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Abstract—Detecting bugs is fundamental to building software.
Static bug finding tools can assist in detecting bugs automatically,
but they suffer from high false positive rates. Automatic test
generation tools generate test inputs which can find bugs, but they
suffer from an oracle problem. Both false positives and incorrect
oracles cost precious developer time. This paper presents N-Prog,
which combines the two approaches in a single system. N-Prog
automatically identifies interesting, real input/output pairs in an
input stream and presents them to the developer in an iterative
fashion. For each such pair, the developer either classifies it as a
bug (when the output is incorrect) or adds it to the regression test
suite (when the output is correct). N-Prog uses random mutation
to generate programs that are slightly different from the original
but still pass the original test suite. It then selects input/output
pairs whose input produces different output from the original
on a on at least one of the programs—meaning that any test
case created by N-Prog provably kills a mutant. Because every
interaction between N-Prog and a developer either produces a
new test case or a reproducible bug, N-Prog, by construction,
has no false positives. Our experiments show that N-Prog builds
regression test suites, detects defects, and finds test cases that have
been removed from test suites. N-Prog combines bug detection
and test case generation in a novel way that elimiates the time
developers often spend examining false positives.

Keywords-Mutation, mutational robustness, N-variant systems,
N-Prog

I. INTRODUCTION

Bugs are pervasive and expensive, and mature software
projects ship with both known and unknown defects [2],
[17]. Before fixing bugs, developers need evidence of their
presence [60]—and acquiring this evidence earlier in the
software lifecycle reduces each bug’s cost [65]. To prevent
defects in software shipped to customers, developers often use
some combination of manual inspection, static analysis, and
testing.

Each of these kinds of analysis has human costs. Manual
inspection (i.e. code review) is expensive—it requires more
than one developer to look at the code. In modern practice,
code review is primarily used not to find defects, but for its
other benefits—knowledge transfer, increased team awareness,
and creation of alternative solutions to problems [4].

Static analysis tools [3], [5] can detect many classes of
defects—even at industrial scale [10], [56]. Static analysis
tools use a set of analyses designed to detect specific kinds
of bugs, meaning that they are not fully general—they cannot
detect a bug if no analysis tailored to that kind of bug has
been written. In addition, static analysis tools suffer from false
positives—their warnings may or may not correspond to real
defects in the code. For instance, the developers of Coverity, an

industrial-strength static analysis tool, report that they spend
most of their engineering effort keeping false positive rates
below 20–30% [10]. Each false positive wastes developer
time investigating a non-issue, so eliminating this costly effort
would improve developer productivity significantly. High false
positive rates sometimes cause developers to abandon tools
when they lose faith in the tool’s correctness, causing defects
which the tool could find to enter production. In practice,
many developers avoid using static analysis tools to find bugs
because of these issues [31].

Testing can, in theory, detect any bug, but in practice test
suites are often incomplete. Because writing tests manually
takes significant developer effort, researchers have developed
automatic test generation tools [23], [51]. However, these tools
suffer from an “oracle” problem—checking that outputs are
correct requires that the tool know what the program under test
should do [7]. Automatic tools can use implicit oracles—such
as “segmentation faults should not occur”—to generate tests,
or they can construct regression tests by using the program
itself as the oracle. However, any oracle not examined by a
human is only a heuristic. Such heuristics can be incorrect,
and these cases require significant human effort to diagnose
and fix [7].

We present a technique that combines bug finding and test
suite generation in a way that addresses the limitations of each
individual approach. The technique, implemented in a tool
called N-Prog, presents its user with alarms, each of which
either (1) is a new test case, including the correct output, or (2)
indicates a bug in the program, along with some information
that can aid in fault localization. Every alarm produced by
N-Prog corresponds to one of these two situations, and thus,
by construction, N-Prog produces no false positives. N-Prog
replaces the “spurious warning” false positive of static analysis
tools with useful new regression tests. Unlike a traditional
static analysis, N-Prog is also fully general: it can potentially
detect any bug that causes a change in the subject program’s
externally-visible behavior. The idea of removing false posi-
tives by combining two seemingly distinct processes is gaining
in popularity (e.g., Jahangirova et al.’s approach to test input
generation and oracle improvement [29]).

Like testing, N-Prog is a dynamic analysis. N-Prog creates
a set of mutated variants of the subject program, all of which
pass the same tests as the original. N-Prog then calls out to
some method of input generation (such as a random input
generator [51] or a cache of user data) to get an input stream.
N-Prog then uses the mutated variants as a filter on the
input stream: whenever an input causes different externally-



Fig. 1. N-Prog’s variant generation process. Mutation operators are applied
to the original program to create candidate variants. The candidate variants
are run against the existing test suite (the double line in the figure). Neutral
variants are those that pass.

visible behavior on these variants from the original, N-Prog
alarms. Because N-Prog only alarms on inputs that cause
divergent behavior, each input that alarms is either: (1) a
new regression test that kills a mutant that the test suite
could not differentiate from the original or (2) induces buggy
behavior in the original program. In the former case, N-Prog
is operating much like a mutation testing framework—but one
which can improve the mutation score of the test suite by
adding tests that kill mutants [30]. In the latter case, N-Prog
is acting like a bug finding tool. A developer using N-Prog
is continually improving their program: N-Prog automatically
hunts for interesting inputs in an input stream, and only when
it discovers one does the developer enter the loop—and every
time the developer enters the loop, either a bug is discovered
or a new regression test is added. As long as finding bugs
and improving the regression test suite are valuable activities,
N-Prog’s results are always of value to the developer.

The primary contributions of this paper are:
• The N-Prog algorithm that combines bug detection and

test case generation in a novel way to eliminate unnec-
essary human effort.

• A prototype implementation of the N-Prog algorithm for
C programs.

• An evaluation of the N-Prog prototype, including a case
study using a real webserver, a study of N-Prog’s ability
to detect defects and missing test cases, and a validation
of an important algorithmic assumption. We find that
N-Prog builds reasonable test suites, detects 32% of held-
out bugs in our benchmarks, and that as test cases are
removed from a test suite, N-Prog’s ability to detect the
missing test cases improves.

II. ALGORITHM

A. Overview

N-Prog acts as a filter on program inputs. It selects inputs
that are guaranteed to be “interesting” to pass to developers—
meaning that each input selected by N-Prog either elicits a
bug or should be included in the test suite. N-Prog uses a
combination of mutation and an N-variant system to achieve
this goal. Here a mutation is a small random change to a
program that modifies the program’s abstract syntax tree [30].

A traditional N-variant system implements several different
versions of the program—ideally with independent failure
modes—and runs them in parallel [14]. When the variants
diverge—execution of the same input produces observably dif-
ferent outputs—an alarm is raised. N-Prog creates its variants
by mutating the source program, and when alarms are raised
they are passed to developers. Every N-Prog alarm kills (i.e.
rules out) some mutant, and the developer need only decide
whether the original program was behaving correctly. If so,
then the input and the original program’s output form a test
case—using the original program as the oracle, validated by
the developer—that kills the mutant. If the original program
is behaving incorrectly, then N-Prog has revealed a bug—and
once the bug is repaired, the input can be paired with the
output of the correct version to create a regression test that
kills the original program.

N-Prog contains two major components: the variant gener-
ation process and the N-variant system. In Section II-B, we
discuss the first component, and in Section II-C we discuss
the second.

B. Variant Generation

N-Prog generates variants in two phases: first, candidate
single-edit mutations are generated and tested to determine
if applying them creates neutral1 variants—variants whose
behavior is indistinguishable from the original on the existing
regression test suite. This phase is detailed in Section II-B1.
Once N-Prog has generated a sufficient number of single-
edit neutral variants, it moves to its composition phase. In
this phase, N-Prog combines the single-edit mutations into
multi-edit variants, each containing a configurable number of
individually neutral mutants within a single variant. These
higher-order variants combine the defect detection power of
the original individual mutations (cf. [27]). This phase is
discussed in Section II-B2. Pseudocode for both phases is
shown in Figure 2.

1) Generating and validating single-edit mutations: This
phase generates a set of neutral variants iteratively, as shown
in Figure 2, lines 1–7. The algorithm makes a predefined
number of probes, each of which involves a single mutation.
This process is depicted in Figure 1. N-Prog uses a set of
mutation operators to apply a single mutation to the subject
program (the kinds of mutants our implementation generates
are detailed in Section III-A).

N-Prog validates each variant with respect to the current
version of the test suite. The current version of the test suite
could be empty, however, in which case every mutant will
be validated. The mutated program is compiled and executed
against the test suite (is neutral on line 4). If all tests pass, the
mutation is considered neutral and added to the list of known
neutral mutations (line 5); otherwise, it is discarded. Since
the number of distinct first-order mutations for programs of
even moderate size is large (e.g., typically well over 50,000

1We use the biologically-inspired term “neutral” following Schulte et
al. [58], but “test-equivalent” and “sosie” are synonomous terms also ap-
pearing in the literature [9], [33].



Input: program of interest P .
Input: set of regression tests T for P .
Input: number of variants N for the final N-variant system.
Input: number of probes x, a budget for finding variants.
Input: number of probes y, a budget for finding multi-edit
variants.
Input: maximum number of mutations k placed in a multi-
edit variant.
Output: A set of up to n variants of P that each pass T .

1: neutral variants ← Ø //Generate mutants
2: repeat
3: variant ← single mutation(P )
4: if is neutral(variant, T ) then
5: neutral variants ← neutral variants ∪ {variant}
6: x← x− 1
7: until x ≤ 0
8: hom variants ← Ø //Begin composition
9: y′ ← y

10: while |hom variants| < N do
11: candidate ← choose from(neutral variants, k)
12: if is neutral(candidate, T ) then
13: hom variants← hom variants ∪ {candidate}
14: y′ ← y
15: else
16: y′ ← y′ − 1
17: if y′ ≤ 0 then
18: k ← bk/2c
19: if k ≤ 1 then
20: return hom variants
21: y′ ← y
22: return hom variants

Fig. 2. Pseudocode describing N-Prog’s variant generation process. A set of
single-edit mutations is generated, and then they are combined into multi-edit
variants. Note that the input T (the test suite) can be the empty set.

for our benchmarks), it is not feasible to consider each one
exhaustively. Instead, we make a fixed number of probes x at
random (lines 6–7), and then only the neutral mutations are
passed to the next phase of the algorithm for composition.

Note that each probe considers only one first-order (single-
edit) mutation. These mutations are only a single step away
from the original. Although higher-order mutations are likely
to be more useful for N-variant systems, they are also less
likely to be neutral. Previous work found that software is
neutral to first-order mutations at a rate of about 30% [58].
Assuming independence, a random second-order, two-edit
mutant would be expected to be neutral roughly 9% of the
time. That is, a two-edit variant could potentially be twice as
useful at detecting defects, but it is three times less likely to
be neutral. We thus designed our algorithm to first generate
a set of single-edit neutral mutations, and in a later step
combine them into multi-edit variants. This strategy assumes
that single-edit neutral mutants can be composed into multiple-
edit neutral variants. We return to, and validate, this critical

Fig. 3. N-Prog’s composition process. To generate each higher-order variant,
N-Prog takes the pool of neutral single-edit mutations and selects k mutations
from it, then retests the combined variant for neutrality. The double line in
the figure represents the regression test suite; the figure shows an N-Prog
deployment with N = 2, k = 2, and x ≥ 4.

algorithmic assumption in Section IV-E.
2) Generating multi-edit variants: This phase composes

non-interfering single-edit neutral mutants into multi-edit vari-
ants. Specifically, we aim to create N multi-edit variants,
each comprised of k edits. This process is represented by the
choose from function on line 11 of Figure 2, and shown in
Figure 3. Although the simplest approach would randomly
select k edits, this occasionally produces interfering edits
(i.e. edits that are neutral individually, but destructive when
composed). N-Prog therefore applies a heuristic for ruling out
some interfering edits (Section III-B).

When k non-interfering edits have been chosen or the
permutation is exhausted (which can happen if fewer than
k neutral variants with a single mutation were discovered in
Section II-B1), the candidate variant is then tested once for
neutrality (line 12). We found experimentally that our validity
heuristic improves efficiency (reducing the number of non-
neutral variants that are evaluated) and does not decrease the
effectiveness of the generated variants.

It is not feasible to explore all permutations of a given
set of neutral edits when considering candidate variants, so
our algorithm has a composition search budget y. If y non-
neutral candidate variants in a row are generated (line 16), we
halve k (line 18) to increase the likelihood of generating a
neutral variant. If k ever reaches 1, we terminate composition.
Thus, sometimes variants contain fewer than k edits. This
happens very rarely on reasonably sized programs programs
(for instance, less than 1% of the benchmark scenarios in
Section IV-B require k to be halved).

C. The N-variant system

The variants created by the composition phase (Sec-
tion II-B2) are then deployed in an N-variant system. Figure 4
shows an example N-Prog internal N-variant system with three
variants (each containing k mutations). Each input is copied
N + 1 times, with one copy given to each variant and one to
the original program. Next, each variant runs in parallel using
its own copy of the input. Each variant’s output is checked
against the output of the original program by a monitor. A
simple monitor (which we use in our experiments) is the
Unix diff program—but a more complex monitor (such as
one that monitors system calls [21]) could be used instead.
If any monitor reports a divergence, the input that caused the



Fig. 4. N-Prog’s internal N-variant system. Input, taken from the input
stream, is copied to each variant, and the output of each is compared to the
output of the original program. Only inputs that cause at least one variant to
diverge are seen by developers.

Fig. 5. Developer workflow when using N-Prog: Inputs are filtered, and only
those that diverge between the original program and at least one variant are
passed on to be reviewed by a human.

divergence and the original program’s output are passed to the
developer for inspection. Because a divergence indicates that
this input exercises some behavior of the program that the test
suite did not constrain, it must be interesting: either it is a new
test case that can be added to the test suite or it indicates a
bug in the original program.

N-Prog then uses this N-variant system as a filter on an input
source; Figure 5 shows a high–level view of how N-Prog is
used. Any input source can work—random input from a tool
like Randoop [51], data collected from users, or any other
well-formed input source. If every variant exhibits the same
behavior for a given input as the original program, then N-Prog
ignores that input and moves onto the next; if there is at least
one diverging variant, N-Prog will issue an alarm. Note that
while N-Prog uses machine time to consider non-diverging,
non-interesting inputs, it discards them without showing them
to a developer.

Once an alarm has been issued, there are two possible cases:
either the original program is correct or the original program
is incorrect. When it is incorrect, N-Prog has exposed a bug
in the implementation, and the developers have a candidate
patch that causes the program to exhibit different behavior
(i.e. the mutated variant). The existence of a patch, even if it
is incorrect, has been shown to aid in debugging [63]. When
the original program is correct, then N-Prog has generated a
test case, and the original program serves as its own oracle.
Once this test case is added to the test suite, subsequent N-Prog
variants will not alarm on that input. Generated tests such as
these are of interest to developers because they make the test

suite stronger—they kill mutants that the original test suite
missed.

For each alarm, the only action required of the developers
is examining the input/output pair (i.e., the given input and the
original program’s output) to determine whether the original
program is behaving correctly. Usually, this requires much
less effort than either writing a new test case from scratch
or reproducing a bug, since examining an input/output pair is
a part of either activity (cf. Section V).

III. IMPLEMENTATION

We implemented a prototype version of N-Prog that operates
over C programs. This prototype is built on GenProg [40], and
is available online via a git repository.2 In this section we dis-
cuss design decisions that are specific to our implementation.

A. Mutation Operators

N-Prog’s mutation operators are taken directly from Gen-
Prog [40]. We use only “delete” and “append” because they
are atomic (modifying only one statement), and they can
be composed to produce the same effect as other operators
(i.e., “swap” and “replace”). We chose append over replace
following the results of Baudry et al., who found append
to be more effective than replace at creating neutral vari-
ants [9]. GenProg’s mutation operators are coarse-grained,
involving entire statements, which helps N-Prog—coarse mu-
tations that cause undesirable behavior are likely to cause
divergences [55]. When selecting mutations, certain ill-typed
operations are ruled out in advance (e.g., mutations that would
create programs that do not compile are not considered). In
addition, we enable the optimizations proposed by Weimer et
al. to GenProg [64], which reduce the search space of possible
mutations by considering at most one representative from each
equivalence class of program variants. By default, we restrict
mutations to statements that are visited by the test suite as an
artifact of using GenProg, which by default has this behavior.
This choice is optional, and in our experience makes a neg-
ligible difference in N-Prog’s success—but disabling it could
only improve N-Prog’s ability to find untested functionality.

B. Interference Heuristic

We use the following heuristic to decrease the probability of
interfering mutations in one variant: two mutations are unlikely
to interfere if they do not involve any of the same statements
(meaning that, for instance, the same statement is not appended
in multiple places in a single variant). Next, we generate
a random permutation of the input set of neutral variants
(neutral_variants in Figure 2). To produce a variant
with k mutations, we take the first k non-interfering mutations
in the permutation. In practice, we found that this heuristic
strikes a good balance between including useful compositions
and avoiding destructive compositions, while continuing to
allow higher-order variants.

Another heuristic is our choice to sample with replace-
ment, meaning that mutations that are placed in higher-order

2https://github.com/kelloggm/nprog-code



variants are not removed from the set of neutral mutations.
Consequently, each mutation in the neutral set has equal
probability of being placed in a given higher-order variant. We
experimented with selection schemes that force or encourage
all edits be to used (e.g., selecting without replacement), but
found these methods produced a higher rate of non-neutral
candidates without increasing bug detection rates, ultimately
decreasing efficiency.

IV. EVALUATION

To evaluate N-Prog, we designed a series of experiments
that address its different capabilities in isolation. Taken to-
gether, the experiments show that N-Prog can consistently
provide value to the developer. We report the results of
experiments designed to answer the following five research
questions:
• RQ1: How does N-Prog scale and does it apply to real-

world workloads? (Section IV-A)
• RQ2: Can N-Prog detect held-out defects in a variety of

programs? (Section IV-B)
• RQ3: What types of defects can N-Prog detect? (Sec-

tion IV-C)
• RQ4: Can N-Prog variants detect missing tests? (Sec-

tion IV-D)
• RQ5: Can individual neutral mutations be usefully com-

bined into multi-edit variants? (Section IV-E)
Our evaluation features both real and toy programs, including
some that are known to be tested exhaustively, some with
real-world test suites, and both those with real and with
seeded defects. When checking whether programs diverge, we
always compare N-Prog output to the output that would be
shown to the user (i.e. using diff). In general, we try to
select parameters that result in reasonable variant generation
times. N-Prog is relatively sensitive to both N , the number
of variants, and k, the number of mutations in each variant:
higher values of N and k lead to more alarms. Increasing
each increases variant generation time, and increasing N
also increases the time required to decide if each input is
interesting. Increasing x also increases variant generation time
and alarm rates, but less signficantly. Changing y has no
impact on the results in more than 99% of cases. In the other
cases, higher y results in higher variant generation time (cf.
Section ??).

A. RQ1: How does N-Prog scale and does it apply to real-
world workloads?

1) Benchmarks and Experimental Setup: In this experi-
ment, we measure the number of alarms that N-Prog raises
with respect to an indicative webserver workload that is non-
bug-inducing. We start with a single, simple test case for
the webserver, so each alarm seen during the experiment
corresponds to a new test case that should be added to the test
suite. We apply N-Prog to lighttpd 1.4.17, a Web 2.0
webserver with a historical workload of 138,226 benign HTTP
requests spanning 12,743 distinct client IP addresses [42,
Sec. 6.2]. N-Prog is configured with N = 8 variants of k = 30

Fig. 6. Alarms raised by N-Prog applied to a webserver with no test cases
against an indicative workload of 138,266 requests (note log scale). Each
alarm corresponds to a test case (input and oracle) discovered. The last alarm
is raised at request 10,212.

edits each and a search budget of x = 400, y = 50. These
are subjected to the indicative workload. Each time an alarm
is raised, the corresponding input is added to the test suite,
with the original output as the oracle, and the eight variants
are regenerated. Since N-Prog begins this experiment with a
nearly empty test suite, we expect many alarms initially, as a
test suite is generated to cover indicative behavior [30]. Since
developer concerns over high alarm rates are an impediment
for static analyses [31], ideally N-Prog will alarm only while
building a good test suite.

2) Results: Figure 6 shows the results. N-Prog scales
well, requiring the eight variants to be regenerated only 25
times over the course of 138,226 requests. Since each alarm
represents both a CPU time cost (to generate mutations and
compose them into multi-edit variants) as well as a potential
human-time cost to determine if the alarm represents a test
case or a defect, minimizing this number is important. In this
experiment all inputs are known to be benign, so we do not
consider the human judgment cost.

In the experiment the alarms occurred in the very early part
of the run rather than being evenly distributed. The last alarm
occurs 7% of the way through the input stream. This result
is relevant to the real-world experience of using the tool—
developers will not be bothered by many redundant alarms
once a good test suite exists. Our experiment shows that as
test cases are added to the test suite over time, N-Prog alarms
only on novel inputs that exercise functionality that was not
previously tested.

Since this experiment considered only non-bug-inducing
inputs, we next evaluate N-Prog’s ability to detect held-out
defects.

B. RQ2: Can N-Prog detect held-out defects in a variety of
programs?

1) Benchmarks and Experimental Setup: In this experi-
ment, we measure the percentage of buggy inputs (i.e. inputs
we, the experimenters, know are interesting) that N-Prog flags
as interesting and passes to developers. To do this, we use
buggy scenarios—versions of programs with a known bug and
an input that illustrates the bug. First we generate N-Prog’s



Program LOC Tests Scen. Alarm%

print_tokens 472 4,140 7 29%
print_tokens2 399 4,115 10 40%
replace 512 5,542 31 32%
schedule 292 2,650 9 11%
schedule2 301 2,710 10 30%
tcas 141 1,608 41 49%
tot_info 440 1,052 23 30%
potion 15K 220 15 27%
gzip 491K 12 5 80%
php 1,046K 8,471 62 21%

Total 1,593K 30,070 213 32%

TABLE I
Bug detection: Empirical results evaluating N-Prog’s ability to detect bugs.
Each scenario contains one held-out bug. The “alarm%” column reports in
what percentage of the scenarios the held-out bug was detected by N-Prog

for a given program.

N-variant system, using each program’s existing regression
suite (without the buggy input). The buggy input is then
provided as the input stream; if N-Prog alarms, then N-Prog
has detected the bug. If N-Prog does not alarm, we count it as
a failure. For each scenario, we use a 25-variant system (i.e.
N = 25) where each variant contains 30 individual mutations
(i.e. k = 30), with search budgets of x = 400 and y = 50.

The benchmark set was selected from previously pub-
lished work and includes both toy and real programs.
The Siemens micro-benchmark programs (print_tokens,
print_tokens2, replace, schedule, schedule2,
tcas, and tot_info) are each small C programs with a few
hundred lines of code but many test cases—each has at least 30
test cases covering every line of source code [28]. Among the
seven Siemens programs, there are 131 buggy scenarios. We
also include potion, a larger, but not production, program
that is an interpreter for a toy language [58]. potion has
15 scenarios with single bugs, and also 8 scenarios with
multiple bugs. Both the Siemens programs and potion
contain artificial, seeded defects. To test N-Prog on more
natural bugs, we included two programs from the ManyBugs
benchmark suite, which includes large, open-source programs
with reported and repaired real bugs and developer-supplied
test suites. We selected 67 scenarios from the gzip and php
benchmark programs for which we were particularly confident
of the test suites.

2) Results: The results of this experiment appear in Table I.
Across all 213 buggy scenarios, N-Prog detected 68 (32%).
At least one scenario was detected for each of the subject
programs, and there were only two large outliers among the
ten programs considered: gzip and schedule. On gzip,
N-Prog was signficantly more successful than the rest of
the programs, while on schedule it was significanlty less
successful3. The 32% detection rate is conservative, because
if N-Prog is given larger budgets (i.e. more variants in each

3We suspect that N-Prog is so successful on gzip because gzip’s
regression suite is weak and gzip’s output is highly sensitive to the kind
of changes N-Prog makes.

Defect Count Scenarios N-Prog Detection %

1 15 27%
3 4 75%
5 3 67%
15 1 100%

TABLE II
A case study of N-Prog’s ability to detect defects when multiple bugs are
seeded into a single scenario, using the program potion. Note the sharp

increase in detection rate when multiple bugs are introduced.

Defect Category N-Prog Cox et al.

Incorrect Behavior or Output 6/30 2/30
Security Vulnerability 1/4 4/4
Missing Functionality 1/11 0/11
Missing Input Validation 2/3 0/3
Spurious Warning 1/2 0/2
URL Parsing Error 1/1 0/1
File I/O Error 1/1 0/1
Fatal Error 2/9 0/9
Segfault 1/8 0/8
Bounds Checking 0/1 0/1
Memory Leak 0/1 0/1
Total 17/67 6/67

TABLE III
Comparison of the number of bugs actually detected by N-Prog and the

number of bugs possibly detected by semantics-preserving transformations
of the types used by Cox et al. [14]. Defects are broken down by type and

taken from the ManyBugs programs gzip and php. Note that bugs
classified as “security vulnerability” are also included in one other row

depending on their cause.

system and more mutations per variant) it is possible it would
be even more effective (but also more expensive to run).
However, N-Prog’s ability to detect about a third of defects is
encouraging: if even a third of general software engineering
defects can be detected automatically, while improving the
subject program’s test suite, a lot of developer effort can be
saved.

Further, each scenario in Table I contains only one bug;
in practice, real programs have many bugs. Scenarios with
multiple extant bugs were only available for potion, but
in those N-Prog performs significantly better than on single-
bug scenarios, as shown in Table II. Over all eight multi-bug
scenarios, N-Prog detected at least one defect in six; compare
this with N-Prog’s 27% detection rate on potion scenarios
with only a single bug. Intuitively, this makes sense: if there
are more bugs in the program, there are more program points
where an N-Prog mutation can cause divergence that leads to
bug detection. While this experiment only shows the results
for a single program (and is therefore not generalizable), it
suggests that deploying N-Prog in the real-world may result
in higher detection rates than those presented in Table I.

C. RQ3: What types of defects can N-Prog detect?

Because N-Prog produces neutral variants, rather than
equivalent mutants [30], it can theoretically produce diver-
gence for many kinds of defects. We investigate what kinds
of bugs N-Prog actually detects in practice. The ManyBugs
programs (gzip and php) contain real, historical defects, in-



cluding scenarios that range from erroneous warning messages
to security issues. In addition, these scenarios come equipped
with a classification of each bug [41]. We therefore examined
the classifications of the scenarios from the ManyBugs suite
in detail. The majority of the considered bugs in these two
programs were characterized as involving missing, extraneous
or incorrect functionality.

Table III shows how many of each category of defect N-Prog
was able to detect in the gzip and php scenarios in its
middle column. Defects include at least one (the “Security
Vulnerability” in php) marked “security critical.” The table
compares the N-Prog results to an earlier N-variant system
(the right column in Table III) that uses semantics-preserving
transformations [14]. When examining the bugs, we noted
which could, in principle, be detected by the semantics-
preserving N-variant system of Cox et al., which is designed
to detect security defects at runtime by changing parts of the
program’s structure without changing its meaning (such as by
modifying its address space or memory layout).

N-Prog is able to detect defects across a broad range of
defect categories, demonstrating its generality. In principle,
N-Prog can defect any defect that a change introduced by
its mutation operators can impact—allowing it to apply to
general software engineering defects, and not just defects of
one particular type.

Three of the defects N-Prog detected were unusual: in each,
an extraneous piece of information unique to the execution
is printed as part of the output. For example, one bug in
php (in the “Incorrect Behavior or Output” row of Table III)
involves printing the value of a memory address, instead of
printing the contents of a data structure. Such bugs could be
detected by any neutral variant in an N-variant system. These
three, including the one marked “security critical,”—which
erroneously prints the names of temporary files—are among
the cases that semantics-preserving transformations could have
detected.

These results show that N-Prog can detect a wide variety of
defect classes, including both security vulnerabilities and typ-
ical software engineering problems such as incorrect output.

D. RQ4: Can N-Prog variants detect missing tests?

This subsection investigates N-Prog’s ability to detect miss-
ing tests with the following ablation experiment: we begin with
a program and a minimal-size test suite with full statement
coverage. We then remove, at random, a fixed percentage of
the test suite; since the test suite is minimal, every test is
necessary for full coverage. We then use N-Prog to generate
variants based on the reduced test set, using the held-out tests
as the input stream. We used the same settings for N-Prog as
in Section IV-B (i.e. N = 25, k = 30, x = 400, and y = 50).

We report the percentage of generated variants that detect
at least one missing test. The selected program, tcas, was
chosen because it has associated minimized test suites [16]. We
used all available minimal test suites (4 suites of 78 tests each).
For each test suite, we remove 10%, 20%, 30%, 40%, 50%,
60%, 70%, 80%, and 90% of the test suite. At each percentage,

Fig. 7. Variant neutrality as a function of test suite availability using
a minimal test suite. This graph reports the average percentage of tcas
variants that detected at least one missing test case, when the variant was
generated with X% of the test suite missing (horizontal axis). The trendline
has a coefficent of determination of 0.989, and the error bars represent 95%
confidence intervals.

Fig. 8. Variant neutrality as a function of test suite availability using the full
test suite. This graph reports the average percentage of tcas variants that
detected at least one missing test case, when the variant was generated with
X% of the test suite missing (horizontal axis)—note that this starts at 60%.
When less than 60% of the test suite is removed, N-Prog does not alarm. The
error bars represent 95% confidence intervals.

the experiment is repeated 10 times, with different random
seeds. For each random seed, 25 variants are generated. In
total, there are 250 variants generated for each percentage,
2,250 for each test suite, and 9,000 in total.

The results are shown in Figure 7. They indicate that
N-Prog’s ability to detect missing tests is linearly related to
the number of test cases that have been removed—the best fit
line (shown on the graph) has a coefficient of determination
of 0.989, indicating a very strong linear relationship between
the number of missing test cases and N-Prog’s ability to detect
them on tcas.

We repeated the experiment using tcas’s full test suite,
which is very large (1,608 tests). Initial experiments showed
that the results were very close to zero until most of the test
suite was removed, so instead of sampling at 10% intervals,
we sampled at 5% intervals, starting at 60%. The results are
shown in Figure 8. When at least 15% of the test suite is
present, N-Prog very rarely alarms; when the test suite is
reduced further, N-Prog alarms often.

Between these two experiments, we observe that N-Prog is
able to detect missing tests. When the existing suite is small



Composition Useless Useful Non-Neutral

Useless / Useless 99.8% 0.0% 0.2%
Useful / Useless 0.0% 100.0% 0.0%
Useful / Useful 0.0% 100.0% 0.0%

TABLE IV
Results of 1,185 compositions of two single-edit, first-order mutation

variants into one two-edit, second-order mutation variant. A useless variant
passes tests but does not reveal defects, a useful variant passes tests and

reveals a defect, and a non-neutral variant fails a test.

but has good coverage (Figure 7), N-Prog will detect more
tests when more of the suite has been removed. N-Prog shows
similar behavior with a large test suite, but only once the test
suite has been reduced until there are few redundant tests.

In practice, these results indicate that as N-Prog is used and
the missing tests it detects are added to the test suite, eventu-
ally almost all N-Prog alarms will correspond to the detection
of a bug—a result that is consistent with our experience using
the webserver and its indicative workload in Section IV-A.

E. RQ5: Can single-edit neutral mutations be usefully com-
bined into multi-edit variants?

A key assumption of N-Prog is that multi-edit neutral
variants can be generated efficiently from single-edit variants.
To validate this assumption, we sampled and composed pairs
of edits into two-edit variants. Neutral variants are those
that pass all of the regression tests. However, some neutral
variants will also behave identically to the original on the
held-out bug-inducing input (we refer to those as useless),
while others (referred to as useful) will behave differently
(diverge) from the original on at least one bug-inducing input.
Finally, a non-neutral variant fails at least one regression
test. We consider the three possible pairings between two
neutral single-edit variants: useless/useless, useful/useless, and
useful/useful. The results of 1,185 such compositions are sum-
marized in Table IV. These were selected from two benchmark
scenarios: tot_info from the Siemens suite, and digits,
a small program from the IntroClass suite of student-written
programs [41]. This experiment suggests that compositions of
useful variants are also likely to be useful (p� 0.001), and, as
expected, composing two neutral variants produces a neutral
combination in most cases (p� 0.001).

These empirical results give us confidence that N-Prog’s as-
sumption that atomic neutral mutations can often be combined
effectively is true in practice, supporting the basic algorithmic
design.

F. Threats to Validity

We now discuss some potential threats to the validity of
these experiments. First, the benchmarks may not be indica-
tive, threatening the generality of our results. We mitigate
this threat by selecting benchmarks from previously published
projects and by choosing programs with a broad spectrum of
characteristics: sizes range from a few dozens of lines of code
to more than a million; strong and weak test suites; and real

and seeded bugs. All selected benchmarks are written in C—
the N-Prog prototype currently handles only C, and programs
written in other languages may have different behavior. How-
ever, prior work [57] showed that mutation operators similar
to those we use can be applied successfully to x86, ARM, and
ELF binaries for repair. This suggests that our approach may
generalize to other program representations.

A threat to construct validity (cf. [19, Sec. 2]) is the use
of test cases as a proxy for indicative workloads or developer
inspection. We address this directly in Section IV-A, using
an historical indicative workload of 138,226 HTTP requests.
In other experiments, we measure “acceptable variant with
respect to tests” when we would prefer to ascertain “acceptable
variant in real life.” Since developers rely on test cases in
practice, however, we believe that this proxy is reasonable.
When measuring the relationship between test suite quality
and number of missing tests that are detected, we use the
size of a minimized test suite as a proxy for incomplete or
lower-quality test suites. Because we do not have access to
indicative input data beyond the test suite for the programs in
question, we follow the established practice of using tests.
There is also a threat to generalizability from using only
tcas to study how test suite adequacy affects N-Prog’s
ability to detect missing tests. Because we considered only
minimized, coverage-adequate suites, the linear relationship
we demonstrated may exist only under those conditions. We
note, however, that real test suites can be viewed as coverage-
adequate suites with some tests removed (i.e. the tests that
have never been written were “removed” from the “perfect”
suite).

G. Verifiability

Reproducible research is fundamental to the scientific pro-
cess. Therefore, we have tried to make all of our results
repeatable. Our prototype implementation of N-Prog is open-
source4. The benchmarks we used in the experiments in this
section are also available online5, along with descriptions of
how each experiment was carried out.

V. LIMITATIONS AND FUTURE WORK

Generating multi-edit neutral variants can be expensive. The
dominant cost of N-Prog is running the test suite of the subject
program, which is necessary to validate the neutrality of each
generated variant. Some programs have test suites that take
only a few seconds to run, and for these programs, N-Prog
can generate variants quickly—often in only a few minutes.
However, other programs have significantly larger and longer-
running test suites; for instance, php’s test suite takes over
30 minutes to run. Generating variants for php sometimes
takes as long as several days on a single machine. We note,
however, that variant generation is easily parallelizable, and
multiple cores or cloud computing instances can generate
variants independently. Thus, the latency of N-Prog remains
low even when the cost in CPU-hours is high; in fact this

4https://github.com/kelloggm/nprog-code
5http://dijkstra.cs.virginia.edu/genprog/resources/nprog/icse-17-paper/



property allowed us to carry out the experiments reported here
in a reasonable amount of time. For a discussion of the details
of deploying large-scale, parallel experiments in the cloud,
see Le Goues et al., whose model we followed [40]. N-Prog’s
compute cost is also dependent on its parameters—generating
more variants take more time, so users could reduce the time it
takes to generate variants by simply generating fewer variants.
We believe that N-Prog’s high cost in CPU hours is justified
by its relatively lower cost in human time—a developer using
N-Prog will never spend time looking at a spurious warning.

It is an empirical question how much effort is required for
a developer to distinguish between the two different kinds of
N-Prog alarms (i.e. buggy inputs vs. inputs that should be in
the test suite). As a preliminary investigation, we conducted
this decision process for several of our benchmark scenarios,
chosen at random. In cases where we were familiar with the
program’s intended behavior, the decisions were made very
quickly (under a minute on average). This is similar to results
observed in the area of test-driven synthesis [6], [15], where
users faced with input/output examples of candidate synthe-
sized programs could quickly determine if the candidate output
was correct. For larger or unfamiliar programs this process
took longer (ranging from 10 minutes to an hour), which is
consistent with previous reports that the effort required to
address a defect increase with the time and organizational
distance between the reporter and the developer [65]. However,
our investigation was informal—one of the authors examined a
few benchmark programs. A full investigation of this question
would require a large-scale human study, with developers
actually using N-Prog; we leave such a study as future work.

When applying N-Prog to a legacy system, the existing
test suite has significant impact on N-Prog’s performance:
inadequate test suites will cause N-Prog to alarm more
frequently for missing regression tests than bugs. Although
formal specifications could help address the possibility of
inadequate test suites (similar to previous work in automated
program repair [49], [62]), we believe that N-Prog’s current
design is appropriate because it can help improve poor-quality
test suites. In addition, N-Prog can be applied to the many
existing programs which lack a formal specification. Never-
theless, an interesting avenue for future work would explore
the use of specifications or contracts in conjuction with variant
generation—the test suite currently constrains the behaviors
of the mutants, but additional constraints could elicit more
interesting behavior.

Different mutation operators might improve our results. We
selected simple operators that sometimes make undesirable
changes that can be validated by existing test suites [55].
Because that behavior is exactly what N-Prog needs to elicit
divergence, we believe that the choice of these operators is
appropriate. However, other mutation operators (e.g., from the
mutation testing [30], [38] or automated program repair [35]
literature) might be more effective. In particular, our mutation
operators are very coarse-grained: they cannot make small
changes in expressions (such as replacing a addition node with
a subtraction node). These kind of changes are common in

mutation testing, but we leave applying them in an N-Prog-
like system as future work.

In this paper, we do not focus on the input stream that
N-Prog requires. We noted (in Section II-C) that any well-
formed input will work in theory, but because N-Prog acts
as a filter on the input stream, it cannot raise an alarm on an
input that is not in the stream. Thus, N-Prog’s success depends
in part on high-quality input. We consider this an orthogonal
problem and note that test input generation is a mature, well-
studied field [1]. Nevertheless, determining the best way to
provide N-Prog with an input stream is an intriguing question.
One possibility would be the use of shadow execution to find
inputs that are likely to exercise the mutated parts of the code
in each variant, using the techniques of Palikareva et al. [52].
We leave this exploration as future work.

VI. RELATED WORK

Automatic Bug Finding. Both static and dynamic tools have
been proposed to help find bugs in software. Static analysis
tools—which reason about programs without running them—
have a long history, ranging from early tools for C programs
like Lint [32] to open-source tools like FindBugs [3] to
modern, industrial-strength tools like Google’s Tricorder [56]
or Coverity [10]. All of these tools can find bugs—lots of
them—but they also generate false positives, which waste
developers’ time. N-Prog eliminates the cost of these false
positives. There have also been attempts to reduce false
positive rates in static bug finding tools post hoc; Li et al.’s
work on residual investigation is an example [43]. Dynamic
program analysis, which does involve running the program
under test, can also find bugs; tools like Daikon [18] or
Valgrind [48] detect particular kinds of errors and also can
produce false positives. Testing itself is a form of dynamic
analysis, and so is N-Prog—both require running the subject
program. However, every interaction between N-Prog and a
developer leads to a useful result, and the types of defects
N-Prog can detect are limited only by its mutation operators
and the code on which they operate—unlike traditional static
analysis tools.

Test Oracle Generation. Researchers have extensively stud-
ied the problem of automatically writing test cases. The so-
called “oracle” problem limits the generality of this approach:
only a human really knows what a system should do—any
attempt to use that knowledge without involving a human
must be an approximation [7]. Nevertheless, heuristics have
been proposed that approximate human knowledge. Some
tools use an implicit oracle (such as “the program should not
crash”) [25], while others use the program’s current behavior
as an implicit specification [22]. Still other techniques use an
explicit, human-written specification as a guide [24]. Finally,
some tools use other software artifacts, such as documentation,
as oracles [26]. N-Prog avoids this problem by involving a
human, who knows the system, when an oracle is required, but
still drastically reduces the burden on the developer by only
involving humans when inputs are known to be interesting.



Recently, Jahangirova et al. [29] proposed an approach
for assessing and improving test oracles that is similar in
spirit to N-Prog. They use search-based test case generation
and mutation testing in tandem, building upon the EvoSuite
tool [22]. Both approaches formally eliminate false alarms
by exploiting the interplay between two techniques with a
human in the loop, and for both one of the techniques used
is mutation analysis. However, N-Prog combines mutation
analysis and N-variant systems, while Jahangirova et al. com-
bine search-based test input generation and mutation analysis.
The approaches have the shared goal of eliminating false
alarms and both use mutation analysis, but N-Prog focuses
on N-variant systems and an extensive empirical evaluation,
while the former work focuses on test input generation and
formal descriptions of oracle improvement. In that regard
the techniques are complementary, and we hypothesize that
they could potentially be combined (with a shared mutation
analysis informing both the N-variant deployment and test
input generation).

Mutation Testing. Mutation testing creates mutants and uses
them to determine the adequacy of a test suite by providing
a mutation adequacy score, which indicates how effective a
particular test suite is at “killing” mutants—if the mutant
fails at least one test, it has been killed by the suite [30].
N-Prog could be viewed as an extension to the mutation
testing paradigm. Where mutation testing is challenged by
the so-called equivalent mutant problem [11]—some mutations
cannot be killed by any test suite because they are semantically
equivalent to the original—N-Prog takes advantage of neutral
mutations, whether semantically equivalent or not, to protect
against weaknesses in either the test suite or the program
itself. This more ambitious approach can point to specific
weaknesses in the test suite, much like mutation testing, but
it can also pinpoint defects in the subject program.

Mutation in other Software Engineering Contexts. Mutation
is used elsewhere in software engineering research. Mutation-
based fault-localization tools use mutants to locate defects for
which there is already evidence (i.e. a failing test case) [47],
[53]. N-Prog finds defects, however, for which prior evidence
does not exist while providing some localization benefits (in
the form of the mutation that triggered the fault). Mutation-
based generate-and-validate program repair tools, including
GenProg [40], RSRepair [54], and Prophet [45] repair known
defects by mutating program statements until a version of the
program is produced that is “correct” by their measure. N-Prog
does not explicitly attempt to repair defects, but rather pin-
points them. Many of these earlier tools rely on the program’s
regression test suite to validate fixes, as well, and N-Prog
can be used to improve those regression suites to prevent
“plausible but incorrect” mutants from being validated [44].
Schulte et al. [58] also used mutation to proactively repair
defects before they had been detected, using neutral variants.

N-variant Systems. Chen and Avizienis first proposed a
manual method for creating N-variant systems in which mul-
tiple teams work from the same specification [12]. However,
in practice independent human teams do not typically pro-

duce independent implementations—even when they do not
communicate [39]. Other approaches use semantics-preserving
transformations to automatically generate a set of equivalent
variants, which collectively can detect certain classes of se-
curity defects [14]. For example, each variant might use a
different memory layout [59] or instruction set encoding [8],
[34]. However, the restriction to semantically safe transfor-
mations limits the power of these techniques, unlike N-Prog.
If the variants are all strictly equivalent to the original, many
classes of defects cannot be detected (e.g., if a sorting program
handles already-sorted input incorrectly, all of the equivalent
variants will do the same, and no alarm will be raised).

Evolutionary Biology. N-Prog was inspired by a line of
research in evolutionary biology that dates back to the 1960s.
In nature, finite population sizes can lead to mutations be-
coming “fixed” (found in essentially all individuals of the
population) even if they are not adaptive [36], a prediction
made as early as 1930 by Fisher [20]. Because our algorithm
can accumulate neutral mutations, it is an initial step towards
incorporating the biological concept of genetic drift through
“neutral spaces” [37] into software. In biological systems,
this drift is posited as a necessary condition for non-obvious
innovations [13], [46], [50], [61]. The success of N-Prog at
detecting unknown defects suggests that this is potentially a
fruitful area for future research.

VII. CONCLUSION

This paper presented N-Prog, a tool that combines bug de-
tection with test case generation. N-Prog exploits weaknesses
in each technique to augment the other: false positives become
regression tests, and every time a human interacts with N-Prog,
there is a positive outcome: either a bug is found or a test
case which provably kills a mutant—complete with oracle—
is written.

We demonstrated N-Prog’s ability to detect held-out defects,
achieving a success rate of 32% on a wide variety of general
software engineering defects, as well as N-Prog’s ability to
detect test cases removed from existing test suites. We also
demonstrated a plausible use case for N-Prog with a case study
of lighttpd, demonstrating efficiency on 138,000 requests
from an indicative workload.

N-Prog combines the activities of finding bugs and building
regression test suites into a single system that eliminates the
time developers spend evaluating false positives.
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