel database management systems (DBMSs) [1],
[2], [3] and other parallel data processing engines [4], [5], [6]
deployed in shared-nothing clusters of commodity servers. In
these clusters, the data is distributed and possibly replicated
across tens to thousands of servers, and each analysis task
executes in parallel across all or a subset of these servers.

In many systems, users can express their data processing
needs using SQL or other specialized languages (e.g., Pig
Latin [7], DryadLINQ [8]). The resulting queries or scripts
are then translated into a directed acyclic graph (DAG) of op-
erators (e.g., relational operators, maps, reduces, or other [6])
that execute in the cluster.

An important challenge faced by these large-scale data
processing systems is fault-tolerance. When running a parallel
query at large scale, some form of failure is likely to occur
during query execution [9]. Existing systems take two radically

different strategies to handle failures: parallel DBMSs adopt
the transaction-based approach and restart queries if failures
occur during their execution. The limitation of this approach
is that a single failure can cause the system to reprocess a
query in its entirety. While this is not a problem for queries
running across a small number of servers and for a short period
of time, it becomes undesirable for long queries using large
numbers of servers. In contrast, MapReduce [4] and similar
systems [5] materialize the output of each operator and restart
individual operators when failures occur. This approach limits
the amount of work repeated in the face of failures, but comes
at the cost of materializing all intermediate data, which can
significantly increase query runtimes even in the absence of
failures. Furthermore, because MapReduce materializes data in
a blocking fashion, this approach prevents users from seeing
results incrementally. Partial results are a desirable feature
during interactive data analysis now commonly performed
with these systems [10].

In this paper, we study the problem of making parallel and
distributed query plans fault-tolerant in a manner that delivers
high performance both under normal operations and when
failures occur, and that introduces no new blocking points
in the plan. Several specific objective functions are possible
(e.g., minimize total runtime with failures, minimize runtime
without failures subject to a constraint on failure recovery
time, etc). We choose to minimize expected total runtime in the
presence of failures. That is, for a given query and expected
operator failure rate, we seek to minimize the expected query
runtime (i.e., sum of time under normal processing and time
spent in recovery). This function combines high-performance
at runtime with fast failure recovery into a single objective.

We observe that data materialization is only one of several
strategies for achieving fault-tolerance. Other strategies are
possible including restarting a query or operator but skipping
over previously processed data [11], [12] or checkpointing
operator states and restarting from these checkpoints [13],
[11]. We show that the fault-tolerance strategy which delivers
the highest performance (i.e., the lowest expected runtime
with failures) depends on the query plan. Furthermore, we
demonstrate that strategies which mix-and-match different
fault-tolerance techniques within a single query plan can
often outperform ones that apply a single technique across
all operators. For example, an expensive aggregate operator
may need to checkpoint its state while an inexpensive filter
may best run without fault-tolerance and simply skip over



previously processed data after a failure.
Given the above observations, we develop (1) a frame-

work that enables mixing-and-matching of fault-tolerance
techniques in a single query plan and (2) FTOpt, a cost-based
fault-tolerance optimizer for this framework. Given a query
plan and information about the cluster and expected failure
rates, FTOpt automatically selects the best fault-tolerance
strategy for each operator in a query plan such that the overall
query runtime with failures is minimized. We call the resulting
configuration a fault-tolerance plan. In our fault-tolerance
plans, each operator can individually recover after failure and
it can recover using a different strategy than other operators
in the same plan. We show how to integrate three fault-
tolerance techniques from the literature (i.e., materialization,
checkpointing, and doing nothing) into our framework in
a manner that does not introduce any new blocking points
into a query plan, enabling users to retain the ability to see
results incrementally. In summary, we make the following
contributions:

1) Extensible framework for heterogeneous fault-tolerance
strategies. We propose a framework that enables the
mixing and matching of different fault-tolerance tech-
niques in a single distributed, parallel, and pipelined
query plan. Our framework is extensible in that it is
agnostic of the specific operators and fault-tolerance
strategies used. We also describe how three well-known
strategies can be integrated into our framework (Sec-
tion IV).

2) Fault-tolerance optimizer. We develop a cost-based
fault-tolerance optimizer. Given a query plan and a
failure model, the optimizer selects the fault-tolerance
strategy for each operator that minimizes the total
latency to complete the query given an expected number
of failures (Section V).

3) Operator models for pipelined plans. Finally, we model
the processing and recovery times for a small set of
representative operators. Our models capture operator
performance within a pipelined query plan rather than
in isolation. They are sufficiently accurate for the fault-
tolerance optimizer to select good plans yet sufficiently
simple for global optimization using a Geometric Pro-
gram Solver [14]. We also develop an approach that
simplifies the modeling of other operators within our
framework thus simplifying extensibility (Section V-B).

We implemented our approach in a prototype parallel query
processing engine. The implementation includes our new
fault-tolerance framework, specific per-operator fault-tolerance
strategies for a small set of representative operators (select,
join, and aggregate), and a MATLAB module for the FTOpt
optimizer. Our experiments demonstrate that different fault-
tolerance strategies, often hybrid ones, lead to the best perfor-
mance in different settings: for the configurations tested, total
runtimes with one failure differed by up to 70% depending on
the fault-tolerance method selected. These results show that
fault-tolerance can significantly affect performance. Addition-

Data  
part. 1 

O11 

Re‐
par--on 

O21 

Input data 
on disk 

Compute node 
Par--on 1 of operator 1  

O31 

Data  
part. 2 

O12 

Data  
part. N 

O1N 

… 

O22 

O2X 

Fault‐tolerance strategy 1 

Re‐
par--on 

O31 

O3Y 

Par--on 1 of operator 2  

strategy 2  strategy 3 

…  … 

Fig. 1. Parallel query plan comprising three operators (O1, O2, O3)
and one input from disk. Each operator is partitioned across a possibly
different number of nodes. Data can be re-partitioned between operators.
Fault-tolerance strategies are selected at the granularity of operators.

ally, our optimizer is able to correctly identify the winning
fault-tolerance strategy for a given query plan. Overall, FTOpt
is thus an important component of parallel data processing,
enabling performance gains similar in magnitude to several
other recently proposed MapReduce optimizations [15], [16].

II. MODEL AND ASSUMPTIONS

In parallel data processing systems, queries take the form
of directed acyclic graphs (DAGs) of operators that are dis-
tributed across servers in a cluster as illustrated in Figure 1.
Servers are also referred to as nodes. Each operator can be
partitioned and these partitions then execute in parallel on
the same or on different nodes. Multiple operators can also
share the same nodes. In this paper, since we want to preserve
pipelining when possible, we assume that a query plan takes
the form of a tree (rather than a DAG) and that all operators
are scheduled and executed at the same time. Importantly,
however, even though we preserve pipelines, our optimizer
works with both blocking and non-blocking operators.

In a shared-nothing cluster, different types of failures can
occur. In this paper, to simplify the presentation and discus-
sion, we focus only on process failures. That is, we assume
that each operator partition runs in its own process and
that these processes crash and are then restarted (with an
empty state) independently of one another. However, multiple
processes –and thus operators– can fail at the same time.
The only requirement is that these operators be restarted from
downstream to upstream.

Our approach could be extended beyond process failures
with some changes. First, if entire physical machines can
fail, then checkpoints must be written to remote nodes [17]
incurring extra network and CPU costs that must be taken into
account by the optimizer. Second, when a physical machine
fails, the number of nodes in the cluster is reduced by one,
which must also be taken into account. A network failure can
cause one or more machines to become disconnected. It can
also lead to network partitions. In both cases, our approach
still works if a cluster management system ensures that only
a fully connected set of machines continues processing the



query. Larger-scale failures can also cause either input data
or checkpointed data to become unavailable. In that case, the
query would need to be restarted in its entirety once the input
data became available again. In general, however, large-scale
rack and network failures are typically infrequent, while single
machine failures are common. For example, Google reports 5
average worker deaths per MapReduce job in March 2006 [9],
but only approximately 20 rack failures per year (and similarly
few network failures) [18]. In this paper, we thus focus on
process failures.

III. BACKGROUND AND RELATED WORK

Fault-Tolerance in Relational DBMSs. Commercial rela-
tional DBMSs provide fault-tolerance through replication [19],
[20], [21]. Similarly, parallel DBMSs [1], [2], [3] use repli-
cation to handle various types of failures. Neither, however,
provides intra-query fault-tolerance [22].

Main-memory DBMSs [23], [24], [25] use a variety of
checkpointing strategies to preserve the in-memory state of
their databases. In contrast, our approach preserves and re-
covers the state of ongoing computations.

Fault-Tolerance in MapReduce. Recently, a new genera-
tion of massively parallel data processing systems has been
introduced [4], [5], [6], [7]. The MapReduce framework [4]
provides intra-query fault-tolerance by materializing results
between operators and re-processing these results upon oper-
ator failures. This approach, however, imposes a high runtime
overhead and prevents users from seeing any output until the
job completes. In Dryad [6], data between operators can either
be pipelined or materialized. In contrast, we strive to achieve
both pipelining and fault-tolerance at the same time. We also
study how to decide when to materialize or checkpoint data.
Recent work [26] applies MapReduce-style fault-tolerance to
distributed databases by breaking long-running queries into
small ones that execute and can be restarted independently.
This approach, however, supports only a specific type of
queries over a star schema. In contrast, we explore techniques
that are more generally applicable. Recent work also intro-
duced the ability to partly pipeline data in Hadoop [10], a
MapReduce-type platform. This work is complementary to
ours as it retains the use of materialization throughout the
query plan for fault-tolerance purposes.

Other Fault-Tolerance Strategies. In the distributed sys-
tems and stream processing literatures, several additional
fault-tolerance strategies have been proposed [13], [11], [27].
All fault-tolerance strategies involve replication. One set of
techniques is based on the state-machine approach. Here, the
same computation is performed in parallel by two processing
nodes [28], [29], [27]. We do not consider such techniques in
this paper because of their overhead: to tolerate even a single
failure, they require twice the resources. The second set of
techniques uses rollback recovery methods [13], [11], where
the system takes periodic snapshots of its state that it copies
onto stable storage (i.e., into memory of other nodes or onto
disk). We show how to integrate the latter techniques into our
fault-tolerance optimization framework (Section IV-B).

Recently, Simitsis et. al. [30] studied the problem of
selecting fault-tolerance strategies and recovery points for
ETL flows. Similar to us they consider using different fault-
tolerance strategies within a single flow. In contrast to our
work, they do not propose a general heterogeneous fault-
tolerance framework, do not have individually recoverable
operators, and do not optimize for overall latency nor show
how fault-tolerance choices affect processing latencies.

Additional Related Work. Hwang et al. [17] studied self-
configuring high-availability methods. Their approach is or-
thogonal to our work as it is based on a uniform checkpointing
strategy and optimizes the time when checkpoints are taken
and the backup nodes where they are saved.

Techniques for query suspend and resume [31], [32] use
rollback recovery but are otherwise orthogonal to our work.

The Phoenix/App project [33] explores the problem of
heterogeneous fault-tolerance in the context of web enterprise
applications. For this, it defines an interaction contract be-
tween each pair of component types. In contrast, we define a
single contract type that can hide the fault-tolerance method
chosen by each operator.

IV. FRAMEWORK FOR HETEROGENEOUS
FAULT-TOLERANCE

We present a framework for mixing and matching fault-
tolerance techniques. Our framework relies on concepts from
the literature including logging, acknowledging, and replay-
ing tuples as previously done in uniform fault-tolerance
settings [11], [27] and “contract-based” methods for query
suspend-resume [31]. Our contribution lies in articulating how
these strategies can be used to enable fault-tolerance hetero-
geneity. We also discuss how three fault-tolerance techniques
from the literature can be used within our framework.

A. Protocol

To enable heterogeneous fault-tolerance between consec-
utive operators in a query plan, we isolate these operators
by fixing the semantics of their interactions through a set of
four rules. These rules enable each operator to be individually
restartable without requiring any blocking materialization as
in MapReduce and also without requiring that all operators
use the same fault-tolerance strategy.

In our framework, as in any parallel data processing system,
operators receive input tuples from their upstream neighbors;
they process these tuples and send results downstream. For
example, in Figure 1, each partition of operator O2 receives
data from each O1 partition and sends data to all O3 partitions.
If an operator partition such as O21 fails, a new instance of
the operator partition is started with an empty state. To recover
the failed state, in our framework, the new instance can read
any state persistently captured by the operator’s fault-tolerance
strategy. It can also ask upstream operators to resend (a subset)
of their data. To enable such replays, tuples must have unique
identifiers, which may or may not be visible to applications,
and operators must remember the output they produced. For
this, we define the following two rules:



Rule 4.1: Each relation must have a key.
Rule 4.2: Producer replay guarantee. Upon request, an

operator, must regenerate and resend in order and without
duplicates any subset of unacknowledged output tuples.

Acknowledgments mentioned in this rule help reduce the
potential overhead of storing old output tuples by bound-
ing how much history must be retained [11], [27]. In our
framework, acknowledgments are optional and are sent from
downstream operators to upstream ones. For example, once
all operator partitions O21 through O2X that have received an
input tuple t from operator partition O11 acknowledge this
tuple, the tuple need no longer be retained by O11. Upon
sending an acknowledgment, an operator promises never to
ask for the corresponding tuple again:

Rule 4.3: Consumer progress guarantee. If an operator
acknowledges a tuple rx, it guarantees that, even in case of
failure, it will never ask for rx again.

Most parallel data processing systems use in-order com-
munication (e.g., TCP) between operators. In that case, an
operator can send a single message with the identifier of a
tuple rx to acknowledge all tuples up to and including rx.

When a failure occurs and an operator restarts with an
empty state, most fault-tolerance techniques will cause the
operator to produce duplicate tuples during recovery. To ensure
that an operator can eliminate duplicates before sending them
downstream, we add a last requirement:

Rule 4.4: Consumer Durability Guarantee. Upon request,
an operator Od must produce the identifier of the most recent
input tuple that it has received from an upstream neighbor Ou.

Together, these four rules enable a parallel system to mask
failures from client applications, except possibly for visible de-
lays. They also enable operators to be individually restartable.
These rules also enable a query plan to be both pipelined
and fault-tolerant, since data can be transmitted at anytime
between operators. Finally, the framework is agnostic of the
fault-tolerance method used as long as the method can work
within the pre-defined types of interactions.

From the above four rules, only the “Producer replay
guarantee” rule potentially adds overhead to the system since
it requires that a producer be able to re-generate (part of)
its output. A no-cost solution to satisfy this rule is for an
operator to restart itself upon receiving a replay request. With
this strategy, an operator failure can cause a cascading rollback
effect, where all preceding operators in the plan get restarted
as well. This approach is equivalent to restarting a subset of the
query plan after a failure occurs and is no worse than what
parallel databases do today. Alternatively, an operator could
write its output to disk, which adds overhead but speeds-up
recovery of downstream operators. Finally, some operators,
such as joins or aggregates, can easily re-generate their output
from their state without the need for an output queue. Each
of these solutions leads to different expected query runtimes
with and without failures. Our optimizer is precisely designed
to select the correct strategy for each operator (from a pre-
defined set of strategies) in a way that minimizes the total
runtime with failures for a given query plan as we discuss

further below.

B. Concrete Framework Instance

We now discuss how three well-known fault-tolerance
strategies from the literature can be easily integrated into our
framework.

Our framework also requires that operators be deterministic.
We develop a low-overhead method to achieve this goal, but
we omit it here due to space constraints and refer the reader
to our technical report for details [34].

Strategy NONE. Within our framework, an operator can
choose to do nothing to make itself fault-tolerant. We call
this strategy NONE. To ensure that it can recover from
a failure, such an operator can simply avoid sending any
acknowledgments upstream. Upon a failure, that operator can
then request that its upstream neighbors replay their entire
output. This strategy is analogous to the upstream backup
approach developed for stream processing engines [11].

As in upstream backup, operators such as selections or
projections that do not maintain any state between consecutive
tuples (i.e., “stateless operators”) can send acknowledgments
in some cases. For example, if an input tuple r makes it
through a selection operator to generate the output q and is
acknowledged by all operators downstream, then r can be
safely acknowledged. Unlike upstream backup, which uses
different types of acknowledgments [11], our approach uses
only one type of acknowledgments facilitating heterogeneous
fault-tolerance. This approach of skipping over old input
data during recovery has also been used for resumptions of
interrupted warehouse loads [12].

To handle a request for output tuples, a stateless operator
can simply fail and restart itself to reproduce the requested
output. For expensive stateful operators (i.e., operators such as
joins and aggregates that maintain state between consecutive
tuples), a more efficient strategy is to maintain an output queue
and replay the requested data [11]. Such a queue, however,
can still impose a significant memory overhead and an I/O
overhead if the queue is written to disk. We observe, however,
that stateful relational operators need not keep such output
queue but, instead, can re-generate the data directly from their
state. We implement this strategy and use it in our evaluation.

Strategy CHCKPT. This strategy is a type of rollback
recovery strategy where operators save their state periodically
to stable storage. Because our framework recovers operators
individually, it requires what is called uncoordinated check-
pointing with logging [13]. One approach that can directly be
applied is passive standby [11], where operators take periodic
checkpoints of their state, independently of other operators.

Our framework requires that an operator saves sufficient
information to guarantee the consumer progress, consumer
durability, and producer replay guarantees. That is, the op-
erator must log its state and, if it maintained an output queue,
it must log that queue as well. After each such checkpoint,
the operator can acknowledge the checkpointed input tuples.
Upon failures, the operator restarts from its most recent
checkpoint. As an optimization, operators can checkpoint only



delta-changes of their state [13]. Other optimizations are also
possible [13], [17], [35] and can be used with our framework.

Strategy MATERIALIZE. An alternate rollback recovery
approach consists in logging intermediate results between
operators as in MapReduce [4]. While CHCKPT speeds-up
recovery for the checkpointed operator itself, MATERIALIZE
potentially speeds-up recovery for downstream operators: to
satisfy a replay request, an operator can simply re-read the
materialized data. Since materialized output tuples need never
be generated again, an operator can use the same acknowl-
edgement and recovery policy as in NONE.

In summary, while our framework imposes constraints on
operator interactions, all three of these common fault-tolerance
strategies can easily be incorporated into it.

V. FTOPT

FTOpt is a fault-tolerance optimizer for our heterogeneous
fault-tolerance framework: it selects the fault-tolerance strat-
egy that should be used by each operator in the plan to
minimize an objective function (i.e., the expected runtime
with failures) given a set of constraints (that model the plan).
The challenge is to keep the optimizer tractable yet make
it sufficiently accurate to select good fault-tolerance plans
and make it easily extensible with new operators and fault-
tolerance strategies. We present FTOpt’s high-level structure
and develop a detailed operator model.

A. Overview

FTOpt takes as input three pieces of information: (a) the
tree-shaped query plan to optimize, (b) information about the
cluster resources, and (c) models for the operators in this plan
under different fault-tolerance strategies. FTOpt produces three
outputs: (1) a fault-tolerance strategy for each operator, (2)
checkpoint frequencies for all operators that should checkpoint
their states, and (3) an allocation of resources to operators.
The latter is necessary because fault-tolerance strategies and
resource allocation are intertwined. Due to space constraints,
in this paper, we assume that each operator is partitioned
across a given number of compute nodes and is allocated its
own core(s) and disk on each node. For the resource allocation
details, we refer the reader to our technical report [34].

Objective Function. FTOpt minimizes the following cost
function, that captures the expected runtime of a query:

Ttotal = max
p∈P

(
i=d−1∑
i=1

Dpi
+ Tpd

)
+
∑
i∈O

zi ·Ri (1)

The first term is the total time needed to completely process
the query including the overhead of fault-tolerance if no
failures occur. The second term is the time spent in recovery
from failures. The cost function makes two assumptions. First,
the entire pipeline (all paths) is blocked during a failure
recovery since even if one operator partition fails, operators
upstream from that partition stop their normal processing and
participate in its recovery. As a result, they block everything
else downstream and upstream. Second, all partitions of a
failed operator are recovered after any partition fails. Since the

pipeline blocks during recovery, the runtime is indeed similar
whether one or all partitions need to be recovered.1

In more detail, for the first term, P is the set of all paths
from the root of the query tree to the leaves. For a given path
p ∈ P of depth d, the root is labeled with p1 and the leaf with
pd; Dpi is the delay introduced by operator pi where the delay
is defined as the time taken to produce its first output tuple
from the moment it receives its first input tuple; and, Tpd is
the time taken by the leaf operator to complete all processing
after receiving its first input tuple.

For the second term, O is the set of all operators in the
tree. For operator i ∈ O, zi is its expected number of failures
during query execution, and Ri is its expected recovery time
from its failure. To compute zis, we use an administrator-
provided statistic nF : the expected number of process failures
for the query. If ni is the total number of processes allocated
to operator i we assume that zi = nF ni∑

j∈O nj
. nF can be

estimated from the observed failure rates for previous queries
and administrators typically know this number [9]. We assume
nF to be independent of the chosen fault tolerance plan. nF
depends on the query runtime, whose order of magnitude can
be estimated by FTOpt as the total runtime without fault-
tolerance and without failures (we show that results are robust
to small errors in nF ’s value in Section VI-F).

Abstract Operator Model. To compute the objective func-
tion, FTOpt requires that each operator provides expressions
that characterize its various delays and processing times during
normal operation and when failures occur. These expressions
must be provided for each fault-tolerance strategy that the
operator supports. Formally, FTOpt needs to be given the
functions in Table I expressed in terms of the parameters,
represented by Θ in Table II. In Section V-B, we show how
to, fairly easily, express such functions in our framework.
Compared to existing cost models for parallel query run-
time estimation [36], [37] and fault-tolerance in streaming
engines [11], our models capture the dynamic operator in-
teractions in pipelined queries, which we observed to affect
query runtime predictions and fault-tolerance optimization. For
example, a fast operator following a slow one in a pipeline will
produce its output slowly. At the same time, we do not require
that an operator’s output tuples be uniformly spread across the
entire execution time of the operator [38], [39].

Constraints. Individual operator models are composed to-
gether to generate the model for the query by imposing three
constraints during composition: (a) the average input and
output rates of consecutive operators must be equal since the
query plan is pipelined, (b) aggregate input and output rates
for operators cannot exceed the network and processing engine
limits, and (c) if an operator uses an output queue, it must
either checkpoint its output queue to disk frequently enough,
or must receive acknowledgements from downstream operators
frequently enough to never run out of memory. Individual
operators can add further constraints (see Section V-B).

1Our implementation recovers only the failed partition while our optimizer
assumes the entire operator fails. Experimental results shows that this approx-
imation is sufficiently accurate for fault-tolerance optimization.



TABLE I
FUNCTIONS CAPTURING OPERATOR BEHAVIOR.

Delay to get the first tuple
DN (Θ) Average delay to output first tuple during normal processing with fault

tolerance overheads.
DRD(Θ) Average delay to produce first tuple requested by a downstream operator

during a replay.
DRS(Θ) Average delay to the start of state recovery on failure.
Average processing time
xN (Θ) Average time interval between successive output tuples during normal

runtime with fault tolerance overheads.
xRD(Θ) Average time interval between successive output tuples requested by a

downstream operator.
xRS(Θ) Average time-interval between strategy-specific “units of recovery” (e.g.,

checkpointed tuples read from disk).
Acknowledgement interval, a(Θ), sent to upstream nodes.

TABLE II
OPERATOR BEHAVIOR PARAMETERS(Θ).

Query parameters
|Iu| Number of input tuples received from upstream operator u.
|I| Number of tuples produced by current operator.
Operator parameters
tcpu Operator cost in terms of time to process one tuple.
tio The time taken to write a tuple to disk.
Runtime parameters
xN
u Average inter-tuple arrival time from upstream operator u in normal processing.
F Fault tolerance strategy.
c Number of tuples processed between consecutive checkpoints.
N The number of nodes assigned to the operator.
Surrounding fault-tolerance context
ad Maximum number of unacknowledged output tuples.
xRD
u Average inter-tuple arrival time from upstream operator u during a replay.

Search Space. For a given query plan, the optimizer’s
search space consists of all possible combinations of fault-
tolerance strategies. In this paper, we use a brute-force tech-
nique to enumerate through that search space. We leave more
efficient enumeration algorithms for future work. For each
fault-tolerance configuration, the optimizer computes optimal
checkpoint frequencies and optionally an allocation of re-
sources to operators as explained in our technical report [34].

B. Operator Modeling

We use a geometric programming(GP) framework to model
the operators and optimize the fault-tolerance plan. We use GP
since it allows expressions that model resource scaling and
non-linear operator behavior but still finds a global minima
for the model [14]. We first present our overall optimization
problem and then derive our concrete operator models.

1) Geometric Model: In a geometric optimization problem,
the goal is to minimize a function f0(x), where x is the
optimization variable vector. The optimization is subject to
constraints on other functions fi(x) and gi(x). All of x, g(x),
and f(x) are constrained to take the following specific forms:
• x = (x1, . . . , xn) with ∀i xi > 0, xi ∈ R.
• g(x) must be a monomial of the form cxa11 xa22 . . . xann

with c > 0 and ai ∈ R.
• f(x) must be a posynomial defined as a sum

of one or more monomials. Specifically, f(x) =∑k=K
k=1 ckx

a1k
1 xa2k2 . . . xank

n with ck > 0 and aik ∈ R.
The optimization is then expressed as follows:

minimize f0(x)

subject to fi(x) ≤ 1, i = 1, . . . ,m

gi(x) = 1, i = 1, . . . , p

Actual runtime

N
u

m
b

er
 o

f 
o

u
tp

u
t 

tu
p

le
s

Time

Total output

ta
cpu

Point of change (tangent)

NBout(nin)

Fig. 2. Data output curve for a symmetric-hash join operator.

In our case, x = ∪i=Oi=1 {xNi , xRDi , xRSi , ci, Ni} where O is
the set of operators and the other variables come from Tables I
and II. Our objective function is f0(x) = Ttotal as defined in
Section V-A (“Objective function”). Finally, our constraints
comprise framework constraints as defined in Section V-A
(“Constraints”) and operator constraints as we discuss next.

We now derive the detailed constraint equations for our join
operator, which is the most complex of our three operators.
The models for select and aggregate are similarly derived.
They have been omitted due to space constraints, but can be
found in the technical report [34].

2) Modeling Basic Operator Runtime: For our GP opti-
mization problem, we must first derive the operator output
rate (given by the inter-output-tuple delay, xN ) in the absence
of failures and given an input rate for all its input streams.

We must also derive the delay value, DN , but this delay is
simply either negligible for selects and the symmetric hash-
join that we model in our prototype or equal to the entire
runtime for aggregates.

The challenge in expressing an operator’s output rate is that
xN can follow a complex curve for some operators such as
certain non-blocking join algorithms as illustrated in Figure 2.
The figure shows the data output curve for a symmetric
hash-join operator. For this operator, the more tuples that it
has already processed, the more likely the join is to find
matching tuples, and thus the more output it produces. As
a result, at the beginning of the computation, the bottleneck
is the input data rate (the NBout(nin) curve) and the operator
produces increasingly more output tuples for each input tuple.
Eventually, the CPU at the join becomes the bottleneck (tcpua
curve) and the output rate flattens.

We found that ignoring such effects and assuming a constant
output significantly underestimated the total runtime for the
operator. Alternatively, modeling these effects and exposing
them to downstream operators significantly complicated the
overall optimization problem. We thus opted for the following
middle-ground: we model the non-uniform output rate of an
operator to derive its total runtime. Given the total runtime,
we compute the equivalent average output rate that we use as
constraint for the next operator.

Interestingly, we find that we can automatically derive the
above curve from the following operator properties:
• tcpua : Average time to generate one output tuple assuming

that all input is available with no delay.
• NBout(nin): This function provides the total number of



output tuples produced for a given number of tuples (nin)
received across all input streams.

The above functions can easily be derived (hence simplify-
ing optimizer extensibility). tcpua corresponds to the standard
query optimizer function for computing an operator’s cost,
except that we then divide this cost by the operator output
cardinality. NBout(nin) is similar to computing the cardinality
of an operator output, except that it also captures how that
output is produced as the input data arrives. Simple operators
like select or merge join have NBout = σnin, where σ is the
operator selectivity. For blocking operators such as aggregates,
after the delay DN (Θ) all the output tuples are produced
at once and hence NBout = |I|. For other non-blocking
operators the relationship can be more complex as we discuss
next using our symmetric hash-join as example.

For the symmetric hash-join operator, define Iutot to be the
set of all tuples received from both upstream input channels.
Hence, |Iutot| = |I1|+ |I2|. For this operator:

tcpua = |I|−1 (|Iutot|+ |I|) tcpu

The expression is a product of the average time taken to
process either an input or output tuple (tcpu, obtained through
micro-benchmarks) and the total number of tuples seen by the
operator, including the input tuples (Iutot) and the output join
tuples (I). This number is then divided by the total number of
output tuples (|I|) to get the average time per output tuple.

To get the NBout function for a symmetric hash-join we
assume that the input tuples from the two input channels can
arrive in any order, each order being equally likely. In this
case, for a given selectivity σ, σ̂ = |I1||I2|σ

(|I1|+|I2|)(|I1|+|I2|−1) is
the probability that a new input tuple joins with an older tuple.
In this case, the function NBout(nin) is defined as follows:

NBout(nin) = σ̂nin(nin − 1) ≈ σ̂n2
in

We now show how our optimizer translates these functions
into a set of inequalities that characterize the average time
interval between successive output tuples produced by an
operator. For this, we require that the NBout(nin) function
take the form: NBout(nin) = γnkin, in order to fit into the GP
framework. Informally, as the operator sees more input tuples,
the number of the output tuples produced after processing a
new input tuple should never decrease.

These inequalities take xIN as input, which is the time inter-
val at which input tuples are assumed to arrive. xIN depends
on the current execution context. If we are operating normally,
it is the average time interval between tuples produced by
the upstream operators; if we are recovering from a failure,
we might read the input tuples from disk at the maximum
bandwidth possible for the disk.

Given the above, the average time interval between consec-
utive output tuples, xN , is given by the following inequalities:

me = γ(xIN )−kktk−1
f

me ≤ (tcpua )−1

me ≤ γ
1
k (xIN )−1k|I|1− 1

k

(1− k−1)tf + |I|m−1
e ≤ xN |I|

We refer the reader to the technical report for the exact
derivation of this model [34]. Here, we only provide the
intuition behind it.

In the above equations, |I| is the output cardinality; γ and
k come from the NBout(nin) function; me is the number of
output tuples produced per second at the instant the processing
ends and tf is the first time at which the output produces tuples
at the rate me. The first equation realizes this relationship
between me and tf . The following inequality states that the
operator can not take less than tcpua time to produce an output
tuple, since this is the least amount of time the processor needs
per tuple, given the resources it has. For the second inequality,
its right hand side is the maximum rate at which output could
be produced if the only bottleneck was the rate of arrival
of input tuples. Note that, since we require the NBout(·)
function to have a non-negative rate of change, the fastest
output production rate will be at the end of the computation
and the derivative of the function NBout(·) at the end gives
us this value. Since, in a real computation the processing cost
is positive, the actual observed rate has to be less than the
derivative (the right hand side in the second inequality). The
third inequality states that the total time to process all tuples
(which is equal to the average output rate times the number
of output produced) must be higher than the actual processing
time, which is its left hand side.

To model a different operator, the functions for tcpua and
NBout(nin) would change, while the form of the inequalities
and equalities used by the optimizer would remain the same.
They simply use the above as parameters.

We model a partitioned operator as a single operator that
scales linearly with allocated resources. This approach suffices
to demonstrate the feasibility and impact of fault-tolerance
optimization. We leave extensions to more complex models,
including data skew between partitions, for future work.

3) Modeling Overhead of Fault-tolerance: We now extend
the above models to take fault-tolerance overhead into account.
For brevity, we use the notation that IN , IM and IC are
either 0 or 1 depending on whether NONE, MATERIALIZE or
CHCKPT is chosen as the fault tolerance option respectively.

The overhead of fault tolerance affects the minimum time
an operator needs to produce an output. The exact overhead,
and hence the model, depends on the implementation of
the operator. An operator may checkpoint incrementally, or
may checkpoint the entire state each time, may or may not
checkpoint its output queue, etc.

For our implementation of joins, for MATERIALIZE we
write to disk all the outputs produced and for CHCKPT, we
only log the incoming tuples to disk incrementally. We do not
maintain any output queue.

Although we need one equation per fault-tolerance strategy
we represent them as a single one.

tcpua = |I|−1
(
tcpu(|Iutot|+ |I|) + ICtio|Iutot|+ IM tio|I|

)
Here tio is the time to write a tuple to disk and is also

obtained through micro-benchmarks.



4) Modeling Recovery Time for Downstream Neighbors: To
estimate the replay time when a downstream node requests a
range of tuples, we need to know the average rate at which the
output tuples are produced to satisfy the request and the delay
in generating the first requested tuple. Note that the replay
rate might depend on when, during the course of the query,
the downstream fails. For example, if the replay behaves in the
same way as normal operations for the symmetric hash-join,
it might be slower if the downstream fails early on and be
faster later. To approximate the recovery rate we find the time
it takes to replay all output tuples and divide that number by
the total number of output tuples. During this replay phase,
the operator has no fault tolerance overheads.

As before, the exact model depends on the implementation
details. A non-exhaustive list of choices for the operator is
to maintain and use an output queue, use materialized output,
use in-memory state, or reprocess from scratch without doing
anything extra for fault tolerance.

For our join implementation, we use the in-memory hash
table to regenerate the output. Hence the delay is going to be
negligible, but it could be significant for a join that can not
use either its state or its output to answer tuple requests.

To get the average output rate, we use the same framework
we developed in the previous section. Thus we only need to
specify tcpua and NBout(nin) for the replay mode.

Since, during replay, we only reprocess the inputs without
any fault tolerance overhead: tcpua = |I|−1 (|Iutot|+ |I|) tcpu.

The form of the NBout(·) remains the same as for the
normal processing. Also, during reprocessing the input tuples
are already in memory, hence the arrival rate of inputs xIN is
at most tcpu and we take xIN = tcpu.

5) Modeling Recovery Time: To compute the total time to
recover from a failure, we need to know the average rate at
which recovery proceeds.

As before, the exact recovery model will depend on the
implementation. A non-exhaustive list of choices for an oper-
ator is to recover from the last checkpoint, recover from the
upstream nodes, recover partially by recovering the state but
not an output queue, etc.

For our join implementation, upon failure the MATERIAL-
IZE and the NONE options have to request all the input from
the upstream nodes and rebuild the hash table exactly as it was
before (using Rule 4.2 and operator determinism [34]), while
CHCKPT rebuilds it from the input tuples logged to disk.

In all three cases, during recovery, no output is produced
when the input tuples are processed to construct the hash table.
Thus, we look at each input tuple once and hence tcpua = tcpu.

To define the function NBout(nin) we think of the hash
table being rebuilt as the desired output and the input tuples
as the inputs. Since all the input tuples are used to generate the
“output” hash table: NBout(nin) = nin. For MATERIALIZE
and NONE, xIN is the average time interval in which re-
quested tuples from the upstream nodes arrive. For CHCKPT,
since we directly read tuples from the disk: xIN = tio.

The delay in getting the first input is negligible if we use
CHCKPT and is equal to the delay of the upstream tuples in

the case of NONE and MATERIALIZE.
We approximate the expected hash table size to recover to

be 1
2 |Iutot|. Thus, the expected time to recover is the sum of

(1) the delay to receive the first input tuple, and (2) the product
of the expected hash table size and the average time per tuple
spent in adding a tuple to that hash table.

C. Approach Implementability

In summary, our approach consists of (1) a protocol that
enables heterogeneous fault-tolerance in a parallel query plan
and (2) an optimizer that automatically selects the fault-
tolerance strategy that each operator should use. We now
discuss the difficulty of implementing this approach in a
parallel data processing system.

To implement our approach, developers need to (a) imple-
ment desired fault-tolerance strategies for their operators in a
manner that follows our protocol. In Section IV-B, however,
we showed, how to efficiently implement three well-known
fault-tolerance strategies for generic stateless and stateful
operators. There also exist libraries that can help with such
implementation (e.g., [35]). Developers must also (b) model
their operator costs within a pipelined query plan. To simplify
this latter task, we develop an approach that requires only
that developers specify well-known functions under different
fault-tolerance strategies and during recovery: an operator cost
function and a function that computes how the output size of
an operator grows with the input size. Our optimizer derives
the resulting operator dynamics automatically. For parallel
database systems [2], [1] and MapReduce-type systems such
as Hive [40] or Pig [7], which all come with a pre-defined set
of operators, the above overhead needs only be paid once and
we thus posit that it is a reasonable requirement.

For user-defined operators (UDOs), the above may still
be too much to ask. In that case, the simplest strategy is
to treat UDOs as if they could only support the NONE
or MATERIALIZE strategies (depending on the underlying
platform) without ever producing acknowledgments. With this
approach, UDO writers need not do any extra work at all,
yet the overall query plan can still be optimized and achieve
higher performance than without fault-tolerance optimization
as we show in Section VI-D.

Finally, our approach relies on a set of parameters including
IO cost (expressed as the time tio spent in a byte sized
disk IO), per-operator CPU cost (expressed as the time tcpu

spent processing each tuple), and total network bandwidth.
Commercial database systems already automate the collection
of such statistics (e.g., [41]), though tcpu is typically expanded
into a more detailed formula.

Other necessary information includes the expected number
of failures for the query (see Section V-A), operator selectiv-
ities (standard optimizer-provided metric), and an estimate of
the total checkpointable state. We show in Section VI-F that
our optimizer is not sensitive to small errors in these estimates.

Overall, the requirements of our fault-tolerance optimization
framework are thus similar to those of existing cost-based
query optimizers.



VI. EVALUATION

We evaluate FTOpt by answering the following questions:
(1) Does the choice of fault-tolerance strategy for a parallel
query matter? (2) Are there configurations where a hybrid
plan, where different operators use different fault tolerance
techniques, outperforms uniform plans? (3) Is our optimizer
able to find good fault-tolerance plans automatically? (4)
How do user-defined operators affect FTOpt? (5) What is the
scalability of our approach? (6) How sensitive is FTOpt to
estimation errors in its various parameters?

We answer these questions through experiments with a
variety of queries in a 17-node cluster.2 Each node has dual
2.5 GHz Quad Core E5420 processors and 16 GB RAM
running Linux kernel 2.6.18 with two 7.2K RPM 750 GB
SATA hard disks. In all experiments, a subset of cores and
disks are dedicated to each operator partition. The cluster is
running a very simple parallel data processing engine that we
wrote in Java. The implementation includes our new fault-
tolerance framework and specific per-operator fault-tolerance
strategies for a small set of representative operators. All fault-
tolerance strategies were moderately optimized as described
in Section IV-B. We implemented the optimizer in MATLAB
using the cvx package [42]. The queries that we use (Table VI-
B) are standard relational queries and process synthetically
generated data without skew. Tuples are 0.5 KB in size. A
separate producer process generates input tuples. For a given
plan, we get the expected recovery time by injecting a failure
midway through the time the plan takes to execute with no
failures. We inject exactly one failure per run and show the
recovery time averaged over all distinct operators in the plan.

A. Model Validation Experiments

FTOpt requires the tcpu and the tio values for each operator.
It also requires the network bandwidth for each machine
in the cluster. Through micro-benchmarks, we find that the
average time to read a tuple from disk (sequential read) is
tio = 13.0 µs for a 0.5 KB tuple. This number is equivalent
to a disk throughput of 37 MBps. For select and aggregate
operators, we measure tcpu to be 1.82µs. The join operator,
internally, works in two parts: (1) hashing the input tuple and
storing it in one of the tables for a cost of t1 = 8µs and
(2) joining the hashed input tuple to the corresponding tuples
from the other table for a cost of t2 = 1µs. We use t1, t2,
and the operator’s selectivity to estimate its tcpu. Finally, we
measure the network I/O time per 0.5 KB tuple to be 4.7µs,
which is equivalent to a network bandwidth of 109.4 MBps
and is close to the theoretical maximum of 1 Gbps network
bandwidth for each machine in the cluster.

These parameters along with our operator models enable
us now to predict runtime for an entire query plan. Figure 3
shows the runtime without failure for a few two-operator
queries. While the median percentage difference between real

217 was the largest number of machines that we could reserve for our
experiments in our local database cluster.

0 
50 

100 
150 
200 
250 

NM NN MM CC cc MM cc 

Select-Join Select-Average Select-Join 

R
un

tim
e 

(s
) 

Configurations 

Real Predicted 

Fig. 3. Runtime without failures for different two-operator queries. The x-
axis labels indicate the fault tolerance strategy chosen: N for NONE, M for
MATERIALIZE, C for CHCKPT with a total of 10 checkpoints and c for
CHCKPT with 1000 checkpoints.

TABLE III
QUERY PARAMETERS IN TERMS OF TUPLES

The entries are the number of tuples
Query 1 Op1: Select Op2: Join Op3: Join Op4: Join
Input 2× 106 4× 106 4× 106 16× 106

Output 2× 106 2× 106 8× 106 8× 106

Query 2 Op1: Select Op2: Join Op3: Join Op4: Join
Input 1.6× 108 16× 106 16× 106 16× 106

Output 8× 106 8× 106 8× 106 8× 106

Query 3 Op1: Select Op2: Join Op3: Join Op4: Aggregate
Input 1.6× 108 16× 106 32× 106 1.6× 108

Output 8× 106 16× 106 1.6× 108 8192
Query 4 Op1: Select Op2: Join Op3: Join Op4: Aggregate
Input 1.6× 108 16× 106 80× 106 80× 106

Output 8× 106 40× 106 80× 106 8192
Query 5 Op1: Select Op2: Join Op3: Join Op4: Join
Input 1.6× 108 16× 106 16× 106 16× 106

Output 8× 106 8× 106 8× 106 3.2× 107

Op5: Select Op6: Join Op7: Join Op8: Aggregate
Input 3.2× 107 17.92×106 4.02× 107 7.94× 107

Output 8.96× 106 2.01× 107 7.94× 107 8192

and predicted runtime is 9.5%, this error is small given the
overall differences in runtime between various configurations.

We measure the sensitivity of our approach to the bench-
marked parameter values in Section VI-F.

B. Impact of Fault-Tolerance Strategy

The first question that we ask is whether a fault-tolerance
optimizer is useful: how much does it really matter what fault-
tolerance strategy is used for a query plan?

Figures 4 through 6 show the actual and predicted runtimes
for Queries 1 through 3 from Table VI-B with 8 partitions per
operator. Note that, each join receives input from two sources:
its upstream operator in the plan and a producer process. In all
our experiments, an equal number of tuples was received from
each source. Whenever FTOpt selects CHCKPT as a strategy,
it also chooses the checkpoint frequency (Query 3). In other
cases, we use 100 checkpoints, a manually selected value that
we found to give high performance in these experiments.

The most important result from these experiments is that,
while these queries are all similar to each other, each one
requires a different fault-tolerance plan to achieve best per-
formance. For Query 1, a uniform NONE strategy is best. For
Query 2, uniform MATERIALIZE wins. Finally, for Query 3,
uniform CHCKPT outperforms the other options.

Second, restarting a query is at most 50% slower than
a strategy with more fine-grained fault-tolerance. The fine-
grained strategy gains the most when it reduces recovery
times with minimal impact on runtime without failures. For



CKPTMATNONE(OPT)RESTART

CKPT MAT NONE(OPT) RESTART

0

10

20

30

40

50

60

70
R

u
n

ti
m

e
 (

s)
Predicted Recovery Predicted Normal

Observed Recovery Observed Normal

Fig. 4. Query 1 (SJJJ)

CKPTMAT(OPT)NONERESTART

CKPT MAT(OPT) NONE RESTART

0

50

100

150

200

250

R
u

n
ti

m
e
 (

s)

Predicted Recovery Predicted Normal

Observed Recovery Observed Normal

Fig. 5. Query 2 (SJJJ with lower selectivities)

some queries, the appropriate choice of fault-tolerance gets
close to this theoretical upper bound. For Query 2, RESTART
is 31% worse than the best strategy while for Query 3,
restarting is 44% slower than the best strategy. Achieving such
gains, however, requires fault-tolerance optimization. Indeed,
different strategies win for different queries and a wrong fault-
tolerance strategy choice leads to much worse performance
than restarting a query. Overall, the differences between the
best and worst plan are high: 58% for Query 1, 31% for Query
2, and 72% for Query 3.

Finally, in all cases, FTOpt is able to identify the winning
strategy! The predicted runtimes do not exactly match the
observed ones. Most of the difference is attributable to our
simple model for the network and FTOpt’s predictions are thus
more accurate when either CPU or disk IO is the bottleneck
in a query plan. While we could further refine our models, to
pick the optimal strategy, we only need to have correct relative
order of predicted runtimes for different plans. As shown in
Figures 3 through 7, FTOpt preserves that order most of the
time. In configurations where two fault-tolerance plans lead to
very similar runtimes, it may not find the best plan due to its
approximations but it always suggests one of the good plans.

In summary, the correct choice of fault-tolerance strategy
can significantly impact query runtime and that choice is not
obvious as similar query plans may require very different
strategies. FTOpt can automatically select a good plan.

C. Benefits of Hybrid Configurations

We now consider a query (Query 4), similar to Query 3,
but with the joins processing and producing much more data,
making checkpointing expensive. Figure 7 shows that a hybrid
strategy that materializes the select’s output, does nothing for
the joins, and checkpoints the aggregate’s state for a total of
40 checkpoints (value selected by the optimizer), yields the
best performance. The uniform strategies are 15% slower at
best and 21% slower at worst while RESTART is 35% slower.

CKPT(OPT)MATNONERESTART

CKPT(OPT) MAT NONE RESTART

0

100

200

300

400

500

R
u

n
ti

m
e
 (

s)

Predicted Recovery Predicted Normal

Observed Recovery Observed Normal

Fig. 6. Query 3 (SJJA query)

CKPT MAT NONE HYBRID(OPT) RESTART

0

100

200

300

400

500

R
u

n
ti

m
e
 (

s)

Predicted Recovery Predicted Normal

Observed Recovery Observed Normal

Fig. 7. Query 4 (SJJA with more expensive joins). The hybrid strategy is to
materialize after select, do nothing for joins, and checkpoint the aggregate

We observe similar gains for a longer query (Query 5) with
eight operators. Figure 8 shows that the hybrid plan (chosen
by the optimizer) materializes both the select’s output, does
nothing for the joins and takes 20 checkpoints of the aggregate.
The best and worst uniform strategies and RESTART are
16%, 23% and 36% slower, respectively. We found, manually,
that checkpointing the first two joins in the hybrid plan led
to another hybrid plan that was 2% faster. Even though the
optimizer doesn’t choose the best plan, the plan it chooses
performs similarly to the optimal one. Further, both the
observed and the predicted best plans are hybrid.

The experiments thus show that hybrid fault-tolerance
strategies can be advantageous and the best strategy for an
operator depends not only on the operator but on the whole
query plan: the same operator can use different strategies in
different query plans: e.g., select in Queries 3 and 4.

Note that we inject only one failure per experiment. Thus,
our graphs show the minimum guaranteed gains. Additional
failures amplify differences between strategies.

D. Performance in Presence of UDOs

We now look at the applicability of heterogeneous fault
tolerance when an operator is a user-defined function with
limited fault tolerance capabilities. We experiment with Query
3, but now treat its last operator, the aggregate, as a UDO that
is not fault-tolerant and can only restart from scratch if it
fails. Note that Rule 4.2 and operator determinism [34] allow
restarting a UDO in isolation without restarting the entire
query. The other operators remain unchanged and FTOpt is
restricted to using NONE as the sole strategy for the UDO.

Figure 9 shows the results. Previously, the best fault toler-
ance strategy, with a single failure, was to checkpoint every
operator (“With CKPT”) and checkpointing aggregate pro-
vided significant savings in recovery time. Now, we find that
materializing the first operator’s output and using NONE for



0

100

200

300

400

500

600

OPT NONE MAT CKPT RESTART

R
u

n
ti

m
e
 (

in
 s

)
Observed Normal Observed Recovery

Fig. 8. Query 5 (SJJJSJJA Query)

0

100

200

300

400

500

With CKPT UDO-OPT MAT NONE RESTART

R
u

n
ti

m
es

 (
in

 s
)

Observed Normal Observed Recovery

Fig. 9. Impact of aggregate becoming a UDOs without fault-tolerance
capabilities on Query 3

the remaining operators outperforms uniformly materializing,
none and RESTART by 48%, 12%, and 24%, respectively. The
hybrid strategy is itself 16% slower than the optimal strategy
for Query 3 (“With CKPT”).

Hence even in the presence of fault-tolerance agnostic
UDOs, FTOpt can generate significant runtime savings.

E. Scalability

FTOpt’s MATLAB implementation uses the cvx pack-
age, which offers a successive approximation solver using
SDPT3 [43]. In our current prototype, the average time to
solve the optimization problem per plan is around 25s for the
4 operator plans in the previous sections. These slow results,
however, are not an intrinsic limitation of our approach but
a limitation of our prototype implementation. Indeed, the be-
haviour of an operator for a fault tolerance strategy is described
using at most 12 inequality and 4 equality constraints and 11
variables. Modeling the network requires an extra inequality
constraint per operator and one global inequality constraint.
Thus, a query with n operators can be modeled using 11n
variables, 13n + 1 inequality and 4n equality constraints.
Further, all but one of the constraints are sparse: they depend
on just a few variables independent of n. Optimized solvers
already exist that can solve such problems in under 1 ms [44].

We use a brute force search algorithm to find the optimal
fault-tolerance plan. We observe that the best hybrid plans
use the NONE strategy for many operators and using another
strategy in place of NONE will always increase the runtime
without failures. Thus, if the runtime without failure for a
plan exceeds the runtime with failures for another plan, we
can prune the former plan. Hence, evaluating plans in the
decreasing order of the number of operators that use the NONE
strategy can prune significant fractions of the search space. For
example, with the heuristic, the optimizer examines only 28
out of 81 configurations for Query 4.

Finally, the search algorithm essentially computes the least

0

50

100

150

200

250

300

350

400

450

500

1 11 21 31 41 51 61 71 81

R
u
n
ti

m
e 

(i
n
 s

)

Rank

Predicted Observed

Fig. 10. The figure depicts the observed and predicted runtimes for Query 3,
sorted on the predicted runtime, for all 81 fault tolerance plans for the query.

TABLE IV
REAL RANKINGS OF TOP 5 PLANS FROM PERTURBED CONFIGURATIONS.

Perturbation Rankings
Failing thrice instead of once 1 2 3 4 5

IO cost increased to 2.0x of true value 1 6 8 9 18
IO cost decreased to 0.5x of true value 2 1 3 4 5
IO cost increased to 10x of true value 6 18 20 21 24
IO cost decreased to 0.1x of true value 2 28 31 30 29

Selectivity of all operators increased to 1.1x 1 2 3 4 5
Selectivity of all operators decreased to 0.9x 1 2 3 4 5
Selectivity of all operators increased to 2.0x 1 2 3 4 5
Selectivity of all operators decreased to 0.5x 56 1 66 67 10

costly of a set of independent optimization problems and all
of these problems can be optimized in parallel.

F. Optimizer Sensitivity

We now evaluate FTOpt’s sensitivity to inaccuracies in its
parameters’ estimates. We experiment with Query 3 since it is
most sensitive to wrong choices: Figure 10 shows that runtimes
vary from about 250s to 400s depending on the chosen plan.

To evaluate the sensitivity for a given parameter, we re-run
FTOpt, feeding it a perturbed parameter value. We only perturb
a single parameter at a time while keeping the other parameters
at their true values. We then compute the top 5 plans with the
perturbed value and report the ranks of these plans in FTOpt’s
original ranking (Figure 10). Table IV shows the results. As
an example, in this table, when IO cost increases to 2X its true
value, the second best plan identified by FTOpt was ranked
6th with the real IO costs.

Table IV shows that FTOpt is very robust to small errors in
the number of failures and it is fairly robust to even large errors
in IO cost: a 10x change still leads to a good plan (with true
rank 6) being chosen, though the subsequent plans have poor
true rankings. FTOpt is least robust to cardinality estimation
errors. In our experiments, we varied the selectivities of all the
operators in tandem (and with the join always processing the
same number of tuples from both streams). In this scenario,
our predictions were unchanged for changes of 1.1x, 2x and
0.9x in selectivity but for a 0.5x change, the top choice’s true
rank was 56 with an observed runtime about 70% worse than
that of the best configuration possible.

The robustness to IO cost errors and failure errors can
be explained by the fact that the effect of these errors is
mostly linear on the optimizer. However, imprecise selectivity



estimates have an exponential effect (the further an operator is
from the beginning, the less data it processes and it produces
even less output) on FTOpt. Thus, the optimizer ends up being
more sensitive to perturbations in the selectivity estimates.

VII. CONCLUSION

In this paper, we presented a framework for heterogeneous
fault-tolerance, a concrete instance of that framework, and
FTOpt, a latency and fault-tolerance optimizer for parallel
data processing systems. Given a query plan, a shared-nothing
cluster, and a failure model, FTOpt selects the fault-tolerance
strategy for each operator in a query plan to minimize the
time to complete the query with failures. We implemented
our approach in a prototype parallel query processing engine.
Our experimental results show that different fault-tolerance
strategies, often hybrid ones, lead to the best performance in
different settings and that our optimizer is able to correctly
identify a winning strategy.

ACKNOWLEDGMENTS

We thank Phil Bernstein, Dan Suciu, Bill Howe, and Julie
Letchner for helpful comments on early drafts of this paper.

REFERENCES

[1] “Greenplum database,” http://www.greenplum.com/.
[2] “Teradata,” http://www.teradata.com/.
[3] “Vertica, inc.” http://www.vertica.com/.
[4] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on

large clusters,” in Proc. of the 6th OSDI Symp., 2004.
[5] “Hadoop,” http://hadoop.apache.org/.
[6] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:

Distributed data-parallel programs from sequential building blocks,” in
Proc. of the EuroSys Conf., 2007, pp. 59–72.

[7] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins, “Pig latin:
a not-so-foreign language for data processing,” in Proc. of the SIGMOD
Conf., 2008, pp. 1099–1110.

[8] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. K. Gunda,
and J. Currey, “DryadLINQ: A system for general-purpose distributed
data-parallel computing using a high-level language,” in Proc. of the 8th
OSDI Symp., 2008.

[9] J. Dean, “Experiences with MapReduce, an abstraction for large-scale
computation,” Keynote I: PACT, 2006.

[10] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy, and
R. Sears, “MapReduce online,” in Proc. of the 7th NSDI Symp., 2010.

[11] J.-H. Hwang, M. Balazinska, A. Rasin, U. Çetintemel, M. Stonebraker,
and S. Zdonik, “High-availability algorithms for distributed stream
processing,” in Proc. of the 21st ICDE Conf., Apr. 2005.

[12] W. J. Labio, J. L. Wiener, H. Garcia-Molina, and V. Gorelik, “Efficient
resumption of interrupted warehouse loads,” SIGMOD Record, vol. 29,
no. 2, pp. 46–57, 2000.

[13] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson, “A
survey of rollback-recovery protocols in message-passing systems,”
ACM Computing Surveys, vol. 34, no. 3, pp. 375–408, 2002.

[14] S. P. Boyd, S. J. Kim, L. Vandenberghe, and A. Hassibi, “A tutorial on
geometric programming,” Stanford University, Info. Systems Laboratory,
Dept. Elect. Eng., Tech. Rep., 2004.

[15] S. Y. Ko, I. Hoque, B. Cho, and I. Gupta, “Making cloud intermediate
data fault-tolerant,” in Proc. of the 1st ACM symposium on Cloud
computing (SOCC), 2010, pp. 181–192.

[16] D. Logothetis, C. Olston, B. Reed, K. C. Webb, and K. Yocum, “Stateful
bulk processing for incremental analytics,” in Proc. of the 1st ACM
symposium on Cloud computing (SOCC), 2010, pp. 51–62.

[17] J.-H. Hwang, Y. Xing, U. Çetintemel, and S. Zdonik, “A cooperative,
self-configuring high-availability solution for stream processing,” in
Proc. of ICDE Conf., Apr. 2007.

[18] J. Dean, “Software engineering advice from building large-
scale distributed systems,” http://research.google.com/people/jeff/
stanford-295-talk.pdf.

[19] Chen et. al., “High availability and scalability guide for DB2 on
linux, unix, and windows,” IBM Redbooks http://www.redbooks.ibm.
com/redbooks/pdfs/sg247363.pdf, Sept. 2007.

[20] A. Ray, “Oracle data guard: Ensuring disaster recovery for the enter-
prise,” An Oracle white paper, Mar. 2002.

[21] R. Talmage, “Database mirroring in SQL Server 2005,” http://www.
microsoft.com/technet/prodtechnol/sql/2005/dbmirror.mspx, Apr. 2005.

[22] A. Pavlo et. al., “A comparison of approaches to large-scale data
analysis,” in Proc. of the SIGMOD Conf., 2009.

[23] A.-P. Liedes and A. Wolski, “Siren: A memory-conserving, snapshot-
consistent checkpoint algorithm for in-memory databases,” in Proc. of
the 22nd ICDE Conf., 2006, p. 99.

[24] K. Salem and H. Garcia-Molina, “Checkpointing memory-resident
databases,” in Proc. of the 5th ICDE Conf., 1989, pp. 452–462.

[25] M. V. Salles, T. Cao, B. Sowell, A. Demers, J. Gehrke, C. Koch,
and W. White, “An evaluation of checkpoint recovery for massively
multiplayer online games,” in Proc. of the 35th VLDB Conf., 2009.

[26] C. Yang, C. Yen, C. Tan, and S. R. Madden, “Osprey: Implement-
ing MapReduce-style fault tolerance in a shared-nothing distributed
database,” in Proc. of the 26th ICDE Conf., 2010.

[27] M. Shah, J. Hellerstein, and E. Brewer, “Highly-available, fault-tolerant,
parallel dataflows,” in Proc. of the SIGMOD Conf., June 2004.

[28] M. Balazinska, H. Balakrishnan, S. Madden, and M. Stonebraker, “Fault-
tolerance in the Borealis distributed stream processing system,” in Proc.
of the SIGMOD Conf., June 2005.

[29] F. B. Schneider, “Implementing fault-tolerant services using the state
machine approach: a tutorial,” ACM Computing Surveys, vol. 22, no. 4,
pp. 299–319, 1990.

[30] A. Simitsis, K. Wilkinson, U. Dayal, and M. Castellanos, “Optimizing
etl workflows for fault-tolerance,” in Proc. of the 26th ICDE Conf., 2010.

[31] B. Chandramouli, C. N. Bond, S. Babu, and J. Yang, “Query suspend
and resume,” in Proc. of the SIGMOD Conf., 2007, pp. 557–568.

[32] S. Chaudhuri, R. Kaushik, A. Pol, and R. Ramamurthy, “Stop-and-restart
style execution for long running decision support queries,” in Proc. of
the 33rd VLDB Conf., 2007, pp. 735–745.

[33] D. Lomet, “Dependability, abstraction, and programming,” in DASFAA
’09: Proc. of the 14th Int. Conf. on Database Systems for Advanced
Applications, 2009, pp. 1–21.

[34] P. Upadhyaya, Y. Kwon, and M. Balazinska, “A latency and fault-
tolerance optimizer for parallel data processing systems,” Univ. of
Washington, Tech. Rep., 2010.

[35] Y. Kwon, M. Balazinska, and A. Greenberg, “Fault-tolerant stream
processing using a distributed, replicated file system,” in Proc. of the
34th VLDB Conf., 2008.

[36] S. Ganguly, W. Hasan, and R. Krishnamurthy, “Query optimization for
parallel execution,” in Proc. of the SIGMOD Conf., 1992, pp. 9–18.

[37] S. Ganguly, A. Goel, and A. Silberschatz, “Efficient and accurate cost
models for parallel query optimization (extended abstract),” in Proc. of
the 15rd PODS Symp., 1996, pp. 172–181.

[38] W. Hasan and R. Motwani, “Optimization algorithms for exploiting the
parallelism-communication tradeoff in pipelined parallelism,” in Proc.
of the 20th VLDB Conf., 1994, pp. 36–47.

[39] M. Zaı̈t, D. Florescu, and P. Valduriez, “Benchmarking the DBS3 parallel
query optimizer,” IEEE Parallel Distrib. Technol., vol. 4, no. 2, pp. 26–
40, 1996.

[40] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang,
S. Anthony, H. Liu, and R. Murthy, “Hive - a petabyte scale data
warehouse using hadoop,” in Proc. of the 26th ICDE Conf., 2010.

[41] “Oracle 10g,” http://www.oracle.com/technology/products/database/
oracle10g/index.html.

[42] “Cvx,” http://www.stanford.edu/∼boyd/cvx/.
[43] R. H. Tütüncü, K. C. Toh, and M. J. Todd, “Solving semidefinite-

quadratic-linear programs using SDPT3,” Mathematical programming,
vol. 95, no. 2, pp. 189–217, 2003.

[44] J. Mattingley and S. Boyd, “Automatic code generation for real-time
convex optimization,” in Convex Optimization in Signal Processing
Optimization. Cambridge University Press, 2009.

[45] U. Srivastava and J. Widom, “Flexible time management in data stream
systems,” in Proc. of the 23rd PODS Symp., June 2004.



II. APPENDIX

In this Appendix, we provide additional information about
various aspects of our framework and the FTOpt optimizer.

A. Ensuring Operator Determinism

Our framework requires that operators and their partitions be
deterministic. In particular, rule 4.2 requires that, in response
to a valid request, an operator (or operator partition) always
returns the same sequence of tuples, irrespective of any failures
of that operator.

Most relational operators can easily be made deterministic
as long as, when they restart, they process the same tuples
in the same order across all their inputs. The challenge is
that these inputs come from different machines in the cluster
and may thus arrive with different latencies when they are
replayed. One approach to ensuring a deterministic input-data
order is to buffer and interleave tuples using a pre-defined
rule [28], [45]. These techniques, however, can impose a
significant memory overhead due to tuple buffering.

Instead, we adopt the approach of logging determi-
nants [13]. As the operator receives input tuples, it accumulates
them into small batches, with one batch per input relation
partition. For example, an operator with two inputs could
receive a total of 3500 tuples, starting with tuple id p1

1, from
parent 1 in one batch and a total of 4000 tuples, starting from
p2

1, from parent 2 in another, larger batch. The actual arrival
of tuples might be interleaved. We buffer the two batches
separately in memory while maintaining the tuple arrival order
within a batch. Whenever a particular batch exceeds a pre-
defined size or receives an end-of-stream signal, the operator
writes a log entry to disk that contains: the identifier of the
stream for this batch, the identifier of the first tuple in the
batch, and the number of tuples in the batch. Each log entry
also has an implicit log sequence number (lsn) that is not
written to disk. The logging is done before processing a batch.
The operator processes the batches in the same order in which
it writes their log entries to disk. In our example, if we use a
batch size of 2500, the logged entries might look as follows:
〈2, p2

1, 2500〉, 〈1, p1
1, 2500〉, 〈1, p1

2501, 1000〉, 〈2, p2
2501, 1500〉.

Log entries are force-written to stable storage but, as we
show below, this logging overhead is negligible even for small
512-tuple batches. If the operator needs to reprocess its input,
it uses the log to ensure the reprocessing occurs in the same
order as before. To avoid expensive disk IOs when possible
(i.e., when the operator itself does not fail but its downstream
neighbor fails), recent determinants are cached in memory.

Before processing an input tuple, the operator tags it with
〈lsn, psn〉, where lsn corresponds to the log entry sequence
number of the corresponding batch and psn is the tuple order
within that batch. This information is used to assign unique
tuple identifiers to output tuples. Note that all log entries are
of a constant size and an lsn is enough to index a log entry.

Output tuple identifiers consist of three integer fields:
〈lsn, psn, seq〉. The first two fields identify one of the input
tuples that contributed to this output tuple. A sequence number,

0

10

20

30

40

50

60

1 3 6 12

R
u

n
ti

m
e 

(s
)

Number of Producers

With input log Without input log

Fig. 11. Each pair of bars represents the time to complete processing, with
and without logs, with a different number of upstream producers for a select
operator. There is virtually no overhead even for 12 input streams.

0

5

10

15

20

25

512 1024 2048 4096 8192

R
u

n
ti

m
e
 (

s)

Batch Size

With input log Without input log

Fig. 12. Each pair of bars represents the time to complete processing, with
and without logs, with different batch sizes for a join operator. The minimum
overhead occurs with a batch size of 2048.

seq, is added since one input tuple can contribute to many
output tuples (as in the case of joins).

As an example, we show how we use this mechanism
to generate unique identifiers for tuples produced by the
following operators:
• Select: Our select always has a selectivity less than or

equal to one and can thus propagate the input tuple
identifier onto the output tuple, setting seq to zero.

• Join: The latest tuple that led to the creation of this tuple
is used to populate the first two fields. The third field is
a count of the number of matches for any given tuple.

• Aggregate: Since aggregates are blocking operators, they
do not need a log. In case we use CHCKPT, we can
store the last tuple identifiers received from each of the
upstream partitions when we make the checkpoint.

To validate that logging overhead is negligible, we execute
a select operator on a single machine with an input of size
2.5 × 106 tuples (or 1.19 GB) and we vary the number of
upstream producers while keeping the batch size fixed at
512 tuples. Figure 11 shows the time to process all tuples
with and without logging enabled. The results show that the
logging mechanism scales well with the number of upstream
producers. The average runtimes of three runs rounded to the
nearest second are identical.

To select the optimal log batch size we execute a join
operator that processes 1 million tuples from each of its two
inputs. It is a 1x1 foreign key join and produces 1 million
output tuples. We have a total of four producers generating all
the data and we vary the log batch size from 512 to 8192. As
Figure 12 shows, the smallest runtime overhead was 3% for
a batch size of 2048 tuples. As expected the runtime with no



logs for smaller batch sizes remains the same as that for 2048
while the runtime with logging increases since we write more
log entries if batch sizes are smaller and more cpu time is
spent in writing the log entries to disk. It should be noted that
the runtime with and without logs increases for batch sizes
of 4096 and 8192. This is because of an increased buffering
delay for each input batch. In all our experiments, we use a
batch size of 2048 and a tuple size of 0.5 KB.

B. Resource Allocation in FTOpt

In addition to fault-tolerance strategies, FTOpt also pro-
duces an allocation of resources to operators because resource
allocation and choice of fault-tolerance strategy are tightly
interconnected. Resource allocation is expressed as a fraction
of all available CPU and network bandwidth resources. Band-
width is further constrained by network topology.

In this paper, we make several simplifying assumptions to
implement and test our proof-of-concept optimizer. We assume
a simple setting where the set of compute nodes are connected
through a single switch. The current version of our optimizer
also assumes that the time to process each tuple and the disk
IO costs scale linearly with the amount of resources allocated
to an operator. Thus, if operator i takes tcpu time to process
a tuple, then with ni machines it takes tcpu

ni
time. Similarly

the time taken to write a tuple to disk is taken to be tio

ni
. Our

optimizer handles fractional resource assignments.
Given a resource allocation, operators can either be co-

scheduled on the same physical nodes (i.e., all nodes execute
all operators) or separated onto different nodes (i.e., each node
executes a subset of all operators). In the latter case, resource
allocation must be rounded-off to the granularity of machines,
which can lead to lower performance. In the former case,
operators may end-up writing their logs and checkpoints to
the same disks for a more complex performance curve for
these interleaved IO operations. While our optimizer handles
both strategies and computes fractional resource assignments,
in our experiments, we pinned each operator partition to its
own core and its own disk on each node to keep our models
simple.

III. OPERATOR MODELING STRATEGY

In this section, we present an approach for modeling any
operator. We now illustrate the approach by generating a model
for join. Subsequently we present the detailed models for our
remaining two operators: select and aggregate.

The total time taken for a single operator to complete
processing all its input tuples, when it receives input tuples
at fixed and regular time intervals is determined by one of the
following cases.
• Case 1: If the input tuples arrive slower than the rate at

which the operator can process each one of them, then
only the arrival rate determines the total completion time.

• Case 2: If the time taken to process each tuple is more
than the time it takes a new input tuple to arrive then the
time taken per tuple determines the total time to complete.
The time taken to process each tuple may vary with time.

• Case 3: As seen in Figure 2 an operator may start in case
1 and then shift to case 2.

We now show how our optimizer uses a set of inequalities
that characterize the average time interval between successive
output tuples produced by an operator to compute the total
time to completion for all three cases. For this, we require that
the NBout(nin) function take the form: NBout(nin) = γnkin,
in order to fit into the GP framework. Informally, as the
operator sees more input tuples, the number of the output
tuples produced after processing a new input tuple should
never decrease.

These inequalities take xIN as input, which is the time inter-
val at which input tuples are assumed to arrive. xIN depends
on the current execution context. If we are operating normally,
it is the average time interval between tuples produced by
the upstream operators; if we are recovering from a failure,
we might read the input tuples from disk at the maximum
bandwidth possible for the disk.

Given the above, the average time interval between consec-
utive output tuples, xN , is given by the following inequalities:

me = γ(xIN )−kktk−1
f

me ≤ (tcpua )−1

me ≤ γ
1
k (xIN )−1k|I|1− 1

k

(1− k−1)tf + |I|m−1
e ≤ xN |I|

In the above equations, |I| is the output cardinality; γ and
k come from the NBout(nin) function; me is the number of
output tuples produced per second at the instant the processing
ends and tf is the first time at which the output produces tuples
at the rate me.

The first equation realizes this relationship between me and
tf . Specically, the rate at which output tuples are produced by
the operator after time tf is

me =
d

dt
NBout(nin)

∣∣∣
t=tf

=
d

dt
γnkin

∣∣∣
t=tf

=
d

dt
γ

(
t

xIN

)k ∣∣∣
t=tf

= γ(xIN )−kktk−1
f

The following inequality states that the operator can not take
less than tcpua time to produce an output tuple, since this is
the least amount of time the processor needs per tuple, given
the resources it has. The inequality becomes an equality when
the operator operates in either of case 2 or case 3.

For the second inequality, its right hand side is the maximum
rate at which output could be produced if the only bottleneck
was the rate of arrival of input tuples (case 1). Note that, since
we require the NBout(·) function to have a non-negative rate
of change, the fastest output production rate will be at the end
of the computation and the derivative of the function NBout(·)
at the end gives us this value. Since, in a real computation the
processing cost is positive, the actual observed rate has to



be less than the derivative (the right hand side in the second
inequality).

The third inequality states that the total time to process all
tuples (which is equal to the average output rate times the
number of output produced) must be higher than the actual
processing time, which is its left hand side. Specifically,

xIN × (NBout)
−1(S) +m−1

e × (|I| − S) ≤ xN |I|

where

S = γ

(
tf
xIN

)k
Simplifying this we get,

tf +m−1
e (|I| − γ

(
tf
xIN

)k
) ≤ xN |I|

tf +m−1
e |I| −m−1

e γ

(
tf
xIN

)k
≤ xN |I|

tf +m−1
e |I| −

tf
k
≤ xN |I|

(1− k−1)tf +m−1
e |I| ≤ xN |I|

The analysis above yields a form suitable for geometric
programs as long as tcpua is a posynomial and NBout(nin) =
γnkin for a constant k ≥ 1 and γ being a monomial.

A. First Tuple Delay

The delay to produce the first tuple is represented by
DN , DRD, DRS in Table I. These quantities are only present
as an additive term in the objective function and thus, to
conform with the requirements of geometric programs, they
are required to be posynomials.

For our implementations of the select and the symmetric
hash join operators the additional delay introduced in gener-
ating the first output tuple (over the delay in obtaining the
first input tuple from the upstream operators) either when
processing normally or during recovery is negligible and so we
do not discuss these cases. For the case of blocking aggregates,
the additional delay introduced by the aggregate could be
significantly large as discussed in Section III-C.1.

B. Select

We experimented with a select operator that had no output
queues and could skip over input tuples during a recovery.

1) Modeling Overhead of Fault Tolerance: A select opera-
tor with selectivity σ processes, on average, σ−1 input tuples
to generate a single output tuple where each input tuple takes
tcpu time to process. For the strategy CHCKPT, since there is
no output queue or state for select, each checkpoint is assumed
to cost a fixed time (some multiple of tio we refer to be tckpt).

Thus,

tcpua = σ−1tcpu + IM tio + ICtckpt(cσ)−1

Using the fact that, NBout(x) = σx we get,

γ = σ

k = 1

2) Modeling Recovery Time for Downstream Neighbor:
For NONE and CHCKPT we process on an average σ−1 input
tuples to generate each output tuple and each input tuple takes
tcpu time to process. For MATERIALIZE we read tuples from
disk. Thus,

tcpua = (IN + IC)tcpuσ−1 + IM tio

Using the fact that we need to process inputs again for
NONE and read tuples from disk for MATERIALIZE.

γ = (IN + IC)σ + IC1

k = 1

3) Modeling Recovery Time: The minimum amount of
work done per output tuple. tcpua = σ−1tcpu In the existing
model we recreate everything from the upstream tuples.

γ = σ

k = 1

We will need to generate at most 1 tuple for NONE and
MATERIALIZE and cσ tuples for CHCKPT.

C. Aggregate
For the aggregate operators used in our experiments the final

output fits in memory and that is the case that we model in
this section.

The aggregate operator works in two distinct phases. In the
first phase, no output is produced as the aggregated output
tuples are incrementally computed, while in the second phase,
the computed aggregates from the first phase are sent down-
stream. The second phase can be viewed as a select operator
with selectivity one and that receives all of its input at an
infinite rate and can process each input at a rate determined by
the time it takes to access a tuple in memory. The time spent in
the first phase is included as the delay terms DN , DRD, DRS .

We assume that aggregates occur only at the end of a stage.
The average checkpoint size is |I|σ − 0.5|I|σ2.

1) First Tuple Delay: To compute the delay in producing
the first tuple, it should be noted that an aggregate first
processes all of its input tuples before producing the first
tuple. Further, in case of CHCKPT, the operator also takes
checkpoints of the aggregated state before the first tuple is
produced and thus the production of the first tuple is further
delayed. As for the case of select we assume that each
checkpoint incurs extra cost of tckpt.

DN = |I|max(xi, tcpu) +

ICc−1|I|(|I|σ − 0.5|I|σ2)tio +

ICtckpt|I|c−1

2) Modeling Overhead of Fault Tolerance: The output
tuples are produced only after processing all the input tuples.
Each output tuple takes tcpu time to be processed.

tcpua = tcpu

γ = 1

k = 1



3) Modeling Recovery Time for Downstream Neighbors:
This sections is irrelevant. The operator is always found at the
end of a stage.

4) Modeling Recovery Time: For both NONE and
CHCKPT, we need to reprocess some input tuples. We think
of the state as the number of input tuples processed. Work
done in processing one tuple is,

tcpua = tcpu

The input tuples arrive at intervals of xri time units. Thus,

γ = 1

k = 1

For CHCKPT, the number of tuples to reprocess, in expec-
tation, is ((|I|σ − 0.5|I|σ2) + 1

2c. The first term is expected
size of the state to read into memory while the second is the
expected number of tuples reprocessed. For the strategy NONE
the expected number of input tuples reprocessed is 1

2 |I|.


