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ABSTRACT
Quantization naturally exposes knobs in hardware to trade fi-
delity for efficiency: the more bits that are used to represent
the data, the higher the storage and computation overheads.
With the emergence of approximate computing research, we
set out to answer the following question: how effective is
quantization in trading off quality for efficiency, and how
does it compare with other approximation techniques? This
paper makes the case for quantization as a general approxi-
mation technique that exposes fine quality vs. energy trade-
offs and provides practical error guarantees. We assume ar-
bitrary quantization levels, and focus on the hardware sub-
systems that are affected by quantization: memory and com-
putation.

We present QAPPA (Quantization Autotuner for Precision
Programmable Accelerators), an autotuner for C/C++ pro-
grams that automatically tunes the precision of each arith-
metic and memory operation to meet user defined applica-
tion level quality guarantees. QAPPA integrates energy mod-
els of quantization scaling mechanisms to produce band-
width and energy savings estimates for custom accelerator
designs. We use the analysis produced by QAPPA to com-
pare the effectiveness of arbitrary quantization against volt-
age overscaling and neural approximation. Our analysis shows
that when using the right quantization scaling mechanisms
in hardware, quantization provides significant energy effi-
ciency benefits over voltage overscaling and comparable en-
ergy efficiency gains over neural approximation. Addition-
ally, quantization offers more predictable error degradation
and fully tunable error bounds.

1. INTRODUCTION
Energy efficiency is a first-class concern in data centers,

embedded systems and sensory nodes. To improve energy
efficiency, numerous cross-stack techniques have been pro-
posed to bring hardware and software systems closer to their
quality-energy Pareto-optimal design point. Navigating quality-
energy tradeoffs is fundamental to digital systems design,
and often starts with data representation, i.e. how to map a
set of real values to a compact and finite digital represen-
tation. This process is called quantization, and is essential
in keeping computation tractable in digital systems. Quan-
tization offers a natural way to trade quality for energy effi-
ciency by tweaking the number of bits needed to represent
data. Using more bits leads to higher fidelity, but also larger
compute, data movement and memory overheads.

This paper argues towards adopting arbitrary quantization
as a general approximation technique for its effectiveness
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in delivering smooth quality-energy tradeoffs, and practical
error guarantees. Quantization is often overlooked as an ef-
fective way to improve quality-energy optimality due to the
limited quantization levels available in hardware (e.g. single
and double precision floating point), and the large control
overheads found in general purpose processors. This paper
bypasses those limitations by assuming arbitrary quantiza-
tion, i.e. bit-granular precision tunability, and by targeting
hardware accelerators where control overheads are minimal.

We introduce QAPPA (Quantization Autotuner for Pre-
cision Programmable Accelerators), a precision auto-tuner
for C and C++ programs that finds bit-granular quantiza-
tion requirements for each program instruction while meet-
ing user-defined application-level quality guarantees (Fig-
ure 1). QAPPA leverages ACCEPT [1] in order to guarantee
isolation of approximation effects based on lightweight user
annotations. We survey a set of hardware precision scal-
ing techniques and evaluate their ability to improve quality-
energy optimality using detailed RTL models. We feed those
hardware models into QAPPA to identify energy savings op-
portunities that arise from adopting precision scaling tech-
niques in hardware accelerator designs. QAPPA isolates arith-
metic energy savings and memory bandwidth savings, pre-
serving the orthogonality between savings due to specializa-
tion and savings due to approximation in hardware accelera-
tors.
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Figure 1: Overview of the QAPPA Framework.

We analyze the PERFECT benchmark suite [2] with QAPPA
to unveil significant precision reduction opportunities; about
74%, 57%, and 48% of total precision bits can be dropped to
achieve 10%, 1%, and 0.1% average relative error. Respec-
tively, we suggest hardware precision-scaling mechanisms
for hardware accelerators that provide 7.7×, 4.8×, and 3.6×
energy reduction in arithmetic units, and 4.4×, 3.3×, and
2.8× memory bandwidth reduction.

Finally, we argue that arbitrary quantization compares fa-
vorably against other approximation techniques in terms of
quality-energy optimality and error guarantees. Our compar-
ative study of approximation techniques includes a SPICE-
level characterization of voltage scaling-induced faults, and
an analytical evaluation of neural acceleration in terms of
hardware resource utilization. Our evaluation reveals that ar-
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Figure 2: QAPPA Autotuner System Architecture.

bitrary quantization outperforms voltage overscaling in terms
of quality-energy optimality, and provides performance that
is on par with neural acceleration.

We summarize this paper’s contributions below:

• We present QAPPA, an LLVM-based precision tun-
ing framework for C/C++ programs that frees the pro-
grammer from the task of fine-tuning program accu-
racy by inferring instruction granular quantization set-
tings from application-level quality requirements.

• We conduct a detailed survey of hardware precision-
scaling mechanisms that can be incorporated in hard-
ware accelerator designs to offer smooth quality vs. ef-
ficiency tradeoffs.

• We perform a evaluation that compares arbitrary quan-
tization vs. voltage overscaling and neural approxima-
tion, and argue towards the adoption of arbitrary quan-
tization in hardware accelerators as an efficient and
predictable approximate optimization.

In Section 2 we describe the QAPPA precision autotun-
ing framework. In Section 3 we quantify how much preci-
sion can be trimmed off via quantization in the PERFECT
benchmarks. Section 4 evaluates different hardware quan-
tization scaling mechanisms and evaluates the energy and
bandwidth reduction achieved by those techniques. Finally,
in Section 5, we compare arbitrary quantization to voltage
overscaling and neural approximation.

2. QAPPA: A PRECISION AUTOTUNER
QAPPA is a precision autotuning framework built using

ACCEPT [1], the LLVM-based approximate compiler for C
and C++ programs. In a nutshell, QAPPA takes an anno-
tated C/C++ program and user-specified, high-level quality
guarantees to greedily derive quantization requirements for
each program instruction. We discuss the design and imple-
mentation of QAPPA as illustrated in Figure 2. Section 2.1
describes the annotation model used by QAPPA to identify
instructions that are safe to approximate and guarantee pro-
gram safety. Section 2.2 describes how QAPPA instruments
programs to quantify quality loss that results from arbitrary
quantization. Section 2.3 describes the autotuner search al-
gorithm and how it is used to find quantization requirements.
Section 2.4 describes the quality guarantees that QAPPA
provides. The energy modeling toolbox is later discussed in
Section 4, where we evaluate different hardware techniques
that enable energy scaling.

0:  void conv2d (APPROX pix *in, APPROX pix *out, APPROX flt *filter)
1:    for (row)
2:      for (col)
3:        APPROX flt sum = 0
4:        int dstPos = …
5:        for (row_offset)
6:          for (col_offset)
7:            int srcPos = …
8:            int fltPos = …
9:            sum += in[srcPos] * filter[fltPos]
10:       out[dstPos] = sum / normFactor

Figure 3: Program annotation with APPROX type qualifier.
Variables that are safe to approximated are annotated by the
user. The compiler then infers the program instructions that
can be approximated.

2.1 Annotation Model and Static Analysis
QAPPA leverages ACCEPT [1] to provide type-safety and

error isolation guarantees. These isolation guarantees are es-
sential to prevent crashes or catastrophic errors from occur-
ring. QAPPA utilizes the APPROX type qualifiers for approxi-
mate data used by ACCEPT. Consequently, it is the program-
mer’s responsibility to annotate what variables hold data that
is safe to approximate. The compiler then uses flow analy-
sis to infer which instructions are approximable from data
annotations.

Figure 3 shows how one would annotate a simple convo-
lution kernel. Intuitively, data types such as pixels and fil-
ter coefficients can be relaxed, but integer variables that are
used to index arrays should remain precise to avoid out-of-
array writes. In the convolution example, the compiler infers
that the instructions that perform convolution are safe to ap-
proximate (instructions from l.9 and l.10). In addition, it
identifies that the loads from the image source and the stores
to the image destination are also safe to approximate. These
approximable instructions will later be used by the autotuner
as knobs to minimize precision in the target program.

2.2 Assessing Quantization Effects
The QAPPA autotuner relies on a trial-and-error approach

to find locally optimal quantization settings that satisfy user-
defined accuracy metrics. In order to properly assess quan-
tization effects on a given program execution, QAPPA stat-
ically instruments the target program with code that applies
arbitrary quantization to individual arithmetic and memory
instructions. This can be done in LLVM by replacing all
uses of a given static single assignment (SSA) register with
its quantized counterpart. In order to perform floating point
to fixed point conversion, QAPPA performs an initial dy-



Figure 4: The QAPPA autotuner will seek to maximize bit
savings.

namic profiling step on the target program by measuring the
value range of each variable.

The degree of quantization and the rounding policy (i.e.
up, down, towards zero, away from zero, nearest) are defined
for each static instruction in a quantization settings file. The
quantization settings dictate how QAPPA applies varying
levels of quantization to each instruction in the target pro-
gram. The instrumented program gets compiled by QAPPA
to produce an approximate binary. The approximate binary
can then be executed on user-provided input datasets to pro-
duce output data on which to quantitatively assess quality
degradation with user-defined quality metrics.

2.3 Autotuner Design
The goal of the autotuner is to maximize quantization while

satisfying user-specified quality requirements.

Bit Savings.
We define bit savings as a hardware-agnostic metric that

quantifies how much total precision can be trimmed-off in a
program over its execution. QAPPA attempts to maximize
bit savings while keeping application accuracy within user-
specified margins, as shown in Figure 4.

Bit savings are calculated with the following formula:

BitSavings =
N

∑
i=1

(ri−qi)

ri
× ei

∑
N
j=1 e j

where ri and qi denote the precision in bits of the reference,
and quantized instruction i, ei denotes the number of times
instruction i executes, and N denotes the total approximable
instructions in the target program. For instance, if a program
executes only one single precision floating point instruction,
and that QAPPA quantizes that instruction down to 6 bits,
the total bit savings will be 32−6

32 ×
1
1 = 81.25%.

Autotuner Search Algorithm.
The challenge in the design of an arbitrary quantization

autotuner lies in the exponentially large problem search space.
Let us consider a program containing m static instructions,

where each instruction can be tuned to n different preci-
sion levels. In order to find a globally optimal configuration
that maximizes bit savings, the autotuner needs to traverse
an exponential search space with nm possible quantization
settings, each with different tradeoffs between quality and
bit savings. Instead of resorting to a brute-force search to
find the optimal configuration, we use a greedy search which
finds a local optimum in O(m2∗n) worst-case time by select-
ing the path of least quality degradation.

The greedy iterative search algorithm is similar to the ap-
proach proposed in Precimonious [3] which uses a trial and
error tuning approach to selecting the precision of floating
point data. At each step of the search, the QAPPA autotuner
identifies the instruction that affects output the least, and re-
laxes its precision by a single bit. The autotuner repeats the
process until it finally reaches a point where decreasing the
precision of any instruction violates user-defined quality re-
quirements. We discuss the different quality tests that can be
used to guide this search process in Section 2.4. Finally,
the autotuner reports locally-optimal instruction quantiza-
tion settings along with bit savings estimates. Those quanti-
zation settings can then be fed into an energy modeling tool-
box, which we discuss later in Section 4.

2.4 Quality of Result (QoR) Guarantees
Approximation techniques are only practical if they pro-

vide accuracy guarantees to the programmer. Guarantees
are used as a contract between the tools and the programmer
to ensure that the relaxations applied by the tool to the target
program will not violate QoR requirements. Guarantees can
come under different forms: empirical, statistical and hard
guarantees.

Hard guarantees provide the strongest guarantees by as-
suming worst-case error accumulation. A method to ensure
hard guarantees is interval analysis [4], which can be applied
to small functions that do not exhibit asymptotic behavior or
long chains of operations that could lead to high error accu-
mulation. While hard guarantees are the most desirable to
the user, they assume worst-case error accumulation, which
are often not representative of real-world inputs. For that
reason, QAPPA offers empirical or statistical guarantees.

Empirical Guarantees.
Empirical guarantees provide guarantees that are as good

as the datasets provided by the user. This puts more pres-
sure on the programmer to provide satisfactory input cover-
age, akin to what test engineers do in industry to ensure that
code is properly tested, or that learning models are properly
trained. This class of guarantees are prevalent in approxi-
mate computing literature, due to the complexity involved in
providing stricter guarantees [5, 1].

QAPPA provides empirical guarantees by default. The
user has to provide a training dataset, and a validation dataset.
QAPPA’s autotuner traverses the search path of least quality
degradation measured on the training input set, but decides
when to stop its search when error thresholds are violated
on the validation dataset. Having disjoint test and valida-
tion sets prevents overfitting issues. QAPPA also provides
statistical guarantees, which we discuss next.



Statistical Guarantees.
Statistical guarantees provide a way to reason about un-

likely quality violations. Some applications scenarios may
tolerate rarely occurring errors if that means achieving sig-
nificant energy savings. While statistical guarantees make
the most sense in the context of non-deterministic approxi-
mations [6] and statistical sampling-based approximations [7],
they can also be used on deterministic techniques [8]. In the
latter case, the rarely occurring quality violation would be
the result of a corner case input that would lead to worst
case error accumulation.

We augment QAPPA to provide statistical error guaran-
tees in the form of confidence intervals. For example, a con-
fidence interval may imply that the output has an error of
at most 10% with a confidence that is equal or greater than
95%. Such statistical guarantees require the user to specify
an typical input distribution from which to sample random
inputs.

To derive a statistical guarantee, QAPPA measures Nviolation,
the number of times the error has exceeded a given error
bound δ across N input samples that it has sampled from the
user-provided distribution. Then, QAPPA uses the Clopper-
Pearson interval [9] to find an upper bound ε of the proba-
bility of getting errors that are larger than δ . We have:

ε = β (1− α

2
;Nviolation +1,N−Nviolation) (1)

where β denotes the beta distribution and α is a constant that
determines the confidence of the Clopper-Pearson interval.
In all our experiments, we set α = 0.01. Equation 1 entails

Pr[error < δ ]> 1− ε

in which Pr[∗] denotes the probability of an event.

3. PERFECT APPLICATION STUDY
We use QAPPA on the PERFECT benchmark [2] ker-

nels to quantify the opportunity for quantization on compute
intensive workloads. We answer the following questions:
(Section 3.3) How long does the autotuner take to run on
the target program? (Section 3.4) How does increasing the
strength of guarantees diminish opportunities for precision
reduction? (Section 3.5) What dynamic portion of those ap-
plications is safe to quantize? (Section 3.6) For the set of
instructions that can be relaxed, how much precision can be
dropped at different quality constraints? (Section 3.7) How
does increasing the strength of guarantees diminish opportu-
nities for precision reduction?

3.1 Benchmark Overview
PERFECT is a benchmark suite composed of compute-

intensive application kernels that span image processing, sig-
nal processing, compression, and machine learning.

For instance, the Wide Area Motion Imagery (WAMI) ap-
plication represents a typical processing pipeline performed
on giga-pixel scale imagery. WAMI comprises an RGB im-
age generation kernel based on the debayer algorithm, an
image registration kernel based on the Lucas-Kanade algo-
rithm, and a change detection algorithm based on Gaussian
Mixture Models. Table 1 provides an overview of the PER-
FECT kernels.

3.2 Quality Assessment
For quality assessment, we follow the PERFECT man-

ual guidelines for quality assessment [2], and use a uniform
Signal-to-Noise Ratio (SNR) quality metric across all bench-
marks to measure quality degradation.

SNRdB = 10log10

(
∑

N
k=1 |rk|2

∑
N
k=1 |rk−qk|2

)
(2)

The formula used to assess SNR in our benchmarks is pro-
vided in Equation 2, where rk and qk denote the kth reference
and quantized output value. SNR provides an average mea-
sure of relative error. It is also worth noting that SNR mea-
sures error in a logarithmic scale, i.e. an increase of 20dB
corresponds to a 10× relative error reduction. Some ker-
nels do not use an SNR metric by default: gmm of the WAMI
benchmark measures the number of foreground pixels that
have been misclassified. For the sake of uniformity, we con-
vert the classification metric to a logarithmic scale.

3.3 Annotation Effort
The QAPPA framework relies on ACCEPT to apply quan-

tization on program instructions that are deemed to be safe to
approximate. The set of approximable instructions are iden-
tified via data type annotations by ACCEPT, as discussed in
Section 2.1. ACCEPT dictates that approximations must be
applied as an opt-in decision, i.e. if the programmer does not
annotate any variables in her target program, no precision re-
duction will take place. This places the burden of expressing
to the compiler what data can be affected by approximation
on the user. We argue that the burden is necessary to ensure
the safety of a program [10]. Thankfully, the code annota-
tions effort is reasonable: we counted the amount of code
annotations that we had to insert in each PERFECT kernel,
which are enumerated in Table 1 under the “User Annota-
tions” column. Overall, annotations were minimal for each
kernel. Most of the time, it came down to annotating all
floating point variables and integer variables that hold data
(as opposed to an address or index) as approximate.

3.4 Autotuner Runtime
Table 1 summarizes the runtime overhead of the autotuner.

The autotuner runtime is dictated by how many steps the au-
totuner gets to run and how much slower the instrumented
approximate program runs at each autotuning step. The goal
of the quantization instrumentation step is to faithfully em-
ulate the error resulting from quantization, not to improve
performance of the original program. We report an at-most
12.3× slowdown from instrumentation under the “Instru-
mentation Overheads“ column. We report the total number
of search steps taken under the “Autotuner Search Step“ col-
umn where we used a 40dB target.

Table 1 summarizes the total autotuner overhead as a mul-
tiple of the original program runtime under the “Autotuner
Runtime“ column. At worst, the autotuner will take 10,000×
longer to perform the precision tuning compared to the orig-
inal runtime, but in the common case it takes about 1000×
longer. This runtime overhead isn’t too bad considering that
we ran the autotuner on microbenchmarks which take less
than a second to run, and that this slowdown is compara-



Table 1: PERFECT overview and results summary.

App. Kernel Use Case User
Annotation

Count

Static
Quantized
Instruction

Count

Dynamic
Quantized
Instruction

Count

Instrumen
-tation

Overheads

Autotuner
Steps

(40dB)

Autotuner
Runtime

PA1
2D Convolution Convolutional NNs 6 6 33% 8.9x 26 233x
DWT JPEG compression 10 27 44% 3.3x 94 315x
Histogram Eq. PDF estimation 12 13 50% 1.5 71 109x

STAP
Outer Product Covariance Estimation 26 142 81% 10.3x 1143 11762x
System Solver Weight Generation 47 77 77% 10.1x 929 9420x
Inner Product Adaptive Weighting 41 84 83% 10.5 974 10256x

SAR
Interpolation 1 Radar 25 42 65% 6.4 402 2588x
Interpolation 2 Radar 21 41 50% 6.5x 528 3437x
Backprojection Radar 18 45 82% 6.2x 569 3517x

WAMI
Debayer Photography 22 124 31% 12.3x 228 2793x
Lucas-Kanade Motion Tracking 34 129 51% 4.3x 772 3322x
Gaussian MMs Change Detection 25 134 58% 8.1x 107 870x

Required
FFT-1D Signal Processing 18 43 49% 1.1x 578 642x
FFT-2D Signal Processing 18 43 49% 3.1x 1084 3357x

Average 23 68 57% 5x 338 1836x
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Figure 5: Dynamic instruction category mix of the PER-
FECT kernels. The approximable instructions are colored
in shades of blue, and the precise instructions categories are
colored in gray.

ble to the slowdown that many architectural simulators in-
troduce. The QAPPA autotuner was designed to be run once
on programs of interests, but we plan to improve its runtime
to make it more practical across more challenging applica-
tions.

3.5 Approximation Opportunity
Table 1 summarizes application characteristics of the PER-

PECT kernels derived using QAPPA. The “Static Quantized
Instruction Count” column lists the number of static instruc-
tions that are safe to approximate according to QAPPA. Each
approximable instruction serves as a knob that the autotuner
can tune to find a precision-minimal configuration that meets
quality requirements. The more precision knobs, the larger
the search space for the autotuner.

The “Dynamic Quantized Instruction Ratio” is the ratio
of approximable instructions to total instructions, measured
over the dynamic execution of the target kernel. The higher
the ratio, the larger the opportunity to apply quantization in
a given program. Figure 5 shows a detailed instruction cat-
egory breakdown for each PERFECT kernel. Each category
is split between approximable and precise classes, which are

respectively colored in blue and gray. The approximate in-
struction ratio is on average 64% which indicates that the
PERFECT benchmark suite is a compelling target for ap-
proximate computing.

More importantly, the approximable instructions are for
the most part composed of expensive operations, such as
floating-point arithmetic, loads and stores to memory, and
standard C math functions (LLVM IR treats math functions
as instructions since back-end architectures may or may not
have hardware support for those). Most floating-point and
memory operations can be approximated. The kernels mostly
access memory to store data, rather than pointers, which are
more common in graph applications where pointer-chasing
is necessary. The bulk of the precise instructions are com-
posed of control instructions and integer arithmetic used for
address computation, neither of which can be approximated
without compromising the safety of the program.

3.6 Bit Savings
Figure 6 shows the aggregate bit-savings obtained on ap-

proximable instructions that QAPPA was able to obtain on
each PERFECT application kernel, on SNR targets from 100dB
down to 20dB (0.001% up to 10% average relative error).
In general, the lower the quality target, the higher the bit-
savings. On average, a 74%, 57%, and 48% average bit-
savings can be obtained at 20dB, 40dB and 60dB respec-
tively (10%, 1%, and 0.1% average relative error). We ob-
serve that integer benchmarks (2dconv, dwt, histeq, and
debayer) offer relatively high bit-savings at high SNR re-
quirements (100dB). This is indicative of the common use of
wide integer types (e.g. 32-bit) to handle narrow pixel data
(e.g. 8-bit) for image processing benchmarks (PA1). We
also notice that changedet provides minimal bit-savings
until we lower error to 40dB and 20dB error (1% and 10%
misclassification rate). The remaining floating-point ker-
nels all exhibit a smooth tradeoff relationship between bit-
savings and quality. We observe that quantization can meet
very stringent quality thresholds that are often not achiev-
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Table 2: Bit-savings loss from using a empirical guarantee
to statistical guarantee at 90% and 99% confidence. We vary
the quality target at medium (20dB) a high (40dB) settings
on the PA1 kernels.

PA1 Kernel medium quality (20dB) high quality (40dB)
conf>90% conf>99% conf>90% conf>99%

2D Conv. -4.10% -13.25% -4.37% -8.73%
DWT -12.50% -22.47% -2.51% -2.73%
Hist. Eq. -3.02% -7.35% -2.91% -6.76%

able with other approximation techniques. For instance, the
PERFECT manual recommends 100dB (0.001% relative er-
ror) degradation as a quality target from applying compiler
optimizations. We do not know of any approximation tech-
niques that can meet such stringent accuracy guarantees.

3.7 Guarantees
In Section 2.4, we discussed two ways to express QoR

guarantees: empirical tests — used so far in this evaluation
— and statistical tests, which we discuss in this section. Sta-
tistical error guarantees capture the uncertainty that arises
from measuring error in a non-exhaustive way. To express
a statistical guarantee, the user needs to provide an error
threshold δ , and a confidence threshold 1− ε . QAPPA then
applies the Clopper-Pearson (CP) test to ensure that both δ

and 1− ε are satisfied.
Demanding higher confidence leads to more conservative

precision relaxations and thus lower bit-savings. We conduct
an experiment to quantify the loss in bit-savings when de-
manding a statistical guarantee at different confidence levels.
The baseline bit-savings for this experiment is obtained us-
ing empirical error guarantees. We chose the PA1 kernels to
conduct our experiment for two reasons: (1) it was straight-
forward to produce a generative model for image data, and
(2) processing each image requires hundred of thousands
of kernel invocations which provided enough samples for
QAPPA to run the CP test on at high confidence levels.

We conduct our experiment at two quality levels: a medium
quality setting at 20dB (10% error) and a high quality set-
ting at 40dB (1% error). Table 2 shows the bit-saving loss
at two confidence levels (1− ε = {90%,99%}), relative to
the bit-savings obtained with empirical guarantees. We eval-
uate the bit-savings loss using both quality levels, with error
thresholds (δ = {10%,1%}). Overall, we notice a reduc-
tion in bit-savings going from empirical guarantees to statis-

tical guarantees, as the confidence interval increases. These
results confirm that stronger statistical guarantees diminish
bit-savings returns.

4. DYNAMIC QUANTIZATION SCALING
We survey dynamic quantization mechanisms in hardware

and discuss the savings in arithmetic energy and memory
bandwidth that these mechanisms achieve on hypothetical
accelerator designs executing the PERFECT kernels. We
isolate the subsystems that are affected by quantization, namely
the arithmetic substrate and the memory subsystem. Arith-
metic energy denotes the fraction of energy that is consumed
by arithmetic units in a given hardware design, e.g. ALUs
and processing elements. What this study does not focus on
are control overheads, which are specific to a given hardware
implementation.

The aim of this study is to motivate the adoption of quan-
tization scaling mechanisms in hardware accelerators, where
data bandwidth requirements far surpass the instruction band-
width requirements. General purpose processors spend much
of their energy budget in instruction fetching and decoding.
Augmenting the ISA of a general processor with bit-granular
quantization settings would counteract much of the energy
savings that quantization would enable. Thus, this survey
targets designs such as vector processors, systolic arrays, or
fixed-function accelerators that could incorporate dynamic
quantization scaling mechanisms in order to respond to dy-
namic energy or quality constraints.

4.1 Scaling Quantization in Compute
We evaluate two quantization scaling hardware mecha-

nisms that provide energy reduction on quantized arithmetic
operations. The first technique, operand narrowing, aims
to minimize power by reducing transistor switching [11] on
wide compute units. The second technique, bit slicing (or
operator narrowing), utilizes narrow compute unit in parallel
to time-multiplex the computation of wider operations, ef-
fectively scaling throughput with precision on data-parallel
workloads [12]. We compare the energy savings obtained by
each technique at different operand quantization levels, over
a standard 32 bit arithmetic unit.

Reducing Power with Operand Narrowing.
Operand narrowing is a precision scaling technique that

can reduce dynamic switching in standard bit-parallel arith-
metic units [11]. The idea is to apply quantization on the
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input operands of the arithmetic units by zeroing the LSBs
that correspond to the desired quantization level. This in
turns limits the amount of transistor switching in the arith-
metic unit’s logic, as the lower slices of the datapath remain
inactive.

Figure 7.b shows how operand narrowing sets the least
significant bits (LSBs) of the input operands to zero, to un-
derutilize the arithmetic unit’s lower slice. LSB-zeroing is
the precision scaling mechanism proposed in the Quora vec-
tor processor [11]. While operand narrowing reduces the
amount dynamic power, it does not provide throughput im-
provements. Next, we discuss a quantization scaling tech-
nique that achieves throughput scaling when data parallelism
is available.

Increasing Throughput with Bit Slicing.
Bit slicing is a technique used to perform wide arithmetic

operations using narrower arithmetic units. The advantage
of bit slicing lies in its ability to scale throughput nearly lin-
early with precision requirements. Given an narrow n bit
adder, a wide m bit addition can be done in O(m/n) time,
while an m bit multiplication can be done in O(m/n) time
on a an m×n multiplier. Bit slicing reduces arithmetic unit
power while increasing computational delay, thus making
baseline precision computation on a wide ALU and a bit-
sliced ALU roughly equivalent in terms of energy. Bit slic-
ing excels at reducing energy at lower-precisions settings,
since lower precision lead to lower computation delays. Bit
slicing comes at a cost however, which we will refer to as the
bit-serialization tax. The bit-serialization tax is attributed to
the extra registers needed to time-multiplex a narrow com-
pute unit for wide computation. Bit slicing is best applied
in applications that have SIMD parallelism, where bit par-
allelism can be exchanged for increased SIMD parallelism.
This results in designs that have similar area footprint and

the ability to dynamically increase throughput as precision
requirements go down [12].

4.2 Quantization Scaling Energy Evaluation

Methodology.
We synthesize adder and multiplier designs of varying

widths using the Synopsys Design Compiler with the TSMC-
65nm library. To model power, we collect switching activ-
ities in simulation when adding/multiplying input operands
streams of varying widths, from 1 bit to 32 bits. We set a
target frequency of 500MHz and perform place and route on
each simulated design with ICC. We use PrimeTime PX to
accurately model the impact that switching activity has on
power.

Multiplier Case Study.
We evaluate the energy cost of performing arithmetic op-

erations on input streams with varying bit widths. The en-
ergy per operation vs. input width relationship for a 32-bit
multiplier design is shown as a dotted black line in Fig-
ure 8. The linear increase in energy reflects an increase in
switching activity when the multiplier processes wider input
operands.

Next we look at bit slicing: we vary the granularity at
which computation is sliced from 1 bit (bit serial) to 32 bits
(bit parallel). The relationship between the energy cost and
the input width for a 32 bit multiplier is shown as colored
lines in Figure 8 for different bit slicing granularities. When
the input operand width is narrower than the arithmetic unit
width, the energy scales linearly with the input width be-
cause of lower switching activity. Conversely, when the in-
put operand width exceeds the width of the serial arithmetic
unit width, the energy increases discretely at every n-bit in-
crements, where n denotes the width of the slice. Bit-serial
evaluation – i.e. arithmetic unit width of 1 – is a corner case
where the relationship between energy and operand width is
linear. It is worth noting that no single slice width is pro-
duces better results than others across all input widths.

Energy Evaluation on PERFECT.
We use the PERFECT benchmark suite to guide our choice

of an energy-optimal precision scaling mechanism at differ-
ent quality targets from 60dB down to 10dB.

Figure 9 shows energy savings across all PERFECT bench-
marks over a standard arithmetic unit executing 32 bit arith-
metic operations. Performing operand narrowing exclusively
as in Quora [11] on a bit-parallel arithmetic unit results in
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significant energy reduction over the precise, non quanti-
zation scalable baseline: 3.8×, 2.9× and 2.5× at 20dB,
40dB and 60dB respectively. These energy reductions are
improved by combining bit slicing and operand narrowing:
a slice width of 16 bits yields optimal energy reductions by
3.6×, 4.8× at 40dB and 60dB while a slice width of 8 bits
yields 7.7× energy reduction at 20dB over the baseline arith-
metic unit. Finally, we make the observation that applying
bit slicing at a 1 bit granularity yields suboptimal energy re-
sults at all quality targets.

4.3 Scaling Quantization in Memory
Much of the energy spent in processors and accelerators

is associated with data movement to and from memory [13,
14]. Scaling precision in programs can help mitigate mem-
ory bandwidth requirements.

Data packing can maximize bandwidth efficiency at arbi-
trary precision settings. Recent work has proposed hardware
packing and unpacking mechanisms to store variable preci-
sion weights in neural network accelerators [15]. The idea
is to store variable precision data into fixed-width memory,
by packing data at a coarse granularity (e.g. an array of co-
efficients) to mitigate overheads. Figure 11 shows how re-
duced precision data can be efficiently padded in fixed-width
SRAM modules, unpacked for processing, and re-packed be-
fore being stored to SRAM again. This results in more ef-
fective use of bandwidth and storage, but adds complexity
when accessing data. This complexity can be mitigated in
hardware accelerators that perform regular data access on
large portions of memory, where precision settings can be
set on coarse structures. We assume that the data is read and
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Figure 11: Example of quantization-scalable pipeline: mem-
ory packing and unpacking mechanism used in Proteus [15]
combined with operand narrowing used in Quora [11]. The
input and output data can be loaded in its packed format to
save memory bandwidth.

written to DRAM in a dense format, simplifying the on-chip
to off-chip storage communication pipeline.

Applying quantization to data can significantly reduce mem-
ory bandwidth. Figure 10 shows bandwidth savings on a
cache-less accelerator. We vary the data packing granularity
from 1 to 32 bits and derive the resulting bandwidth reduc-
tion. A data packing granularity of 1 bit can achieve 4.4×,
3.3×, and 2.8× average memory bandwidth reduction on the
PERFECT kernels at 20dB, 40dB and 60dB. Data packing at
fine granularities can increase both software and hardware
overheads for packing and unpacking. A hardware designer
might therefore want to align the data packing granularity
with the bit slicing width of the precision scalable compute
units to minimize control overheads. The optimal data gran-
ularity can be determined by the target system energy break-
down between memory, computation, and control which dif-
fers for different classes of accelerators and workloads.

5. APPROXIMATION STUDY
In this section, we conduct a comparative evaluation of

approximation techniques. We evaluate precision reduction
against nondeterministic voltage overscaling [16, 17] and
coarse grained neural approximation [18], and compare the
quality vs. energy tradeoffs achieved with each technique.

5.1 Voltage Overscaling
We compare the energy savings obtained by quantization

against voltage overscaling and contrast the energy savings
obtained at different quality targets on the PERFECT bench-
mark kernels.

Motivation: Determinism vs. Nondeterminism.
Nondeterministic approximations can introduce errors in

a random or pseudo-random fashion [16, 17, 19, 20, 21].
While nondeterministic approximations pose a testing and
debugging challenge, they can be modeled using probabilis-
tic distributions [6]. We investigate nondeterministic voltage
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overscaling, a popular approximation technique that reduces
compute power at the risk of increasing timing violations.
Our evaluation of voltage overscaling relies on (1) character-
izing the energy vs. error relationship of voltage overscaling
and (2) analyzing how low level timing violations affects ap-
plication quality.

Characterizing Overscaling Error.
We quantify the effects of voltage overscaling on fixed

point and floating point arithmetic designs taken from the
Synopsis DesignWare IP library. We simulate those circuits
in CustomSim-XA, built on top of FastSpice to perform tran-
sistor level power and fault characterization. The circuits are
built in Synopsys Design Compiler with a 65nm process and
synthesized using a timing constraint of 2GHz. Registers
latch the inputs and outputs of the arithmetic units and a syn-
chronizer is used to settle errors caused by metastability. We
synthesize a parallel prefix architecture for the fixed point
adder and a Booth-encoded Wallace-tree architecture for the
fixed point multiplier. We generate 105 random input pairs
as stimuli to the circuits and profile timing violation errors
at three representative voltage overscaling factors (0.95×,
0.90×, and 0.84×), corresponding to 10%, 20%, and 30%
power savings respectively. We measure the probability of a
timing violation induced bit-flip for each output bits to pro-
duce a statistical error model of the voltage overscaled cir-
cuit. Figure 12 shows the bit-flip probability distribution for
a floating point adder, measured at different voltage over-
scaling factors, with different color coding to highlight the
sign, exponent and mantissa bits.

Comparative Evaluation on PERFECT.
We feed the error models derived above to QAPPA’s error

injection framework to quantify the effect of voltage over-
scaling on the application output. We execute each bench-
mark 100 times on the same input data to obtain an error
distribution.

The results of the experimental runs are displayed in Fig-
ure 13 and show the effects of voltage overscaling on appli-
cation quality at 10%, 20% and 30% energy savings. Apply-
ing the same voltage overscaling factor to each PERFECT
kernel can lead to vastly different errors because of nondeter-
minism. Integer benchmarks such as dwt and debayer are
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Figure 13: PERFECT kernel SNR at voltage overscaling fac-
tors of 0.95, 0.90 and 0.84 corresponding to 10%, 20% and
30% energy savings. SNR is measured collected over 100
runs, values represent median SNR, and error bars represent
min and max error.

mostly unaffected by overscaling. The integer circuits have
shorter critical paths than their floating point counterparts,
and therefore are less affected by voltage overscaling. Other
benchmarks including the SAR kernels and systemsolve
produce data that contain erroneous output values (inf and
NaN) which lead to a 0dB SNR. Voltage overscaling does well
on simple single-stage functions (2dconv), in which errors
have localized effects. Multi-stage kernels (lucaskanade)
on the other hand pose a challenge since errors can propagate
and snowball into large output errors.

Discussion.
Quantization provides better energy efficiency at prefer-

able SNR levels for all PERFECT kernels. In addition, the
deterministic nature of quantization allows for sounder guar-
antees and more predictable behavior. We conclude that is it
difficult to justify incorporating voltage overscaling in hard-
ware designs without some form of error correction. The
unbounded errors simply don’t justify the energy savings.
A hybrid approach of combining fine grained precision re-
quirements with error correction mechanisms proposed in
[22] could selectively correct a timing violation error based
on what bits are affected, thereby reducing the amount of
hardware rollbacks. We reserve the evaluation of such error
correction mechanisms for future work.

5.2 Neural Approximation
We discuss how quantization scaling could improve the

efficiency and programmability of programmable accelera-
tors and compare the energy benefits of quantization against
neural approximation. Neural approximation has limited ap-
plicability when it comes to approximating arbitrary func-
tions at arbitrarily low error levels. We evaluate the AxBench [23]
benchmark suite at suggested error levels (10% relative) to
ground the comparison between quantized acceleration and
neural acceleration.

Motivation: Fine vs. Coarse Approximation.
Coarse grained approximation attempts to approximate an

entire code region using a regression model (e.g. polynomi-
als, neural networks). Neural acceleration [5, 18] uses neural
networks to approximate functions via learning, and utilizes
hardware accelerators for efficient execution. Much of the
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optimized fixed point DFG with PWP.

previous studies on neural acceleration have not isolated the
efficiency gains attributed to specialization from approxima-
tion.

We compare two approximation approaches: (1) fine grained
approximation with piecewise polynomial (PWP) approxi-
mation of math functions, and (2) neural approximation. In
both cases, we assume a hardware accelerator composed of
fixed point adders, multipliers and local SRAM storage. We
quantify arithmetic energy, and SRAM requirements to draw
a cost comparison between the two techniques. We motivate
our study with the inverse kinematics (inversek2j) func-
tion example, which dataflow graph (DFG) is shown in Fig-
ure 14.a.

Quantized Acceleration.
We use QAPPA to derive the quantization requirements

in each target application at the error rate recommended by
AxBench. Quantization provides an opportunity to signifi-
cantly reduce the cost of standard math function invocations.
We leverage QAPPA to derive the accuracy requirements
and the input range of standard math functions (e.g. cos,
sqrt, reciprocal etc.) in each target program. We use those
requirements to produce piecewise polynomial approxima-
tions with a custom math approximation toolbox that we
built in Python. The degree of the polynomial dictates com-
putational requirements, while the number of pieces dictates
the memory requirements for storing the polynomial coeffi-
cients. The DFG of an example quantized program is shown
in Figure 14.b. In this example, all nonlinear operators (rep-
resented as circles) have been replaced replaced with a piece-
wise degree-one polynomial approximation.

Neural Acceleration.
Neural acceleration approximates whole functions using

neural networks [5, 18, 24, 25]. Neural networks have high
internal SIMD parallelism, but are generally computation-
ally and storage demanding [13]. We show the DFG corre-
sponding to a neural network topology used to approximate
the inversek2j function in Figure 15. It becomes clear that
while being highly regular, neural networks consist of many
arithmetic operations, and have high memory requirements.
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Figure 15: DFG of a neural approximation of the inverse
kinematics kernel. Operations that read data from local
SRAM are colored in gray.

Comparative Evaluation on AxBench.
We run our study on a set of AxBench [23] benchmarks.

We assume a spatially laid-out accelerator design (i.e. each
static instruction is mapped to a single processing element,
or load/store unit) for each approximation technique and mea-
sure hardware efficiency in two key metrics: (1) compute en-
ergy and (2) SRAM storage requirements. We use the RTL
computation cost models obtained in Section 4 to analyti-
cally evaluate energy costs associated with each approximate
acceleration technique. We quantitatively measure on-chip
SRAM requirements for storing the neural network weights,
and piecewise polynomial approximation coefficient tables.
Finally we use the neural approximation errors reported in
previous literature [18] as quality targets for quantization.

We use two modeling assumptions to estimate the compu-
tation and storage costs of neural acceleration. The realistic
model based on digital implementations of NPUs [5, 24] as-
sumes 16 bit weights, and a 16-piece linear approximation
of the activation function. The optimistic model assumes 8
bit weights, a linear activation function and no quality loss
with respect to the realistic model.

We leverage QAPPA to produce a reduced precision quan-
tized program specification for each AxBench kernel. For
kernels that have outputs that depend on control-flow, we
precompute all branching paths and use predication to re-
solve the branch outcomes. This approach is tractable in
kernels that do not have much control flow divergence. Our
compute cost model assumes a quantization scalable 8 bit
ALU, that applies a operand narrowing and bit-serial com-
putation depending on the operand width.

We summarize our evaluation of neural approximation vs.
reduced precision acceleration in Figure 16. Reduced pre-
cision acceleration is more energy-efficient than a neurally
approximated acceleration for all of the reviewed AxBench
kernels. The storage requirements of the quantized kernels
lie between the realistic and optimistic neural network accel-
erator cost models, except for blackscholes where quan-
tized acceleration beats neural acceleration in both cost mod-
eling scenarios.
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Discussion.
While there is not a clear answer as to which technique

is more efficient in terms of both energy and storage, we
can claim that quantized acceleration offers comparable ef-
ficiency benefits to neural acceleration. Neural acceleration
provides the benefit of programmability as it requires one
hardware accelerator to evaluate any neurally approximated
piece of code [24]. However, neural networks have limited
success at approximating code at arbitrarily low error lev-
els, as there are no examples in literature that show success-
ful approximations with neural networks below 1% relative
error [5, 18, 24, 25]. Quantization and PWP approxima-
tion could improve programmability in spatial accelerators
by simplifying complex operators such as math functions,
down to simple linear operators. The simplified kernel can
then be more easily mapped onto a programmable accelera-
tion substrate composed of simple arithmetic functions [26,
27]. Finally, improving the quality guarantees of neurally-
approximated programs is the object of much on-going re-
search and remains a challenge for high-dimensional func-
tions [28, 25, 8, 29]. Quantization on the other hand benefits
from mature numerical analysis frameworks that provide er-
ror analysis and guarantees that programmers are familiar
with [30, 31, 4], on top of the empirical and statistical guar-
antees that QAPPA provides.

6. RELATED WORKS

Approximate Computing.
The emergence of approximate computing research has

led to a multitude of hardware and software proposals, along
with tools, frameworks and runtimes designed to reason about
and mitigate error. Software approximations [32, 33, 34, 35,
36, 37, 38, 7, 39, 40, 41, 42] perform code transformations
to trade-off output quality for performance gains on com-
modity hardware. Hardware approximations [5, 24, 43, 44,
45, 46, 47, 11, 48, 49, 50, 51, 18, 20, 21, 52, 53, 19, 16,
17, 54, 55, 56, 57, 54, 58] on the other hand require alter-
ations at the architecture, microarchitecture, and circuit level
to expose quality-efficiency tradeoffs to the software stack.
Precision reduction is traditionally considered a software ap-
proximation, but requires hardware to support various levels
of precision [3, 59, 60]. QAPPA targets arbitrary quantiza-
tion, which assumes a precision scalable hardware back-end.

Tools and Frameworks.
Precimonious [3] is a dynamic program analysis tool that

suggests cheaper floating point type instantiations to improve

the performance of floating point functions. QAPPA differs
from Precimonious in that it supports approximate type qual-
ifiers to ensure program safety, and that it applies arbitrary
quantization to either floating point or integer types. Ap-
proxilyzer [61] helps improve hardware resiliency to approx-
imation errors by quantifying the impact of single bit errors
on output quality. QAPPA assumes deterministic value trun-
cation or rounding as opposed to random bit-errors. QAPPA
is not so much focused on improving resiliency, and rather
aims to expose opportunities to reduce energy and band-
width in hardware accelerators.

Error Guarantees.
Approximate computing has embraced statistical guaran-

tees [8, 6] to provide common-case error bounds. Our work
inspires itself from past work to provide statistical error bounds.
Numerical analysis exploits interval analysis [30, 31] to rea-
son about quantization and rounding errors in floating point
programs. dco/scorpio [4] is a framework that automates
significance analysis to identify computation tasks that have
high contribution to output quality. QAPPA could be aug-
mented with such frameworks to provide stricter error bounds.

Precision-Scaling Hardware Techniques.
Quora [11] is a precision scalable SIMD architecture that

delivers energy precision trade-offs in parallel applications.
Stripes and Proteus [12, 15] propose precision scalable com-
pute and storage mechanisms that can improve the energy
efficiency of DNN accelerators. QAPPA can be used as a
software compiler for such precision scalable architectures,
by automatically deriving precision requirements and pro-
viding statistical guarantees. Our comparative evaluation of
precision-scaling mechanisms aims to motivate more preci-
sion scalable architecture proposals like Quora and Stripes.

7. CONCLUSION.
We present QAPPA, a framework that fine-tunes quanti-

zation requirements of C/C++ programs, while meeting user
defined, application level quality guarantees. We analyze
the PERFECT benchmark suite with QAPPA and find that
much precision can be discarded at reasonable quality tar-
gets. We evaluate hardware mechanisms that can reduce
compute energy and memory bandwidth in hardware accel-
erator designs. We then perform a comparative study of
quantization as a viable alternative to voltage overscaling
and neural approximation. We show that precision reduc-
tion rivals these techniques in terms of energy savings, while
exhibiting predictable error and providing practical quality
guarantees. We hope that our findings will motivate other
researchers to propose quantization scalable architectures to
bring systems closer to their quality vs. energy pareto opti-
mal design point.
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