
Autonomous Question Answering with Mobile Robots
in Human-Populated Environments

Michael Jae-Yoon Chung, Andrzej Pronobis, Maya Cakmak, Dieter Fox, Rajesh P.N. Rao

Abstract— Autonomous mobile robots will soon become ubiq-
uitous in human-populated environments. Besides their typical
applications in fetching, delivery, or escorting, such robots
present the opportunity to be used as information gathering
agents. In this paper, we present an end-to-end framework
for enabling a mobile robot to answer questions asked by
its users about the robot’s environment. Our method takes a
natural language question about the state of the environment
as input and parses it into an information type and locality.
It estimates the optimal viewpoint for capturing an image that
contains the requested information, navigates to the viewpoint
and dynamically adapts to changes in the environment, and
returns the captured image as its response. The same method is
also used for answering questions retrospectively, by retrieving
information from previously recorded sensory streams. We
evaluate our approach with a custom mobile robot deployed in
a university building, with questions collected from occupants
of the building. We demonstrate our system’s ability to respond
to these questions in different environmental conditions.

I. INTRODUCTION

Many day-to-day tasks in large human environments, such
as office buildings, hospitals, or warehouses, require up-
to-date knowledge about the environment. However, such
environments are inherently dynamic due to human activity.
As a result, a large component of common tasks performed
by humans in these environments is to simply collect up-
to-date information. Our previous work demonstrated the
potential of using mobile robots as information gathering
agents for humans through user surveys and a Wizard-of-
Oz deployment [1]. In this paper, we present an end-to-end
framework for using mobile robots to autonomously answer
questions asked by users in a dynamic human-populated
environment.

Our framework takes a natural language question (e.g. “Is
Mike Chung in the robotics lab?”), parses it into a tuple
characterizing the requested information, and computes the
optimal robot configuration for capturing the information.
To compute the optimal robot configuration, our framework
scores candidate robot configurations in terms of visibility of
requested information according to a semantically annotated
map. We iteratively refine our estimate as more up-to-date
information becomes available during the execution of the
tasks. This allows us to compute a view maximizing the
amount of information captured despite potential dynamic
changes such as unexpected occlusions or obstacles that
prevent the robot from reaching its initial goal.
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We present an implementation of the proposed approach
on a custom mobile robot deployed in a university building.
We first evaluate our language parser with the natural lan-
guage questions collected in our previous work [1]. We then
evaluate our viewpoint estimation with a subset of questions,
asked when the environment is in different states. Finally,
we show that the same framework can be used to answer
questions retrospectively (“Was Mike Chung in the robotics
lab?”) by choosing the best frame for answering a question
in previously recorded data.

II. RELATED WORK

Previous work has explored many applications of au-
tonomous mobile robots in human environments. These
include fetching objects [2]–[5], giving tours as a guide [6]–
[8], escorting people to a target location [2], [9], or acting as
a kiosk to provide information such as directions [10]–[12].
However, the use of such robots to answer people’s questions
about the environment has been largely unexplored.

Most closely related to our work is research focused
on object search in human environments [13]–[18]. These
approaches utilize domain knowledge for modeling human
environments and reasoning about potential target object
locations. Some of them acquire parts of domain knowledge
from the web [14], [18], or gather the knowledge required for
each object search from the web on-demand [15]. While we
consider search as a type of information gathering, our work
focuses on a different type of information gathering task that
involves checking the state of a specified target. Another line
of relevant work focuses on understanding human language
in the context of tasks in human environments, such as
following natural language directions [19], [20] or spatial
modeling of linguistic prepositions [21], [22].

Outside the realm of human-populated environments, the
use of robots for information gathering is not a new idea.
Mobile robots have been used for exploring and gathering
information in challenging environments such as space, un-
derwater, or disaster zones [23]–[26]. Some of these [27]–
[30] develop general algorithms for information gathering
that could also be applied to human-populated environments;
however, this potential has not yet been explored.

III. FORMATIVE STUDY: WIZARD-OF-OZ DEPLOYMENT

Our previous work explored the potential of using mobile
robots for answering questions about the environment from
an end-user perspective [1]. We performed a survey in two
university buildings and deployed our robot (Fig. 1) in one of
the buildings (Computer Science & Engineering, University
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Fig. 1. The end-to-end InfoBot system: (a) a question is submitted through the web interface; (b) InfoBot estimates the initial viewpoint, navigates to
the destination while iteratively refining the estimate; (c) it captures the image containing the requested information; (d) the image is delivered to the user
through the web interface.

of Washington) using the Wizard-of-Oz technique. As a
front-end we created a web interface through which users
could post free-form questions and monitor the status of the
answer. Users were recruited from graduate and undergrad-
uate students, staff and faculty inhabiting the building.

The experiment was conducted for four business days
(9am-5pm). During the experiment, the robot was supervised
by a human operator. When a user asked a question from the
web interface, the operator received it and accepted it only if
it was a valid checking type question that could be answered
through a static picture taken by the robot. The operator
then supervised the robot to go to the target location in the
building, positioned the on-board camera to take a picture.
The question was answered by delivering the picture to the
web interface.

A. Findings

Over the deployment period, we received 88 valid ques-
tions posted by 45 unique users. The majority of questions
(71%) were concerned with the presence of things at certain
locations in the building. Users were mostly interested in
the presence of people (33%). Common examples of this
type of question are “Is there anyone at {location}?” and
“Is {person} in his/her office?” Among questions concerning
objects in the environment, users were most interested in the
presence of food and mail; e.g. “Is there anything in my
mailbox?” and “Is there any food in the downstairs kitchen?”

Another major group of questions were about the state of
the environment at target locations. Questions ranged from
checks about the accessibility of various services (e.g. “Is
the door to the conference room open?”, “Is the reception
still open?”) to ambient conditions (e.g. “How noisy is it in
the atrium right now?” or “Is it raining outside?”).

Overall, 73% of participants used the service more than
once. 40% of the users asked more than one question with at
least an hour between two consecutive questions. The results
from this formative study indicated potential usefulness of
the InfoBot, and gave insights into the types of questions
people might ask if the robot were to be deployed long-term.

IV. OVERVIEW

In this paper we develop an end-to-end framework to
autonomously respond to questions asked by users. It is
motivated by the types of questions observed in our formative

study (Sec. III). We emphasize that our approach aims to
capture a sensory snapshot that contains the answer to the
user’s question, rather than inferring a verbal answer.

A. Problem Description

The goal is to find the best viewpoint v∗ in which the
requested information I ∈ {0, 1} is present, given a natural
language question s. We assume the robot is operating in a
dynamic environment described by a map M , and we have
access to the database D containing domain knowledge about
M . We formulate our problem as

v∗ = argmax
v

P (I = 1|v, s;M,D) (1)

where

P (I = 1|v, s;M,D) =
∑
z

P (I = 1|v, z;M,D)P (z|s;D) (2)

≈max
z

P (I = 1|v, z;M,D)P (z|s;D) (3)

where z is a descriptor of the requested information. Fac-
toring the problem in this way allows us to independently
estimate the optimal viewpoint given a concrete descriptor
with P (I = 1|v, z;M,D) and the natural language parse
of the question as a descriptor with P (z|s;D).

We define P (z|s;D) as a distribution over information
descriptors z for each question sentence s. For example,
given the sentence s = “Is there anyone in the robotics
lab?” and the record in D that identifies “Mike Chung” as
person and “robotics lab” as cse101, the desired informa-
tion descriptor z = presence(person, cse101) is a tuple
precisely describing the requested information in s.

The distribution P (I = 1|v, z;M,D) for estimating
viewpoints can be decomposed as follows (M,D omitted
to keep notation uncluttered):

P (I = 1|v, z) =
∑
x

P (I = 1|x, z)P (x|v) (4)

where x are locations on the map (e.g. cells in a 3D
occupancy map), P (I = 1|x, z) models the presence of the
information at location x and P (x|v) models the visibility
of location x from viewpoint v.



V. PARSING NATURAL LANGUAGE QUESTIONS

The deployment experiment in Sec. III revealed that there
are two types of checking questions: (a) the questions con-
cerned with presence of things at a location, and (b) the
questions concerned with state of a location. Reflecting this
observation, the information descriptor z takes one of two
forms: presence(l, t) or state(l), where l is a room
in the building (e.g. cse100), and t is a target type (e.g.
person). More formally, we define the information descriptor
as a tuple z = (τ, l, t) where τ ∈ {presence,state},
l ∈ {cse100, cse101, ...}, and t ∈ {person, object,N/A}.

Parsing a language input question s to an information
descriptor z is equivalent to evaluating P (z|s;D). We first
process s by using Stanford CoreNLP Natural Language
Parsing Toolkit [31] to extract part-of-speech (POS) tags, a
context-free phrase structure tree, and results from applying
co-reference resolution. We merge all outputs from the
CoreNLP to a parse tree s′ by copying the output parse
tree and replacing its leaf nodes with the input words and
the POS tag pairs, and then use the results from the co-
reference resolution to replace the subtrees corresponding to
the referring words with the subtree corresponding to the
referred words. For example, given s = “Is Mike Chung
in his office?”, the sentence extracted from s′ is “Is Mike
Chung in Mike Chung’s office?”.

Given s′ we evaluate:

P ((τ, l, t)|s′;D) = αmax
i

1(T τi (s
′))

×
{
max
j
d(L(T τi (s

′)), Aj(l)) + max
k

d(Gτi (s
′), Bk(t))

}
.

(5)

where
• α is a normalization constant,
• T τi (s

′) is an ith τ type relation template that can detect
words describing a location and a target type in s′.
Templates use relationships between tags (e.g. check if a
node has children with tags PP and NP) and predefined
keywords (e.g. check if a word paired with a IN POS tag
equals to the locational preposition such as “in”, “at”,
etc.) to detect the words. 1(T τi (s

′)) returns a boolean
variable indicating whether T τi (s

′) fit on s′ or not.
• L(·) and G(·) operators return detected words describ-

ing a location and a target type, respectively, from
applying a template T τi (s

′). Using the s′ mentioned in
the earlier example, L(T presence

i (s′)) = “Mike Chung’s
office” and G(T presence

i (s′)) = “Mike Chung” for some
i.

• Ai(l) returns ith words describing l and Bj(t) returns
jth words describing t by looking up the data stored
in D. For example, Ai(cse102) =“Mike’s Office” and
Bj(person) =“Mike Chung” for some i, j.

• d(·, ·) function measures the similarity between two text
inputs (e.g. Levenshtein distance).

If the input sentence is not a checking type question, then the
distribution P ((τ, l, t)|s′;D) will not be proper; no relation
templates T τi (s

′) can cover the input s′.

In Sec. IV-A, we approximate the summation in Eq. 2 with
the max in Eq. 3. In other words, we are only considering
the most likely information descriptor instead of all possible
information descriptors.

VI. VIEWPOINT ESTIMATION

As mentioned in Sec. IV-A, estimating the best viewpoint
for answering the question asked by a user is equivalent to
evaluating Eq. 4. In the following, we describe how we model
the environment M and the terms involved in Eq. 4.

A. Environment Model

Our environment M is a tuple (M2D,M3D,MT ).
• M2D is a 2D occupancy grid map with a resolution

of 0.05m in which each grid cell is identified by its
Cartesian coordinates in a global coordinate frame and
described as either empty, occupied, or unknown. M2D

is acquired by mapping using a method developed by
Grisetti et al. [32] and post-processed to only contain
static information (e.g. walls and stationary furniture).
M2D is mainly used for navigation and for annotations
in the database.

• M3D is a 3D occupancy grid map similar to M2D with
an additional 3rd (height) dimension with a resolution
of 0.05m. M3D provides a richer representation of
the environment; however, in dynamic environments it
can quickly become outdated. Hence, we continuously
update it with incoming depth data using Hornung et
al.’s method [33]. M3D is used for reasoning about
visibility.

• MT is a topological map in which each topological
node is a candidate place for the viewpoints that the
robot can gather information from. For each place, there
is a discrete sets of candidate orientations that specify
the viewpoint. When computing Eq. 1, we search for v∗

in a MT to make our problem tractable.
While we use existing mapping algorithms for acquiring

M2D and M3D [32], [33], we use a custom algorithm for
generating MT as described in the following.

Topological Mapping. The topological map allows the system
to constrain the problem of viewpoint estimation to a discrete
subset of all possible viewpoints. This makes the problem
tractable, but also results in a commitment that could harm
performance. Therefore, it is important to select a discretiza-
tion that properly supports the problem at hand.

We generate topological maps from a probability distribu-
tion P (MT |M2D) that models the relevance of locations to
the task and distributes topological places accordingly. The
Markov Random Field illustrating the distribution is shown
in Fig. 2a and corresponds to:

p(N |M2D) =
1

Z

∏
i

φr(Ni)φg(Ni), (6)

where Ni ∈ {0, 1} determines whether a place exists at
location i and Ni = {Nj : j ∈ neighborhood(i)} for a
local spatial neighborhood of 1m radius.



Ni

Gi

Seed

Φg(Ni)

Φr(Ni)

(a) (b)

Seed

1.0

0.0

Fig. 2. Topological mapping. (a) Probabilistic graphical model illustrating
the distribution from which topological maps are sampled. (b) A typical
example of a set of topological nodes on top of the values of φg(Ni) for
each pixel of an occupancy grid map.

The potential function φg(Ni) models the relevance of a
location for the task and is defined in terms of three potentials
calculated from the 2D metric map:

φg(Ni) = φo(Ni) (φc(Ni) + φv(Ni)− φc(Ni)φv(Ni)) ,
(7)

where:
• φo depends on the distance do to the nearest obstacle

and is calculated similarly to the cost map used for
the navigation algorithm [34]. φo equals 0 for dis-
tance smaller than the radius r of the robot base and
exp(−α(do − r)) otherwise.

• φv = exp(−β|do−dv|) depends on the relation between
the distance do and the fixed distance dv that provides
good visibility of obstacles in the map.

• φc = exp(−γdc) depends on the distance dc to the
nearest node of a Voronoi graph of the 2D map. This
promotes centrally located places since central locations
are often safe for navigation.

Overall, the definition of φg(Ni) ensures that candidate
viewpoint locations are located only in areas that will not
lead to a collision with obstacles and are either preferred
due to their central location or visibility properties. The
potential φr(Ni) ensures that places are distributed within
certain distance to one another, by enforcing low probability
for locations that are close to other existing places.

We employ Gibbs sampling to perform the maximum a
posteriori inference and choose samples corresponding to
maps with highest posterior probability. A typical example
of a generated set of topological nodes for a single floor of
a building is shown in Fig. 2b. For each place, we assume
a discrete set of orientations evenly spread across the full
circle. The orientation and the metric position of a place fully
specify a viewpoint. The resulting map MT is expressed as a
set of viewpoints MT

i , with each view anchored in a metric
map M2D.

B. Information Presence Term

The first term in Eq. 4, P (I = 1|y, z;M,D), models
the presence of the information specified by z at location
y (a cell in M2D). It is computed based on annotations
provided a priori and stored in the database D. Annotations
are associated with polygon regions (e.g. the room annotation
in Fig. 3a) or a set of discrete points (e.g. annotation of
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Fig. 3. Annotations, information presence term, and viewpoints. (a) and (b)
display respectively a room and person annotations overlaid on M2D . (c)
shows the information presence term computed using (a) and (b). (d) shows
the evaluated viewpoints P (v, I = 1|z;M,D) as colored arrows and the
camera field of view of the optimal viewpoint drawn with the purple lines.

person in Fig. 3b) on M2D. They are divided into two
groups; one corresponding to a location name (l in z) and
another corresponding to the presence of the target type in
the specified region (t in z). The location name annotations
are associated with polygon regions and have the same value
P (I = 1|y, z;M2D) = 1 at all cells y within the specified
region. On the other hand, the target type annotations are
associated with a discrete set of points with non-zero prob-
ability where they are likely to be present (e.g., an object
near table, a person near desks). Assuming independence
between two groups, we have P (I = 1|y, z;M2D) = P (I =
1|y, l;M2D)P (I = 1|y, t;M2D).

We transform P (I = 1|y, z;M2D) to P (I = 1|x, z;M)
using a 2D to 3D coordinate conversion function f |M3D :
Y → X . The function f |M3D maps an input 2D coordinate
to a 3D coordinate by extending the input 2D coordinate with
a height value. Assuming the objects of interest are usually
located at a certain distance above the ground (e.g. people),
we sample the height value from a Gaussian distribution with
the mean µ and the standard deviation σ.

C. Visibility Term

The second term in Eq. 4, P (x|v;M3D), models the
visibility of cells x in M3D from viewpoint v. We compute
it using raytracing in M3D. We set P (x|v;M) = 0 for
(i) x that are not visible and (ii) x that are located farther
than θm from the camera origin. We set P (x|v;M) = 1.0
for all x that are within the camera’s cone of visibility.
We experimented with other P (x|v;M) such as P (x|v;M)
dependent linearly on the Euclidean distance between x
and the camera origin; however, the performance differences
were negligible in our experimental setting. Finally, while
the robot is executing the task, it might discover certain v
are not reachable. For those v, we set P (x|v;M) = 0 all x.

D. Iterative Refinement

Once v∗ is computed based on Eq. 1, the robot starts
navigating to v∗. Since the robot is operating in a dynamic



environment, M in Eq. 1 might be outdated. As a result
v∗ may not provide the best viewpoint with respect to the
new M . Assuming the availability of the component that
can track the changes in M with incoming data, we address
this problem by letting the system continuously re-evaluate
P (I = 1|v, z;M,D) until there is no change in v∗. Note
that we do not re-compute P (z|s;D) in Eq. 2 since it is
not dependent on M . Once the robot reaches the final v∗, it
saves an image from the on-board camera (Fig. 1 (c)) and
returns this image as its response (Fig. 1d).

VII. EXPERIMENTS AND RESULTS

A. Natural Language Parsing

We evaluated our input question parsing component on
the real user questions collected during the deployment
experiment described in Sec. III. The labels for the questions
were acquired by a coding process performed by two of the
authors. Labeling involved writing an information descriptor
z∗ for each question sentence s as z∗ = argmaxz P (z|s;D).
For the locations l in information descriptors z = (τ, l, t) we
used the 295 unique locations extracted from the building
database.

In order to test our system’s ability to correctly parse
questions that involve information checking, we first ran
a checking vs. non-checking classification experiment. Our
system classifies a question as “checking” if the output
distribution from the parser is proper (i.e.

∑
P (z|s,D) = 1),

and as “non-checking” otherwise. We attained an accuracy
of 74%, a precision of 94% and a recall of 71% (# of
true positives: 48, true negatives: 17, false positive: 3, false
negatives: 20). A high precision rate is desirable from the
robot’s perspective as false positives will result in executing
the wrong task. An example of a false positive is “What
does Mike Chung look like when he’s not at his desk?”
(negation “not”). Examples of false negatives include “How
many LEDs are on the wall in the Atrium?” (two locational
PP phases), “Is the service elevator in the CSE building
operational?” (implicit/unknown target location), and “What
color is Hank wearing today?” (implicit/unknown target
location).

For the 65 questions that were correctly identified as
checking questions, we evaluated our system’s ability to
extract the corresponding information descriptor. Our parser
achieved an accuracy of 95% in classifying the question sub-
type τ , 89% in classifying the location l, 82% in classifying
the target type t, and 72% in correctly classifying the full
information descriptor z = (τ, l, t).

B. Viewpoint Estimation

We evaluated our viewpoint estimation component with
two experiments involving the real robot in the computer
science department building.

Experimental Setup. We used the custom-built mobile robot
based on the MetraLabs Scitos G5 mobile base expanded
with a structure providing support for sensors and user
interfaces (Fig. 1b and Fig. 1c). A high-resolution Allied

Vision Manta G609 camera with 97◦ horizontal and 79◦

vertical view angle, which is used for providing images to the
users, is attached to the robot at 1.31m above the ground. An
Asus Xtion Pro depth camera is placed at 1.25m above the
ground to collect depth images for the purpose of building
3D maps. Another backward facing Xtion depth camera and
a Hokuyo UTM-30LX laser range finder are also placed on-
board for navigation purposes.

The 2D occupancy maps M2D used in our experiments
were collected prior to running experiments. The initial 3D
occupancy maps M3D were constructed from the corre-
sponding 2D occupancy maps by extending occupied cells
to the default wall height (2m) or default window height
(0.85m) depending on their location. For topological map
MT generation, we used the following parameter values:
α = 5, β = 8, γ = 10. The discrete orientations of the
viewpoints were distributed in the topological map every 30◦.
For all maps, we only represented the open spaces such as
corridors and breakout areas to avoid going into building
occupants’ offices during working hours.

The 295 location annotations were imported from the
building database and the person target type annotations were
acquired by a manual annotation process. These annotations
were transformed to the information presence term using
the height-based conversion function with the height mean
µ = 1.65 and standard deviation σ = 0.05. For the visibility
term, the horizontal and vertical field of view of the camera
were discretized into a 100 × 100 grid for raytracing, and
used θ = 15.

1) Experiment I: We evaluated our viewpoint estimation
algorithm’s ability to deliver images that can be used for
answering checking questions on questions frequently asked
during the initial deployment (Sec. III):

Q1. Is {person} in his/her office?
Q2. Is there anyone in the mobile robotics lab?
Q3. Is the breakout area occupied?
Q4. Is the conference room occupied?
Q5. Is there a stapler in the printer room?1

Note that all questions were yes/no questions. The corre-
sponding best fit information descriptors for the questions are
shown as the column headers in Fig. 4. We ran the viewpoint
estimation with the iterative refinement four times throughout
a day for each checking question. We choose the timing of
the run so that the ground truth answer for two runs were
“yes” and the other two runs were “no”. However, we did
not control the visibility and reachability conditions of the
target locations to capture natural variations in the building
environment. Fig. 4 shows the returned images from each
run and Fig. 6 shows the details of the viewpoint estimation
algorithm for Q2 and Q3 runs.

Viewpoint quality. To understand potential users’ ability
to extract answers from images chosen by our viewpoint
estimation methods, we conducted a user study with 10
building occupants. For each image returned from the runs

1Equivalent to “Is there free food in the kitchen?”
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Fig. 4. Returned images from the experiment I runs. The first two row show images from the runs with the ground truth answer “yes” and the next two
rows show images from the runs with the ground truth answer “no” for the corresponding checking questions (columns). The column header displays the
best fit information descriptors for the corresponding checking questions (Q1–Q5).
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Fig. 5. Distribution of answers generated by user study participants from
images captured by the robot.

described above, we asked participants to respond to the
corresponding checking question (Q1-Q5) based on the im-
age. Response options were “definitely yes”, “probably yes”,
“I don’t know”, “probably no”, and “definitely no”. Fig. 5
shows the results from the user study. We consider a response
to be correct if a user responds with “definitely yes” or
“probably yes” when the ground truth answer is “yes” or if
they say “definitely no” or “probably no” when the ground
truth answer is “no”. We consider a response wrong if the
user’s answer contradicts the ground truth and undecided if
the user responds with “I don’t know.”

Overall participants achieved a high classification accu-
racy, particularly for questions Q2, Q3, and Q4. It can be
observed from Fig. 4 that high “I don’t know” rates and
non-zero wrong response rates are due to the limitations of
the sensors or the encountered situation (e.g. target locations
blocked by closed doors or bad lightening conditions) rather
than a limitation of the algorithm. For example, in the 4th
run for Q1, 90% of participants said they were undecided if
there is a person inside the office because they observe the
door being closed; not because the robot did not provide
sufficient information. In other words, if the users were
to try and answer Q1 in this situation by going to the
target location themselves, they would reach the same answer

through passive observation. Similarly in the third run of Q5,
all of the participants indicated that they did not know if
there was a stapler in the printer room because the door to
the room was closed.

In the other runs of Q5, the wrong and undecided answers
are due to the difficulty of seeing the stapler in the small
and reduced-quality image (due to lighting). This problem
could be mitigated by allowing the robot to navigate into the
room to obtain a better viewpoint, post-processing images to
enhance color contrast, or allowing participants to zoom in
on parts of the image to obtain the answer.

Handling dynamic changes. Fig. 6 illustrates how the view-
point estimation algorithm adapts to dynamic changes in the
environment by selecting alternative viewpoints with similar
information content. For Q2, the robot was able to capture
the view of the lab’s inside through its door when it was
open, but also through its window when the door was closed
and the blinds on the window were open (run 3). Similarly
for Q3, the robot navigated to the other end of the breakout
area and turned around to capture the view of the area, when
it encountered a whiteboard blocking the view from its initial
viewpoint.

2) Experiment II: Next, we considered the retrospective
querying scenario in which the viewpoint estimation is
performed on previously collected data. This captures sce-
narios that involve questions concerning the past (“Was Mike
Chung in the robotics lab?”) where the system attempts to
provide a response based on incidental visits to a place while
performing other tasks involving navigation (e.g. patrolling
or delivery). We considered four such cases. In the first two,
the robot was navigating near the breakout area as shown in
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Fig. 6. Viewpoint estimation details for Q2 and Q4 in Experiment I. The
evaluated quality of each viewpoint, based on P (I = 1|v, s;M,D), are
displayed as colored arrows over the 2D map. Warm colors (red) indicate
greater quality. The camera field of views of the selected optimal viewpoint
are drawn with the purple lines and the image captured from this viewpoint
is shown. The dynamic changes to the environment that influenced the
viewpoint estimation algorithm are annotated in red.

the left column of Fig. 7 and the viewpoint estimation was
later used to answer the question Q6: “Was the breakout
area occupied?”. In the latter two cases, the robot was
navigating near the conference room as shown in the right
column of Fig. 7 and the viewpoint estimation was later
used to answer the question Q7: “Was the conference room
occupied?”. In all cases, the viewpoint estimation algorithm
was used with the latest 3D occupancy map available from
the collected data, within the constrained search space of
visited viewpoints.

The retrieved images and details of the runs for this ex-
periment are shown in Fig. 7. We observe that the viewpoint
estimation algorithm produces appropriate responses in the
retrospective question answering setting. In response to Q6,
the robot needs to capture the breakout area from a set of
candidate viewpoints that are tangential to the area (i.e. the
robot went by the breakout area without looking towards
it). We see that the algorithm selects viewpoints that are
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Fig. 7. Experiment II results. The path taken by the robot is shown with
the green line and the evaluated quality of viewpoints along this path are
displayed as colored arrows. Warm colors (red) indicate greater quality. The
camera field of view of the selected viewpoint on the path is shown with
the purple lines and the image captured from this viewpoint is provided. For
reference, the optimal viewpoint that would have been selected if the robot
were to navigate back to the scene to capture the requested information is
shown with the orange lines.

further away in the path such that the target area can be
captured on one side of the robot’s field of view. In run 1,
the robot is able to choose viewpoints that are further from
the target area than in run2, and hence captures more of the
area by exploiting the fact that the bridge-like corridor does
not have walls obscuring the robot’s view of the target area.
In response to Q7, the robot is able to capture a larger part of
the target conference room by choosing viewpoints near two
different doors to the room in the two different runs where
the robot was navigating in opposite directions.

VIII. DISCUSSION

We tackled the problem of using mobile robots to check
information about the environment in order to answer a
question asked by a user. Overall, our findings indicate that
the proposed framework and the implementation presented in
this paper address the problem reasonably well. Our previous
work motivated the usefulness of this capability from an
end-user perspective [1], while this paper demonstrates the
feasibility of autonomously providing this capability.

There are nonetheless several assumptions made in scop-
ing our problem and some limitations to the proposed
approach. First, we assume that the user’s question mentions
a single target location that can be feasibly captured from a
single viewpoint. We consider a question such as “Is Mike
Chung in this building?” as a search type question, and
therefore out of scope for our framework. However, one
can imagine a search method that embeds our approach for
checking information at multiple target locations, within a
larger planning framework. Similarly questions that mention
multiple target locations, such as “Is Mike Chung in the
robotics lab or his office?” are not handled by our natural
language component; however, this task could simply be



considered as two separate information checking requests.
Another limitation is that the human users need to extract

the answer to their own question from the provided image,
rather than receiving a definite answer. Although this part
of the task could also be automated with recent image
understanding methods, we chose to leave it to the users
since they can perform image understanding tasks robustly
and efficiently [35]. Finally our work focused on capturing
information from a single image while images from multiple
viewpoints or multiple images from the same viewpoint (to
capture dynamic events) could potentially provide answers
to a richer set of questions.

IX. CONCLUSION

We present a framework and an end-to-end system for
answering natural language questions from users about the
robot’s environment. The robot parses the question into an
information request and computes the best viewpoint for
capturing the information, based on a semantically annotated
map of the environment. It then navigates to this viewpoint,
while re-computing the optimal viewpoint based on the most
up-to-date state of the environment, and returns an image that
contains the answer to the user’s question. We evaluate our
system with questions collected from diverse inhabitants of
the building in which the robot is deployed. We demonstrate
our system’s ability to parse these questions and choose
appropriate viewpoints to answer them in different states of
the environment. We also demonstrate that our method can
be used for answering question retrospectively, by selecting
a previously recorded image to answer a question.
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