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Abstract
Approximate computing trades off accuracy for better perfor-
mance and energy efficiency. It offers promising optimization
opportunities for a wide variety of modern applications, from
mobile vision to data analytics. Recent approaches to ap-
proximate computing have relied on either manual program
modification, based exclusively on programmer reasoning,
or opaque automatic transformations, which sacrifice pro-
grammer control. We describe ACCEPT, a comprehensive
framework for approximation that balances automation with
programmer guidance. It includes C/C++ type qualifiers for
constraining approximation, a compiler analysis library that
identifies regions of approximable code, an autotuning system
that automatically chooses the best approximation strategies,
and a feedback mechanism that explains how annotations can
be improved for better approximation opportunities. ACCEPT
automatically applies a variety of approximation techniques,
including hardware acceleration, while ensuring their safety.
We apply ACCEPT to nine workloads on a standard desktop,
an FPGA-augmented mobile SoC, and an energy-harvesting
sensor device to evaluate the annotation process. We observe
average speedups of 2.3×, 4.8×, and 1.5× on the three plat-
forms, respectively.

1. Introduction
Recent work on approximate computing has exploited the fact
that many applications, particularly those whose outputs are
meant for human interpretation, can enable more efficient
execution at the cost of slightly inaccurate outputs. 3-D
rendering, search, and machine learning are examples of the
many tasks that tolerate inaccuracy.

Research over the past few years has proposed a vari-
ety of software and hardware approaches to approximate
computing, including: producing multiple versions of a pro-
gram with varying accuracy and choosing between them at
run time [Baek and Chilimbi 2010; Hoffmann et al. 2011];
periodically skipping loop iterations [Sidiroglou-Douskos
et al. 2011; Misailovic et al. 2010b]; removing synchroniza-
tion to reduce contention [Misailovic et al. 2012, 2010a;
Renganarayanan et al. 2012]; adjusting floating-point preci-

sion [Rubio-González et al. 2013]; using special low-power
hardware structures that produce wrong results probabilisti-
cally [Esmaeilzadeh et al. 2012b; Liu et al. 2011]; and train-
ing hardware neural networks to mimic the behavior of costly
functions [Esmaeilzadeh et al. 2012a; St. Amant et al. 2014].

These proposals share an important distinction from tra-
ditional program optimizations: they have subtle and broad-
ranging effects on safety, reliability, and output quality. Some
work relies on programmers for manual reasoning to con-
trol these effects [Esmaeilzadeh et al. 2012a; Liu et al. 2011;
Renganarayanan et al. 2012; Sidiroglou-Douskos et al. 2011],
while other work proposes automated transformation based
on code patterns or exhaustive search [Baek and Chilimbi
2010; Samadi et al. 2014, 2013]. Manual code editing can
be tedious and error-prone, especially since important safety
invariants are at stake. Conversely, full automation eliminates
a crucial element of visibility and control. Programmers must
trust the automated system; they have no recourse when op-
portunities are missed or invariants are broken.

We propose ACCEPT (an Approximate C Compiler for
Energy and Performance Trade-offs), a framework for ap-
proximation that balances automation with programmer guid-
ance. ACCEPT is controlled because it preserves programmer
intention expressed via code annotations. A static analysis
rules out unintended side effects. The programmer partici-
pates in a feedback loop with the analysis to enable more
approximation opportunities. ACCEPT is practical because it
facilitates a range of approximation techniques that work on
currently available hardware. Just as a traditional compiler
framework provides common tools to support optimizations,
ACCEPT’s building blocks help implement automatic approx-
imate transformations based on programmer guidance and
dynamic feedback.

ACCEPT’s architecture combines static and dynamic com-
ponents. The frontend, built atop LLVM [Lattner and Adve
2004], extends the syntax of C and C++ to incorporate an
APPROX keyword that programmers use to annotate types
as in other work [Sampson et al. 2011]. ACCEPT’s central
analysis, precise-purity, identifies coarse-grained regions of
code that can affect only approximable values. Coarse region
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Figure 1: Overview of the ACCEPT compiler workflow.

selection is crucial for safe approximation strategies: client
optimizations use the results to transform code and offload to
accelerators while preserving static safety properties. After
compilation, an autotuning component measures program
executions and uses heuristics to identify program variants
that maximize performance and output quality. To incorpo-
rate application insight, ACCEPT furnishes programmers with
feedback to guide them toward better annotations.

Contributions. ACCEPT is an end-to-end framework that
makes past proposals for approximate program transforma-
tions practical and disciplined. Its contributions are:

• A programming model for program relaxation that com-
bines lightweight annotations with compiler analysis feed-
back to guide programmers toward effective relaxations;

• An autotuning system that efficiently searches for a pro-
gram’s best approximation parameters;

• A core analysis library that identifies code that can be
safely relaxed or offloaded to an approximate accelerator;

• A prototype implementation demonstrating both pure-
software optimizations and hardware acceleration using
an off-the-shelf FPGA part.

We evaluate ACCEPT across three platforms: a standard Intel-
based server; a mobile SoC with an on-chip FPGA, which we
use as an approximate accelerator; and an ultra-low-power,
energy-harvesting embedded microcontroller where perfor-
mance is critical to applications’ viability. The experiments
demonstrate average speedups of 2.3×, 4.8×, and 1.5× on
the three platforms, respectively, with quality loss under 10%.

We also report qualitatively on the programming experi-
ence. Novice C++ programmers were able to apply ACCEPT
to legacy software to obtain new speedups. We plan to open-
source the ACCEPT toolchain after publication both as a re-
search tool for implementing new approximation techniques
and as an end-to-end system for practitioners to experiment
with approximate computing.

2. Overview
To safely and efficiently harness the potential of approximate
programs, ACCEPT combines three main techniques: (1) a
programmer–compiler feedback loop consisting of source
code annotations and an analysis log; (2) a compiler analysis
library that enables a range of automatic program relaxations;

and (3) an autotuning system that uses dynamic measure-
ments of candidate program relaxations to find the best bal-
ances between efficiency and quality. The final output is a set
of Pareto-optimal versions of the input program that reflect
its efficiency–quality trade-off space.

Figure 1 illustrates how these components make up AC-
CEPT’s workflow. Two feedback loops control the impact of
potentially destructive program relaxations: a static feedback
loop providing conservative guarantees and a complementary
dynamic feedback loop that measures real program behavior
to choose the best optimizations. A key hypothesis of this
paper is that neither static nor dynamic constraints are suffi-
cient, since dynamic measurements cannot offer guarantees
and static constraints do not capture the full complexity of
relationships among relaxations, performance, and output
quality. Together, however, the two feedback loops make
ACCEPT’s optimizations both controlled and practical.

Safety constraints and feedback. Because program relax-
ations can have outsize effects on program behavior, pro-
grammers need visibility into—and control over—the trans-
formations the compiler applies. To give the programmer fine-
grained control over relaxations, ACCEPT extends an existing
lightweight annotation system for approximate computing
based on type qualifiers [Sampson et al. 2011]. ACCEPT gives
programmers visibility into the relaxation process via feed-
back that identifies which transformations can be applied and
which annotations are constraining it. Through annotation
and feedback, the programmer iterates toward an annotation
set that unlocks new performance benefits while relying on
an assurance that critical computations are unaffected.

Automatic program transformations. Based on program-
mer annotations, ACCEPT’s compiler passes apply transfor-
mations that involve only approximate data. To this end, AC-
CEPT provides a common analysis library that identifies code
regions that can be safely transformed. We bring ACCEPT’s
safety analysis, programmer feedback, and automatic site
identification to existing work on approximate program trans-
formations [Sidiroglou-Douskos et al. 2011; Renganarayanan
et al. 2012; Rinard 2013; Misailovic et al. 2010a, 2012; Es-
maeilzadeh et al. 2012a; St. Amant et al. 2014].

Autotuning. While a set of annotations may permit many
different safe program relaxations, not all of them are ben-
eficial. A practical system must help programmers choose
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from among many candidate relaxations for a given program
to strike an optimal balance between performance and qual-
ity. ACCEPT’s autotuner heuristically explores the space of
possible relaxed programs to identify Pareto-optimal variants.

3. Annotation and Programmer Feedback
This section describes ACCEPT’s annotations and feedback,
which helps programmers balance safety with approximation.
Rather than proving theoretical accuracy guarantees for re-
stricted programming models as in other work [Misailovic
et al. 2011; Zhu et al. 2012; Sampson et al. 2014], ACCEPT’s
workflow extends mainstream development practices: it com-
bines lightweight safety guarantees, programmer insight, and
testing to apply approximation to general code.

3.1 Annotation Language
The programmer uses annotations to communicate to the
compiler which parts of a program are safe targets for
program relaxation. ACCEPT adapts the type system of EnerJ,
a language for approximate computing that was originally
developed for bounding the effects of unreliable hardware
components [Sampson et al. 2011]. As in EnerJ, all types in
ACCEPT are qualified as either approximate or precise, with
precise being the default.

Information flow and endorsement. ACCEPT’s type sys-
tem uses a standard information-flow approach to prevent
approximate data from affecting precise data. Precise types
are strict subtypes of their approximate counterparts, so vari-
ables annotated as approximate cannot be assigned to precise
ones without explicit programmer intervention. (The opposite
direction, wherein precise data affects approximate data, is
permitted.) ACCEPT’s type system is directly derived from
EnerJ’s [Sampson et al. 2011], for which its authors prove
a noninterference property ensuring that precise data stays
precise. The same noninterference guarantee applies to AC-
CEPT’s type-qualifier extension for type-safe subsets of C and
C++. Undefined behavior in C and C++ remains undefined in
ACCEPT: programs that violate type safety can also violate
ACCEPT’s guarantees.

Strict information flow can be too constraining. For exam-
ple, a program may need to compute an approximate value,
where relaxations can apply, but then check the resulting
output for integrity while treating it as precise:

APPROX int a = expensiveCall();

cheapChecksumPrecise(a); // illegal

To permit this pattern, ACCEPT provides an endorsement
expression that acts as a cast from an approximate type to its
precise equivalent. The above program fails to typecheck, but
using ENDORSE(a) as the argument is legal:

APPROX int a = expensiveCall();

cheapChecksumPrecise(ENDORSE(a));

Endorsements give programmers explicit control over infor-
mation flow when dealing with approximate values.

Pointer types. For basic, non-reference types, ACCEPT’s di-
alect of C allows unidirectional information flow: precise val-
ues can be assigned into approximate variables but not vice-
versa. For pointers and references, however, even precise-to-
approximate flow is unsound since it creates aliases for the
same data that disagree on its type. Pointer types are therefore
invariant in the referent type. The language does not permit
approximate pointers—i.e., addresses must be precise.

Implicit flow. Control flow provides an avenue for approxi-
mate data to affect precise data without a direct assignment.
For example, if (a) p = 5; allows the variable a to affect
the value of p. Like EnerJ, ACCEPT prohibits approximate
values from being used in conditions—specifically, in if,
for, do, while, and switch statements and in the ternary
conditional-expression operator. Programmers can use en-
dorsements to explicitly circumvent this restriction.

Escape hatches. ACCEPT decides whether program relax-
ations are safe based on the effects of the statements involved.
Section 4 goes into more detail, but at a high level, code can
be relaxed if its externally visible effects are approximate.
For example, if a is a pointer to an APPROX int, then the
statement *a = 5; has an approximate effect on the heap.
Escape hatches from this sound reasoning are critical in a
practical system that must handle legacy code. To enable
or disable specific optimizations, the programmer can over-
ride the compiler’s decision about a statement’s effects using
two annotations. The ACCEPT_PERMIT annotation forces a
statement to be considered approximate and ACCEPT_FORBID

forces it to be precise, forbidding any relaxations involving
it.

These two annotations represent escape hatches from AC-
CEPT’s normal reasoning and thus violate the safety guar-
antees it normally provides. Qualitatively, when annotating
programs, we use these annotations much less frequently
than the primary annotations APPROX and ENDORSE . We find
ACCEPT_PERMIT to be useful when experimentally explor-
ing program behavior before annotating and in system pro-
gramming involving memory-mapped registers. Conversely,
ACCEPT_FORBID is useful for marking parts of the program
involved in introspection. Section 7.4 gives more detail on
these experiences.

3.2 Programmer Feedback
ACCEPT takes inspiration from parallelizing compilers that
use a development feedback loop to help guide the pro-
grammer toward parallelization opportunities [Ringenburg
and Choi 2009; Hiranandani et al. 1994]. It provides feed-
back through an analysis log that describes the relaxations
that it attempted to apply. For example, for ACCEPT’s
synchronization-elision relaxation, the log lists every lex-
ically scoped lock acquire/release pair in the program. For
each relaxation opportunity, it reports whether the relaxation
is safe—whether it involves only approximate data—and,
if it is not, identifies the statements that prevent the relax-
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ation from applying. We call these statements with externally
visible precise effects blockers.

ACCEPT reports blockers for each failed relaxation-
opportunity site. For example, during the annotation of one
program in our evaluation, ACCEPT examined this loop:
650 double myhiz = 0;

651 for (long kk=k1; kk<k2; kk++) {

652 myhiz += dist(points->p[kk], points->p[0],

653 ptDimension) * points->p[kk].weight;

654 }

The store to the precise (by default) variable myhiz prevents
the loop from being approximable. The analysis log reports:

loop at streamcluster.cpp:651

blockers: 1

* streamcluster.cpp:652: store to myhiz

Examining that loop in context, we found that myhiz was a
weight accumulator that had little impact on the algorithm, so
we changed its type from double to APPROX double . On its
next execution, ACCEPT logged the following message about
the same loop, highlighting a new relaxation opportunity:

loop at streamcluster.cpp:651

can perforate loop

The feedback loop between the programmer’s annotations
and the compiler’s analysis log strikes a balance with respect
to programmer involvement: it helps identify new relaxation
opportunities while leaving the programmer in control. Con-
sider the alternatives on either end of the programmer-effort
spectrum: On one extreme, suppose that a programmer wishes
to speed up a loop by manually skipping iterations. The pro-
grammer can easily misunderstand the loop’s side effects if
it indirectly makes system calls or touches shared data. On
the other extreme, unconstrained automatic transformations
are even more error prone: a tool that removes locks can eas-
ily create subtle concurrency bugs. Combining programmer
feedback with compiler assistance balances the advantages
of these approaches.

4. Analysis and Relaxations
ACCEPT takes an annotated program and applies a set of pro-
gram transformations to code that affects only data marked
approximate. We call these transformations relaxations be-
cause they trade correctness for performance. To determine
relaxation opportunities from type annotations, ACCEPT uses
a an analysis called precise-purity. This section describes
ACCEPT’s implementations of several program relaxations
drawn from the literature and how precise-purity analysis
makes them safe. As a framework for approximation, AC-
CEPT is extensible to relaxations beyond those we describe
here.

4.1 Precise-Purity Analysis
ACCEPT provides a core program analysis that client opti-
mizations use to verify that program relaxations are appropri-
ately constrained. This analysis must reconcile a fundamental

difference between the language’s safety guarantees and the
transformation mechanisms: the programmer specifies safety
in terms of fine-grained annotations on individual data ele-
ments, but program relaxations affect coarse-grained regions
of code such as loop bodies or entire functions. Rather than
resort to opaque and error-prone code-centric annotation,
ACCEPT bridges this gap by analyzing the side effects of
coarse-grained code regions.

ACCEPT’s analysis library determines, for a region of
interest (e.g., a loop body), whether its side effects are
exclusively approximate or may include precise data—in
our terminology, whether or not the region is precise pure.
Precise-purity is the key criterion for whether a relaxation
can apply. In ACCEPT, every relaxation strategy consults the
precise-purity analysis results and may only apply if and only
if it affects exclusively precise-pure code. A region is precise
pure if it:

• contains no stores to precise variables that may be read
outside the region;

• does not call any functions that are not precise pure; and
• does not include an unbalanced synchronization statement

(locking without unlocking or vice versa).

The analysis begins with the conservative assumption that the
region is not precise pure and asserts otherwise only if it can
prove precise-purity. For example, this code:

int p = ...;

APPROX int a = p * 2;

is precise pure if and only if the variable p is never read
outside this code region. External code may, however, read
the variable a since it is marked as approximate. Together
with the information-flow type system, the precise-purity
restriction ensures that code transformations only influence
approximate data. Since only the approximate value a escapes
the precise-pure block above, dependent code must also be
marked as APPROX to obey the typing rules: any code that
treats a as precise is a type error. The block can affect only
other approximate computations, so it is safe for relaxations
to transform it.

We implement the core precise-purity analysis conserva-
tively using SSA definition–use chains and a simple pointer-
escape analysis. Section 6 gives more implementation details.

4.2 Approximate Region Selection
To support accelerator-style program transformations that
provide replacements for coarse-grained regions of approxi-
mate code, ACCEPT can enumerate a function’s replaceable
approximate code regions. A candidate region is a set of
instructions that is precise pure, forms control flow with a
single entry and a single exit, and has identifiable live-ins and
live-outs. Client optimizations, such as the neural accelera-
tion described in Section 4.3.3, can enumerate the candidate
regions in a program to attempt optimization. Precise-purity
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Algorithm 1: Approximate region selection.
Input: function f
Output: set of precise-pure regions R in f

1 foreach basic block B in f do
2 foreach block B′ strictly post-dominated by B do
3 if B′ dominates B then
4 region← formRegionBetween(B′,B)
5 if region is precise-pure then
6 R← R∪{region}
7 end
8 end
9 end

10 end

analysis enables region selection by proving that chunks of
code are cleanly separable from the rest of the program.

Region selection meets the needs of accelerators that do
not access memory directly and therefore require statically
identifiable inputs and outputs; patterns such as dynamic
array updates cannot be offloaded. The same analysis can
be adapted to superoptimizers and synthesizers that need
to operate on delimited subcomputations. For example, an
accuracy-aware superoptimizer such as STOKE [Schkufza
et al. 2014] could use ACCEPT’s region selection to search
for tractable optimization targets in a large program. Each
fragment could be optimized independently and spliced back
into the program.

Algorithm 1 shows how ACCEPT enumerates candidate
regions. The algorithm uses dominance and post-dominance
sets to identify pairs of basic blocks B1 and B2 where B1
dominates B2 and B2 post-dominates B1. The portion of
the control-flow graph between these pairs represent all the
single-entry, single-exit portions of a function. For a function
with n blocks, the enumeration needs n2 precise-purity checks
in the worst case—but typically fewer because the LLVM
compiler infrastructure pre-computes the dominator and post-
dominator trees.

4.3 Safe Approximate Relaxations
To demonstrate ACCEPT’s flexibility as a framework, we
implement three approximation strategies from the literature
using precise-purity analysis.

4.3.1 Loop Perforation
Sidiroglou et al. propose loop perforation, which exploits
the fact that many programs tolerate some skipping of loop
iterations without significant quality degradation [Sidiroglou-
Douskos et al. 2011]. A perforated loop includes a parameter,
the perforation factor, that governs how often an iteration
can be skipped at run time.

ACCEPT considers a loop safe to perforate if its body is
precise pure and free of early exits (i.e., break statements),
which can cause nontermination if skipped. To perforate a

loop, ACCEPT inserts a counter and code to increment and
check it in each loop iteration. To minimize the overhead of
loop perforation, ACCEPT requires the perforation factor p to
be a power of two to enable bitwise tests against the counter.
The loop body executes once every p iterations.

4.3.2 Synchronization Elision
In parallel programs, inter-thread synchronization constructs—
locks, barriers, semaphores, etc.—are necessary for program
predictability but threaten scalability. Recent research has
proposed to strategically reduce synchronization in approxi-
mate programs [Rinard 2013; Misailovic et al. 2010a, 2012;
Renganarayanan et al. 2012]. Even though removing syn-
chronization can add data races and other nondeterminism
to previously race-free or deterministic programs, this re-
cent work has observed that the “incorrectness” is often
benign: the resulting lost updates and atomicity violations
can sometimes only slightly change the program’s output.

ACCEPT can elide calls to locks (mutexes) and barri-
ers from the pthreads library. To permit the elision of a
lock acquire–release pair, ACCEPT requires that the criti-
cal section—the code between the acquire and release—be
precise pure. To elide pthread_barrier_wait () synchro-
nization, ACCEPT looks for pairs of calls whose intervening
code is precise pure, in such cases removing the first call (the
second call remains to delimit the end of the region).

4.3.3 Neural Acceleration
Recent work has shown how to accelerate approximate
programs with hardware neural networks [Chen et al. 2012;
Temam 2012; Belhadj et al. 2013]. Neural acceleration
uses profiled inputs and outputs from a region of code to
train a neural network that mimics the code. The original
code is then replaced with an invocation of an efficient
hardware accelerator implementation, the Neural Processing
Unit (NPU) [Esmaeilzadeh et al. 2012a; St. Amant et al. 2014;
Moreau et al. 2015]. But the technique has thus far required
manual identification of candidate code regions and insertion
of offloading instructions. ACCEPT automates the process.

ACCEPT implements an automatic neural acceleration
transform that uses an existing configurable neural-network
implementation for an on-chip field-programmable gate array
(FPGA) [Moreau et al. 2015]. ACCEPT uses approximate
region selection (§4.2) to identify acceleration targets, then
trains a neural network on execution logs for each region. It
then generates code to offload executions of the identified
region to the accelerator. The offload code hides invocation
latency by constructing batched invocations that exploit the
high-bandwidth interface between the CPU and FPGA. We
target a commercially available FPGA-augmented system on
a chip (SoC) and do not require specialized neural hardware.

4.3.4 Other Client Relaxations
The three optimizations above demonstrate ACCEPT’s breadth
as a framework for realizing ideas from approximate-
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computing research. Though we omit details for space, we
have also prototyped two other optimizations using ACCEPT:
an approximate alias analysis that unlocks secondary com-
piler optimizations such as loop-invariant code motion and
vectorization for approximate data, and approximate strength
reduction that aggressively replaces expensive arithmetic
operations with cheaper shifts and masks that are not exactly
equivalent. Other optimizations from the literature are also
amenable to ACCEPT’s architecture, including approximate
parallelization [Misailovic et al. 2010a], float-to-fixed con-
version [Aamodt and Chow 2008], bit-width reduction [Tong
et al. 2000; Rubio-González et al. 2013], GPU pattern re-
placement [Samadi et al. 2014], and alternate-algorithm
selection [Baek and Chilimbi 2010; Ansel et al. 2009].

5. Autotuning Search
The autotuner is a test harness in which ACCEPT explores
the space of possible program relaxations through empirical
feedback. We call a particular selection of relaxations and
associated parameters (e.g., loop perforation with factor p)
a relaxation configuration. The autotuner heuristically gen-
erates relaxation configurations and identifies the ones that
best balance performance and output quality. The program-
mer also provides multiple inputs to the program. ACCEPT
validates relaxation configurations by running them on fresh
inputs to avoid overfitting.

Because the definition of quality is application dependent,
ACCEPT relies on programmer-provided quality metrics that
measure output accuracy, as in previous work [Sampson et al.
2011; Esmaeilzadeh et al. 2012b; Misailovic et al. 2010b;
Carbin et al. 2012; Baek and Chilimbi 2010; Esmaeilzadeh
et al. 2012a]. The quality metric is another program that
(1) reads the outputs from two different executions of the
program being transformed and (2) produces an error score
between 0.0 (outputs are identical) and 1.0 (outputs are
completely different), where the definitions of “identical” and
“different” are application dependent.

A naı̈ve method of exploring the space of relaxation
configurations is to enumerate all possible configurations. But
the space of possible relaxation configurations is exponential
in the number of relaxation opportunities and therefore
infeasible to even enumerate, let alone evaluate empirically.
We instead use a heuristic that prioritizes a limited number of
executions that are likely to meet a minimum output quality.

ACCEPT’s heuristic configuration search consists of two
steps: it vets each relaxation opportunity individually and
then composes relaxations to create composites.

Vetting individual relaxations. In the first step, the auto-
tuner separately evaluates each relaxation opportunity AC-
CEPT’s analysis identified. Even with ACCEPT’s static con-
straints, it is possible for some relaxations to lead to unaccept-
ably degraded output or zero performance benefit. When the
programmer uses escape hatches such as ENDORSE incorrectly,
approximation can affect control flow or even pointers and

hence lead to crashes. ACCEPT vets each relaxation opportu-
nity to disqualify unviable or unprofitable ones.

For each relaxation opportunity, the autotuner executes
the program with only that relaxation enabled. If the out-
put error is above a threshold, the running time averaged
over several executions is slower than the baseline, or the
program crashes, the relaxation is discarded. Then, among
the surviving relaxations, the autotuner increases the aggres-
siveness of any optimizations that have parameters. (In our
prototype, only loop perforation has a variable parameter:
the perforation factor p.) The autotuner records the range of
parameters for which each opportunity site is “good”—when
its error is below a threshold and it offers speedup over the
original program—along with the running time and quality
score. These parameters are used in the next step to create
composite configurations.

Composite configurations. After evaluating each relax-
ation opportunity site individually, ACCEPT’s autotuner com-
poses multiple relaxations to produce the best overall program
configurations. For a program of even moderate size, it is
infeasible to try every possible combination of component re-
laxations. ACCEPT heuristically predicts which combinations
will yield the best performance for a given quality constraint
and validates only the best predictions experimentally.

To formulate a heuristic, ACCEPT hypothesizes that relax-
ations compose linearly. That is, we assume that two program
relaxations that yield output error rates e1 and e2, when ap-
plied simultaneously, result in an error of e1 + e2 (and that
performance will compose similarly). Different relaxations
can in practice compose unpredictably, but this simplifying
assumption is a tractable approximation that ACCEPT later
validates with real executions.

The configuration-search problem is equivalent to the 0/1
Knapsack Problem. In the Knapsack formulation, each con-
figuration’s output error is its weight and its performance
benefit 1− 1

speedup is its value. The goal is to find the configu-
ration that provides the most total value subject to a maximum
weight capacity.

The Knapsack Problem is NP-complete and intractable
even for programs with only a few dozen potential relax-
ations. Instead, ACCEPT uses a well-known approximation
algorithm [Dantzig 1957] to sort the configurations by their
value-to-weight ratio and greedily selects configurations in
rank order up to an error budget. To account for our simplify-
ing assumptions, we use a range of error budgets to produce
multiple candidate composites. The algorithm is dominated
by the sorting step, so its running time is O(n logn) in the
number of vetted relaxation-opportunity sites (and negligible
in practice). Like other candidate configurations, the com-
posites are executed repeatedly to measure their true output
quality and speedup.
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6. Implementation
ACCEPT extends the LLVM compiler infrastructure [Lattner
and Adve 2004] and has three main components: (1) a modi-
fied compiler frontend based on Clang [Clang] that augments
C and C++ with an approximation-aware type system; (2) a
program analysis and set of LLVM optimization passes that
implement program relaxations; and (3) a feedback and auto-
tuning system that automatically explores quality–efficiency
trade-offs.

6.1 Type System
We implemented our approximation-aware type system, along
with the syntactic constructs APPROX and ENDORSE , as an
extension to the Clang C/C++ compiler.

Pluggable types layer. We modified Clang to support plug-
gable types in the style of Cqual [Foster 2002] and Java’s JSR-
308 with its accompanying Checker Framework [Ernst; Papi
et al. 2008]. Pluggable types allow a compiler’s built-in type
system to be overlaid with arbitrary qualifiers and typing rules.
Syntactically, we provide a GNU C __attribute__ (())

construct that specifies the type qualifiers for any variable,
field, parameter, function, or method definition. Our plug-
gable type library implements a bottom-up AST traversal
with an interface for defining typing rules. Finally, the com-
piler emits LLVM IR bitcode augmented with per-instruction
metadata indicating the qualifiers on the value of each SSA
operation. For example, when the result of the expression
a + b has the type APPROX float, it emits an add instruction
reflecting the qualifier. This representation allows LLVM’s
compiler passes, which have access only to the IR and not
to the AST, to use the programmer-provided qualifier infor-
mation. (We plan to release the source code for the generic
pluggable types layer along with the rest of the system.)

Approximation-aware type system. The primary constructs
in our EnerJ-inspired, approximation-aware type system are
the APPROX type qualifier and the ENDORSE explicit type con-
version. Both are provided as macros in a C header file. The
APPROX macro expands to an __attribute__ (()) construct,
and ENDORSE(e) expands to an opaque C comma expres-
sion with a magic number that the checker recognizes and
interprets as a cast. The type checker itself follows a stan-
dard information-flow implementation: most expressions
are approximate if any of their subexpressions is approxi-
mate; ACCEPT checks types and emits errors in assignments,
function calls, function returns, and conditionals.

The escape hatches ACCEPT_PERMIT and ACCEPT_FORBID

are parsed from C-style comments.

6.2 Analysis and Relaxations
Precise-purity (§4.1) and region selection (§4.2) are imple-
mented as LLVM analysis passes. The ACCEPT prototype
includes three relaxations, also LLVM passes, that consume
the analysis results. The precise-purity analysis offers meth-
ods that check whether an individual LLVM IR instruction is

approximate, whether an instruction points to approximate
memory, and whether a code region (function or set of basic
blocks) is precise pure. The region-selection analysis offers
methods to enumerate precise-pure regions of a function that
can be treated specially, e.g., offloaded to an accelerator.

We special-case the C memory-management intrinsics
memcpy and memset to assign them appropriate effects. For
example, memset(p,v,n) where p has type APPROX float *

is considered precise pure because it behaves as a store to p.
The loop-perforation and synchronization-elision relax-

ations (§4) use precise-purity analysis to determine whether a
loop body or critical section can be considered approximate.
Loop perforation generates a counter and mask to skip iter-
ations; and synchronization elision deletes lock and barrier
call instructions. Neural acceleration uses region selection to
identify target code and subsequently generates inline ARM
assembly to buffer data and communicate with the FPGA
over a coherent bus.

6.3 Autotuning
ACCEPT’s autotuning system is implemented separately from
the compiler component. It communicates with the compiler
via command-line flags and a pass-generated configuration
file that enumerates the program’s relaxation opportunities.

The programmer provides a quality metric to the autotuner
in the form of a Python script that defines a score function,
which takes as input two execution outputs and produces an
error value between 0.0 and 1.0.

The autotuner’s heuristic search consists of many inde-
pendent program executions, so it is embarrassingly parallel.
ACCEPT optionally distributes the work across a cluster of
machines to accelerate the process. Workers on each cluster
node receive a configuration, compile the program, execute it,
and return the output and timing statistics. The master node
coordinates the search and reports results.

6.4 Neural Acceleration
We evaluate ACCEPT’s approximate region selection using
a Neural Processing Unit (NPU) accelerator implemented
on an on-chip FPGA (§4.3.3). The design is based on recent
work that implements an NPU based on systolic arrays [Es-
maeilzadeh et al. 2012a; Moreau et al. 2015].

7. Evaluation
We evaluated ACCEPT’s effectiveness at helping program-
mers to tune programs. We collected applications from do-
mains known to be resilient to approximation, annotated each
program using ACCEPT’s feedback mechanisms, and applied
the autotuner to produce relaxed executables. We examined
applications targeting three platforms: a standard x86 server
system, a mobile SoC augmented with an FPGA for neural
acceleration, and a low-power, embedded sensing device.
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Application Description Quality Metric LOC APPROX ENDORSE

canneal VLSI routing Routing cost 3144 91 8
fluidanimate Fluid dynamics Particle distance 2138 30 47
streamcluster Online clustering Cluster center distance 1122 51 24
x264 Video encoding Structural similarity 22018 300 69
sobel Sobel filter Mean pixel difference 154 7 5

zynq-blackscholes Investment pricing Mean relative error 318 50 10
zynq-inversek2j Inverse kinematics Euclidean distance 67 6 6
zynq-sobel Sobel filter Mean pixel difference 356 16 7

msp430-activity Activity recognition Classification rate 587 19 5

Table 1: The approximate applications used in our evaluation. The final two columns show source code annotation counts.

7.1 Applications
Table 1 lists the applications we use in this evaluation. Since
there is no standard suite of benchmarks for evaluating
approximate-computing systems, we collect approximable
applications from multiple sources, following the lead of
other work in the area [Sampson et al. 2011; Esmaeilzadeh
et al. 2012a; Chen et al. 2012; Misailovic et al. 2010b; Temam
2012]. Five programs—canneal, fluidanimate, streamcluster,
x264, and zynq-blackscholes—are from the PARSEC parallel
benchmark suite [Bienia 2011]. They implement physical
simulation, machine learning, video, and financial algorithms.
Another program, sobel along with its ARM port zynq-sobel,
is an image convolution kernel implementing the Sobel filter,
a common component of image processing pipelines. The
final program, msp430-activity, is an activity-recognition
workload that uses a naı̈ve Bayesian classifier to infer a
physical activity from a sequence of accelerometer values on
an MSP430 microcontroller [Texas Instruments, Inc.].

To evaluate the applications’ output accuracy, we de-
velop application-specific quality metrics as in prior work
on approximate computing [Sampson et al. 2011; Baek and
Chilimbi 2010; Misailovic et al. 2010b; Esmaeilzadeh et al.
2012a,b]. Table 1 lists the metric for each program. In one
case, fluidanimate, the benchmark shipped with an output-
comparison tool.

We annotated each benchmark by inserting type annota-
tions and interacting with the compiler’s feedback mecha-
nisms to identify fruitful optimizations. Table 1 shows the
source code annotation density. Section 7.4 reports qualita-
tively on our experiences with the annotation process.

To validate the generality of ACCEPT’s program relax-
ations, we used one set of inputs (the training set) during
autotuning and a distinct input set (the testing set) to evaluate
the final speedup and quality loss.

7.2 Experimental Setup
Each application targets one of three evaluation platforms: an
x86 server, an ARM SoC with an integrated FPGA, and an em-
bedded sensing system. The server platform is a dual-socket,

Figure 2: WISP sensing platform [Sample et al. 2008].

64-bit, 2.8 GHz Intel Xeon machine with two-way simulta-
neous multithreading and 4 GB memory. During autotuning,
we distributed work across a cluster of 20 of these Xeon ma-
chines running Red Hat Enterprise Linux 6.5 with kernel ver-
sion 2.6.32. The FPGA-augmented SoC is included to demon-
strate the NPU relaxation, which requires programmable
logic. We implemented the neural-network accelerator (§6.4)
on a Xilinx Zynq-7020 part, which includes a dual-core ARM
Cortex-A9 and an FPGA fabric on a single TSMC 28 nm
die. Full details on the accelerator implementation can be
found in [Moreau et al. 2015]. Finally, for the embedded
msp430-activity workload, we used the WISP [Sample et al.
2008] device depicted in Figure 2. The WISP incorporates
a prototype MSP430FR5969 “Wolverine” microcontroller
with 2 KB of SRAM and 64 KB of nonvolatile ferroelectric
RAM (FRAM) along with an onboard accelerometer. The
WISP can harvest energy from radio waves, but we powered
it via its JTAG interface to ensure reliable, repeatable runs
connected to our test harness.

We compiled all applications with LLVM’s aggressive -O2
optimizations in addition to ACCEPT’s program relaxations.
We measured performance by reading the system clock before
and after a region of interest that excluded the loading of data
files from disk and dumping of results. (This region of interest
was already defined for the PARSEC benchmarks.) To obtain
accurate time measurements, we ran each configuration five
times and averaged the running times.
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Figure 3: Speedup for each application, including all optimizations (a) and each optimization in isolation (b–d).

Application Sites Composites Total Optimal Error Speedup

canneal 5 7 32 11 1.5–15.3% 1.1–1.7×
fluidanimate 20 13 82 11 <0.1% 1.0–9.4×
streamcluster 23 14 66 7 <0.1–12.8% 1.0–1.9×
x264 23 10 94 3 <0.1–0.8% 1.0–4.3×
sobel 6 5 21 7 <0.1–26.7% 1.1–2.0×
zynq-blackscholes 2 1 5 1 4.3% 10.2×
zynq-inversek2j 3 2 10 1 8.9% 17.4×
zynq-sobel 6 2 27 4 2.2–6.2% 1.1–2.2×
msp430-activity 4 3 15 5 <0.1% 1.5×

Table 2: Tuning statistics and resulting optimal configurations for each benchmark.

7.3 Results
Figure 3a plots the speedup (versus precise execution) of the
best-performing relaxed versions that ACCEPT found for each
application with output error under 10%. Speedups in the
figure range from 1.3× (canneal) to 17.4× (zynq-inversek2j)
with a harmonic mean of 2.3× across all three platforms.

Figure 3 shows the speedup for relaxed versions with only
one type of optimization enabled. Not every optimization ap-
plies to every benchmark: notably, neural acceleration applies
only to the Zynq benchmarks, and synchronization elision
applies only to the two benchmarks that use fine-grained lock-
and barrier-based synchronization. Loop perforation is the
most general relaxation strategy and achieves a 1.9× average
speedup across 7 of the benchmarks. Synchronization elision
applies to fluidanimate and streamcluster, for which it of-
fers speedups of 3% and 1.2× respectively. The optimization
reduces lock contention, which does not dominate the run-
ning time of these benchmarks. Neural acceleration offers the
largest speedups, ranging from 2.1× for zynq-sobel to 17.4×
for zynq-inversek2j.

ACCEPT’s feedback system explores a two-dimensional
trade-off space between output quality and performance. For
each benchmark, ACCEPT reports Pareto-optimal configu-
rations rather than a single “best” relaxed executable; the
programmer can select the configuration that strikes the best
quality–performance balance for a particular deployment. Ta-
ble 2 shows the range of output error rates and speedups in
the frontiers for our benchmarks. We highlight canneal as
an example. For this program, ACCEPT identifies 11 con-
figurations with output error ranging from 1.5% to 15.3%
and speedup ranging from 1.1× to 1.7×. Using this Pareto
frontier output, the developer can choose a configuration with
a lower speedup in error-sensitive situations or a more aggres-
sive 1.7× speedup if higher error is considered acceptable for
a deployment.

One benchmark, fluidanimate, exhibits especially low er-
ror even under aggressive optimization; the configuration
with the best speedup, which removed two locks and perfo-
rated nine loops, had overall error (change in final particle
positions) under 0.00001%. For msp430-activity, error re-
mained at 0% in all acceptable configurations.
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Autotuner characterization. Table 2 shows the number of
relaxation opportunities (labeled sites), the number of com-
posite configurations considered, the total number of configu-
rations explored (including parameter-tuning configurations),
and the number of optimal configurations on the output Pareto
frontier for each benchmark. For streamcluster, a moderately
sized benchmark by code size, exhaustive exploration of the
23 optimizations would have required more than 8 million
executions; instead, ACCEPT’s search heuristic considered
only 14 composites to produce 7 optimal configurations.

ACCEPT’s heuristics help make its profiling step palatable.
On our 20-node evaluation cluster for the server applications,
the total end-to-end optimization time was typically within
a few minutes: times ranged from 14 seconds (sobel) to 11
minutes (x264) with an average of 4 minutes. Tuning for the
Zynq and MSP430 platforms was not parallelized and took
19 minutes on average and 5 minutes, respectively.

Accelerator power and energy. We measured power con-
sumption on the Zynq SoC, including its FPGA and DRAM,
using a Texas Instruments UCD9240 power supply controller
while executing each benchmark in a loop to reach a steady
state. Compared to baseline ARM-core–only execution in
which the FPGA is not programmed and inactive, power over-
heads range from from 8.6% (zynq-sobel) to 22.6% (zynq-
blackscholes). The zynq-sobel benchmark exhibits lower
power overhead because a larger percentage of the program
executes on the CPU, putting less load on the FPGA. When
we account for the performance gains, energy savings range
from 2× (zynq-sobel) to 15.7× (zynq-inversek2j).

7.4 Experiences
This section reports qualitatively on our experiences using
ACCEPT to optimize the benchmarks. The programmers in-
cluded three undergraduate researchers, all of whom were
beginners with C and C++ and new to approximate comput-
ing, as well as graduate students familiar with the field.

Quality metrics. The first step in tuning a program with
ACCEPT is to write a quality metric. In some cases, the
program included code to assess output quality. For each
remaining case, the programmer wrote a simple Python
program (54 lines at most) to parse the program’s output
and compute the difference between two outputs.

Like any specification, a quality metric can be subtle to
write correctly. Although it was not an intended use case, pro-
grammers found ACCEPT’s dynamic feedback to be helpful in
debugging quality metrics. In one instance, ACCEPT reported
suspiciously low error for some configurations; these results
revealed a quality metric that was ignoring certain missing
values in the output and was therefore too permissive.

Initial and iterated annotations. One option when anno-
tating a program for ACCEPT is to first analyze an unanno-
tated program to enumerate all potential optimization sites.
However, the programmers preferred to provide an initial

annotation set by finding the “core” approximable data in the
program—e.g., the vector coordinates in streamcluster or the
pixels in sobel. With this data marked as approximate, the
type checker reports errors when this data flows into variables
that are not yet marked; for each such error, programmers
decided whether to add another APPROX annotation or to stop
the flow of approximation with an ENDORSE annotation.

Next, programmers expanded the annotation set to en-
able more optimizations. Using ACCEPT’s analysis log (Sec-
tion 3.2), they looked for optimizations that could almost
apply—those that indicated only a small number of blockers.

A persistent consideration was the need to balance effort
with potential reward. The programmers focused their atten-
tion on parts of the code most likely to provide good quality–
efficiency trade-offs. In some cases, it was helpful to take
“shortcuts” to program relaxations to test their viability before
making them safe. If the programmer was unsure whether a
particular lock in a program was contended, for example, it
was useful to try eliding that lock to see whether it offered any
speedup. Programmers used the ACCEPT_PERMIT annotation
temporarily for an experiment and then, if the optimization
proved beneficial, removed the escape-hatch annotation and
added the safer APPROX and ENDORSE annotations.

These experiences highlighted the dual importance of both
static and dynamic feedback in ACCEPT. Especially when
the programmer is unfamiliar with the application’s archi-
tecture, the static type errors and conservative precise-purity
analysis helped highlight unexpected interactions between
components. However, test runs were critical in discovering
whether a given subcomputation is important to an algorithm,
either in terms of performance or output accuracy.

Code navigation and heuristics. For large programs, pro-
grammers reported a need to balance their time between
learning the application’s architecture and trying new opti-
mizations. (We anticipate that a different strategy would be
appropriate when the programmer is already familiar with the
code before annotation.) One programmer used a call-graph
visualizer to find code closely related to the main computa-
tion. In general, more modular code was easier to annotate:
when effects are encapsulated, the volume of code related to
an optimization is smaller and annotations are more local.

Programmers relied on ACCEPT’s analysis feedback for
hints about where time would be best spent. They learned
to scan for and ignore reports involving memory allocation
or system calls, which are rarely fruitful approximation
opportunities. Relaxation sites primarily involved with large
data arrays were typically good targets.

Encapsulating precise systems programming. The “es-
cape hatches” from ACCEPT’s safety analysis were crucial
for low-level systems code. In msp430-activity, a routine
manipulates memory-mapped registers to read from an ac-
celerometer. The pointers involved in communicating with
the memory-mapped peripheral are necessarily precise, but
the reading itself is approximate and safe to relax. The
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ACCEPT_PERMIT escape hatch enabled its optimization. This
annotation suggests a pattern in systems programming: the
language’s last-resort annotations can communicate approxi-
mation information about opaque low-level code to ACCEPT.

Self-checking code. The complementary escape hatch,
ACCEPT_FORBID , was useful for one specific pattern: when
benchmarks include code to evaluate their own quality. For
example, x264 computes a standard image quality metric and
canneal evaluates the total design fitness at every iteration.
Programmers used ACCEPT_FORBID to ensure that this code,
despite involving approximate data, was never corrupted.

8. Related Work
ACCEPT builds on a body of prior work on approximate
computing. Three main research directions are most relevant
to ACCEPT: static safety analyses for approximate programs,
program relaxations, and quality-aware autotuners.

One group of proposals seeks to statically analyze ap-
proximate programs to prove properties even in the face of
unreliable hardware or program transformations. Carbin et al.
propose a general proof system for relating baseline exe-
cutions to relaxed executions [Carbin et al. 2012] and an
integrity property checker for loop perforation [Carbin et al.
2013a]. Rely [Carbin et al. 2013b] and Chisel [Misailovic
et al. 2014] analyze and tune the chance that a nondetermin-
istic computation goes wrong. EnerJ [Sampson et al. 2011]
provides a simple noninterference guarantee that we adapt
in this work. Other recent work [Misailovic et al. 2011; Zhu
et al. 2012] uses probabilistic reasoning to prove conservative
accuracy guarantees for relaxations of restricted program-
ming patterns. We instead focus on bringing approximation
to general programs and rely on programmer involvement
and dynamic testing to build confidence in an approxima-
tion’s suitability. ACCEPT’s safety guarantees need to be both
general and lightweight, requiring minimal programmer over-
head, to be practical. The information-flow types adapted
from EnerJ permit straightforward automated compiler rea-
soning and are not constrained to specific code patterns. EnerJ
itself, however, is limited to a specific style of approximation,
where individual variables and instructions introduce error on
hypothetical future hardware. ACCEPT expands the scope to
today’s computers using compiler analysis and programmer
feedback to enable coarser-grained optimizations.

ACCEPT complements specific software approximation
strategies, such as loop perforation [Sidiroglou-Douskos et al.
2011], alternate-implementation selection [Ansel et al. 2009;
Baek and Chilimbi 2010; Fang et al. 2014], parameter selec-
tion [Hoffmann et al. 2011], synchronization relaxation [Mis-
ailovic et al. 2010a, 2012; Renganarayanan et al. 2012; Ri-
nard 2013], and pattern substitution [Samadi et al. 2014]. This
work contributes a unifying framework to make relaxations
controlled and automatic.

ACCEPT’s autotuning component resembles other prior
work on dynamic measurement of approximation strategies,

including off-line tools such as PetaBricks [Ansel et al. 2011,
2009] and on-line methods such as Green [Baek and Chilimbi
2010], ApproxIt [Zhang et al. 2014], and SAGE [Samadi
et al. 2013]. Misailovic et al.’s quality-of-service profiler [Mi-
sailovic et al. 2010b] evaluates the results of candidate loop
perforations by assessing their performance and quality im-
pacts for reporting to the programmer. Precimonious [Rubio-
González et al. 2013] tunes variables’ floating-point widths
to adjust overall precision. ACCEPT generalizes these auto-
tuning techniques: it applies to a variety of safety-constrained
relaxations and guides the process using a practical search
heuristic.

The type-qualifier overlay system we develop for Clang
and LLVM is modeled after work on practical pluggable
types for Java [Ernst; Papi et al. 2008]. Another notable pre-
decessor is Cqual [Foster 2002], which provided a similar
mechanism in GCC for finding bugs (e.g., format-string vul-
nerabilities [Shankar et al. 2001]). ACCEPT’s implementation
of type qualifiers adds integration with the rest of the compiler
toolchain via IR metadata, which enables program analysis
beyond type checking and type-based optimization.

Our neural accelerator design builds on recent work on us-
ing hardware neural networks as accelerators [Esmaeilzadeh
et al. 2012a; St. Amant et al. 2014; Belhadj et al. 2013]. To
our knowledge, this is the first work to demonstrate safe,
automated, compiler-based offloading to the neural network.

9. Conclusion
Many important classes of applications can tolerate some im-
precision. Programs from diverse domains such as imaging,
machine learning, vision, physical simulation, and embed-
ded sensing exhibit trade-offs between accuracy and perfor-
mance. Approximate program relaxations hold the potential
to dramatically improve performance and energy usage while
only minimally impacting output quality. But these trans-
formations are potentially destructive and can have subtle,
far-reaching effects. Programmers need better tools for pro-
gram relaxation that are safer than manual reasoning but more
practical than opaque automatic transformation.

ACCEPT is a compiler framework for approximate pro-
gramming that balances automation with programmer insight.
It supports a wide range of approximate code transformations,
including both pure-software relaxations and offloading to
hardware accelerators. This paper demonstrates that ACCEPT
can yield substantial end-to-end performance benefits with
little quality degradation.

Approximate computing research is in its infancy and
needs more tools for prototyping and evaluating ideas. The
ACCEPT framework can simplify the practical implemen-
tation of new optimization strategies and accelerators. We
hope to make ACCEPT a common, open-source platform for
approximate computing research.
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