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Abstract

Distributed storage systems aim to provide strong consis-
tency and isolation guarantees on an architecture that is par-
titioned across multiple shards for scalability and replicated
for fault tolerance. Traditionally, achieving all of these goals
has required an expensive combination of atomic commitment
and replication protocols — introducing extensive coordina-
tion overhead. Our system, Eris, takes a different approach. It
moves a core piece of concurrency control functionality, which
we term multi-sequencing, into the datacenter network itself.
This network primitive takes on the responsibility for consis-
tently ordering transactions, and a new lightweight transaction
protocol ensures atomicity.

The end result is that Eris avoids both replication and trans-
action coordination overhead: we show that it can process a
large class of distributed transactions in a single round-trip
from the client to the storage system without any explicit co-
ordination between shards or replicas in the normal case. It
provides atomicity, consistency, and fault tolerance with less
than 10% overhead — achieving throughput 3.6-35 % higher
and latency 72-80% lower than a conventional design on stan-
dard benchmarks.

1 Introduction

Distributed storage systems today face a tension between trans-
actional semantics and performance. To meet the demands of
large-scale applications, these storage systems must be parti-
tioned for scalability and replicated for availability. Supporting
strong consistency and strict serializability would give the sys-
tem the same semantics as a single system executing each
transaction in isolation — freeing programmers from the need
to reason about consistency and concurrency. Unfortunately,
doing so is often at odds with the performance requirements
of modern applications, which demand not just high scalabil-
ity but also tight latency bounds. Interactive applications now
require contacting hundreds or thousands of individual stor-

*This document is an extended version of the paper by the same title that
appeared in SOSP 2017 [42]. A summary of the additional content is provided
in Section 1.1.

age services on each request, potentially leaving individual
transactions with sub-millisecond latency budgets [23,49].

The conventional wisdom is that transaction processing sys-
tems cannot meet these performance requirements due to co-
ordination costs. A traditional architecture calls for each trans-
action to be carefully orchestrated through a dizzying array of
coordination protocols — e.g., Paxos for replication, two-phase
commit for atomicity, and two-phase locking for isolation —
each adding its own overhead. As we show in Section 8, this
can increase latency and reduce throughput by an order of
magnitude or more.

This paper challenges that conventional wisdom with Eris, !
a new system for high-performance distributed transaction
processing. Eris is optimized for high throughput and low
latency in the datacenter environment. Eris executes an im-
portant class of transactions with no coordination overhead
whatsoever — neither from concurrency control, atomic com-
mitment, nor replication — and fully generic transactions with
minimal overhead. It is able to execute a variety of workloads,
including TPC-C [61], with less than 10% overhead compared
to a non-transactional, unreplicated system.

The Eris architecture divides the responsibility for trans-
action isolation, fault tolerance, and atomic coordination in a
new way. Eris isolates the core problem of transaction sequenc-
ing using independent transactions [21, 56], then optimizes
their processing with a new network-integrated protocol. An
independent transaction represents an atomic execution of a
single, one-shot code block across multiple shards [21]. This
abstraction is a useful one in itself — many workloads can be
expressed solely using independent transactions [36] — as well
as a building block for more complex operations.

The main contribution of Eris is a new protocol that can
establish a linearizable order of execution for independent
transactions and consensus on transaction commit without ex-
plicit coordination. Eris uses the datacenter network itself as a
concurrency control mechanism for assigning transaction or-
der. We define and implement a new network-level abstraction,
multi-sequencing, which ensures that messages are delivered

IEris takes its name from the ancient Greek goddess of discord, i.e., lack
of coordination.



to all replicas of each shard in a consistent order and detects
lost messages. Eris augments this network-level abstraction
with an application-level protocol that ensures reliable deliv-
ery. In the normal case, this protocol is capable of committing
independent transactions in a single round trip from clients
to server, without requiring servers to communicate with each
other.

Eris builds on recent work that uses network-level sequenc-
ing to order requests in replicated systems [22, 43, 54]. Se-
quencing transactions in a partitioned system (i.e., multi-
sequencing) is substantially more challenging than ordering
operations to a single replica group, as servers in different
shards do not see the same set of operations, yet must ensure
that they execute cross-shard transactions in a consistent order.
Eris addresses this with a new concept, the multi-stamp, which
provides enough information to sequence transactions, and
can be implemented readily in an in-network sequencer.

While independent transactions are useful, they do not cap-
ture all possible operations. We show that independent transac-
tions can be used as a building block to execute fully general
transactions. Eris uses preliminary transactions to gather read
dependencies, then commits them with a single conclusory
independent transaction. Although doing so imposes locking
overhead, by leveraging the high performance of the under-
lying independent transaction primitive, it continues to out-
perform conventional approaches that must handle replication
and coordination separately.

We evaluate Eris experimentally and demonstrate that it pro-
vides throughput 3.6-35 x higher and latency 72—80% lower
than a conventional design (two-phase commit with Paxos
and locking). Because Eris can execute most transactions in
a single round trip without communication between servers,
it achieves performance within 3% of a non-transactional, un-
replicated system on the TPC-C benchmark, demonstrating
that strong transactionality, consistency, and fault tolerance
guarantees can be achieved without a performance penalty.

1.1 Additional Technical Report Content
This technical report contains the following additional material

over our SOSP submission:

e The full details of the independent transaction processing
layer’s view change protocol (Section 6.4), epoch change
protocol (Section 6.5), and synchronization protocol (Sec-
tion 6.6).

e A proof of the independent transaction processing layer’s
correctness (Section 6.7).

o A TLA+ specification of the Eris protocol (Appendix A).

e A P4 implementation of the Eris multi-sequencer (Ap-
pendix B).

Additional materials are highlighted with a gray bar in the
margin.
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Figure 1: Standard layered architecture for a partitioned, replicated
storage system

2 Background

We consider storage systems that are partitioned for scala-
bility, and replicated for fault tolerance. Data is partitioned
among different shards, each consisting of multiple replicas
with copies of all shard data. Clients (e.g., front-end servers)
submit transactions to be processed. We limit ourselves here
to systems where all nodes are located in the same datacenter.

A storage system should provide several guarantees. Every
transaction should be applied to all shards it affects, or none
at all (atomicity). The execution should be identical to each
transaction being executed in sequence (strict serializable iso-
lation). And these guarantees should hold even though some
of the nodes in each shard can fail (fault tolerance).

2.1 The Status Quo: Extensive Coordination

Existing systems generally achieve these goals using a layered
approach, as shown in Figure 1. A replication protocol (e.g.,
Paxos [40]) provides fault tolerance within each shard. Across
shards, an atomic commitment protocol (e.g., two-phase com-
mit) provides atomicity and is combined with a concurrency
control protocol (e.g., two-phase locking or optimistic con-
currency control). Though the specific protocols differ, many
systems use this structure [2,3,16,19,21,29,38,47].

A consequence is that coordinating a single transaction com-
mit requires multiple rounds of coordination. As an exam-
ple, Figure 2 shows the protocol exchange required to com-
mit a transaction in a conventional layered architecture like
Google’s Spanner [19]. Each phase of the two-phase commit
protocol requires synchronously executing a replication pro-
tocol to make the transaction coordination decision persistent.
Moreover, two-phase locking requires that locks be held be-
tween prepare and commit operations, blocking conflicting
transactions. This combination seriously impacts system per-
formance.

3 Eris Design Principles

Eris takes a different approach to transaction coordination that
allows it to achieve higher performance. It is based on the
following three principles:

Principle 1: Separating Ordering from Execution. Tra-
ditional coordination protocols establish the serializable order
of transactions concurrently with executing those transactions,
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Figure 2: Coordination required to commit a single transaction with
traditional two-phase commit and replication

e.g., as a result of the locks that are acquired during execution.
Eris explicitly separates the task of establishing the serial or-
der of transactions from their execution, allowing it to use an
optimized protocol for transaction ordering.

To make this possible, the Eris protocol relies on a special-
ized transaction model: independent transactions [21]. Inde-
pendent transactions apply concurrent changes atomically at
multiple shards, but forbid cross-shard data dependencies (we
make this definition precise in Section 4.1). Independent trans-
actions have the key property that executing them sequentially
at each shard in global sequence order guarantees serializabil-
ity. That is, establishing a global serial order allows transaction
execution to proceed without further coordination.

Principle 2: Rapid Ordering with In-Network Concur-
rency Control. How quickly can we establish a global order
of independent transactions? Existing systems require each of
the participating shards in a transaction to coordinate with
each other in order to ensure that transactions are processed
at each affected shard in a consistent order. This requires at
least one round of communication before the transaction can
be executed, impeding system performance.

Eris establishes a global order of transactions with minimal
latency by using the network itself to sequence requests. Re-
cent work has shown that network-level processing elements
can be used to assign a sequence number to each message
destined for a replica group, making it possible to detect mes-
sages that are dropped or delivered out of order [43]. Eris
takes this approach further, using the network to sequence
multiple streams of operations destined for different shards.
The key primitive, multi-sequencing, atomically applies a se-
quence number for each destination of a message, establishing
a global order of messages and ensuring that any recipient
can detect lost or reordered messages. Eris uses this to build
a transaction processing protocol where coordination is not
required unless messages are lost.

Principle 3: Unifying Replication and Transaction Coor-
dination. Traditional layered designs use separate protocols
for atomic commitment of transactions across shards and for
replication of operations within an individual shard. While this
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Figure 3: The layers of Eris and the guarantees they provide

separation provides modularity, it has been recently observed
that it leads to redundant coordination between the two lay-
ers [66]. Protocols that integrate cross-shard coordination and
intra-shard replication into a unified protocol have been able
to achieve higher throughput and lower latency [38,48, 66].

This approach integrates particularly well with Eris’s in-
network concurrency control. Because requests are sequenced
by the network, each individual replica in a shard can inde-
pendently process requests in the same order. As a result, in
the common case Eris can execute independent transactions
in a single round trip, without requiring either cross-shard or
intra-shard coordination.

4 Eris Architecture

Eris divides the responsibility for different guarantees in a
new way, enabling it to execute many transactions without
coordination. The protocol itself is divided into three layers,
as shown in Figure 3:

1. The in-network concurrency control layer (Section 5) uses
a new network primitive to establish a consistent ordering
of transactions, both within and across shards, but does not
guarantee reliable message delivery.

2. The independent transaction layer (Section 6) adds reli-

ability and atomicity to the ordered operations, ensuring
that each transaction is eventually executed at all non-faulty
replicas within each shard (or fails entirely). This combi-
nation of ordering and reliability is sufficient to guarantee
linearizability for an important class of transactions.

3. The general transaction layer (Section 7) provides isola-

tion for fully general transactions, by building them out
of independent transactions and relying on the linearizable
execution provided by other layers.

4.1 Transaction Model

Transactions in Eris come in two flavors. The core transaction
sequencing layer handles independent transactions. These can
be used directly by many applications, and doing so offers
higher performance. Eris also supports general transactions.

Independent transactions are one-shot operations (i.e.,
stored procedures) that are executed atomically across a set



of participants. That is, the transaction consists of a piece
of code to be executed on a subset of shards. These stored
procedures cannot interact with the client, nor can different
shards communicate during their execution. Each shard must
independently come to the same “commit” or “abort” decision
without coordination—e.g., by always committing. This defi-
nition of independent transactions is taken from Granola [21];
essentially the same definition was previously proposed by the
authors of H-Store [56] under the name “strongly two-phase”.

Like the H-Store architecture, in our implementation of Eris,
the underlying data store executes independent transactions
sequentially on each participant, without concurrency. This
allows it to avoid the overhead of lock- and latch-based syn-
chronization, which collectively amount to as much as 30%
of the execution cost of traditional DBMS designs [30]. This
architecture restricts transaction execution to a single thread.
Multicore systems can operate one logical partition per core,
at the cost of potentially increasing the number of distributed
transactions.

Although the independent transaction model is restrictive, it
captures many common classes of transactions. Any read-only
transaction can be expressed as an independent transaction;
Eris’s semantics make it a consistent snapshot read. Any one-
round distributed read/write transaction that always commits
(e.g., unconditionally incrementing a set of values) is an inde-
pendent transaction. Finally, data replicated across different
shards (as is common for frequently accessed data) can be up-
dated consistently with an independent transaction. Prior work
has shown that many applications consist largely or entirely of
independent transactions [20,21,56]. As one example, TPC-
C [61], an industry standard benchmark designed to represent
transaction processing workloads, can be expressed entirely
using independent transactions, despite its complexity [S6].

General transactions provide a standard interactive trans-
action model. Clients begin a transaction, then execute a se-
quence of reads and writes at different shards; each may de-
pend on the results of previous operations. Finally, the client
decides whether to Commit or Abort the transaction. These can
be used to implement any transaction processing workload.

S In-Network Concurrency Control

Traditional transaction processing systems are network-
oblivious, relying on application-level protocols for everything
from sequencing operations to ensuring that messages are de-
livered to the right participants. Recent work has demonstrated
that it is possible to accelerate coordination for replicated sys-
tems by using advanced processing capabilities in the network
layer to build sequencing primitives [43, 54]. However, large-
scale transaction processing presents major new challenges.
Using a dedicated sequencing component is not, in itself,
a new idea. Sequencers have previously been used to ac-
celerate consensus [4, 34] and transaction processing Sys-
tems [9, 28, 53, 62], and have been implemented in soft-
ware [4, 53], using RDMA NICs [35], and using in-network

processing components [43]. In particular, NOPaxos [43]
showed that it is possible to build a network-level device that
assigns globally consistent, consecutive sequence numbers to
all packets destined for a replica group. Sequence numbers
allow receivers to reject messages that arrive out of order, and
to detect dropped messages (as gaps in the sequence numbers).
These, in turn, enable an optimized replication protocol where
replicas only need to coordinate when messages are lost or
reordered in the network.

Can the same be done for transaction processing? In this
paper, we show that existing network-layer mechanisms (in-
cluding NOPaxos’s OUM) are not suited for this purpose. They
establish an order over a set of messages to a single destination
group, while coordination-free transaction execution requires
a consistent ordering across messages delivered to many desti-
nation shards. Eris’s contribution is an in-network concurrency
control primitive that establishes such an ordering and allows
receivers to detect dropped messages, along with a strategy
to realize this primitive efficiently in programmable switch
architectures.

Part of achieving this ordering is making the set of trans-
action participants explicit to the network layer. Traditionally,
clients send transactions to multiple groups by sending sep-
arate multicast messages to each group (or, often, separate
unicast messages to each member of each group). This makes
it impossible to guarantee a meaningful order at the network
level: without knowing which separate messages correspond
to the same logical operation, one cannot guarantee a con-
sistent ordering across different transaction participants. To
address this semantic gap, we introduce two new concepts:

e Groupcast — an extended multicast primitive delivers mes-
sages to a client-specified set of multicast groups.

o Multi-sequenced groupcast — a specialized groupcast that
guarantees messages are delivered to all groupcast recipients
in a globally consistent order. The multi-sequenced group-
cast primitive does not guarantee reliable delivery, but it
does guarantee that recipients can detect dropped messages.

An important goal of this design is to minimize the logic
required for the network. This simplifies implementation and
increases overall system reliability; end-to-end guarantees are
enforced in the application. The primitives that we identify are
sophisticated enough to enable the Eris transaction processing
algorithm and thus dramatically increase system performance,
but simple enough to be readily and efficiently implemented
in a variety of network devices.

5.1 Why Multi-Sequencing?

Our work extends the OUM model [43] to the multi-group
environment of transaction processing. This requires messages
to be sequenced atomically for multiple replica groups with
the same guarantees. To illustrate the need for such an ordering
mechanism, and the challenges in achieving one, we consider
two straw-man proposals:



1) Total Global Sequencing. Consider first applying the
OUM approach directly to the entire storage system, using
a single sequencer. All transactions are sent through this se-
quencer, which assigns each a sequence number, then forwards
them to all replicas of all shards in the system. Because of the
single global sequence number, this design is capable of en-
suring both ordering (no two receivers process messages in
different orders) and drop detection (recipients are notified
of any dropped message). However, it requires every server
to receive every message involving any shard in the system,
clearly impeding system performance.

Note that it is not possible to adapt this design so that mes-
sages are delivered only to replicas in the affected shards while
still maintaining ordering and drop detection. With a global se-
quence number, a receiver seeing message n followed by mes-
sage n+ 2 cannot distinguish the case where it was intended
to receive message n+ 1 from the case in which message n+ 1
was not sent to its shard.

2) Multiple Independent Sequencing. Alternatively, con-
sider employing the OUM approach by treating each shard
as a separate OUM group. Messages sent to a shard are se-
quenced independently of other shards and then delivered to
all replicas in the shard. Unlike total global sequencing, with
this approach messages are only delivered to the shards that
need to process them. Moreover, replicas in a shard can de-
tect dropped messages within a shard. However, ordering and
detection are not guaranteed across different shards. If trans-
actions 77 and 7, are each sent to both shards A and B, it is
possible that the sequencer for shard A processes 77 before 7>
while the sequencer for shard B processes T, before 77. It is
also possible that a transaction processed by A’s sequencer is
dropped in the network before ever reaching B’s sequencer,
or vice versa. These anomalies could result in violations of
system correctness.

What is needed in order to ensure a correct, consistent or-
dering is a way to ensure that messages delivered to mul-
tiple multicast groups are sequenced atomically across all
recipient groups. Our design below achieves this goal in two
parts. Groupcast provides a way for applications to direct mes-
sages to multiple multicast groups, and multi-sequencing en-
sures atomic sequencing across all destination groups. This is
achieved using a new technique, the multi-stamp.

5.2 Groupcast and Multi-sequenced Groupcast

We begin by defining the properties of the groupcast and multi-
sequenced groupcast primitives.

Groupcast. Traditional multicast sends messages to a pre-
defined group of recipients, e.g., an IGMP group. Communica-
tion in a partitioned, replicated transaction processing system
does not fit this communication model well. Transactions must
be delivered to multiple groups of replicas, one for each shard
affected by the transaction; which groups are involved varies
depending on the transaction particulars.

We instead propose the groupcast primitive, where a mes-
sage is sent to multiple multicast groups. The set of destina-
tions is specified. In our design, this is achieved by sending the
message to a special groupcast IP address. Using SDN rules,
packets matching this destination IP address are processed
specially. An additional header located between the IP and
UDP headers specifies a list of destination groups; the packet
is delivered to each member of each group.

Multi-sequenced groupcast. Multi-sequencing extends
the groupcast primitive with additional ordering guarantees.
Namely, it provides the following properties:

o Unreliability. There is no guarantee that any message will
ever be delivered to its recipient.

o Partial Ordering. The set of all multi-sequenced groupcast
messages are partially ordered—with the restriction that any
two messages with a destination group in common are com-
parable. Furthermore, if m; < m», and a receiver delivers
both m; and m,, then it delivers m; before m;.

e Drop Detection. Let R(m) be the set of recipients of mes-
sage m. For any message m, either: (1) every receiver
r € R(m) delivers either m or a DROP-NOTIFICATION for
m, or (2) no receiver r € R(m) delivers m or a DROP-
NOTIFICATION for m.

Multi-sequencing can thus establish an ordering relation-
ship between messages with different sets of receivers. This
is an important distinction with OUM, which only supports
ordering within a single multicast group. Multi-sequencing
requires an ordering relationship between any two messages
that have some receiver in common, i.e., R(m;) N R(my) # 0.

5.3 Multi-Sequencing Design

Multi-sequenced groupcast is implemented using a centralized,
network-level sequencer. One sequencer is designated for the
system at any time; it can be replaced when it fails. Depending
on implementation (Section 5.4), the sequencer can be either
an end-host, a middlebox, or a sufficiently powerful switch.
All multi-sequenced groupcast packets are routed through this
sequencer, which modifies them to reflect their position in a
global sequence. Receivers then ensure that they only process
messages in sequence number order.

The challenge for multi-sequenced groupcast is how the
sequencer should modify packets. As described above, affixing
a single sequence number creates a global sequence, making
it possible to meet the ordering requirement but not the drop
detection requirement. In order to satisfy both requirements,
we introduce a new concept, the multi-stamp.

A multi-stamp is a set of (group-id, sequence-num) pairs,
one for each destination group of the message. To apply multi-
stamps, a sequencer maintains a separate counter for each des-
tination group it supports. Upon receiving a packet, it parses



the groupcast header, identifies the appropriate counters, incre-
ments each of them atomically, and writes the set of counters
into the packet header as a multi-stamp.

Including the full set of counters for each destination group
in the multi-stamp serves two purposes. First, each receiver
can ensure the ordering and drop detection properties. It
checks the appropriate sequence number for its group; if the
value is lower than that of the last delivered packet, this indi-
cates an out-of-order packet, and it is dropped. If the sequence
number is higher than the next expected packet, this indicates
a potentially dropped packet, so the application (i.e., Eris) is
notified. Second, a receiver can request a missing packet by
its sequence number, even from other groups.

Fault tolerance and epochs. Multi-sequencing requires the
sequencer to keep state: the latest sequence number for each
destination group. Of course, sequencers can fail. Rather than
trying to keep sequencer state persistent — which would require
synchronous replication of the sequencer and complex agree-
ment protocols — we instead have the sequencer keep only soft
state, and expose sequencer failures to the application.

To handle sequencer failures, we introduce a global epoch
number for the system. This number is maintained by the se-
quencer, and added to the groupcast header along with the
multi-stamp. Responsibility for sequencer failover lies with
the SDN controller. When it suspects the sequencer of having
failed (e.g., after a timeout), it selects a new sequencer, incre-
ments the epoch number, and installs that epoch number in the
new sequencer. Notice that delivery in lexicographic, epoch
number major, multi-stamp minor order satisfies the partial
ordering multi-sequencing requirement.

When a receiver receives a multi-sequenced groupcast mes-
sage with a higher epoch number than it has seen before, it
delivers a NEW-EPOCH notification to the application (i.e.,
Eris). This notifies the application that some packets may have
been lost; the application is responsible for reaching agreement
on which packets from the previous epoch were successfully
delivered before processing messages from the next epoch.

As in OUM, the SDN must install strictly increasing epoch
numbers to successive sequencers [43]. For fault tolerance,
we replicate the controller using standard means, a common
practice [32,37]. Alternatively, a new sequencer could set its
epoch number using the latest physical clock value, provided
that clocks are sufficiently well synchronized to remain mono-
tonic in this context.

5.4 Implementation and Scalability

Our implementation of the Eris network layer includes the
in-network sequencer, an SDN controller, and an end-host
library to interface with applications like the Eris transaction
protocol. The SDN controller, implemented using POX [50],
manages groupcast membership and installs rules that route
groupcast traffic through the sequencer. The end-host library
provides an API for sending and receiving multi-sequenced
groupcast messages. In particular, it monitors the appropriate

sequence numbers on incoming multi-stamped messages and
sends the application DROP-NOTIFICATION or NEW-EPOCH
notifications as necessary.

The sequencer itself can be implemented in several ways.
We have built software-based prototypes that run on a con-
ventional end-host and a middlebox implemented using a net-
work processor, and evaluated their performance as shown in
Table 1. However, the highest-performance option is to im-
plement multi-sequenced groupcast functionality directly in
a switch. This is made possible by programmable network
dataplane architectures that support per-packet processing.

In-switch designs. For maximum performance, we envi-
sion multi-sequencing and groupcast being implemented di-
rectly in network switches. Programmable network hardware
architectures such as Reconfigurable Match Tables [13], Intel
FlexPipe [52], Cavium XPliant [65], and Barefoot Tofino [6]
provide the necessary processing capability.

We have implemented multi-sequenced groupcast in the P4
language [12], supporting compilation to several of these fu-
ture architectures. The complete P4 source code is available in
Appendix B. The hardware required to evaluate this approach
is not yet commercially available, though such products are
expected within the next year. We can, however, analyze the
resource usage of our design to understand the feasibility and
potential scalability of in-network concurrency control.

Consider a Reconfigurable Match Table (RMT) [13] archi-
tecture. This architecture provides a pipeline of stages that
match on header fields and perform actions. It also provides
stateful memory, one register of which can store each per-
shard counter. This design allows line-rate processing at terabit
speed, if the necessary functionality can be expressed in the
packet processing pipeline. The barrier to scalability, then, is
the number of shards to which a single multi-sequenced group-
cast packet can be addressed. Two resource constraints govern
this limit. The first is how many stateful counters can be incre-
mented on each packet. The RMT proposal specifies 32 stages,
each with 4-6 register-attached ALUs per stage, supporting
128-192 destinations per packet. Second, the packet header
vector containing fields used for matching and action is limited
to 512 bytes. Assuming 32-bit shard IDs and counter values,
this allows 116 simultaneous destinations after accounting for
IP and UDP headers. For very large systems where transac-
tions may span more than 100 shards, it may be necessary to
use special-case handling for global (all-shard) messages.

Middlebox prototype. As sufficiently capable switches are
not yet available, we implement a multi-stamping sequencer
on a Cavium Octeon II CN6880 network processor. This de-
vice contains 32 MIPS64 cores and provides low-latency ac-
cess to four 10 Gb/s Ethernet interfaces. We use the middlebox
implementation in our evaluation (Section 8). Although it uses
neither a heavily optimized implementation nor especially
powerful hardware (the CN6880 was released in 2010), it can
process 6.19M multi-sequenced packets per second, close to



Throughput (packets/second)

6.19M (o =3.16K)
1.61M (o = 19.98K)

Latency (us)

13.64 (0 =0.42)
24.60 (o =1.02)

Middlebox
Endhost

Table 1: Performance of endhost and middlebox sequencers

the maximum capacity of its 10 Gb/s link (7M packets/sec).

End-host sequencing. An alternate design option is to im-
plement the sequencing functionality on an end host. This
provides a more convenient deployment option for environ-
ments where the network infrastructure cannot be modified.
The tradeoff is this imposes higher latency (approximately
10 us per transaction), and system throughput may be limited
by sequencer capacity. Our straightforward implementation
of the multi-sequencer in user space on Linux can sequence
up to 1.61M requests per second on a 24-core Xeon E5-2680
machine, sufficient for smaller deployments. Low-level opti-
mizations and new hardware such as RDMA NICs can likely
improve this capacity [35].

6 Processing Independent Transactions

Eris’s independent transaction processing layer provides
single-copy linearizable? (or strict serializable) semantics for
independent transactions. Independent transactions have the
property that executing them one-at-a-time at each shard guar-
antees strict serializable behavior, provided they are executed
in a consistent order. Network multi-sequencing establishes
just such an order over transactions. However, it does not guar-
antee reliable delivery. Thus, for correctness Eris must build
reliable delivery semantics at the application layer and ensure
that replicas agree on which transactions to commit, not their
order. In the normal case, Eris is able to execute independent
transactions using only a single round trip from the client to
all replicas.

6.1 Overview

Eris uses a quorum-based protocol to maintain safety always
— even when servers and the underlying network behave asyn-
chronously — and availability even when up to f out of 2f + 1
replicas in any shard fail by crashing. Eris clients send indepen-
dent transactions directly to the replicas in the affected shards
using multi-sequenced groupcast and wait for replies from a
majority quorum from each shard. There is a single Desig-
nated Learner (DL) replica in each shard. Only this replica
actually executes transactions synchronously; the other repli-
cas simply log them and execute them later. As a result, Eris
requires that clients wait for a response from the DL before
considering a quorum complete. Using a DL serves two pur-
poses. First, it allows single-round-trip execution without the
need for speculation and rollback: only the DL executes the

’Linearizability is the strongest practical correctness condition for con-
current objects [31]. It is equivalent to strict serializability for transactions;
because independent transactions are one-shot operations on each shard, we
use the term “linearizability” here.

request, and, unless it fails and is replaced, it is involved in
every transaction committed by the shard. (NOPaxos [43] uses
the same principle.) Second, only the DL in each shard sends
the transaction result to the client; the others only send an
acknowledgment, avoiding unnecessary network congestion
at the client.

Eris must be resilient to replica failures (in particular, DL
failures) and network anomalies. In our multi-sequencing ab-
straction, these anomalies consist of DROP-NOTIFICATIONS
(when a multi-sequenced groupcast transaction is dropped
or reordered in the network) and NEW-EPOCH notifications
(when a sequencer has been replaced). In Eris, failure of the
DL is handled entirely within the shard by a protocol similar
in spirit to standard leader change protocols [40,43,51]. DROP-
NOTIFICATIONs and NEW-EPOCH notifications, however, re-
quire coordination across shards. For DROP-NOTIFICATIONS,
all participant shards for the dropped transaction must reach
the same decision about whether or not to discard the message.
For NEW-EPOCH notifications, the shards must ensure that
they transition to the new epoch in a consistent state.

To manage the complexity of these two failure cases, we
introduce a novel element to the Eris architecture: the Failure
Coordinator (FC). The FC is a service that coordinates with
the replicas to recover consistently from packet drops and
sequencer failures. The FC must be replicated using standard
means [39,43,51] to remain available. However, the overhead
of replication and coordination is not an issue: Eris invokes
the FC and incurs its overhead only in rare failure cases, not
in the normal path.

The state maintained by replicas is summarized in Figure 4.
Two important pieces of state are the view-num and epoch-
num, which track the current DL and multi-sequencing epoch.
Specifically, the DL for view-num v is replica number v mod
N, where N is the number of replicas in the shard. Eris replicas
and the FC tag all messages with their current epoch-num and
do not accept messages from previous epochs (except during
epoch change). If a replica ever receives a message from a
later epoch, it must use the FC to transition to the new epoch
before continuing.

Eris consists of five sub-protocols: the normal case proto-
col, the protocol to handle dropped messages, the protocol to
change the DL within a shard, the protocol to change epochs,
and the protocol to periodically synchronize replicas’ states
and allow all replicas to safely execute transactions. Below
we present all five. Throughout these protocols, messages that
are sent but not acknowledged with the proper reply are re-
tried. In particular, clients repeatedly retry transactions until
they receive the correct responses; at-most-once semantics are
guaranteed using the standard technique of maintaining a table
of the most recent transaction from each client [45].

6.2 Normal Case

In the normal case, clients submit independent transactions
via the multi-sequencing layer, and each replica that receives



4 Replica: )

o replica-id = (shard-num, replica-num)

e status — one of Normal, ViewChange, EpochChange

e view-num — indicates which replica within the shard is believed to
be the DL

e epoch-num — indicates which sequencer the replica is currently
accepting transactions from

e [og — independent transactions and NO-OPs in sequential order

o temp-drops — set of tuples of the form (epoch-num, shard-num,
sequence-num), indicating which transactions the replica has tenta-
tively agreed to disregard

e perm-drops — indicates which transactions the FC has committed
as permanently dropped

e un-drops — indicates which transactions the FC has committed for
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Figure 4: Local state of Eris replicas used for independent transaction
processing
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Figure 5: Communication pattern of Eris in the normal case, where
the independent transaction is sent via multi-sequenced groupcast to
multiple shards, each consisting of 3 replicas (one replica in each
shard is a Designated Learner)

the message in order simply responds to the client; the DL
executes the transaction and includes the result. Thus, transac-
tions are processed in a single round trip. Figure 5 illustrates
this process.

1. First, the client sends the transaction to all replica groups
for all participant shards, using multi-sequenced groupcast.

2. The replicas receive the transaction, place it in their logs,
and reply with (REPLY, txn-index, view-num, result),
where fxn-index is the index of the transaction in the
replica’s log. Only the DL for the view actually executes the
transaction and includes its result; the other replicas simply
log the transaction.

3. The client waits for a view-consistent quorum reply from
each shard.

Here, a view-consistent quorum reply from a shard is a REPLY
from a majority of the shard’s replicas, with matching txn-
index, view-num, and epoch-num, including one from the DL.

Note that a replica cannot process a transaction if it has
a matching transaction identifier in its perm-drops or temp-
drops; if there is a matching identifier in its perm-drops, it
inserts a NO-OP into its log in the transaction’s place and
continues—otherwise the replica must wait. A matching iden-
tifier in its perm-drops or temp-drops indicates that the FC
considers the transaction definitively or potentially failed, as
discussed below.

In the normal case, transactions are received from the multi-
sequencing layer and added to the log via this protocol. How-
ever, replicas can also learn about new transactions or NO-
OPs through the dropped message, view or epoch change, or
synchronization protocols below. If this causes them to add
a new transaction to the log before it is received from the
multi-sequencing layer, the replica ignores the corresponding
message or DROP-NOTIFICATION when it is later received.

6.3 Dropped Messages

Replicas receive DROP-NOTIFICATIONs from the multi-
sequencing layer when they miss a message intended for their
shard because of a network anomaly. Here, atomicity requires
that either every participant shard learn and execute the miss-
ing transaction (as in Section 6.2), or that none execute it. This
process is coordinated by the FC, which contacts the other
nodes in the system in an attempt to recover the missing trans-
action. If any node has a copy of the missing transaction, the
FC sends it to the other replicas. Otherwise, the FC uses a
round of agreement to ensure that all replicas agree to drop
the transaction and move on.

1. When a replica in a shard detects that it missed some trans-
action, it sends (FIND-TXN, txn-id) to the FC, where txn-id
is a triple of the replica’s shard-num, its current epoch-num,
and its shard’s sequence number for the message.

2. The FC receives this FIND-TXN and (assuming that it hasn’t

already found or dropped the missing transaction) broad-
casts (TXN-REQUEST, txn-id) to all replicas in all shards.
If the FC already found or dropped the transaction, it replies
with (TXN-FOUND, txn) or (TXN-DROPPED, fxn-id), re-
spectively.

3. When a replica receives TXN-REQUEST, if it has received

a transaction matching txn-id, it replies with (HAS-TXN,
txn). Otherwise, it adds txn-id to temp-drops and replies
with (TEMP-DROPPED-TXN, view-num, txn-id).

Once a replica sends TEMP-DROPPED-TXN, it cedes con-
trol of that transaction’s fate to the FC: even if it later re-
ceives the transaction, it cannot process it until it has learned
whether the FC has found or permanently dropped the trans-
action.

4. The FC waits for either a quorum of TEMP-DROPPED-TXNS

from every shard or a single HAS-TXN, whichever comes
first. As before, each quorum must be view-consistent and
include the DL of the view.



If the FC first receives the HAS-TXN and hasn’t previously
dropped the transaction, it saves it and sends (TXN-FOUND,
txn) to all participants in the transaction.

If it first receives the necessary TEMP-DROPPED-TXNs (or
receives HAS-TXN, having previously dropped the trans-
action), it decides that the transaction matching fxn-id is
permanently dropped and sends (TXN-DROPPED, txn-id)
to all replicas.

5. When a replica hears back from the FC, if it receives a TXN-
FOUND, it adds the transaction to its un-drops, adding the
transaction to its log and replying to the client. If it receives
a TXN-DROPPED, it adds the txn-id to perm-drops, adding a
NO-OP to its log if necessary. In either case, the replica can
then proceed to execute subsequent transactions.

As an optimization, before executing this procedure, a
replica that receives a DROP-NOTIFICATION first contacts the
other replicas in its shard. If one of them received the missing
message, it can respond with it, allowing the first replica to
process the transaction as normal. If successful, this allows a
replica to recover from a dropped message without involving
the FC. In our experience, this optimization is important, as
message losses that affect all replicas in a shard are rare.

6.4 Designated Learner Failure

Because only the DL executes transactions, and the ability to
make progress is dependent on each shard having a DL, Eris
has a view change protocol to replace the DL if it fails. To en-
sure the system remains correct, the new DL must learn about
all transactions committed in previous views. It must also learn
about any TEMP-DROPPED-TXNs sent by a majority in previ-
ous views, and refrain from processing these transactions until
learning their outcome from the FC.

The view change is achieved using a protocol similar to
Viewstamped Replication [45,51].

1. When a replica suspects the DL to have failed, it changes
its status to ViewChange and increments its view-num.
While in the viewChange state, it does not accept any mes-
sages except view change and epoch change messages. It
then sends (VIEW-CHANGE, view-num, log, temp-drops,
perm-drops, un-drops) to the DL for the new view. It also
sends (VIEW-CHANGE-REQ, view-num) to the other repli-
cas.

2. When a replica receives a VIEW-CHANGE-REQ for a view-
num greater than its own, it updates its view-num, sets its
status to ViewChange, and sends the VIEW-CHANGE as above.

3. When the DL for the new view receives VIEW-CHANGE
messages from a majority of replicas (including itself), it
updates its view-num, and then merges its own log, temp-
drops, perm-drops, and un-drops with those it received in
the VIEW-CHANGE messages. The merging operation for
temp-drops, perm-drops, and un-drops is a simple set union.

The merged log is computed by taking the longest log re-
ceived, and replacing any slots which have matching zxn-ids
in perm-drops with NO-OPs.

If, at this point, the new log has any transactions matching
txn-ids in temp-drops without corresponding txn-ids in un-
drops, the DL must wait for the FC to come to a decision
about those xn-ids, retrying—asking the FC and sending
any HAS-TXNs—if necessary.

It then sets its status to Normal and sends (START-VIEW,
view-num, log, temp-drops, perm-drops, un-drops) to the
other replicas in the shard.

4. The non-DL replicas, upon receiving a START-VIEW for a

view greater their own (or equal to their own if their status
is ViewChange), adopt the new log, view-num, temp-drops,
perm-drops, and un-drops and set their status to Normal as
well.

A view change (or epoch change) could result in the DL
from the old view having executed transactions which are even-
tually dropped, potentially requiring application-level rollback.
Eris handles this possibility with application state transfer.

Note that several messages in the view change protocol,
as well as the epoch change protocol below, are presented as
containing replicas’ full logs and other state. This is only for
simplicity of exposition. To avoid transferring considerable
amounts of state, in a real deployment these messages would
contain only metadata, and the recipients can then pull any
missing data from the sender — a standard optimization.

6.5 Epoch Change

Eris also needs to be able to handle epoch changes in the multi-
sequencing layer, i.e., sequencer failures. As with dropped
messages, the FC manages this process. It ensures all replicas
across all shards start in the new epoch in consistent states, i.e.,
that replicas learn about transactions committed in previous
epochs and that no replica knows about a transaction which
the other participants in the transaction do not know about.

1. Whenever a replica receives a NEW-EPOCH notification
from the network layer (indicating a sequencer failover)
it sends (EPOCH-CHANGE-REQ, epoch-num) to the FC.

2. Whenever the FC receives a EPOCH-CHANGE-REQ with

an epoch-num greater than its own, the FC sets its epoch-
num to the new value and sends out (EPOCH-CHANGE,
epoch-num) to all replicas.

3. When a replica receives a EPOCH-CHANGE for a later

epoch, it updates its epoch-num and sets its status to
EpochChange. While in this state, it does not accept any
messages except epoch change messages. It then sends
(EPOCH-CHANGE-ACK, epoch-num, last-norm-epoch,
view-num, log) back to the FC, where last-norm-epoch was
the last epoch in which the replica had stafus Normal.



4. When the FC receives EPOCH-CHANGE-ACK messages
from a simple majority of replicas from all shards, it first
merges all logs from all shards to create a combined log.
From each shard, the FC only uses logs where the associ-
ated last-norm-epoch is the latest epoch the FC started, if
they exist; otherwise, it uses the log from the saved START-
EPOCH message for that shard (see below).

The FC then determines if there are any gaps for any shard in
the combined log and decides that the missing transactions
should be permanently dropped.

When this is done, for each shard it sends out
(START-EPOCH, epoch-num, new-view-num, log) to all of
the shard’s replicas, where new-view-num is the highest
view-num it received from any replica in that shard and log
contains all of that shard’s transactions from the combined
log (with NO-OPs for any transactions the FC previously
dropped).

The FC saves these START-EPOCH messages until a majority
of replicas from each shard acknowledge the new epoch, in
case it needs to resend them or use them for subsequent
epoch changes.

5. When areplica receives a START-EPOCH for an epoch higher
than its own (or equal to its own if its stafus is EpochChange),
it adopts the new epoch-num, view-num, and log and clears
its temp-drops, perm-drops, and un-drops. It then sets its
status to Normal, executes any new transactions in its log, and
begins listening for multi-sequenced groupcast messages in
the new epoch.

6.6 Synchronization

During the normal processing of independent transactions
(Section 6.2), only the DL of each shard executes indepen-
dent transactions synchronously; other replicas simply log
transactions. In order to prevent the application states of those
replicas from becoming too out of date, Eris utilizes a synchro-
nization protocol exactly as in NOPaxos [43]. Periodically, the
DL of each shard synchronizes its log with the other replicas
and informs them that it is safe to execute the independent
transactions therein.

1. The DL sends (SYNC-PREPARE, view-num, log,
perm-drops, un-drops) to the other replicas.

2. When areplica receives a SYNC-PREPARE from the DL with
a view-num matching its own, it first sets its perm-drops and
un-drops, respectively, to be the union of its own and the
DL’s.

The replica then merges the DL’s log into its own, adding
any new transactions and NO-OPs, replacing transactions
with NO-OPs as necessary (i.e., replacing those transactions
now matching entries in perm-drops).

Next, the replica discards any entries in its femp-drops
matching transactions in the DL’s log.?

Finally, the replica replies to the DL with (SYNC-REPLY,
view-num, syncpoint) where syncpoint is the index of the
latest entry in the log the DL sent.

3. After receiving SYNC-REPLYSs with syncpoint correspond-

ing to its previously sent SYNC-PREPARE and view-num
matching its own from a majority of the replicas in its shard
(when counting itself towards that majority), the DL broad-
casts (SYNC-COMMIT, view-num, syncpoint).

4. When a replica receives a SYNC-COMMIT with a view-num

matching its own, if it previously received the correspond-
ing SYNC-PREPARE from the DL, it can safely execute the
transactions in its log up to syncpoint.

6.7 Correctness

As we prove below, Eris guarantees linearizable execution
of independent transactions. Additionally, Appendix A con-
tains a TLA+ specification of the Eris independent transaction
processing protocol which was model-checked against the
high-level invariants in the proof.

6.7.1 Linearizability of Independent Transactions

First, we need to introduce terms to describe the two types of
“promises” shards in Eris make.

Definition (Committed Transactions and Drop Promises). A
shard commits transaction # in slot s if a majority of its replicas
send REPLYS for ¢t with matching view-nums, epoch-nums, and
txn-indexs, where one of the REPLYS came from the DL of
the view. A shard commits a drop promise for transaction ¢
if a majority of its replicas send TEMP-DROPPED-TXNs for
a txn-id corresponding to ¢ with matching view-nums, where
one of the TEMP-DROPPED-TXNs came from the DL of the
view.

Next, we introduce the notion of log stability, which de-
scribes logs which have attained a state of “permanence.”

Definition (Log Stability). A replica’s log (consisting of trans-
actions and NO-OPs) is stable if the transactions in its log are a
prefix of the transactions in the logs of all replicas in the same
shard in later views or epochs which have status Normal.

Finally, we introduce the notation used throughout the
proof.

Definition. Let DL(s,v) denote the DL of shard s for view v.

Definition. Let P(¢) denote the set of participant shards for
transaction ¢ (where each shard is itself a set of replicas).

3Discarding these entries in femp-drops is safe because the replica knows
the FC will never receive a TEMP-DROPPED-TXN from the DL in this view
and thus will never use the replica’s previously sent TEMP-DROPPED-TXN to
decide to drop that transaction.



We begin the proof of linearizability with a few basic facts
about the Eris protocol, which follow directly from the details
of the protocol itself.

Lemma 1. Replicas never decrement their view-num or
epoch-num once the view or epoch has started (i.e., once the
DL or FC decides to start the view or epoch).

Lemma 2. The FC never sends a TXN-FOUND for a transac-
tion it previously dropped by sending a TXN-DROPPED for a
matching txn-id, and vice-versa.

Lemma 3. If replica r has status Normal and has transaction
t in its log with a matching txn-id in its temp-drops, then
t € r.un-drops.

Lemma 4. [fthe FC sends a TXN-DROPPED for txn-id 7, all
shards have committed a drop promise for T.

Lemma S. Replicas in the same shard which start an epoch
(by receiving the corresponding START-EPOCH message and
setting their status to Normal) do so with the exact same log.

Next, we will show that an inductive property, /, is invariant
over any execution of the independent transaction process-
ing protocol, and that / itself implies linearizability. / is the
conjunction of the following sub-properties:

I;: Replicas’ logs are always in strict multi-stamp order. The
transactions in replicas’ logs are in multi-stamp order, and
during each epoch, for each position in the log following
the log the replica began the epoch with, that position
either contains a NO-OP or the corresponding transaction
in that epoch for the replica’s shard.

b: If replica r from shard s in epoch e has transaction ¢ from
epoch e in its log but does not have transaction ¢’ < ¢t also
from epoch e for shard s in its log, then 3T € r.perm-drops
such that 7 matches 7.

I;: If transaction ¢ was committed by shard s, then Vs’ € P(z),
if s’ has committed ¢’ > ¢, then s’ has committed ¢.

Iy: If a drop promise for txn-id T was committed at shard s in
view v, epoch e, then Vr € s:

(r.epoch-num = e/\(r.view-num > v
V (rview-num = v ADL(s,v) =r)))
= T € r.temp-drops

Is: During a single view and epoch, while a majority of repli-
cas in a shard still recognize that view, the DL’s log only
grows; entries are not overwritten.

11

Ig: If transaction ¢ is committed in or present at log index /
at a view-consistent majority of replicas in shard s, all in
view v and epoch e, then Vr € s:

(r.view-num > v\ r.epoch-num > e
V(r.view-num = v A r.epoch-num = e ADL(s,v) =r))

= rlog[l] =t

I7: When the FC starts an epoch, it will not start any shard
with a log containing transactions matching txn-ids it pre-
viously dropped.

I3: The logs replicas start epochs with are stable.

Before we prove that [ is invariant, we will show that /
implies linearizability.

Lemma 6 (Stability of Learners’ Logs). If transaction t is
committed at shard s in view v, epoch e, then DL(s,v).log was
stable at the time it sent the corresponding REPLY for t.

Proof. Consider the transactions in DL(s,v).log when it sent
the REPLY for 7. These transactions either were or were not
part of the log that began epoch e for shard s. Those that
were, by Ig, will be in the log’s of all replicas in s starting
later views and epochs. For transactions committed during
epoch e, by I, every replica that sent one of the REPLYs for
¢t must have had either the corresponding transaction or a NO-
OP in its log. However, for a replica to have a NO-OP in its
log, the FC must have received a drop promise for ¢ from
shard s; Lemma 1, I, Lemma 3, and Lemma 2 then lead to a
contradiction. Therefore, all transactions in DL(s,v).log when
it sent the REPLY for ¢ were in the logs of the other replicas
that helped commit #, when they sent their REPLYS.

The FC cannot later receive a drop promise from s and
drop any of these previous transactions in view v, since these
transactions are in DL(s,v).log. Therefore, the next view that
starts at a majority must start with these transactions in the
same indices in replicas’ logs, so by Ig these transactions will
be present in the logs of replicas in all later views or epochs.

I1 and I3 guarantee that no replica in a later epoch will have
transactions from epochs prior to e not in DL(s,v).log when
it sent the reply to ¢.

I, implies that for all ' < ¢ where ' is some other
transaction from epoch e with shard s as a participant
not in DL(s,v).log when it replied to ¢, there exists T €
DL(s,v).perm-drops such that T matches transaction ¢’, in-
dicating that the FC dropped these transactions. Shard s must
have committed drop promises for these txn-ids for the FC
to have dropped them. Therefore, any replica starting a later
view in epoch e will have those txn-ids in its temp-drops by
I4. Lemma 3 guarantees that in order for such a replica to
be available for processing new transactions and have any
of these previously dropped transactions in its log, it must



have received a TXN-FOUND for those transactions, which
Lemma 2 guarantees never happens.

Finally, any replica starting a later epoch will do so with a
log sent by the FC, which by /7 will not contain any transac-
tions dropped in epoch e.

Therefore, any replica in a later view or epoch with status
Normal will have in its log all of the transactions in the DL’s
log at the time it sent the corresponding REPLY for ¢ and will
not have any transactions ¢’ < ¢ not in the DL’s log, and all of
the transactions will be in the same order as in the DL’s log
by L. O

Theorem 1. Eris guarantees linearizable execution of inde-
pendent transactions.

Proof. Lemma 6 and I5 imply that if two clients both receive
view-consistent replies from the same shard for transactions
t,t', where t = ¢, then the DL of the view-consistent reply for
¢’ previously executed r—with the exact same state that the
DL of the view-consistent reply for ¢ had. Since, by Lemma 1,
shards move through successive views and epochs and never
return to previous views and epochs, the behavior of a single
shard is indistinguishable from a single, correct process from
the point of view of the clients.

Furthermore, /3 implies that for any execution of Eris, the
execution of transactions by shards happens in an order which
respects the order assigned by the multi-sequenced groupcast
layer and that if one shard commits a transaction, all of the
other participants of the transaction will commit that transac-
tion before committing any later transactions. Transactions are
partially ordered by the multi-sequenced groupcast layer, and
that order guarantees that any potentially conflicting transac-
tions are comparable. Therefore, any execution of transactions
by Eris shards which respects this order will be free of con-
flict cycles and thus serializable. Because the multi-sequenced
groupcast order will respect the real-time ordering of trans-
actions as received by successive sequencers, execution of
independent transactions in Eris is also linearizable. O

Now, we show by induction that / holds throughout any
execution of Eris.

Theorem 2. [ is invariant throughout any execution of Eris.

Proof. First, we note that all sub-properties of [ trivially hold
in the initial state of the system. Next, we will show that each
sub-property of I holds for any given step in a distributed
execution assuming that all properties held for previous steps.

I;: A replica only inserts transactions or NO-OPs into its log
when it receives a transaction from the multi-sequenced
groupcast layer or when it receives a TXN-FOUND or a
TXN-DROPPED from the FC (having been waiting for that
transaction because it received a DROP-NOTIFICATION).
In both cases, the replica is inserting into its log in the
exact order prescribed by the multi-sequenced groupcast
layer.

12

b:

13:

142

151

A replica can replace a transaction in its log if it receives
TXN-DROPPED from the FC, but the invariant still holds.

The only other times a replica’s log changes are when it
starts a view or epoch. When it starts a view, the log it starts
the view with was previously the log of another replica
(potentially with some transactions replaced by NO-OPs),
so by induction the property holds. The FC ensures that
replicas start epochs with logs in transaction order.

The only step a replica could take to invalidate this in-
variant is adding transaction ¢ to its log without having
previously added ¢’ and without a txn-id matching ¢’ in
perm-drops. By I, the replica must have a NO-OP in place
of ¢ in its log. A NO-OP is only added to a log during
an epoch when the FC sends a TXN-DROPPED, but the
recipient of a TXN-DROPPED also adds the fxn-id to its
perm-drops, contradicting the assumption that there is no
matching txn-id for t’ in perm-drops.

There are two steps which could invalidate this invariant.
Either shard s’ commits #' having not committed ¢ after
s committed ¢, or shard s commits ¢ after s’ committed ¢’
having not committed ¢.

If t and ¢’ are in different epochs, this would mean that s’
started the new epoch (i.e., t"’s epoch) having not commit-
ted ¢, even though s committed ¢ in the old epoch. This
cannot happen because the FC found all committed trans-
actions before starting the new epoch (since it read from
a majority from each shard, and by Is one log it received
contained ¢) and ensured that the logs it used to start the
epoch were consistent.

If ¢ and ¢’ are in the same epoch, by I; and I, we know that
some replica in shard s” at one point had a fxn-id matching
t in its perm-drops, implying the FC must have sent a TXN-
DROPPED for that #xn-id. Lemma 4 implies that shard s
must have committed a drop promise for a zxn-id matching
t. That promise could not have happened after s committed
t since ¢t would have been in the DL’s log by I, forcing it
to send a HAS-TXN instead. However, 14 then implies that
the DL of s replying to # when s committed # must have
had a txn-id matching ¢ in its temp-drops, and Lemma 3
then implies that the FC must have sent a TXN-FOUND for
t, contradicting Lemma 2.

The only step that could invalidate this invariant is a view
change, but because replicas never return to earlier views
by Lemma 1, by induction one of the VIEW-CHANGE mes-
sages must have contained the txn-id in temp-drops, so
the new DL would start the new view with the zxn-id in
temp-drops.

In order for an log entry to be overwritten, the FC must
send a TXN-DROPPED message with a corresponding txn-
id, but once the FC starts an epoch, it no longer han-
dles transactions from older epochs, and replicas ignore
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messages from older epochs. Furthermore, before the FC
drops a transaction, it secures a drop promise from all
shards. While a DL is recognized by a majority, these drop
promises cannot be sent by later views. I then guarantees
that the DL of the current active view has a record of all
drop promises made in the current epoch in its temp-drops.
By Lemma 3, any transactions in the DL’s log match-
ing txn-ids in its temp-drops must also be in its un-drops,
implying that the FC sent a TXN-FOUND for those trans-
actions. Lemma 2 guarantees that the FC will never drop
these transactions.

The FC could not have decided to drop ¢ before it was
committed or present at a view-consistent majority, since
it would have needed a drop promise from s, and Iy,
Lemma 3, and Lemma 2 then lead to a contradiction.
Therefore, the FC cannot have yet decided to drop the
transaction, since by induction it could not have gotten
a drop promise from shard s after + was committed or
present at a view-consistent majority (because the DLs of
successive views have ¢ in their logs, and Lemma 1 guaran-
tees that a majority of replicas cannot return to an earlier
view).

Therefore, by I, the only steps that could invalidate this
invariant are view change and epoch change.

The transaction would be “visible” to any new DL starting
a view (having received the logs of a majority, one of
which guaranteed by Lemma 1 and induction to have ¢ to
have ¢ in the log index /), and since the transaction couldn’t
have been dropped, the new view that starts starts with ¢
in log index /.

Furthermore, the FC only starts a new epoch after receiv-
ing acknowledgments from a majority of replicas from
shard s. If it does not use the logs from these replicas,
the saved START-EPOCH message that it does use must
have been used to start an epoch greater than e (since at
least one acknowledgment must have come from a replica
which had status Normal during epoch e because a majority
of replicas entered epoch ¢). By induction, that log will
have ¢ in log index /. In either case, the new epoch will
start with 7 in log index [.

When the FC starts an epoch, for each shard, it either
uses logs from the most previous epoch that it started
or it uses the log from its saved START-EPOCH message,
both of which can’t have previously dropped transactions
from epochs prior to the most recent one by induction.
Furthermore, the FC ensures that dropped transactions
from the most previous epoch do not appear in the logs it
forms to start the new epoch.

: Once a replica begins an epoch, it ignores transactions

from earlier epochs. In fact it ignores all messages from
previous epochs so cannot receive a message from the
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FC dropping a transaction in the log it began the epoch
with (since the FC only drops transactions from its current
epoch).

Furthermore, during any view change, the new DL will
receive logs with all transactions from previous epochs by
induction and Lemma 5.

Finally, during an epoch change, the FC either uses the
logs from the most recent epoch or from its saved START-
EPOCH message, both of which contain all of the transac-
tions from the /og that began the epoch in question and no
earlier transactions not in that log by induction.

This completes the proof that [ is invariant. O

6.7.2 Liveness During Stable Periods

Guaranteeing the safety of the Eris independent transaction
processing protocol is critically important, but a proof of safety
is useless without some guarantees about the liveness of the
system. While it is obvious that Eris is a non-trivial protocol
and has the potential to make progress and commit transac-
tions from the initial state of the system, we would also like to
show that it is impossible to reach a state of deadlock. Specifi-
cally, we would like to show that no matter what state Eris has
reached in a specific execution, as long as the following con-
ditions hold for a sufficient amount of time Eris can commit
new transactions:

e No more than a minority of replicas in any shard has failed.
e There is a single, active sequencer which has not failed.

e Messages are not dropped nor reordered in the network.

There is a bound on message delays and the differences in
processor speeds (i.e., the systems behaves synchronously).

The FC remains active and available.

These conditions are by no means tight; Eris could still
make progress even when some of these conditions are not
attained. However, if progress is guaranteed under these con-
ditions, it provides us with some assurance that deadlock is
not reachable.

The progress argument is rather straightforward. First, we
know that as long as client requests are sent, the epoch cor-
responding to the single, active sequencer will eventually be
detected, and a replica will eventually forward the EPOCH-
CHANGE-REQ message to the FC. Since the FC need only
contact a simple majority of replicas from each shard to start
a new epoch, we know that it will eventually start the new
epoch.

Next, since a majority of replicas in each shard will not fail
for a sufficient period of time, the number of view changes
that can begin after this period of stability starts is bounded.
Once a “correct” process is proposed as the DL of a shard



(and all other “correct” processes receive the VIEW-CHANGE-
REQ and then vote to begin the view), no process will try to
start a new view since the DL will not fail. This assumes that
processes have access to a perfect failure detector (i.e., that
processes “know” the bound on message delay and processor
speed differentials); however, the process of arriving at stable
views in each shard can be adapted to work with eventually
perfect failure detectors. In that case, there is a bound on the
number of times a process may erroneously suspect a non-
failed process of having failed.

Then, since there will eventually be stable views in each
shard and a single, stable epoch, the FC will eventually be
able to resolve any outstanding FIND-TXNS, since doing so
only requires contacting a view-consistent majority of replicas
from each shard, all in the same epoch as the FC.

Finally, when all outstanding FIND-TXNs have been re-
solved, any independent transaction that is then sent to Eris
will be sequenced and sent to all participant shards in order.
A view-consistent majority of replicas in these shards will
receive the transaction (instead of a DROP-NOTIFICATION),
and be able to process it and reply since they don’t have any
outstanding dropped transactions being resolved by the FC.
Therefore, the transaction will be committed by all participant
shards, and the client library will return a result.

7 Building General Transactions

Many — but not all — important operations are expressible as in-
dependent transactions. One type of exception is a conditional
update that depends on data stored on another shard, e.g., a
banking transaction which moves funds from one account to
another only if there are sufficient funds. In many cases, these
operations can be avoided through careful partitioning (or
even state duplication), e.g., by placing both accounts on one
shard [21]. However, to support all workloads, we extend Eris
to support general transactions, which can have cross-shard
dependencies.

Eris runs general transactions by dividing them into multi-
ple independent transactions. General transaction execution is
thus a layer running atop independent transaction execution.
This simplifies design: the general transaction implementation
can rely on the fact that the independent transaction process-
ing layer is correct and provides linearizable execution. That
is, it can assume that a single, correct machine is processing
independent transactions sequentially.

Supporting strong isolation in the presence of these more
general transactions requires an additional concurrency con-
trol mechanism. Eris uses strict two-phase locking. Shards
maintain read and write locks for every data item, used only
when there are outstanding general transactions. While a lock
is held, any independent or general transactions that affect the
corresponding data item wait until it is released.
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7.1 General Transaction Protocol

We first consider general transactions whose full read/write
sets are known a priori. These transactions are committed in
two phases. In the first phase, the client sends a preliminary
transaction, which executes the reads and acquires all read
and write locks. In the second phase, the client sends a conclu-
sory transaction, which either Commits or Aborts the general
transaction. A Commit installs the transaction’s modifications;
in both cases, the transaction’s locks are released.

Eris can also execute transactions whose read and write sets
are not known at start time, i.e., they are state dependent. To
this end, Eris employs reconnaissance queries precisely as in
Calvin [59]. That is, before sending the preliminary compo-
nent of a general transaction, the client sends single-message,
non-transactional reads to determine the full read/write sets.
The preliminary transaction checks that the values returned
by reconnaissance queries are still valid. If any have been
changed, the general transaction will be aborted. Otherwise,
the conclusory transaction can proceed as above.

7.2 Handling Client Failures

Eris clients are their own transaction managers. Because
clients can fail, Eris must be able to abort a general trans-
action started by a failed client to allow the system to maintain
progress. In general, solving this problem is the domain of
complex cooperative termination protocols [8]. Because Eris
builds on the atomic execution of independent transactions,
however, it permits a simple solution. When an Eris replica
suspects that a client has failed because it has held locks for
too long without sending the conclusory Commit or Abort, the
replica can unilaterally abort the general transaction simply by
sending the Abort command as an independent transaction it-
self, sequenced through the independent transaction layer. This
ensures all participant shards reach the same Commit/Abort deci-
sion, even if the client concurrently attempts to send a Commit.

7.3 Discussion

Eris builds its general transaction layer atop its core inde-
pendent transaction primitive. This modularity simplifies the
design, particularly for handling client failures. This layered
design is practical because Eris is able to commit independent
transactions in a single round trip. Such an approach would
not be practical in previous systems like Granola, where inde-
pendent transactions still involve significant coordination over-
head. As a result, Granola uses separate, specialized protocols
for independent and general transactions, with complicated
(and costly) procedures for transitioning between the two [21].

Furthermore, Eris’s use of in-network concurrency control
prevents deadlocks, eliminating a large class of concurrency-
induced Aborts and complex deadlock detection mechanisms:
acquiring locks in a single, atomic step executed by a lineariz-
able layer means cycles in the wait-for graph are not possible.
Combined with the throughput and latency benefits of the in-
dependent transaction processing protocol, this allows Eris to



better cope with high contention.

8 Evaluation

We implemented the Eris protocol in approximately 7,500
lines of C++ code. Eris servers were deployed on 9 machines
with 2.5 GHz Intel Xeon E5-2680 processors and 64GB of
RAM running Ubuntu Linux 16.04. Load was generated us-
ing client machines deployed on an additional 10 servers with
Xeon L5640 processors. All servers were interconnected us-
ing a 10 Gbps Ethernet network that emulates a three level
fat-tree topology using three Arista 7050S-64 switches. Multi-
sequencing was implemented with a middlebox prototype us-
ing a Cavium Octeon CN6880 network processor. All exper-
iments used three replicas per shard (thereby tolerating one
replica failure), and fifteen shards (unless otherwise noted).

We evaluated the performance of Eris against three other
transactional systems: Granola [21], TAPIR [66] (a Fast
Paxos [41]-based protocol), and a standard distributed trans-
action protocol — similar to Google’s Spanner [19] — that uses
two phase commit, two phase locking, and Multi-Paxos (Lock-
Store). As a baseline for ideal performance, we also compared
against a nontransactional, unreplicated (NT-UR) system that
provides neither consistency nor fault tolerance guarantees.
It uses a single node per shard with no coordination, repli-
cation, or concurrency control; while this system uses fewer
servers than Eris, its performance is the maximum expected
of any system with the same number of shards. All systems
were implemented in the same C++ framework as Eris, and
all transactions used stored procedures.

8.1 Microbenchmarks with YCSB+T

To examine different aspects of Eris’s performance, we ran all
systems against a series of tests using YCSB+T [24], a transac-
tional extension of the popular YCSB key-value store bench-
mark [18]. YCSB+T wraps key-value store operations inside
simple transactions such as read, insert, or read-modify-write.
To test distributed transactions across multiple shards, we
added multi-key read-modify-write transactions to YCSB+T.

We evaluated the latency, throughput (reported as commit-
ted transactions per second), and scalability of Eris using
three workloads in the YCSB+T framework. The first was
the standard single-shard read/write (SRW) workload which
issued single-key reads and writes in a 1:1 ratio. Next, a cus-
tom multi-shard read-modify-write (MRMW) workload issued
both single-key reads and updates to two randomly selected
keys; these updates did not have cross-shard dependencies
and were therefore independent transactions. Lastly, we ran
a custom cross-shard read-modify-write (CRMW) workload
that issued single-key reads and transactionally swapped the
values of two random keys, requiring cross-shard updates (and
therefore general transactions).

Latency vs. Throughput. The SRW workload tests ideal
conditions for all systems: minimal contention and no dis-
tributed transactions. Figure 6 shows that Eris achieved a maxi-
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Figure 6: Throughput and latency of the YCSB+T SRW workload
with uniform key-access
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Figure 7: YCSB+T MRMW throughput with an increasing percentage
of multi-shard transactions and uniform key-access

mum throughput of 1.26M transactions/second. This is a 2.5 x
and 4.5x increase over Granola and Lock-Store, which in-
cur Multi-Paxos replication overhead, and 2.9 higher than
TAPIR, which must process additional commit and finalize
messages for each transaction. Eris avoids this coordination
overhead, and so achieved throughput within 10% of the the-
oretical maximum implied by the NT-UR system. By requir-
ing only one round trip to commit independent transactions,
Eris also achieved latency within 10% of the NT-UR system:
99 us, 48-72% lower than the other systems. The through-
put gap between Eris and the NT-UR baseline is largely due
to the small amount of protocol logic that Eris must execute
for every transaction (e.g., multi-stamp parsing and manip-
ulation, out-of-order packets processing and buffering, etc.),
while Eris’s higher latency can be attributed to the overhead
of our middlebox multi-sequencing implementation.

Distributed Transactions. Eris outperformed other sys-
tems by a greater margin on distributed transactional work-
loads. The MRMW experiment shown in Figure 7 gradually
increased the percentage of multi-shard RMW independent
transactions; contention levels remain low because keys were
selected uniformly at random. Because Eris uses in-network
concurrency control for coordination-free distributed trans-
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Figure 8: Maximum throughput of the YCSB+T MRMW workload
using 20% distributed transactions and Zipf key-access distribution,
normalized to throughput at 0.5
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Figure 9: Throughput of the YCSB+T MRMW and CRMW workloads
with 20% distributed transactions and Zipf key-access with exponent
0.5. Lock-Store and TAPIR are only shown once; both use the same
coordination protocol for MRMW and CRMW and thus have the
same performance on the two workloads.

actions, it maintained throughput within 10% of the NT-UR
system. (NT-UR throughput is also lower for distributed trans-
actions as one two-shard operation is equivalent to two one-
shard operations.) For more complex, many-shard transactions,
see Section 8.2.

Contention. The benefits of Eris’s in-network concurrency
control are particularly relevant for high-contention workloads,
as Eris processes independent transactions without locking or
aborts. Figure 8 shows this using the MRMW workload with
20% distributed transactions and an increasingly skewed Zipf
key-access distribution. Results are normalized, showing how
relative performance is affected by contention. The through-
put of TAPIR and Lock-Store fell significantly at high con-
tention rates due to frequent lock conflicts and OCC aborts.
Eris retained a throughput close to the NT-UR system in all
circumstances. Granola uses timestamps to order independent
transactions without locking, and thus also avoids throughput
collapse. In absolute terms, Eris outperformed Lock-Store by
35.0x and TAPIR by 25.6x on the most skewed workload.

General Transactions. To consider workloads that contain
non-independent transactions, we compared the MRMW and
CRMW workloads, both using 20% distributed transactions.
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Figure 11: Throughput scalability of the YCSB+T MRMW workload
with 20% distributed transactions and 0.5 Zipf exponent

Figure 9 shows that Eris suffers only a modest 28% throughput
drop when processing general transactions relative to indepen-
dent ones. Much of this difference is fundamental to the work-
load: NT-UR throughput also drops for the CRMW workload
because data must be exchanged between shards. By contrast,
Granola’s throughput drops by more than 50% on the CRMW
workload because it switches to a less efficient locking mode.
This difference becomes extreme under high contention (Fig-
ure 10). Eris benefits from fast independent transactions that
reduce the contention window and in-network sequencing that
enables it to avoid deadlock.

Scalability. Eris scales nearly perfectly as the number of
shards increases (Figure 11). Much of this benefit is from
multi-sequencing, which establishes a consistent partial order
of messages. To demonstrate this, we also ran Eris on a glob-
ally sequenced network (Eris-OUM), one of the straw-man
designs from Section 5. This scheme scales poorly, as every
server receives every message involving any shard.
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distributed transactions on TPC-C workload

8.2 Application-Level Performance: TPC-C

For a more complex workload, we used the well-known TPC-
C benchmark, which simulates order processing [61].* We
used 15 warehouses, with 10% of transactions issued to multi-
ple participants. We report new-order transactions per second,
the standard metric for this workload. We adopted the data
partitioning scheme from H-Store [56] which allows express-
ing all TPC-C transactions as independent transactions. For
systems that do not support independent transactions, we en-
abled locking and undo logging. All systems store the entire
database in memory and run transactions as stored procedures.
As is common, we used closed-loop clients with no wait time.

As Figure 12 demonstrates, Eris achieved a throughput of
221K new order transactions per second. This is 7.6x and
6.38x greater throughput than Lock-Store and TAPIR respec-
tively. It is also 2.75x higher than Granola, even though both
are optimized for lock-free independent transactions, because
Eris’s protocol avoids the need for timestamp coordination
and intra-shard replication. Finally, Eris obtained throughput
within 3% of the NT-UR system, which runs TPC-C opera-
tions directly (and unsafely) on each shard without replication,
coordination, or concurrency control.

8.3 Network Resilience

The prior experiments considered a normal-case network. We
artificially injected failures to examine Eris’s resilience to poor
network conditions.

Dropped Messages. Eris relies on in-network sequencing
for its high performance, but must invoke the FC when packets
are lost. In Figure 13, we randomly dropped an increasing frac-
tion of packets. Even at a high packet drop rate (1%), Eris’s
throughput fell only by ~ 10%, showing that it avoids the
dramatic performance degradation seen in many speculative
protocols [54]. Eris replicas immediately detect dropped mes-
sages via sequence numbers, and in most cases recover the
dropped message from other replicas in the shard, without in-
voking the FC. At a packet drop rate of 10%, Eris’s throughput
degrades more and drops below Granola’s. However, our Eris
implementation is designed for normal datacenter network

4Our results are not intended to be a fully conforming implementation of
the TPC-C specification, which imposes many other requirements.
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Figure 14: Throughput of the YCSB+T SRW workload during a se-
quencer failover and epoch change that begins att =0

conditions and could be further optimized to handle higher
drop rates. The other system significantly affected by packet
loss is TAPIR, which experiences replica state divergence that
forces the more expensive consensus slow path.

Sequencer Failover. When the network sequencer fails, the
network controller must reroute to a new sequencer, and all
replicas must coordinate with the FC as part of the epoch
change protocol. To evaluate this cost, we triggered a failure in
the middle of a YCSB+T SRW workload. Figure 14 shows that
Eris resumed normal operation after 130 ms and maximum
throughput after 300 ms. Most of the delay is caused by the
controller re-establishing network connectivity and could be
avoided with a faster rerouting protocol [46].

9 Related Work

Eris builds on prior work in co-designing distributed algo-
rithms with network primitives, and transaction processing.

Network Co-Design. A promising new direction in dis-
tributed systems research takes advantage of the increased
capabilities of datacenter network devices. Eris is inspired by
Ordered Unreliable Multicast [43]. OUM can efficiently se-
quence requests in a single replica group; extending this to
transactions requires a more sophisticated sequencing mech-
anism (multi-sequencing), a more complex failure recovery
protocol, and the independent transaction concept.

The implementation of multi-sequencing is motivated by



recent programmable switch architectures [6,14,52,65]. These
have been used to implement a variety of ordering primitives,
ranging from the best-effort Mostly-Ordered Multicast [54]
to complete in-switch implementations of Paxos [22]. These
represent a new take on group communication primitives, a
classic distributed systems problem [10, 11].

Many systems have used centralized sequencers to imple-
ment group communication primitives [4, 34] and transac-
tion processing systems [9,62]. These systems provide differ-
ent ordering and fault-tolerance semantics for the sequencer.
Eris’s sequencer design is unique in that it both sequences
transactions atomically for multiple destination groups and
supports an in-network implementation without persistent in-
switch state. vCorfu’s [62] materialized stream abstraction is
similar in spirit to Eris’s multi-sequencing. However, multi-
sequencing is implemented in-network, and vCorfu itself uses
a variant of chain replication that takes at least four round trips
to commit a transaction.

Other designs take advantage of other specialized hardware
for faster application-level processing. CORFU [4,5] uses a se-
quencer to assign an order to operations stored in a log built on
clusters of flash drives. Loosely synchronized clocks [44] have
been widely used for ordering [1,19,21,27,66]. FaRM [25,26]
and DrTM [17,63] employ high-speed RDMA networks, trans-
actional memory, and non-volatile RAM to accelerate dis-
tributed transactions. By accelerating network processing, they
are able achieve higher levels of throughput than Eris or its
baseline system. Integrating these technologies with Eris could
offer even higher performance.

Transaction Algorithms. There is a vast literature on dis-
tributed storage systems with varying levels of transaction
support; we do not attempt to detail them all here. Recent
systems have explored various points in the design space for
transactional partitioned replicated storage systems [2,47,67].
Most use a layered architecture with separate coordination
mechanisms for cross-shard transactions and in-shard replica-
tion. Eris combines both in a single protocol. In this sense, it
resembles TAPIR [66] and MDCC [38], which are also unified
protocols (though the latter only provides weak isolation).
There is a long history of research on timestamp-ordering
concurrency control mechanisms, which ensure serializability
by either delaying or rejecting transactions that arrive out of
timestamp order [7, 8, 15,55,57]. Long thought to be of lim-
ited value because of the overhead of tracking read and write
timestamps for each data object [15], these techniques have
seen renewed interest in response to trends in distributed and
main-memory databases that make it more efficient to gener-
ate and store timestamps [1, 19, 64]. In particular, Google’s
Spanner processes read-only transactions using a multiversion
timestamp-ordering protocol [19]. Eris can be viewed as a
coarse-grained application of timestamp ordering, in that it
processes transactions sequentially in their multi-stamp order.
Eris’s transaction model is based on independent transac-
tions. Independent transactions were defined as part of the
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H-Store [33,36,56] and Granola [21] projects. Granola pro-
vided an application-level protocol for sequencing indepen-
dent transactions. Although H-Store originally proposed op-
timizing for independent (or “strongly two-phase”) transac-
tions [56], the proposed protocol was never completed and sub-
sequent work abandoned the idea for a different design [33,36].
Calvin [58-60] also uses a (different) restricted transaction
model, and centralized transaction sequencer, but for a differ-
ent purpose: so that concurrent transactions will acquire locks
in the same order across multi-threaded replicas.

10 Conclusions

The Eris transaction processing system achieves high perfor-
mance through a new division of responsibility between three
parts. An in-network concurrency control primitive, multi-
sequenced groupcast, establishes a consistent order of message
delivery across shards, but does not ensure atomic or reliable
delivery. The latter guarantees are provided by the Eris pro-
tocol, which makes sure that transactions are processed by
all participant shards, or none at all. In combination, these al-
low linearizable execution of independent transactions, which
make up a substantial part of many workloads. For other work-
loads, a general transaction layer builds arbitrary transactions
out of multiple independent transactions.

The net result of this approach is that Eris can execute inde-
pendent transactions without any coordination: in the normal
case, transactions commit in a single round trip from clients to
replicas, and servers do not need to coordinate with each other
either within or across shards. For independent transactions,
Eris achieves 4.5-35x higher throughput and 72-80% lower
latency than standard designs; even for general transactions
it provides a 3.6 x performance improvement. In both cases,
Eris achieves strongly consistent, fault-tolerant, transactional
storage with overhead within 10% compared to a system that
provides no such guarantees.
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A Eris Specification

MODULE Eris

Specifies the Eris protocol.
EXTENDS Naturals, FiniteSets, Sequences, TLC

Constants

It’s not strictly necessary that all shards have the same number of replicas
CONSTANTS NumShards, NumReplicasPerShard
ASSUME NumShards € Nat A NumReplicasPerShard € Nat
A

Shards = (1 .. NumShards)
Replicas = (1 .. (NumShards «+ NumReplicasPerShard))

Message sequencers

CONSTANT NumSequencers Normally infinite, assumed finite for model checking

Sequencers = (1 .. NumSequencers)
CONSTANT NoOp

Replica Statuses
CONSTANTS StNormal, StViewChange, StEpochChange

Message Types

CONSTANTS MClientRequest,
MStampedClient Request,
MRequestReply,
MFindTzxn,
MTxnRequest,
MHasTxn,
MTempDroppedTzn,
MTxnFound,
MTxnDropped,
MViewChange,
MViewChangeReq,
MStartView,
MEpochChangeReq,
MFEpochChange,
MFEpochChangeAck,
MStartEpoch

Message Schemas

ClientRequest (Client to Sequencer)
[ mtype — MClientRequest,
shards — S € SUBSET Shards |

MStampedClientRequest (Sequencer to Replicas)
[ mtype — MStampedClientRequest,
shards — S € SUBSET Shards,
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VARIABLE messages Set of all messages sent

network Vars
InitNetworkState

(messages)
messages = {}

S
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Sequencer State
VARIABLE seqCounters

sequencerVars
InitSequencerState

(seqCounters)
seqCounters = [s € Sequencers —
[h € Shards — 1]]

e 1>

Replica State

VARIABLES vReplicaStatus,
vLog,
vEpochMsgNum,
vViewNum,
vEpochNum,
vTempDrops,
vPermDrops,
vUnDrops,
vViewChanges,
vLastNormEpoch

replicaVars = (vReplicaStatus, vLog, vEpochMsgNum, vViewNum, vEpochNum,
vTempDrops, vPermDrops, vUnDrops, vViewChanges,
vLastNormEpoch)

InitReplicaState =
A vReplicaStatus = [r € Replicas — StNormal]
AwvLog = [r € Replicas — ()]
A vEpochMsgNum = [r € Replicas + 1]
A vViewNum = [r € Replicas — 1]
A vEpochNum = [r € Replicas — 1]
A vTempDrops = [r € Replicas — {}]
A vPermDrops = [r € Replicas — {}]
A vUnDrops = [r € Replicas — {}]
A vViewChanges = [r € Replicas — {}]
A vLastNormEpoch = [r € Replicas — 1]

Failure Coordinator State

VARIABLES fFound,
fDropped,
fTempDrops,
fStatus,
fEpochNum,
fEpochChanges,
fLastNormEpoch

feorVars = (fFound, fDropped, fTempDrops, fStatus, fEpochNum, fEpochChanges,
fLastNormFEpoch)
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InitFcorState =
A fFound = {}
A fDropped = {}
A fTempDrops = {}
A fStatus = StNormal
A fEpochNum =1
A fEpochChanges = {}
A fLastNormFEpoch = 1

Set of all vars
A .
vars = (networkVars, sequencerVars, replicaVars)

Initial state
Init = A InitNetworkState
A InitSequencerState
A InitReplicaState
A InitFcorState

Helpers

Maz(s) = CHOOSE z € s :Vy €s:2 >y
Min(s) = CHOOSE z € s:Vy €s:z<y
Range(f) = {f[z]: z € DOMAIN f}

Add a message to the network
- ’
Send(ms) = messages’ = messages U ms

Shard(r)

((r + NumReplicasPerShard) —

(1F 7% NumReplicasPerShard = 0 THEN 1 ELSE 0)

+1)
ShardReplicas(s) = {r € Replicas : Shard(r) = s}
Learner(shard, viewNum) = (((viewNum — 1)%NumReplicasPerShard) +
((shard — 1) * NumReplicasPerShard) +
)

tID (shard, epoch, msg) = [shard — shard, epoch — epoch, msg — msg]

Returns whether or not a tznID matching tzn is in S
tznMatches(tan, S) =
A tzn # NoOp
A s € tzn.shards : tID(s, tzn.epochNum, tzn.stampls]) € S

Returns whether or not a tzn matching tznlD is in S
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tenIDMatches(tznID, S) 2

AJtzn € S: Atzn # NoOp
A taen.epochNum = tznlID.epoch

A tznID . shard € txn.shards
A ten.stamp(tanID.shard] = tanID.msg

Returns if tznl has a later timestamp than tzn2
tenLater(tenl, tzn2) = V tznl.epochNum > tzn2.epochNum
V A tznl.epochNum = tzn2.epochNum
ANds € trnl.shards :
A s € txn2.shards
A tenl.stamp(s] > tan2.stamp[s]

Main Spec

RRs(s) = {m € messages : N m.mtype = MRequestReply
A Shard(m.sender) = s}

RRsSlot(s, i) = {m € RRs(s) : m.tenIndex = i}
RRsTzn(tan, s) = {m € RRs(s) : m.request = tzn}

RRsTznSlot(tzn, s, i) = {m € RRsTzn(tzn, s) : m.tenIndex = i}

CommittedInView(tzn, s, i, v) =
A3IM € suBseT {m € RRsTznSlot(tzn, s, i) : m.viewNum = v} :
From a majority
A 2 x Cardinality(M) > NumReplicasPerShard
Matching viewNums, epochNums, tznlnders

Adml e M :¥Vm2 e M : ml.epochNum = m2.epochNum

One from the learner
Adm € M : m.sender = Learner(s, v)

CommittedInSlot (tzn, s, i) =
Fv € {m.viewNum : m € RRsTznSlot(tzn, s, i)} :

CommittedInView(tzn, s, i, v)

CommittedAtShard (tzn, s) =
34 € {m.tenIndex : m € RRsTan(tzn, s)} :

CommittedInSlot(txn, s, 1)

MinCommittedView(tzn, s, i) =
Min({v € {m.viewNum : m € RRsTznSlot(tzn, s, i)} :
CommittedInView(tzn, s, i, v)})

A transaction being committed in a view implies that the designated learner

in that view and ALL replicas in later views have that transaction in the
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correct place in their logs.
Memory(tan, s, i, v) =
Vr € ShardReplicas(s) :
( A vReplicaStatus[r] = StNormal
AV oViewNum[r] > v
V A vViewNum[r] = v
A r = Learner(s, v)) = Ai € DOMAIN vLog[r]
A vLog(r][i] = tzn

A transaction being committed at one shard implies that for all other
participants to that transaction, if that shard has committed a later
transaction, it has also committed that transaction
GlobalOrder(tzn, s, i) =

V s2 € tan.shards :

Viten2 € ({m.request : m € RRs(s2)}\ {NoOp}) :

( A tznLater(tan2, ten)

A CommittedAtShard(tan2, s2)) = CommittedAtShard(tzn, s2)

A transaction being committed at one shard in a slot implies that for every
lower slot in that shard, there is some committed transaction, or the Learner
had a NoOp in its log, and all replicas in later views have NoOps in their
logs for that slot in all later views
Gapless(tzn, s, i, v) 2
LET
hadNoOp(ip) = Im € RRsTznSlot(NoOp, s, ip) :
A m.viewNum = v
A m.sender = Learner(s, v)
IN
Vi2e (1..i—1):
V' A hadNoOp(i2)
AV r € ShardReplicas(s) :
( A vReplicaStatus|r] = StNormal
A V uViewNum[r] > v
V A vViewNum[r] = v
A r = Learner(s, v)) = vLog[r][i2] = NoOp
V' A =hadNoOp(i2)
A Jtzn2 € {m.request : m € RRsSlot(s, i2)} :
CommiittedInSlot(tzn2, s, i2)

Below is the main safety lemma. It does imply linearizability, but there are some other facts
necessary to see that:

1) The viewNums of Replicas which are in StNormal state grow monotonically.

2) Messages are never removed from the network (so CommittedInView(tzn, s, i, v) at time ¢
implies Committed(tzn, s, i, v) for all times > ¢.

3) The Memory property (along with monotonicity of viewNums) implies that no two transac-
tions are ever committed in the same slot in a shard.

28



Safety =

Vs € Shards :

Vitzn € {m.request : m € RRs(s)} :

Vi € {m.tznIndex : m € RRsTxn(tzn, s)} :

CommiittedInSlot(tzn, s, i) =
A Memory(tzn, s, i, MinCommitted View(tzn, s, 1))
A tzn # NoOp = GlobalOrder(txn, s, i)
A Gapless(tzn, s, i, MinCommitted View(txn, s, 1))

Normal Case Actions and Handlers

Send a request
ClientSendsRequest = 38 € SUBSET (Shards) :
A Cardinality(S) > 0
A Send({[mtype +— MClientRequest,
shards — S]})
A UNCHANGED (sequencerVars, replicaVars, fecorVars)

Sequencer s receives MClientRequest, m
HandleClientRequest(s, m) =
A Send({[mtype — MStampedClient Request,
shards — m.shards,
stamp — [S € m.shards — seqCounters[s|[S]],
epochNum — s]})
A seqCounters’ = [seqCounters EXCEPT ![s] =
[h € Shards —
IF h € m.shards THEN @Q[h] + 1 ELSE QIA]]]
A UNCHANGED (replicaVars, fecorVars)

Replica r receives MMarkedClientRequest, m
HandleStampedClientRequest(r, m) =
LET
tempDropped = tznMatches(m, vTempDrops[r]) A m ¢ vUnDrops|r]
dropped = tznMatches(m, vPermDrops|r])
IN
Normal case
A V' A vReplicaStatus[r] = StNormal
A m.epochNum = vEpochNum/|r]
A m.stamp[Shard(r)] = vEpochMsgNum|r]
Check if dropped
A —(tempDropped \V dropped)
Add to log and respond
A wvLog" = [vLog EXCEPT ![r] = Append (@, m)]
A vEpochMsgNum' = [vEpochMsgNum EXCEPT ![r] = @ + 1]
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For model-checking purposes, reply to all transactions in log
in the current view
A Send({[mtype — MRequestReply,
sender =,
tenindex +— 1,
request > vLog'[r][i],
viewNum +— vViewNum|[r],
epochNum — vEpochNum|r]| : i € (1 .. Len(vLog'[r]))})
Gap
V' A vReplicaStatus|r] = StNormal
A m.epochNum = vEpochNum/|r]
A m.stamp[Shard(r)] > vEpochMsgNum|r]
A Send ({[mtype — MFindTzn,
shard — Shard(r),
msgNum  +— vEpochMsgNum|[r],
epochNum — vEpochNum|[r]]})
A UNCHANGED (vLog, vEpochMsgNum)
New epoch
V' A m.epochNum > vEpochNum/|r]
A Send({[mtype — MEpochChangeReq,
epochNum — m.epochNum]})
A UNCHANGED (vLog, vEpochMsgNum)
A UNCHANGED (sequencerVars, feorVars, vReplicaStatus, vViewNum, vEpochNum,
vTempDrops, vPermDrops, vUnDrops, vViewChanges,
vLastNormEpoch)

Other Replica Actions Handlers

Gap Commit Handlers

Replica r receives M TxnRequest, m
HandleTenRequest(r, m) =
LET
tzns = 1F A vReplicaStatus[r] = StViewChange
A Learner(Shard(r), vViewNum][r]) = r THEN
UNION {Range(mp.log) : mp € vViewChanges|r]}
ELSE
Range(vLog[r])

hasTzn = tenIDMatches(m.tanlD, txns)
tzn = CHOOSE tzn € tans :
A tzn # NoOp
A m.tenlD.shard € tzn.shards
A tzn.stamp[m.tanlID.shard] = m.tznID.msg
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A tzn.epochNum = m.txnlD.epoch
IN
A vReplicaStatus[r] € {StNormal, StViewChange}
A m.tanID.epoch = vEpochNum|r]
AV A hasTzn
A Send({[mtype — MHasTzn,
tzn. > tznl})
A UNCHANGED vTempDrops
V A —hasTxn
A vReplicaStatus[r] = StNormal
A vTempDrops’ = [vTempDrops EXCEPT ![r] = {m.tznID} U Q]
A Send({[mtype  +— MTempDroppedTxn,
viewNum — vViewNum|[r],
sender > T,
tenID  +— m.tanID]})
A UNCHANGED (sequencerVars, fcorVars, vReplicaStatus, vLog, vEpochMsgNum,
vViewNum, vEpochNum, vPermDrops, vUnDrops, vViewChanges,
vLastNormEpoch)

Replica r receives Handle M TxnFound, m
HandleTznFound(r, m) =
LET
canAddNext = A m.ten.stamp[Shard(r)] = vEpochMsgNum|[r]
A vReplicaStatus|[r] = StNormal
IN
A vReplicaStatus[r] € {StNormal, StViewChange}
A m.tzn.epochNum = vEpochNum|r]
Add tzn to unDrops
A vUnDrops’ = [vUnDrops EXCEPT ![r] = {m.tan} U Q]
Add to log if caught up
AV A canAddNext
A vLog’ = [vLog EXCEPT ![r] = Append(Q, m.tzn)]
A vEpochMsgNum' = [vEpochMsgNum EXCEPT ![r] = @ + 1]
V' A =canAddNext
A UNCHANGED (vLog, vEpochMsgNum)
A UNCHANGED (sequencerVars, fcorVars, vReplicaStatus, vViewNum,
vEpochNum, vTempDrops, vPermDrops, vViewChanges,
vLastNormEpoch, networkVars)

Replica r receives MTxnDropped, m
HandleTznDropped(r, m) 2
LET
isNext = A m.tznID.shard = Shard(r)
A m.tenID.msg = vEpochMsgNum/|r]
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IN
A vReplicaStatus|r] € {StNormal, StViewChange}
A m.tanID.epoch = vEpochNum/|r]
Add tznID to permDrops
A vPermDrops’ = [vPermDrops EXCEPT ![r] = {m.tanID} U Q]
If this is the next expected transaction, append a NoOp
AV AisNext
A vReplicaStatus[r] = StNormal
A vLog’ = [vLog EXCEPT ![r] = Append(@, NoOp)]
A vEpochMsgNum' = [vEpochMsgNum EXCEPT ![r] = @ + 1]
Otherwise, replace matching log transactions (should be < 1) with NoOps
V A —isNext
A vReplicaStatus[r] = StNormal
A wvLog" = [vLog EXCEPT ![r] =
[i € (1.. Len(Q@)) +— 1F tznMatches(Q[i], vPermDrops’[r]) THEN
NoOp
ELSE
Qfd]]]
A UNCHANGED (vEpochMsgNum)
If catching up during view change, simply continue
V' A vReplicaStatus[r] # StNormal
A UNCHANGED (vLog, vEpochMsgNum)
A UNCHANGED (sequencerVars, networkVars, fecorVars, vReplicaStatus, vViewNum,
vEpochNum, vTempDrops, vUnDrops, vViewChanges,
vLastNormEpoch)

View Change Action and Handlers

Replica r suspects the designated learner has failed
StartLeaderChange(r) =

A vReplicaStatus|r] € {StNormal, StViewChange}

A Send ({[mtype — MViewChangeReq,
dest — d,
epochNum — vEpochNum/[r],
viewNum +— vViewNum[r] 4+ 1] : d € ShardReplicas(Shard(r))})

A UNCHANGED (replicaVars, sequencerVars, fecorVars)

Replica r receives M ViewChangeReq, m

HandleViewChangeReq(r, m) =

LET
vChangeMessage = [mtype — MViewChange,
viewNum — m.viewNum,
epochNum — vEpochNum|r],
log — vLog[r],
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tempDrops — vTempDrops|r],
permDrops ~ — vPermDrops|r],
unDrops — vUnDrops|r],
epochMsgNum — vEpochMsgNum|r],
sender =T,
dest +— Learner(Shard(r), m.viewNum)]
isNewLearner = Learner(Shard(r), m.viewNum) = r
IN
A vReplicaStatus[r] € {StNormal, StViewChange}
A m.epochNum = vEpochNum|r]
A m.viewNum > vViewNum/[r] It’s important for the way I check for a quorum
that each replica only send out a single msg
per new view (i.e., so the messages don’t both
get counted)
A vReplicaStatus’ = [vReplicaStatus EXCEPT ![r] = StViewChange]
A vViewNum' = [vViewNum EXCEPT ![r] = m.viewNum)|
A V A isNewLearner
A vViewChanges' = [vViewChanges EXCEPT ![r] = {vChangeMessage}]
A UNCHANGED (networkVars)
V' A —isNewLearner
A vViewChanges' = [vViewChanges EXCEPT ![r] = {}]
A Send({vChangeMessage})
A UNCHANGED (sequencerVars, feorVars, vLog, vEpochMsgNum, vEpochNum,
vTempDrops, vPermDrops, vUnDrops, vLastNormEpoch)

Replica r receives M ViewChange, m
Handle ViewChange(r, m) =
LET
newTempDrops = vTempDrops[r] U (
UNION {mp.tempDrops : mp € vViewChanges'[r]})
newPermDrops = vPermDrops[r] U (
UNION {mp.permDrops : mp € vViewChanges'[r]|})
newUnDrops = vUnDrops[r] U (
UNION {mp.unDrops : mp € vViewChanges'[r]})

logs = {mp.log : mp € vViewChanges'[r]}
longestLog = CHOOSE log € logs : ¥V log2 € logs : Len(log) > Len(log2)
newLog = [i € (1 .. Len(longestLog)) —
IF tznMatches(longestLog[i], newPermDrops) THEN
NoOp
ELSE
longestLog|i]]

newEpochMsgNum = (CHOOSE mp € vViewChanges'[r] :
Len(mp.log) = Len(longestLog)).epochMsgNum
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canStart View =
A 2 x Cardinality(vViewChanges'[r]) > NumReplicasPerShard
AVt € Range(newLog) :
tenMatches(t, newTempDrops) = t € newUnDrops
IN
A vReplicaStatus|r] = StViewChange
A m.epochNum = vEpochNum|r]
Add the message to the log
N vViewNum[r] = m.viewNum Must be equal for consistency of vViewChanges
A vViewChanges' = [vViewChanges EXCEPT ![r] = {m} U @]
If there’s a quorum, start the new view
AV A canStartView
A vLog" = [vLog EXCEPT ![r] = newLoy]
A vEpochMsgNum' = [vEpochMsgNum EXCEPT ![r] = newEpochMsgNum]
A vTempDrops’ = [vTempDrops EXCEPT ![r] = newTempDrops|
A vPermDrops’ = [vPermDrops EXCEPT ![r] = newPermDrops]
A vUnDrops’ = [vUnDrops EXCEPT ![r] = newUnDrops]
A vReplicaStatus’ = [vReplicaStatus EXCEPT ![r] = StNormal|

A Send ({[mtype — MStart View,
viewNum — vViewNum|[r],
epochNum — vEpochNum|r],
log — newLog,

tempDrops — newTempDrops,
permDrops — newPermDrops,

unDrops — newUnDrops,
epochMsgNum +— newEpochMsgNum,
dest — 1p] = rp € (ShardReplicas(Shard(r))\ {r})})

V' A —canStart View
A UNCHANGED (networkVars, vLog, vEpochMsgNum, vTempDrops, vPermDrops,
vUnDrops, vReplicaStatus)
A UNCHANGED (sequencerVars, fecorVars, vViewNum, vEpochNum,
vLastNormEpoch)

Replica r receives a MStartView, m
HandleStartView(r, m) =
A vReplicaStatus[r] € {StNormal, StViewChange}
A m.epochNum = vEpochNum/|r]
AV m.viewNum > vViewNum]|r]
V m.viewNum = vViewNum[r] A vReplicaStatus[r] = StViewChange
A vViewNum' = [vViewNum EXCEPT ![r] = m.viewNum)|
A vReplicaStatus’ = [vReplicaStatus EXCEPT ![r] = StNormal]
A vLog" = [vLog EXCEPT ![r] = m.log]
A vTempDrops’ = [vTempDrops EXCEPT ![r| = m.tempDrops|
A vPermDrops’ = [vPermDrops EXCEPT ![r] = m.permDrops]

34



A vUnDrops’ = [vUnDrops EXCEPT ![r] = m.unDrops]

A vEpochMsgNum' = [vEpochMsgNum EXCEPT ![r] = m.epochMsgNum]

A UNCHANGED (sequencerVars, networkVars, fecorVars, vEpochNum, vViewChanges,
vLastNormEpoch)

Epoch Change Handlers

Replica r receives a MEpochChange, m
HandleEpochChange(r, m) =
A m.epochNum > vEpochNum|r]
Force replicas to go through epochs that start one at a time (this could be
done slightly differently)
A m.lastNormEpoch = vLastNormEpoch|r]

A vReplicaStatus’ = [vReplicaStatus EXCEPT ![r] = StEpochChange]
A vEpochNum' = [vEpochNum EXCEPT ![r] = m.epochNum]
A Send({[mtype — MEpochChangeAck,

epochNum — m.epochNum,

viewNum — vViewNum|r],

log — wvLog|[r],

epochMsgNum +— vEpochMsgNum|[r],

sender — r]})

A UNCHANGED (sequencerVars, fcorVars, vLog, vEpochMsgNum, vViewNum,
vTempDrops, vPermDrops, vUnDrops, vViewChanges,
vLastNormEpoch)

Replica r receives a MStartEpoch, m
HandleStartEpoch(r, m) =
AV m.epochNum > vEpochNum|r]
V' A m.epochNum = vEpochNum/|r]
A vReplicaStatus[r] = StEpochChange

A vReplicaStatus’ = [vReplicaStatus EXCEPT ![r] = StNormal]

A wLog’ = [vLog EXCEPT ![r] = m.log]

A vEpochMsgNum' = [vEpochMsgNum EXCEPT ![r] = 1]

A vViewNum' = [vViewNum EXCEPT ![r] = m.viewNum)|

A vEpochNum' = [vEpochNum EXCEPT ![r] = m.epochNum]

A vTempDrops’ = [vTempDrops EXCEPT ![r] = {}]

A vPermDrops’ = [vPermDrops EXCEPT ![r] = {}]

A vUnDrops’ = [vUnDrops EXCEPT ![r] = {}]

A vLastNormEpoch’ = [vLastNormEpoch EXCEPT ![r] = m.epochNum)|
A UNCHANGED (sequencerVars, networkVars, fecorVars, vViewChanges)

Failure Coordinator Message Handlers
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HandleFindTzn(m) =
LET
tanID £ [shard — m.shard, epoch — m.epochNum, msg — m.msgNum)|
IN
A fStatus = StNormal
A m.epochNum = fEpochNum
A Send({[mtype — MTznRequest,
tenID +— txnlD,
dest > r]:1 € Replicas})
A UNCHANGED (sequencerVars, replicaVars, fecorVars)

HandleHasTzn(m) =

A fStatus = StNormal
A m.txn.epochNum = fEpochNum
Don’t “find” the transaction if it was already dropped
A —tenMatches(m.tzn, fDropped)
A fFound’ = {m.tzn} U fFound
A Send ({[mtype — MTznFound,

ten = m.tzn,

dest w~—r]:r € {rp € Replicas :

Shard(rp) € m.txn.shards}})
A UNCHANGED (sequencerVars, replicaVars, fDropped, fTempDrops, fStatus,
JEpochNum, fEpochChanges, fLastNormEpoch)

=

HandleTempDropped Txn(m)
LET
IsDropped(tznID) = Y's € Shards :
M € SUBSET {mp € fTempDrops’ :
A mp.tenlID = tanlD
A Shard(mp.sender) = s} :
A 2 % Cardinality(M) > NumReplicasPerShard
Adml e M :Vm2 e M : ml.viewNum = m2.viewNum
Adml € M : ml.sender = Learner(s, ml.viewNum)
IN
A fStatus = StNormal
A m.tznID.epoch = fEpochNum
Don’t drop transactions already found
A —tznIDMatches(m.tanID, fFound)
A fTempDrops’ = {m} U fTempDrops
A VA IsDropped(m.tznID)
A fDropped’ = {m.tznID} U fDropped
A Send({[mtype — MTznDropped,
tenlD — m.tznlD,
dest 1] : 7 € {rp € Replicas :
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Shard(rp) = m.tenID.shard}})
V' A =IsDropped(m.tznID)
A UNCHANGED (networkVars, fDropped)
A UNCHANGED (sequencerVars, replicaVars, fFound, fStatus, fEpochNum,
JfEpochChanges, fLastNormEpoch)

HandleEpochChangeReq(m) =

A m.epochNum > fEpochNum

A fStatus’ = StEpochChange

A fEpochNum' = m.epochNum

A fEpochChanges’ = {}

A Send({[mtype — MFEpochChange,
epochNum — m.epochNum,
lastNormEpoch — fLastNormFEpoch,
dest — 1] : r € Replicas})

A UNCHANGED (sequencerVars, replicaVars, fFound, fDropped, fTempDrops,

fLastNormEpoch)

HandleEpochChangeAck(m) =
LET
canStartEpoch(M) = Vs € Shards :
2 % Cardinality({mp € M : Shard(mp.sender) = s}) > NumReplicasPerShard

newViewNum(s, M) = Maz({mp.viewNum : mp €
{mpp € M : Shard(mpp.sender) = s}})

simpleCombined Trns(M) = (UNION {Range(mp.log) : mp € M})\ {NoOp}

combinedTzns(M) = fFound U {tzn € simpleCombined Tzns(M) :
Vs € ten.shards :
tID (s, tzn.epochNum, tzn.stampls]) ¢ fDropped}

logsFromShard (s, M) = {mp.log : mp €
{mpp € M : Shard(mpp.sender) = s}}
lengthMazLogFromShard(s, M) = Maz({Len(log) : log € logsFromShard (s, M)})
mazxLogFromShard(s, M) = CHOOSE log € logsFromShard(s, M) :
Len(log) = lengthMaxzLogFromShard(s, M)

prevEpochLastSlot(s, e, M) =
LET
log = mazLogFromShard(s, M)
hasNewMsg = Jtzn € Range(log) : A tzn # NoOp
A tzn.epochNum = e
newMsglIndez = CHOOSE i € DOMAIN log : A log[i] # NoOp
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A log[i].epochNum = e
IN
IF hasNewMsg THEN
newMsgIndex — log[newMsgIndez).stamp]s]
ELSE
Len(log)

mazxTznForShard(s, e, M) = Maz({tzn.stamp|s] : tzn €
{tanp € combinedTzns(M) : A tznp.epochNum = e
A s € tznp.shards}} U {0})

e is last normal epoch
newLog(s, e, M) = (

All of the messages from one of the logs from the old epochs
SubSeq(mazLogFromShard(s, M), 1, prevEpochLastSlot(s, e, M)) o

The messages for this shard which weren’t dropped in the new epoch
[i € (1.. maxTaenForShard(s, e, M)) —

IF

Jten € combinedTxns(M) :
A s € txn.shards

A tzn.stampls] =1
A tzn.epochNum = e
THEN

CHOOSE txn € combinedTxns(M) :
A s € txn.shards

A tzn.stampls] =1
A tzn.epochNum = e
ELSE
NoOp

D

IN
A fStatus = StEpochChange
A m.epochNum = fEpochNum
A fEpochChanges’ = {m} U fEpochChanges
A VA =canStartEpoch(fEpochChanges')
A UNCHANGED (networkVars, fStatus, fFound, fTempDrops, fDropped,
fLastNormEpoch)
V' A canStartEpoch(fEpochChanges’)
A fStatus’ = StNormal
A fFound’ = {}
A fTempDrops’ = {}
A fDropped’ = {}
A fLastNormEpoch’ = fEpochNum
A Send ({[mtype — MStartEpoch,
epochNum > fEpochNum,
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viewNum — newViewNum/(Shard(r), fEpochChanges’),

log — newLog(Shard(r), fLastNormEpoch,
fEpochChanges’),
dest — 1] : 7 € Replicas})

A UNCHANGED (sequencerVars, replicaVars, fEpochNum)

Main Transition Function

Next =  Client Actions
V ClientSendsRequest
Normal Case Handlers
V 3m € messages :
Js € Sequencers
: A m.mtype = MClientRequest
A HandleClientRequest(s, m)
V 3dm € messages :
dr € Replicas : N\ m.mtype = MStampedClientRequest
A Shard(r) € m.shards
A HandleStampedClientRequest(r, m)
Replica Actions
V 3r € Replicas : StartLeaderChange(r)
Other Replica Handlers
V 3dm € messages : V N\ m.mtype = MTrnRequest
A Handle TznRequest(m.dest, m)
V- A m.mtype = MTaxnFound
A HandleTrnFound(m.dest, m)
V. A m.mtype = MTxnDropped
A Handle TznDropped(m.dest, m)
V. A m.mtype = MViewChangeReq
A Handle ViewChangeReq(m.dest, m)
VvV A m.mtype = MViewChange
A Handle ViewChange(m.dest, m)
V. A m.mtype = MStartView
A HandleStartView(m.dest, m)
V A m.mtype = MEpochChange
A HandleEpochChange(m.dest, m)
V. A m.mtype = MStartEpoch
A HandleStartEpoch(m.dest, m)
Failure coordinator handlers
V dm € messages : V. AN m.mtype = MFindTxn
A HandleFindTen(m)
V A m.mtype = MHasTzn
A HandleHasTxn(m)
V- A m.mtype = MTempDroppedTzn
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A Handle TempDropped Txn(m)

V A m.mtype = MEpochChangeReq
A HandleEpochChangeReq(m)

VvV A m.mtype = MEpochChangeAck
A HandleEpochChangeAck(m)
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B P4 Sequencer Implementation

header_type ethernet_t {

}

fields {

dstAddr : 48;
srcAddr : 48;
etherType : 16;

}

header_type ipv4_t {

}

fields {

version : 4;

ihl : 4;

diffserv : 8;
totalLen : 16;
identification : 16;
flags : 3;
fragOffset : 13;
ttl : 8;

protocol : 8;
hdrChecksum : 16;
srcAddr : 32;
dstAddr: 32;

}

header_type udp_eris_t {

}

/%

fields {

srcPort : 16;
dstPort : 16;
length : 16;
checksum : 16;

/% These are eris specific fields appended to a standard UDP
* packet. The sequence mask is bit representation of which
* shards this request is touching. Currently, it supports upto
* 16 shards, but can be easily extended using more fields. */

sessionNumber : 16;
sequenceMask : 16;

}

The sequence numbers appended by the switch. */

header_type eris_seq_t {

}

fields {

sequenceNumber : 32;

}

#define ETHERTYPE_IPV4 0x0800
#define IP_PROTOCOL_ERIS 0x254

parser start {

return parse_ethernet;

}

header ethernet_t ethernet;

parser parse_ethernet {

extract(ethernet);
return select(latest.etherType) {

ETHERTYPE_IPV4 : parse_ipv4;
default: ingress;

headers.p4

parser.p4
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header ipv4_t ipv4;

parser parse_ipv4 {
extract(ipv4);
return select(latest.protocol) {
IP_PROTOCOL_ERIS : parse_eris;
default: ingress;
1
}

header udp_eris_t eris;

parser parse_eris {
extract(eris);
return ingress;

}

header eris_seq_t eris_seq[16];

eris.p4

#include "headers.p4”
#include "parser.p4"

#define MAX_SHARDS 16

/% This structure contains the data that moves through the packet
* processing pipeline. */
header_type ingress_metadata_t {
fields {
sequenceNum : 32; // For transient calculations.
}
}

metadata ingress_metadata_t ingress_data;

/= These stateful array of registers keep track of the sequence numbers
+ of for each shard. They are split over multiple stages to help scale.
* A smart compiler could do this automatically.

* sequence_numbers[i] = sequence number for shard i; */

register sequence_numbers {

width : 32;

instance_count : MAX_SHARDS;
}

/+ This action block updates the current packet’s session number and
* sequence number corresponding to the replica group. */

action eris_update(shard) {

// Reads the values from stateful memory into ingress metadata.
register_read(ingress_data.sequenceNum, sequence_numbers, shard);

/I Increment the sequence number for this shard by 1.
add_to_field(ingress_data.sequenceNum, 1);

/I Append the sequence number for this shard into the packet header stack.
push(eris_seq, 1);

modify_field(eris_seq[0].sequenceNumber, ingress_data.sequenceNum);
/I ' Write back the updated value into stateful memory.
register_write(sequence_numbers, shard, ingress_data.sequenceNum);

action _drop() {
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45 drop();

46}

47

48 /* M+A tables that apply eris actions. */
49 table eris {

50 reads {

51 eris.sequenceMask : exact;

52 }

53 actions {

54 eris_update;

55 _drop;

56 }

57}

58

59 /% Packet processing starts here. %/

60 control ingress {

61 /I Apply the eris sequence increment too all bits in the sequencer mask.
62

63 if (eris.sequenceMask & 0x0001) {
64 apply(eris);

65 }

66

67 if (eris.sequenceMask & 0x0002) {
68 apply(eris);

69 }

70

71 if (eris.sequenceMask & 0x0004) {
72 apply(eris);

73 }

74

75 if (eris.sequenceMask & 0x0008) {
76 apply(eris);

77 }

78

79 if (eris.sequenceMask & 0x0010) {
80 apply(eris);

81 }

82

83 if (eris.sequenceMask & 0x0020) {
84 apply(eris);

85 }

86

87 if (eris.sequenceMask & 0x0040) {

88 apply(eris);
}

89

90

91 if (eris.sequenceMask & 0x0080) {
%2 apply(eris);

93 }

94

95 if (eris.sequenceMask & 0x0100) {
9% apply(eris);

97 }

98

99 if (eris.sequenceMask & 0x0200) {
100 apply(eris);

101 }

102

103 if (eris.sequenceMask & 0x0400) {
104 apply(eris);

105 }

106

107 if (eris.sequenceMask & 0x0800) {
108 apply(eris);

109

110

11 if (eris.sequenceMask & 0x1000) {
12 apply(eris);



113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

}

if (eris.sequenceMask & 0x2000) {
apply(eris);
}

if (eris.sequenceMask & 0x4000) {
apply(eris);
1

if (eris.sequenceMask & 0x8000) {
apply(eris);
}

/I The usual forwarding.
apply(forward);
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