
The Transfer Access Protocol - Moving
to New Authenticators in the FIDO

Ecosystem

Technical Report UW-CSE-17-06-01

Alex Takakuwa*, Tadayoshi Kohno*, and Alexei Czeskis^

* Paul G. Allen School of Computer Science & Engineering
University of Washington

^ Google Inc.

1. Introduction: Summary of Problem
The FIDO Alliance envisions a world without passwords, providing the tools to revolutionize the 1

way users authenticate on the web. The current ecosystem provides secure standards that
promise to improve online account security and simplify the experience for internet connected
users. This ecosystem allows users to sign into web services through authenticators (for
example, a smartphone or dedicated token) that perform user authentication using an
asymmetric cryptographic signature that is resistant to phishing attacks and provides two-factor
authentication. Similar to the iPhone’s TouchID, users on many platforms will have devices, such
as phones, that can serve as FIDO authenticators. For example, imagine that a user is using a
phone as an authenticator. This phone has an app that allows the user to view and manage keys.
It also allows the user to log-in to websites using FIDO authentication. When the user goes to
example.com and selects “log-in with authenticator”, the phone alerts the user to scan a
fingerprint. The user complies and the server and authenticator app negotiate in a cryptographic
protocol to ensure that the user is safely authenticated and consents to the log-in.

There are, however, some unsolved problems in this ecosystem. In particular, in this paper we
discuss the problems that arise and propose solutions for the following (likely common) scenario:
A user is using a phone as an authenticator but wants to replace that device with a newer model,
ceasing to use the old phone. The user, therefore, needs to set up the new phone as an
authenticator and remove credentials from the old phone. To solve some of the problems that
arise, we propose the Transfer Access Protocol, the concepts of which we describe in this paper.

1 "FIDO Alliance." https://fidoalliance.org/ . Accessed 2 Jun. 2017.

https://fidoalliance.org/

2. Goals of the Transfer Access Protocol
The goal of this work is to transfer account access from the authenticator app on the old phone to
the authenticator app on the new phone. However, we would like to do so while preserving
desirable properties of the existing FIDO authentication scheme. Here we discuss our primary
goals in detail and some of the challenges that arise. In short, we do not want the addition of a
Transfer Access Protocol to affect the user experience or the security and privacy properties of
the existing FIDO authentication scheme.

2.1 The User Experience

Ideally, when a user buys a new phone, transferring authenticator access should work
seamlessly, not adding or changing steps for the user either when they set up the new phone or
during the next log-in. For example, during the initial phone setup, one possible implementation
could simply attach the Transfer Access Protocol to the Tap & Go feature in Android 5.0+. In the 2

current implementation of Tap & Go, when a user first boots up a new phone, they see the screen
sequence from Figure 1. If desired, we could simply ask the user whether they would like to use
the new device as an authenticator and remove access from the old phone. In that case, the user
would see an extra screen as in Figure 2. We stress that this is just an example implementation
and is not necessary for the Transfer Access Protocol described in this paper. One could, for
example, choose to make the Transfer Access Protocol completely transparent during the Tap &
Go procedure or make the process independent of Tap & Go, instead processing the Transfer
Access within the authenticator app itself. In principle, none of the concepts discussed here
require any extra steps.

Figure 1: The stock Tap & Go implementation for Android 5.0 and up. This allows a user to quickly set

up a new phone by transferring apps and data from the old one. Screenshots from Droid-Life . 3

2 "Set up your new Nexus device - Nexus Help - Google Support."
https://support.google.com/nexus/answer/6073630?hl=en . Accessed 12 Jun. 2017.
3 "Android 5.0 Feature: Tap & Go Restore and Restore From ... - Droid Life." 25 Nov. 2014,
http://www.droid-life.com/2014/11/25/android-5-0-feature-tap-go-restore-and-restore-from-specific-devic
es/ . Accessed 15 Jun. 2017.

https://support.google.com/nexus/answer/6073630?hl=en
http://www.droid-life.com/2014/11/25/android-5-0-feature-tap-go-restore-and-restore-from-specific-devices/
http://www.droid-life.com/2014/11/25/android-5-0-feature-tap-go-restore-and-restore-from-specific-devices/

Figure 2: A potential user flow with the Transfer Access protocol added.

Original screenshots from Droid-Life 4

After setting up the new phone, users will navigate to sites (or open each native application) as
they did before. If a user is accustomed to seeing a log-in screen as in Figure 3, we would not
like to change that user experience. In fact, we envision that the Transfer Access Protocol would
keep the cryptographic transfer transparent to the user as it does during normal FIDO
authentication so the next time the user logs in on the new phone, the user experience does not
change at all.

Before: After:
Figure 3: An example user experience for an app log-in.

This screenshot is from the Bank of America app on a Google Pixel

4 "Android 5.0 Feature: Tap & Go Restore and Restore From ... - Droid Life." 25 Nov. 2014,
http://www.droid-life.com/2014/11/25/android-5-0-feature-tap-go-restore-and-restore-from-specific-devic
es/ . Accessed 15 Jun. 2017.

http://www.droid-life.com/2014/11/25/android-5-0-feature-tap-go-restore-and-restore-from-specific-devices/
http://www.droid-life.com/2014/11/25/android-5-0-feature-tap-go-restore-and-restore-from-specific-devices/

2.2 Security

For the Transfer Access Protocol, we seek to preserve the security and privacy properties of the
existing FIDO authentication scheme. For example, FIDO authentication can prevent web and
network attackers from phishing or copying credentials, defend against Man-In-The-Middle
attacks, provide clone detection, allow relying parties to revoke access or prevent registration of
untrusted hardware, and prevent relying parties from colluding to link user accounts. However, a
number of attacks are still out of scope. For example, the FIDO authentication scheme does not
explicitly protect against attackers who can simultaneously attack network traffic and the local
wireless environment, attackers who can compromise a user’s PC and personal device, nor
would it protect against a malicious FIDO application or operating system compromise. Because
the Transfer Access Protocol transfers FIDO authenticator access, rather than performing an
independent security and privacy analysis of each piece of this protocol, we aim to design a
protocol that introduces no additional vulnerabilities. Throughout the description of this work, we
will discuss some of the relevant and interesting decisions we make through the lens of concerns
raised in previous papers on asymmetric authentication schemes. As an example of some of the
properties we wish to uphold, we list the following from Lang et al .: 5

● Phishing: The protocol should not be phishable, nor should the resulting credentials.
● Defend Against MITM: Attackers who Man-In-The-Middle the connection, for example

between the browser and relying party server, should not gain an advantage by attacking
during any step in the Transfer Access Protocol.

● Session-Duplication: The protocol should not aid in the ability for stealing credentials to
result in session-duplication, for example, by exposing long-term cookies or passwords.

● Prevent Session Riding: The protocol should not allow an adversary to gain access to an
existing session or to a future existing session.

● Trusted Hardware: The protocol should allow the relying party to verify that it trusts the
new hardware before allowing access.

● Non-Linkability: Credentials should be site-specific by default so that colluding relying
parties can not link credentials to users across sites.

● Detecting Clones: The protocol should allow for the continued detection of potential
authenticator clones by keeping a counter.

Threat Model

To determine whether the additional steps in the Transfer Access Protocol uphold these goals,
we analyze each step using a threat model based on previous works done in this space. For
example, we will use the attackers mentioned in Lang et al.:

● Web Attackers who can phish for credentials by setting up forged web pages, including
correct TLS certificates for victim sites.

● Related-Site attackers where users may have reused the same credentials as the victim
site.

5 "Security Keys: Practical Cryptographic Second Factors for the Modern "
http://fc16.ifca.ai/preproceedings/25_Lang.pdf . Accessed 2 Jun. 2017.

http://fc16.ifca.ai/preproceedings/25_Lang.pdf

● Network Attackers who can MITM connections with correct certificates or decrypt traffic.
● Malware Attackers who can install malicious applications or take over benign

applications.
However, we will also consider other potential attackers through whom we can demonstrate
some of the strong security and privacy properties of the FIDO authentication scheme. For
example, Site Attackers who can dump logs and credentials from the victim site may be able to
reveal user passwords, and adversaries who are able to gain physical control of devices at later
or earlier times (OEM vs. repurchasing an old phone) can raise some interesting concerns. We
also place certain attacks out-of-scope. For example, we do not consider protecting against a
malicious FIDO application as the underlying FIDO scheme would not be secure anyway.

We believe that the addition of this work to the FIDO authentication scheme would help secure
potential vulnerabilities that result when users transition to new devices.

2.3 Goal Conditions

Before diving into potential workable solutions for transferring access to a new authenticator, we
discuss the assumptions and the properties constituting goal conditions for the Transfer Access
Protocol. To start, we have the following assumptions:

Assumptions:

● The user has access to an old phone (A) and new phone (B)
● Phone A has keys and associated metadata, each associated with an account
● Phone B may or may not have existing keys
● Phone A and Phone B can create a “secure channel”

○ This secure channel is out of scope for the Transfer Access Protocol. We assume
that this channel can only be set up by a legitimate user who explicitly allows the
transfer of access from Phone A to Phone B. For the purposes of this paper, we
assume this channel allows communication between the two phones that is
resilient to all possible attacks, including eavesdropping and Man-In-The-Middle
attacks.

Target Goal Conditions (for each transferred account):

At the conclusion of this protocol, we expect the following properties to hold:
● Phone A has deleted the “transferred key”.
● Phone B has the “transferred key”
● Phone B is logged in to the relying party.
● The relying party removes Phone A’s access
● The relying party adds access for Phone B so that it will be able to authenticate in the

future using standard FIDO authentication.
● Security Goals

Throughout each step of the procedure, we expect the Transfer Access protocol to give
attackers no advantage in attacking the FIDO authentication scheme.

3. Solutions
The goal of this work is to transfer access from an old phone, Phone A, to a new phone, Phone
B, while preserving the usability, security and privacy properties of the existing FIDO
authentication scheme. The solution in the current system would require the user to log-in to
each site with Phone A, register a new set of keys for Phone B, remove Phone A’s access at the
relying party, and delete keys on Phone A (or factory reset the phone). Clearly, this adds multiple
steps for the user for each existing account, but worse, the user may not have any indication as
to how many or which sites require new credentials.

3.1 Simple Solution: Copying Keys

A straightforward solution that simplifies the experience of moving to new devices and eases
user burden could merely copy the authenticator data from the old phone to the new phone.
However, this violates the security properties of the FIDO protocol in that the relying party
(example.com in the example above) would not have a chance to verify the new hardware.
Further, if keys are stored in a secure element or trusted execution environment, the OS may not
be able to copy them at all. If the OS could copy credentials, it stands to reason that malware
could potentially extract keys as well.

3.2 Chain of Trust

As such, we propose a system that utilizes a secure channel between two phones (tap & go, for
example, establishes a secure wireless channel between the new and old phones) to sign a new
set of credentials with the old trusted credentials. This creates a chain of trust since the relying
party already trusts the old private key. Now Phone A can inform Phone B which accounts the
user would like to transfer over the secure channel, at which point Phone B can generate fresh
key pairs for each of the sites. This requires Phone A to also send metadata uniquely identifying
each key so that when Phone B sends back its new public keys Phone A knows which of its
private keys to use to create signatures. Such a signature scheme solves a number of the
problems above with the current and simple solutions. Namely, it can be done on initial setup
without requiring a user to visit every site and it does not require copying credentials - a poor
security practice for private keys. Such a scheme requires two steps. In Stage 1, Phone A and
Phone B communicate to exchange necessary information and generate the required signatures.
In Stage 2, Phone B negotiates with the relying party to provide assertions that verify trust in the
new credentials. For example, in Stage 2, Phone B should send its hardware attestation
certificate (and an accompanying signature) so that relying parties can verify that they trust the
new hardware. Figure 4 shows the two-stage nature of the Transfer Access Protocol. However, a
signature that simply delegates access from Phone A’s public key to Phone B’s new public key
(even while providing hardware attestations for the new phone) still sacrifices a number of
security properties provided by the existing FIDO protocol. In the following sections, we discuss
how to mitigate these problems.

Figure 4: The Transfer Access Protocol requires two stages: In Phase 1, The old phone (Phone A)

communicates with the new phone (Phone B) over a secure channel. In Phase 2, Phone B takes the
results of that communication and delivers them to the Relying Party server.

3.3 Components of a Transfer Access Message

In the FIDO scheme, relying party servers communicate with authenticators through the browser.
The browser can instruct the FIDO authenticator to respond with one of two messages: 1) A
registration response or 2) an authentication response. We would like to take the necessary
properties from each of these messages to craft a third response, enabling Transfer Access.

Because we do not want to change the user experience, the user’s next log-in should serve as
both a registration/enrollment for Phone B’s new credentials and an authentication. We briefly
discuss the registration and authentication messages crafted by the FIDO authenticator, with a
focus on the security properties provided by each component of each message.

Registration/Enrollment

During the registration, the relying party (through the browser) asks the authenticator to create a
new asymmetric key pair and associate that pair with the relying party. That request contains a
challenge parameter which the authenticator can use during the creation of its response. The
authenticator creates a certificate in response and sends it to the server so that the relying party
can store the necessary credentials for future authentications. The current components of a FIDO
registration sent by an authenticator are:

● Message Header - Allows for setting flags that can indicate message type, for example
Enrollment, Authentication, or Transfer Access.

● Metadata - Allows the client and server to efficiently look up keys and binds each key to a
specific account.

● User Public Key - This is the new public key to be enrolled.

● Attestation Certificate - Allows the server to decide whether it trusts the hardware.
Attestations are batched by device, each device containing a certificate, public key, and
matching private key.

● Challenge - Contains a nonce to make each registration unique so that it can not be
reused. For example, this prevents an attacker from re-registering a previously registered
and removed key - for example, after a user realizes a key is compromised and removes
it from an account.

● Signature - Proves ownership of the attestation private key so that the server knows the
device matches the above Attestation Certificate. This prevents an untrusted device from
falsely providing the Attestation Certificate of a trusted device in order to enroll a new
private key.

Authentication

When the relying party would like to authenticate an already-registered authenticator, it crafts a
request containing a challenge and some key metadata for a previously registered key. The
authenticator uses this information to look up the corresponding credentials and craft an
authentication response that can convince the relying party to authorize the user. The current
components of a FIDO authentication sent by an authenticator are:

● Test of User Presence - Requires the user to authorize the authentication, preventing
attacks relying on remote surreptitious activation of the authenticator.

● Counter - Allows for clone detection. In the case of a cloned authenticator, the server will
see consecutive log-ins that don’t increment the counter correctly.

● Metadata - Binds the credential to the relying party, allowing the authenticator to efficiently
look up the key and preventing attacks which seek to determine if some other key is
present on the authenticator.

● Challenge - Contains a nonce to make each log-in unique, preventing replay and phishing
attacks.

● Signature - Proves ownership of the private key, the basis for authentication.

Transfer Access

We would like to preserve each of the security protections afforded by the components of the
existing registration and authentication messages. To this end, the Transfer Access Protocol
should include the following in response to an authentication request from the relying party:

● Message Header - We suggest using one of the available bits to inform the server that the
message is a Transfer Access Message.

● Metadata - Allows the client and server to efficiently look up keys and binds each key to a
specific account.

● New Public Key - The new public key to be enrolled by Phone B.
● Challenge - This makes each registration unique, preventing replay and phishing attacks.
● New Attestation Certificate - Allows the relying party to determine whether it trusts the

new hardware.
● Counter - Notifies the relying party in the case of a cloned authenticator. Given that this is

the first log-in on the new device, we don’t think it necessary to continue incrementing the

old authenticator. As such, we set this counter to zero, which will alert the relying party if
there is a clone in future log-in attempts.

● Signature (Authentication) - Proves ownership of an authorized private key so that the
user can automatically log-in after completing the Transfer Access Protocol. Recall that
this Transfer Access Response gets sent in response to an authentication request, so the
user expects to log-in.

● Signature (Attestation) - Proves ownership of the new attestation private key , so that the
server knows the credentials have been created by a device with a matching Attestation
Certificate . This prevents an untrusted device from falsely providing the Attestation
Certificate of a trusted device in order to enroll a new private key.

Notably absent is the Test of User Presence. Recall that this field prevents attacks relying on
remote surreptitious activation of the authenticator. Because we assume that setting up a secure
channel requires user authorization and that the user intends to move from Phone A to Phone B
permanently, we deem the Test of User Presence unnecessary for the Transfer Access Protocol.
However, one could easily add it to the protocol when the authenticator delivers the Transfer
Access response containing the above fields to the server, verifying user presence for that
session.

3.4 Creating a Chain Through Multiple Devices

In Section 3.2 , we discuss the two-stage nature of the proposed protocol. Although the user
experience won’t change for sites which the user visits regularly, the user needs to visit and
log-in to each relying party with transferred credentials in order to complete the Transfer Access
Protocol for each of those credentials. Though this may be reasonable for most sites, it is
feasible that users will transfer to yet another new phone (say Phone C) before logging in to less
oft-used sites on Phone B. In this case, we would have a situation where Phone B tries to
transfer access to Phone C without first registering its credentials with the server. When Phone C
finally does visit the relying party and delivers the Transfer Access credential generated by
Phone B, the server will not recognize those credentials and will reject the transfer. To solve this
problem we propose a protocol that allows for chaining of Transfer Access credentials. Like the
original Transfer Access Protocol, a chain delivered to the relying party would require:

● Storing an Identifier for the Original Key
● Final new Public Key
● Metadata for New Public Key
● Final new Attestation Certificate
● Challenge
● Counter
● Signature proving possession of the new Authentication Private Key
● Signature proving possession of the new Attestation Private Key

Figure 5: When chaining Transfers of Access, Phase 1 may need to include transfers through many

devices (in this figure, Phone A transfers to B, which transfers to C before visiting the relying party. In
Phase 2, the final device in the chain (Phone C) delivers the entire Transfer Access Chain to the relying

party, along with signatures with its Attestation and Authentication Private Keys. It also includes the
Challenge, Counter, and Key Metadata for this and future authentications.

Thus, when Phone B tries to transfer access to Phone C, it would simply add its relevant
information to the Transfer Access credential given to it by Phone A, creating a chain. We can
improve efficiency within this chain by storing and signing over only those items which the server
needs. For example, the server does not need metadata, identifiers, or a counter for Phone B’s
keys so the chain should neither keep that information nor sign over it. Phone C, when it does
eventually deliver the chain to the relying party, can add its counter, metadata for its key, the
challenge from the authentication request, and signatures with its Attestation and Authentication
Private Keys. With this information the relying party can check to make sure that it trusts the new
hardware, the authenticator is not cloned, the response is unique to the authentication request
provided, and the device owns the corresponding private key. Figure 5 shows how the chaining
works, conceptually.

However, the relying party would also like to check the links in the chain. In the example above
(Phone A→Phone B→Phone C), it needs to check that Phone B has a valid attestation certificate
and has the matching attestation private key. It also needs to verify that Phone B has the
corresponding authentication private key and agrees to transfer access to Phone C. Therefore,
we need to store Phone B’s Attestation Certificate and Authentication Public Key in order for the
server to check those signatures. When Phone B crafts a transfer to Phone C, it will perform

signatures with the corresponding private keys over the included Attestation Certificate and
Public Key for Phone C. Such an approach generalizes to a chain of many devices, as the
intermediary authenticators can simply use their Authentication Private Keys to sign the next
Public Key in the chain and their Attestation Private Keys to sign the next Attestation Certificate
in the chain. By chaining the signatures in this manner, the relying party can trust the chain of
authentication private key trust, and can trust that none of the devices have been impersonated
because each phone signs the next phone’s attestation certificate.

3.5 Other Challenges

Looking up the Transfer Access Credential in the Authenticator - When Phone B navigates to a
relying party for the first time after receiving a Transfer Access credential, the server will look up
the key metadata it knows for the user account and ask for authentication. Because the server
does not know about any of the new credentials created by Phone B, Phone B needs to store,
along with the Transfer Access credentials, an identifier for the original key from Phone A. In the
case where the credential has been transferred through a chain of devices, the last phone in the
chain needs to be able to look up the Transfer Access credential using metadata for the original
key from Phone A, which started the chain.

Parsing the message - We mentioned previously that adding a bit in the Message Header to
indicate a Transfer Access Response to an authentication request allows the server to easily
differentiate between the two possible responses. We further aim to help the server parse the
Transfer Access response by providing sequence numbers in the chain of Transfer Access
credentials. By appending the existing chain to the back of the new Transfer Access credential
(inserting it at the front of the chain), the server can immediately know how much space to
allocate for storing the chain.

Simplicity - In Section 3.2 , we mention that the relying party needs signatures with both the
attestation and authentication private keys in order to verify the transfer of trust through the
chain. However, we note that because the current FIDO implementation requires a signature
using the attestation private key during registration of a new key pair, the relying party already
trusts Phone A’s attestation. Therefore, signing with Phone A’s attestation private key during the
first transfer of access from Phone A to Phone B does not add any security properties. However,
in a longer chain, we need to ensure that if Phone B transfers to Phone C, and C to D, that both
Phone B and in turn Phone C are forced to produce signatures using both the attestation and
authentication private keys. For simplicity, we have chosen in our implementa tion to require the
extra signature from Phone A using the already-trusted attestation private key so that the
messages throughout the chain are formed using the same algorithm.

Ordering - We note that the chain of credentials that passes trust from old phones to new ones
does not necessarily have to be in order. However, in situations where lots of messages are
chained in the wrong order, the complexity of figuring out the correct order lies with the relying

party. Instead of forcing the relying party to try all combinations when the chain arrives out of
order, we suggest that it simply discard the chain and fail to transfer the credentials.

Deleting Keys - We claim that after the completion of the Transfer Access Protocol, the old
Phone, A should delete all transferred keys, but this raises some interesting tradeoffs. Deleting
the keys as soon as possible helps protect a user who forgets to factory reset a phone before
selling it to a potential attacker (requiring a 2nd factor can help mitigate attacks in this case as
well). But in the case of a failure (say one phone runs out of battery during the transfer or the
wireless environment becomes disturbed), transfers cannot be rerun. As such, to account for
failures during transfer, we suggest waiting until the completion of Stage 1 (where Phone A
receives acknowledgement from Phone B for each successfully transferred credential) to delete
keys.

As a consequence of deleting keys upon the completion of Stage 1, however, we note that there
are potentially times where a user can lose authenticator access. For example, if the user
transfers access from Phone A to Phone B, but then loses Phone B before logging in to the
relying party, the server will only know about Phone A, but those credentials will have been
deleted. Recovery from this situation is a very interesting problem for which we plan to propose
solutions in future work.

Furthermore, an attacker can prevent the delivery of the final ACK (acknowledgement from
Phone B) so that Phone A will keep the keys. We propose mitigating the harms of this by alerting
the user that the protocol has been interrupted, and allowing the user to then delete the keys
manually or rerun the protocol.

In the Threat Model in Section 2.2 , we discuss some extra attackers beyond the standard Web,
Related-Site, Network, and Malware Attackers. Consider, for example, an attacker who obtains
temporary access to an unlocked Phone A. This attacker could potentially perform a transfer of
access from Phone A to an attacker controlled Phone B. If we did not delete the old keys from
Phone A upon the completion of the protocol, the victim may not notice that credentials have
been transferred. The attacker can then phish for the second factor and once obtained, can
execute a transfer of access to gain access to an account. If the server does not delete access,
the original owner may not ever be aware that an attacker has gained access. We suggest
mitigating this by deleting keys on the authenticator and at the relying party so the next log-in will
fail and the user will be aware of the problem. Further, we suggest designing the authenticator
application in a way that allows users to see and manage stored keys. An authenticator app that
requires local authentication to make changes would also help mitigate threats from this type of
attack.

Log-In CSRF - We note another interesting attack where Phone A is the attacker ’s phone. Similar
to the attack mentioned above, where an attacker gains temporary access, we can have a
situation where an attacker gains temporary access to the user’s Phone B and attempts to
transfer credentials to it. The next time the victim goes to a site, it is possible they won’t realize

they are logging in as the attacker, allowing an attacker to collect sensitive data and track activity.
As above, requiring some kind of local authentication before using the authenticator application
and allowing users to easily manage stored keys can help mitigate this threat.

System Level Malware - Though system level malware on either the old phone or new phone is a
serious problem for a user even in the case where the user has a FIDO authenticator, we would
like to minimize the effects of a compromise on future log-ins on other uncompromised devices.
Assuming that the FIDO application is not compromised (a compromise of the FIDO application
is out of scope for this work as it could break every aspect of the existing scheme and the
proposed Transfer Access Protocol), the authenticator application cannot necessarily trust the
OS to create a secure channel between phones. As a result, we suggest putting the crypto
library, keys, and potentially some functionality of the authenticator application into a secure
element or trusted execution environment.

4. Summary of the Transfer Access Protocol
In summary, we propose a two-stage Transfer Access Protocol.

4.1 Stage 1

Phone A and Phone B communicate over a shared secure channel. The specifics of such a
channel are out of scope for this paper, but we assume that it does not add an attack surface for
any in-scope attackers. Ideally, this phase would not impose extra work for the user, for example,
it could be done during the initial phone setup when transferring apps and data from the old
device. During this phase:

1. Phone A tells Phone B which credentials it would like to transfer. In practice this would be
indicated by a unique identifier for each key that Phone B can understand. It should also
attach a version number to ensure compatibility. In our implementations, we only accept
one valid version number for simplicity.

2. Phone B sends its Attestation Certificate to Phone A. Phone B also generates new
credentials for all the valid transferred key identifiers and sends the corresponding public
keys back to Phone A. Phone B needs to mark each new public key with the original
identifier so that Phone A knows which of its keys to use for signing.

3. Phone A generates a Transfer Access credential, and sends that back to Phone B. That
credential may contain a chain, so Phone A must also send the original key metadata (the
only one the server knows about) so that Phone B can look up the Transfer Access
credential upon the next log-in. The Transfer Access Credential is a function of:

○ New Public Key
○ The Relying Party Site
○ New Attestation Certificate
○ Old authentication private key
○ Old attestation private key

4. Phone B acknowledges receipt of the Transfer Access credentials for each transferred
key identifier so that Phone A can delete the corresponding credentials.

4.2 Stage 2

Phone B navigates to a relying party as normal over TLS. During this phase:
5. The relying party asks for the user account, which the user supplies. This can be done in

the browser (for example by typing in a username, etc. and then having the user or
authenticator select a key) or it could be done in the authenticator app, which would
present credentials by account. The user could, for example, select “log-in with
authenticator” and simply select from the accounts with matching domains within the
authenticator. We leave the implementation of the authenticator app out of the scope of
this paper.

6. Once the relying party knows which key it would like to ask for an authentication, it sends
a standard authentication request containing:

○ Challenge
○ Metadata for the selected key

7. Instead of responding with a standard authentication response, Phone B responds with its
stored Transfer Access credential chain.

8. The server parses all credentials in the chain and can decide whether to allow or deny
access. If it decides to deny access it is up to the relying party whether it wishes to delete
old keys or keep them. If it succeeds, it deletes access for Phone A, authorizes the
authentication attempt, and adds the credentials for Phone B so that the user may log-in
with a normal FIDO authentication in the future.

These changes would require subtle changes on both the relying party servers and
authenticators to process the messages associated with the Transfer Access Protocol.

4.3 Summary of Proposed Changes

Here we summarize the concrete changes we propose in the Transfer Access Protocol.

● Relying Party Servers

The server should be updated to handle both authentication and Transfer Access
Responses to authentication requests during log-in. We suggest the following changes:

○ Activate a bit in the Message Header to differentiate between authentication and
Transfer Access responses.

○ When processing the Transfer Access response, verify the chain of authentication
key trust as well has hardware trust.

● Authenticator Clients

○ Allow authenticator to create, store, and send Transfer Access credential chains in
addition to traditional FIDO authentication credentials and authentication
responses.

○ Store metadata for the original key so that the authenticator can look up Transfer
Access credential chains when prompted by the key identifier known to the relying
party.

○ Expand the API to allow authenticator applications to talk directly to each other
and perform the steps from Stage 1 in the Transfer Access Protocol.

4.4 Implementation

We have implemented the concepts described in this paper on top of the public FIDO-U2F
protocol from Google (https://github.com/google/u2f-ref-code). Our changes are available for
download from our fork (https://github.com/alextaka/u2f-ref-code). The server was implemented
in Java; the client was implemented in software in javascript.

5. Future Directions
Device loss - The natural next step for this work is to perform Transfer of Access when the user
no longer has access to Phone A. This is also likely a very common scenario. We have some
proposals for this space including keeping a backup authenticator, or pre-registering backup keys
with an authenticator and relying party. We plan to explore the security and usability tradeoffs of
some of these solutions in future work.

Second Factor - There are a number of proposed second factors for the FIDO authentication
scheme, ranging from iris scans, to fingerprints, to pins, to passwords. We hope to discuss the
security and usability tradeoffs of many of these second factors, as well as how they should be
best implemented in the framework of a FIDO authentication application.

Version Negotiation - For the purposes of our discussion and implementation, we assume that all
clients are using the same version. If the version differs, we simply stop the protocol. This
simplifies the decision making process during the protocol, however, we expect that the FIDO
ecosystem will move to new versions in the future. The Transfer Access Protocol should be able
to handle transfers to devices that require new versions.

https://github.com/google/u2f-ref-code
https://github.com/google/u2f-ref-code
https://github.com/alextaka/u2f-ref-code

References:
Czeskis, A., Dietz, M., Kohno, Y.. Wallach, D., and Balfanz, D. “Strengthening user authentication
through opportunistic cryptographic identity assertions.” ACM Conference on Computer and
Communications Security (2012).

Lang, J., Czeskis, A., Balfanz, D., Schilder, M., and Srinivas, S. “Security Keys: Practical Cryptographic
Second Factors for the Modern Web.” Financial Cryptography and Data Security (2016).

"FIDO Alliance." FIDO Alliance . N.p., n.d. Web. 02 June 2017. < https://fidoalliance.org/ >.

"Set up Your New Nexus Device - Nexus Help." Google . Google, 2017. Web. 12 June 2017.

"Android 5.0 Feature: Tap & Go Restore and Restore From Specific Devices." Droid Life . N.p., 25
Nov. 2014. Web. 15 June 2017.

https://fidoalliance.org/

