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Abstract—The proliferation of consumer Internet of Things
(IoT) devices offers as many convenient benefits as it poses
significant vulnerabilities. Patching or otherwise mitigating these
vulnerabilities will be difficult for the existing home security
ecosystem. This paper proposes a central security manager that
is built on top of the smarthome’s hub or gateway router and
positioned to intercept all traffic to and from devices. Aware of the
status of all devices in the home and of reported vulnerabilities,
the security manager could intervene as needed to deter or
alleviate many types of security risks. Modules built atop this
manager could offer convenient installation of software updates,
filter traffic that might otherwise exploit devices, and strengthen
authentication for both legacy and future devices. We believe that
this design offers the potential to increase security for smarthome
IoT devices, and we encourage other researchers and regulators
to explore and extend our ideas.

I. INTRODUCTION

The Internet of Things (IoT) is rapidly becoming a reality.
New IoT technologies are emerging at a rapid rate, with a
forecast of 6.4 billion connected devices in 2016 and 20.8
billion in 2020 [14]. When considering homes alone, current
estimates suggest that there are hundreds of millions of IoT
devices deployed within homes in the United States [24].

These devices bring many benefits, but they also carry with
them significant downsides, including potential computer secu-
rity risks. In this work we propose a central security manager
platform for home IoT devices and extend it with modules to
increase security at various points of the vulnerability lifecycle.

Recent events show concrete examples of real and signif-
icant harm that results from the vulnerabilities in smarthome
IoT devices. Perhaps the most publicized example is the recent
use of compromised IoT devices to mount massive DDoS
attacks from millions of devices — both against journalist
Brian Krebs at 620 Gbps [5] and against DNS company Dyn
at 1.2 Tbps, which resulted in major sites being inaccessible
for several hours [29, 35]. Other potential harms include the
compromise of IoT devices — either for use in ransomware
attacks [20] or to cause physical harm to homes or residents
(e.g., unlocking doors [12], popping lightbulbs [23], or even
problems that prevent users from turning on the heat [4]).

An ideal solution could simply ensure the rapid patching
of vulnerable devices. Unfortunately, software updates for IoT
devices are easier said than implemented, for several reasons:

• Missing software update capabilities: Some of IoT devices
may not be configured to receive software updates — they
may keep forever the software that they are shipped with.

• Devices outlive software updates: Some IoT devices —
like refrigerators and water heaters, which people buy with
the expectation that they will last decades — might receive
software updates for only a fraction of that lifetime, if their
manufacturers choose to stop maintaining the device’s
software. In other cases, devices may be produced by
startups that, after selling many devices, either go out of
business or are purchased by another company, which then
chooses to cancel the original product line (as well as
maintenance on the already sold products). For example
the Revolv device was acquired by Nest and shut down
in May 2016 [15]. For their remaining lifetimes, these
devices may remain vulnerable to external compromises.

• Challenging to apply available updates: Even if a software
update is available for some classes of IoT devices, it may
be challenging to apply. Some IoT devices require users
to actively install updates: specifically, to remember that
they have a specific IoT device in the home, notice that
it has received an update or recall notice, and then go
to that device to initiate a software update. Relying on
users may not work — for example, thousands of Foscam-
manufactured baby monitors with a remote-control vul-
nerability remained unpatched because buyers were un-
aware of Foscam’s patch [16]. Even automatic updates,
however, may be challenging to apply. Devices might
need to restart to update their firmware, causing gaps in
availability. Further undesirable consequences could ensue
if manufacturers update the firmware on a light switch at
night when the user is moving around the house or on a
water heater when someone is showering.

Thus, IoT devices will inevitably have security vulnerabili-
ties, and quickly patching those vulnerabilities will not always
be straightforward. Therefore, we propose an approach to close
the gap: instrumenting the home with a centralized, hub-based
security manager that is positioned inside the home’s gateway
router to intercept all communications and protect vulnerable
devices.

This security manager should be extensible, with modules
that support varying security goals — for example, filtering
traffic to vulnerable devices or strengthening weak device
authentication. Such modularization lets us isolate the code
for different security goals and defenses into separate compo-
nents and lets different teams (possibly even from different
organizations) develop modules independently. We envision
the underlying security manager’s business model resembling
that of today’s desktop anti-malware vendors. Our proposed
modules can help improve security for IoT devices at several



points after the discovery of a vulnerability: (1) after a vul-
nerability is discovered but no patch is available, (2) after a
patch exists but is not yet applied, (3) during the application
of a patch, and (4) in the case of compromise. Though our
approach cannot eliminate all challenges at all of these stages,
it can significantly raise the bar for security.

Contributions. We demonstrate the value of a hub-based
security manager. In doing so, key contributions include:

1) Clearly defining goals for such a security manager across
several stages of the device-vulnerability lifecycle.

2) Exploring an extensible hub architecture that supports
individual modules for specific security goals.

3) Evaluating our proposals with several case study module
implementations built atop a prototype of our security
manager design.

Additionally, we provide lessons and recommendations for
future hubs and smarthome IoT deployments. These lessons
have the potential to inform the directions that industry and
government take — for example, the U.S. National Telecom-
munications and Information Administration (NTIA) is run-
ning off a multi-stakeholder effort to improve the security of
IoT devices [2], and the Federal Trade Commission (FTC) has
announced a competition for IoT device security specifically
focused on devices that currently exist in the market [32].

II. RELATED WORK

IoT and Security. First, we look at the wider literature on
consumer embedded device security to identify challenges and
security goals for IoT. Researchers have identified vulnera-
bilities in cars [6, 17], medical devices (reviewed in [27]),
augmented reality [26], drones [31] and GPS [22].

Denning et al. offer a series of threats and case studies in
a 2013 CACM paper [8], and look specifically at household
robots in [9]. Fernandes et al. discover multiple privilege
escalation vulnerabilities in a common brand of home IoT
devices [12], while Yu et al. propose decentralized middle-
boxes to prevent unapproved communication between IoT
devices in the home (for example, if one device has been
compromised) [36]. Fernandes et al. present a system that
enforces data flow policies on IoT devices [13].

Protecting Vulnerable Devices. Numerous researchers have
explored the software update space, but few have focused on
IoT devices. The 2006 paper from Bellissimo et al. foreshad-
owed the importance of updates to the IoT [3]. Kuppusamy
et al. note that solutions for PC updates are insufficient for
other systems, such as cars [18], and Samuel et al. identify
update integrity verification challenges that could be particu-
larly difficult for embedded devices [28]. Researchers have also
focused on the usability challenges of applying updates and
patches [19, 34], particularly important in this space because
many current devices require manual intervention to update.

Wang et al. proposed Shield [33] , which operates between
the transport and application layers to detect traffic patterns
that indicate the exploitation of a worm. We build on these
ideas to address challenges specific to IoT.

III. CONTEXT, GOALS, AND THREAT MODEL

Before discussing our proposed design, we elaborate on
our motivation and goals, which we consider to be a core
contribution of this paper.

A. Motivation and Context

Hubs and Routers: A Vantage Point for Defense. IoT
platforms for smarthomes are rapidly evolving, with numerous
industry efforts vying to establish a leadership position. Man-
ufacturers place the controllers for their devices in the cloud,
in the home, or in some combination thereof. For example, the
2015 edition of Samsung’s SmartThings hub runs most apps
in the cloud, but allows some apps to run in the home so the
apps still function when the Internet is disconnected [1]. Our
solution works with both local and cloud functionality.

For any IoT device without its own Internet connection —
i.e., any IoT device without an internal cellular modem (or a
connection to a device with a cellular modem) — the device’s
communications by definition must transit through some other
Internet-connected device. For some devices, this transit point
is not currently called a “hub”: for a WiFi security camera
or the Amazon Echo, it might be the home’s WiFi router.
Therefore, to include the maximum number of devices, we
propose that our hub security manager be located within a
device that has both gateway router and hub capabilities.

Additionally, since our goal is to protect vulnerable devices,
we place our security mechanisms within the local network.
For example, a cloud-based mechanism might not detect out-
of-band attempts to compromise a device or have the vantage
point to detect anomalous network activity emanating from
the device. Hence, our vision is a centralized device within
the home that is connected to all the home IoT devices and
provides the network connectivity for those devices.

Existing and New Devices. Our proposal is to take both
a short-term and a long-term vision on IoT security for
vulnerable devices. For our long-term vision, we envision
IoT devices designed to work with our proposed system.
This vision is feasible if a major industry player adopts our
approach. Nevertheless, we acknowledge that legacy devices —
those built before our system becomes widely adopted — will
still exist on the protected homes’ networks. Thus, while our
system cannot provide as much protection for legacy devices
as it can new, compatible, devices, we still seek to significantly
improve security for legacy devices.

B. Goals

Providing Flexibility and Functionality. Our design seeks to
be sufficiently flexible to handle a diverse set of security goals.
To do so, our security manager design must be extensible to
new scenarios, devices, and information about existing devices.

Currently, when a device is vulnerable and not fixable,
users can either leave it on, or, if they are aware of and
concerned about the vulnerability, remove it from their net-
work. Unfortunately, many home IoT devices do not function
correctly without Internet connectivity. We believe that it
is possible to offer intermediate options that curtail some
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Fig. 1: The Device-Vulnerability Lifecycle. Stage 1: vulnerability
discovery (no patch yet); stage 2: patch exists but not yet acquired;
stage 3: patch application; and stage 4: compromised device.

functionality if necessary to protect the device, but do not
completely disable it.

Mitigating Points the Device-Vulnerability Lifecycle. This
section explores distinct moments in the lifecycle of a vulner-
ability for an IoT device and identifies threats and mitigations
for these points. We consider the formulation of these security
goals to be a contribution of this paper, and we encourage
other researchers to extend our solutions to these goals.

Security risks emerge at different stages of the vulnerability
lifecycle between vulnerability and patch as shown in Figure 1:

• Stage 1. Vulnerability discovered but no patch exists yet.
• Stage 2. Vulnerability discovered and patch available.
• Stage 3. During the application of a patch.
• Stage 4. If a vulnerable device has been compromised.

Stage 1: Vulnerable and No Patch Yet. IoT devices are
particularly vulnerable in this stage, when the world knows
about a specific class of vulnerabilities but no patches yet exist.
Since some vulnerabilities are never patched, some devices
will remain in Stage 1 permanently. In this stage, the goals
include: identifying affected devices, filtering attack flows to
these devices, and addressing common vulnerabilities. Our
analysis of recent CVEs (public vulnerability notifications) in
Section VI-A shows that common vulnerabilities not directly
addressed by filtering include bad authentication, cross-site
request forgery (XSRF), and certificate spoofing. To mitigate
these, the hub should:

• Identify affected devices. The hub should be able to
identify vulnerable devices in the home network. In some
cases this might be straightforward, e.g., if there has only
ever been one device of a specific type on the market and
the presence of that device is very visible on the home
network. In other cases this might be challenging, such as
when the vulnerability disclosure is be for some depen-
dency of a large number of products — e.g., a version of
OpenSSL — and the hub would need to identify all devices
in the home that depend on that version of OpenSSL.

• Filter attack flows to IoT devices. After a vulnerability
is discovered, known attack patterns will emerge. Re-
searchers have previously made use of traffic patterns to
detect desktop malware: for example, traffic exploiting a
buffer overflow vulnerability might have a characteristic
packet-length [33]. The hub should prevent the exploita-
tion of known-vulnerable IoT devices by preventing these
flows from reaching the IoT devices.

• Improve authentication. An attack pattern that has been
prominent in the recent DDoS attacks is the exploitation of

hard-coded administrative usernames and passwords [5].
The hub should prevent exploitation of this vulnerability.

• Mitigate XSRF vulnerabilities. Cross-site request forgery
(XSRF) attacks are difficult to filter because they appear
similar to valid commands from an authenticated user. The
hub should prevent exploitation of IoT devices known to
have XSRF vulnerabilities by adding additional authenti-
cation.

• Secure vulnerable SSL connections. If a device does
not correctly verify SSL connections, an attacker could
impersonate the remote server or user that the vulnerable
device is talking to. The hub can remove the vulnerability
on the external network by intercepting the traffic itself
and then making a properly verified connection to the
remote server.

• Inform user. Vulnerable devices can put many people
besides the user at risk, including other people in the
home and people and devices across the internet who
might be the target of DDoS attacks. However, if the user
does not see the effects, they may not realize that one of
their devices is compromised — or in danger of becoming
compromised. Therefore, the hub should empower the
user with information about the state of their network,
including the presence of any vulnerable devices.

• Quarantine affected APIs. The hub should also have the
ability to quarantine vulnerable devices, thereby reducing
the likelihood that they will be compromised. There are
several possible approaches to quarantining, including
quarantining every vulnerable device, quarantining only
devices whose vulnerabilities are not sufficiently mitigated
by filtering, or only quarantining devices at the request
of the user. Ideally, quarantining would not shut off all
functionality of the device; for example, if only a small
number of APIs are vulnerable, then only blocking those
APIs would allow the device to still partially work.

Stage 2: Acquiring the Patch. As with Stage 1, IoT devices
are particularly vulnerable at this stage — we assume that
adversaries have the knowledge and ability to compromise
these devices. Therefore, since a patch is available, we seek to
facilitate rapid patching of vulnerable devices. Unfortunately,
updating a device might require user intervention, and even
if the patch can be applied without user intervention, there
maybe risks with updating the device at certain times (e.g.,
updating lights in the night when there is a risk of a someone
falling in the dark or rebooting the smart oven right when it
is time to make dinner). In both the manual and automatic
cases the software update might be delayed, which leads to
the following goals:

• Alert user of the update’s presence, for devices that
need user input to update. Some devices require users to
explicitly run some software, or otherwise interact with the
device in order to perform an update. For example, many
home routers require the user to download the patch and
then upload it to the router. The hub must inform the user
of the presence and importance of the update, as well as
pointing them to instructions for installing the patch.

• Filter, quarantine, and secure devices. The presence of
a patch will likely cause more adversaries to become
aware of and attempt to exploit the vulnerability, so the
techniques from Stage 1 apply here as well.
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• Cache patch if it is not a good time to update. In many
cases, updating IoT devices requires a reboot because the
updates are to device firmware. Having the device reboot,
and become unavailable, might not be convenient at the
time the patch becomes available. Instead, the hub should
cache patches for devices in the home.

Stage 3: Applying the Patch. Our key goal at this stage is to
enable the application of patches when it is safe to do so. For
example, it could be problematic to update the clothes dryer
when laundry is nearly done in the washer. To safely apply
the patch, we have the following goals:

• User consent for IoT device updates. Even for updates
that will be applied automatically, it is important to
notify the user of the forthcoming update, especially
on a complicated or continually in-use device [34]. For
devices that need user activity to update, this process
might be more involved: if the user-update mechanism is
not significantly secure, the hub should add an additional
level of authentication to ensure the update process itself
is not being exploited.

• Update device at convenient time by using awareness of
home state. Once the user has been notified, automatic
updates should be applied at a time when the device is
not in use (or not in heavy use in the case of devices that
are always active) and is not likely to be needed during
the length of the update process (including any possible
reboots). The hub should determine when to apply updates
based on state of home and the history of use of the device.

• Deal with update failure. Sometimes updates fail or cause
problems; this phenomenon has already been observed
with IoT devices [4]. The hub should notify the user in
the case of update failure and attempt to restore device
state or retry the update in the case of transient failure.

Stage 4: Device Compromised. Despite our best efforts,
devices may be compromised. In that situation, we aim to
prevent, as much as possible, the compromised device from
harming other devices or the home’s security. This is partic-
ularly important when the compromised device is configured
to pass information to a security-critical device: we do not
want the adversary to use a compromised temperature sensor
to report a fire and automatically unlock the door. Therefore,
for compromised devices we seek to:

• Detect anomalies. If a device has been compromised, it
will likely start producing traffic that is inconsistent with
previous traffic or with information from other devices
in the home. The hub should monitor for this and warn
the user when a device is behaving irregularly, which
might be more likely to inspire the user to take action
(quarantine, reboot, update) than a generic warning about
a vulnerability in the device.

• Rate limit traffic from device. If a device has been compro-
mised but its functionality is critical enough that the user
cannot remove it, some effects might still be mitigated. For
example, if it attempts to send a high volume of traffic as
part of a DDoS attack, the hub could block the traffic.

These examples do not nearly cover all the scenarios
possible with a compromised device, but they still significantly

increase security from what is available in current systems.
Due to the extensibility focus in our hub’s design, we believe
that future tactics for compromised devices will work easily
on top of our existing efforts.

C. Threat Model

The threat model for our design considers both legacy and
new devices. In both cases, perfect security does not exist;
instead, our goal is to raise the bar. First, the hub itself needs
to be secure, receive its own software updates, run modules that
are secure and correct, and its manufacturer must be informed
of vulnerabilities. Compromise of the hub is outside our threat
model. To achieve some of our goals, we assume that the hub
can inspect the contents of device traffic, either by design or
due to legacy device insecurity [9]. We assume that when
devices first connect to the hub, they do not provide false
identifying data (e.g. device type or firmware version).

We focus on threats from an adversary who is physically
external to the home. However, such adversaries can view or
modify all network traffic to and from the home and can use
any compromised devices to send traffic inside the home.

IV. SECURITY MANAGER DESIGN

Figure 2 shows the architecture diagram for our proposed
design. In this section, we discuss our design points in terms of
both legacy devices (created without knowledge of the security
manager) and future devices (aware of our security manager).

A. Intercept Communications. The hub should interpose on
all communications between devices and other parties. This
includes communications both from other devices inside the
home network and from entities outside the network (such as
apps running in the cloud).

Legacy Devices. For legacy devices, this requirement means
that the hub should sit within the home gateway router, to
intercept traffic from devices that communicate via WiFi (such
as with many standalone security cameras or the Amazon
Echo). Additionally, the hub should have radios for other in-
home protocols, such as Z-Wave and Bluetooth.

Future Devices. Devices designed using this model will inter-
act directly with the hub: the hub will have a secure connection
to the outside world and to each device, monitoring and
influencing the device’s communications. However, transiting
all data through the hub so it can access cleartext contents
of that data raises privacy concerns if the hub and security
manager are not manufactured by the same entity as the
device. Some traffic content, such as video and audio feeds
from security cameras, may not be necessary for security
manager functionality and could be encrypted end-to-end from
the camera to its cloud provider or remote storage; other, less
sensitive data (e.g., control data) could be intercepted by the
hub. In general, we identify a trade-off between hiding privacy-
sensitive data from the hub and the ability of the hub to protect
vulnerable devices via access to the cleartext contents. We
encourage other researchers to explore solutions.

B. Be Aware of All Home Devices. Since the security manager
sees all device network activity, it can keep track of which
devices are on the network and keep a log of each device’s
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Fig. 2: Architecture Diagram. The hub is also the home’s gateway router so that device communications transit the hub before leaving the
home or reaching other devices, possibly via an intermediate controller. The security manager platform sits atop the communication software,
and serves as an extensible platform for modules that perform specific security functionality. To support the modules, the platform stores device
metadata and logs of device activity. Security manager features are orthogonal to other manufacturer or third-party features operating in the
cloud.

status. By storing this information locally, the security manager
can reason about devices — e.g., determining appropriate times
to reboot devices for an update or deciding whether any devices
have firmware versions affected by a new vulnerability report.

Legacy Devices. Legacy devices may lack APIs available to
report firmware version numbers or other metadata. Since the
hub can access all device communication, it can fingerprint
the device to get that information, even if device traffic is
encrypted. Additionally, if the hub can successfully intercept
communication contents (because they are in plaintext or use
poorly implemented cryptography [9]), it can keep a history of
device status: commands to the devices and information from
the devices.

Future Devices. Devices should accurately report firmware
version and other metadata while they are not compromised.
Additionally, the hub can log all communications it monitors.

C. Pre-Fetch and Install Updates. A core trusted feature of
the security manager is its ability to assist with updating home
devices. The availability and integrity of updates is critical for
secure device functionality.

Legacy Devices. Even for devices that cannot be automatically
updated via the security manager, the home awareness features
could still prove useful. For example, the hub could check the
integrity of remotely available updates and notify users at a
time when they are home and can install the updates.

Future Devices. For new devices, which accept over-the-
air updates pre-fetched by the hub, we can do much more,
including downloading updates, checking their integrity, and
storing them in the hub. After user notification, we can then
install the updates that support automatic installation.

D. Provide Extensibility. Our security goals may be achieved
more effectively in pieces, by multiple engineering teams with
various types of expertise. For example, anti-malware expertise
might help an engineer determine patterns in attack traffic that
could serve as the basis for a filter. To leverage a diversity
of expertise and handle the breadth of associated problem
domains, the security manager is designed to be extensible:
engineers can add modules to support specific functionality.
Modules register at any or all of four points exposed by the
security manager:

• When new devices are added to the system.
• When any command is headed to the device.
• When any reading comes from the device.
• Independently of device communication, at certain times.

To make our proposal concrete, we explore some specific
modules below that address different points in the vulnerability
space. We then evaluate some example modules in Section VI.

V. SECURITY MANAGER MODULES

We envision modules being built on top of the security
manager to address specific classes of vulnerabilities or points
in the vulnerability lifecycle. Using separate modules for
different security goals lets us confine the trusted computing
base for each security goal to the security manager and the
relevant module rather to than the system as a whole. We
explore this vision by proposing several example modules.

A. Modules for Stage 1: Vulnerable (no patch yet)

• Identify affected devices. Currently, users may not know
the manufacturer or firmware version of their IoT devices;
therefore, even if they hear about a vulnerability, it might
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not be easy to discover if it applies to any of their devices.
However, because our security manager is designed to
store device type, manufacturer, and version information
for each device, it can automatically determine which
devices are affected when given a vulnerability report.
A module, could example, continuously pull from US-
CERT’s CVE list [21] and compare new vulnerability
notifications against the set of devices in the home.

• Filter attack flows to IoT devices. In 2004, Wang et
al. introduced network-level Shields (sitting between the
transport and application layer) to filter out exploit traffic
before devices have been patched. Originally applied to
worms [33] and dynamic HTML [25], the Shield idea
seems fitting in the IoT space, where updates may move
more slowly than attacks, and firewall rules are too restric-
tive. Since the security manager has accurate information
about firmware versions for un-compromised devices, we
propose a filtering module that checks for devices with
vulnerable firmware versions and pulls new filter rules
from a trusted third party (such as the CVE list or other
public vulnerability notifications).

• Improve authentication. Yu et al. (2015) propose changing
default passwords on IoT devices — without having to in-
form the user — by having a network middlebox translate
between the old password entered by the user and a new,
secure, password written to the device [36]. With the
information in the hub and a list of default usernames
and passwords for given device and firmware versions,
a module could change these passwords automatically,
without any user input necessary.

• Mitigate XSRF with two-factor authentication. Cross-site
request forgery (XSRF) attacks could make attacker-
initiated commands appear to come from an authenticated
user. Using the hub’s ability to intercept communication
and awareness of the current status of multiple devices,
we envision a module that delays commands for devices
known to have XSRF vulnerabilities until users provides
a second factor of authentication to verify their request.
For example, the module could use the status of several
home sensors to ensure that the user was truly present,
or even require the toggling of a specific sensor or button
shortly after the command.

• Secure vulnerable SSL/TLS connections. Denning et al.
discovered that some IoT devices do not verify server
certificates when performing a key exchange [9]. There-
fore, an adversary could spoof or intercept the connec-
tion. However, because our hub is designed to intercept
all traffic to and from devices, a module on the hub
could spoof the connection proactively: terminating the
unvalidated connection before it leaves the home and
connecting securely and verifiably with the remote server.
This security increase — essentially, man-in-the-middle as
a service — is achievable only because our proposed hub
runs locally within the home.

• Inform user. A hub module could notify the user of
vulnerable devices via various means such as flashing
lights or push notifications.

• Quarantine. If a device has a vulnerability whose exploita-
tion cannot be blocked by the filtering module, it may
be necessary to drop all traffic headed for the device or
all traffic that uses a particular device feature or API.

Since the hub intercepts all traffic, it has the ability to
enforce this sort of selective quarantining, rather than the
all-or-nothing, connected or disconnected, solution present
today.

B. Modules for Stage 2: Acquiring the Patch

• Alert the user of the update’s presence. Even if users know
that one of their devices is vulnerable, they may not know
how to obtain an update once one exists. We envision a
module that uses the hub’s knowledge of device details
to cross-check current device version numbers against the
manufacuturer’s website or a centralized database. This is
a particularly important solution for legacy devices that
do not support over-the-air updates.

• Continue the security measures from Stage 1. The device
is still vulnerable at this stage so the modules described
above could all still be useful. However, a quarantine
might need to be temporarily lifted in order for the device
to acquire its update.

• Pre-fetch patch. For devices that accept updates locally
(either because they lack over-the-air update capabilities
or were designed with our security manager in mind), a
module on the hub can check for updates and pre-fetch
patches. Pre-fetching might be particularly valuable if, for
example, a battery-powered device is offline when the
patch becomes available, or if there are multiple, identical,
power-limited devices (e.g., many lightbulbs) that need
simultaneous updating.

C. Modules for Stage 3: Applying the Patch

• User consent for IoT device updates. Beyond the infor-
mation and notification discussed in the previous stages,
an update module could also solicit a second factor
of authentication from the user — similar to the XSRF
mitigation described above — for update procedures that
are less secure.

• Home state aware update timing. For updates that can be
applied automatically and have been pre-fetched to the
hub, we propose a module that applies the hub’s collected
history of device status and usage to determine a safe,
convenient time to install the update (and reboot the device
if necessary). This determination could be based on simple
heuristics, such as time-of-day usage patterns, or on more
advanced machine learning techniques.

• Dealing with update failure. If an automatic or user-
activated update fails, the hub can inform the user and
retry the update. It can also use its backups of device
state to refresh information on the device if needed.

D. Modules for Stage 4: Device Compromised

• Detect anomalies. The first challenge in dealing with a
compromised device is detecting its compromised state.
To this end, we envision an anomaly detection module that
can make use of both device state history and information
from other home devices (particularly sensors) to detect
unlikely information emanating from the device. Detection
could be based on simple heuristics or machine learning.
This requires that the hub store baseline information about
the device prior to its compromise.
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Vulnerability type Num. Fixable w/ Hub? Main Modules Used
Filterable 19 16-19 (84-100%) Filtering
Authentication 5 4-5 (80-100%) Several (see description)
XSRF 4 4 (100%) Two-factor authentication
Certificate spoof 3 3 (100%) Several (see description)
Denial of service 1 1 (100%) Quarantine
Other/unknown 4 0-1 (0-25%) Unknown
Total 36 28-33 (78-92%)

TABLE I: Analysis of recent IoT related CVEs. About half of the
CVEs could be mitigated by simple filtering. Additionally, for all
categories within the scope of our threat model, the security manager
could perform some mitigation.

• Rate limit traffic. A particular behavior of compromised
devices may be sending a high volume of traffic to an
unusual end point as part of participation in a DDoS
attack. A rate-limiting module can track traffic frequency
from each device and block devices that send too quickly.
This module’s behavior is possible only because the hub
runs locally: if data from the device needed to reach the
cloud in order to enforce this security property, its benefit
would be significantly reduced. Rate limiting is also useful
in the other direction (traffic to a device) for safety purpose
(e.g., to avoid flickering a light switch [23] or denying
service to an alarm system).

Stepping back, these modules offer an outline of the
possibilities that a hub-based security manager might offer.
Due to the extensibility of the design, all of these features
are feasible insofar as they are needed or supported by the
end devices. This provides confidence that additional security
modules designed by other researchers in the future will also
work easily with our security manager’s design.

VI. EVALUATION

We seek to assess whether our design applies to real
vulnerabilities (Section VI-A) and also whether it supports the
easy development of modules to address different points in the
vulnerability lifecycle (Section VI-B).

A. Common Vulnerability (CVE) Analysis

Table I shows an analysis of Common Vulnerabilty and
Exposure (CVE) notifications from 2012-2016 based on a
search using keywords related to IoT. This sample illustrates
the types of vulnerabilities found in IoT devices.

About half of the CVEs considered could be mitigated by
filtering; in nearly all of those cases, the hub would be able
to do so. These CVEs included cross-site scripting attacks,
directory traversal attacks, buffer overflow, SQL injection, and
crafted URLs or other specialized behavior. In the remaining
three cases, the author of the filtering module would need more
information than was available in the CVE.

For the other in-scope vulnerability types, the security
manager design is similarly successful. The denial of service
attack requires quarantining the device and notifying the user.
Cross-site request forgery vulnerabilities could be addressed
via the addition of a second-factor device. Since the security
manager is aware of multiple devices in the home, it could
delay the request to the vulnerable device until it receives
a signal from the second-factor device. Most complicated
to mitigate would be certificate spoofing — because the spe-
cific vulnerabilities deal with the update process — and bad

authentication — because the mitigation (filtering, fixing the
authentication, quarantining, and notifying the user) depends
heavily on the vulnerability.

Finally, 4 CVEs were out of scope, with situations like
compromise before the device could connect to the hub, which
is outside our threat model, or with insufficient information
about the vulnerability in the CVE.

B. Case Study Modules

In Section V, we introduced a number of modules that
address different points in the IoT vulnerability lifecycle from
Section III-B. Here, we assess the ease and feasibility of
prototyping example modules on our framework.

To prototype these modules, and to focus our work on
exploring the security manger itself, we do not work with real
devices but instead emulate them. We use Microsoft Research’s
HomeOS [11] to capture both data from real Z-Wave devices
(the versions of Aeon Labs’ controller, multisensor, switch, and
door-window sensor compatible with the driver in HomeOS1)
and commands from HomeOS apps to these devices. Then,
we replay that data from our emulated devices and spoof
an attacker or compromised device. This approach provides
the greatest flexibility to evaluate our system under both real
and synthesized adversarial conditions, and it particularly lets
us experiment with vulnerabilities that are not present in
the specific versions of the devices we use. We prototype
a security manager platform that intercepts communications,
stores histories of device status, and offers the extensibility
API points that we proposed in Section IV. Finally, we built
the modules discussed below on top of the prototype security
manager platform.

1) Filtering Traffic: Our first prototype evaluation ad-
dressed filtering for known vulnerabilities not yet patched on
the device. Our implementation was inspired by the Shield
work [33] and a CVE for the Foscam security camera describ-
ing a directory escape vulnerability that allowed the passwd
file to be exfiltrated to a remote attacker [7]. To mitigate
this vulnerability, we intercepted traffic bound to the device,
used stored information about the device’s firmware version,
and then filtered all commands to devices with vulnerable
firmware versions for the string "..". Although this filter
is extremely simple, the structure of the module allowed
the addition of additional filters based on device metadata
(manufacturer, device type, version number), with only a few
lines of code per filter. Although creating such filters currently
requires manually examining the CVE disclosure page and
determining a patch, future work might automate this function.

2) Patching at a Convenient Time: We focused our patch-
ing module prototype on the challenge of determining ap-
propriate times to patch. This made use of the whole-home
awareness of the security manager, checking the history of
use patterns of each device, so that, for example, the switch
is not out of service when the homeowner is likely to use the
lights. Additionally, since updates might require the system to
be rebooted, the switch must be in the off position for the
update to be the least disruptive. This module used historical

1Devices can be found at https://labofthings.codeplex.com/wikipage?title=
Lab\%20of\%20Things\%20Devices.
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information about the device under consideration and could
be expanded to use information from multiple devices; for
example, high luminosity readings on an adjacent multisensor
might indicate less need for the lights. The module ran
asynchronously, independent of device or app input after being
started when the first device was connected.

3) Rate Limiting: An unusually high bandwidth of traffic
from a device could indicate a compromise and participation
in a DDOS attack, while frequently flipping commands to
a device could be bad for the device and a sign of an
incorrectly configured app. We prototyped a small rate limiting
module. This required minimal state (the time of the last device
interaction), and the same (less than 10 lines of code) check
could be used for traffic in either direction by registering the
module on both entry-points.

Summary of Evaluation. Our evaluation confirmed the valid-
ity of our proposed direction: leveraging an extensible, hub-
based security manager to improve the security of a home’s
IoT ecosystem. The CVE analysis showed that the modules
we envisioned could address common vulnerabilities in IoT
devices; the prototype module evaluation confirmed that the
extensibility API in our proposed design facilitates module
implementation.

VII. DISCUSSION

As mentioned in the threat model (Section III-C), the
security of the hub itself is critical if it is going to successfully
secure other devices in the home. As a single point of failure,
the hub may offer a more promising target for attack, but its
manufacturer will have significantly more resources to devote
to security than individual device makers since security is
inherent to the hub’s function. Additionally, trade-offs must
be made in the security of individual modules: for example,
locking down remote updates may make it difficult for users
to add third-party software to their devices or keep it up-to-
date, perhaps stifling innovation; however, allowing updates
without full integrity checks could allow malicious actors to
compromise home devices. Another trade-off comes in mod-
ules such as anomaly detection that collect information about
many devices over time, which may have privacy implications.
We encourage future research to explore these challenges.

As the central security manager design is adopted and
individual devices designed to make use of its presence,
there are opportunities to reduce the vulnerability surface. For
example, many CVEs for WiFi-connected IoT devices come
from running a local webserver that hosts device configuration
pages. A device designed with a hub-based security manager in
mind can outsource its configuration to an app running locally
on the hub, as suggested in the HomeOS work [10,11] and ap-
pearing in the 2015 incarnation of Samsung’s SmartThings [1].
Finally, although we focused on the smarthome environment,
we imagine that our design and lessons could serve in other
contexts. For example, some IoT devices are mobile, such as
cars, and may have additional challenges [18]. IoT devices are
also widely used in enterprise or industrial settings, which may
have significantly more devices than a home. We believe our
ideas carry over and we encourage other researchers to further
explore challenges specific to these settings.

VIII. CONCLUSION

Home IoT devices — and security vulnerabilities on home
IoT devices — now pervasive, pose vulnerabilities as sub-
stantial as their benefits. Quickly patching IoT devices to
remove vulnerabilities is not always straightforward due to the
longevity of some home appliances, the lack of software update
capabilities, and the challenges of predicting a convenient time
to update. This paper proposes an approach to reduce the harm
from unpatched vulnerabilities: a security manager on top of
a centralized IoT hub. This manager would be located inside
the home’s gateway router so that it can intercept commu-
nications to and from devices and have the vantage point to
detect anomalous network activity from specific devices. Our
proposed manager is aware of all IoT devices in the home
and their usage patterns, and offers an easy-to-use extensibility
API for the creation of modules that address specific classes
of vulnerabilities or points in the vulnerability lifecycle.

Our analysis shows that this direction is viable: a few
modules built on top of the security manager platform could
address many recent home IoT vulnerabilities, and expanding
the modules to address new devices or vulnerabilities would
be straightforward. In proposing this security manager design,
we hope to stimulate research and encourage further work in
this area by academia, industry, and regulators.
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APPENDIX

We provide here the list of CVEs that we analyzed in our
evaluation (Section VI-A). They were collected by searching
the CERT vulnerability list [21] for keywords related to
IoT and Home Automation from the years 2012-2016 and
selecting any that corresponded to IoT devices (as opposed
to routers, software, servers, or other vulnerable categories).
The vulnerabilities are sorted from most to least recent.

CVE-2016-0866
CVE-2016-0865
CVE-2016-0864
CVE-2016-0863
CVE-2015-0739
CVE-2014-9517
CVE-2014-9238
CVE-2014-9234
CVE-2014-2362
CVE-2014-2361
CVE-2014-2360
CVE-2014-1911
CVE-2014-1849
CVE-2013-6952
CVE-2013-6951
CVE-2013-6950
CVE-2013-6949
CVE-2013-6948
CVE-2013-5321
CVE-2013-5215
CVE-2013-3962
CVE-2013-3690
CVE-2013-3689
CVE-2013-3687
CVE-2013-3686
CVE-2013-3541
CVE-2013-3540
CVE-2013-3539
CVE-2013-3417
CVE-2013-2560
CVE-2013-1219
CVE-2012-4621
CVE-2012-4046
CVE-2012-3002
CVE-2012-1288
CVE-2012-0284
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