
0

Synthesizing Optimal Domain Models for Educational
Applications

ERIC BUTLER, University of Washington, edbutler@cs.washington.edu
EMINA TORLAK, University of Washington, emina@cs.washington.edu
ZORAN POPOVIĆ, University of Washington, zoran@cs.washington.edu

Many applications in educational technology, from student modeling to problem generation, are built
on a formal model of the operational knowledge for a given domain. These domain models consist of rules
that experts apply to solve problems in the domain; for example, factoring, ax + bx → (a + b)x , is one such
rule for K-12 algebra. In practice, domain models are handcrafted at great expense, so applications rely on
a single generic model. But many models can capture the operational knowledge for a domain, and they differ
in how well they meet specific educational objectives (such as maximizing problem-solving efficiency for
advanced users or minimizing cognitive load for novices). Rapid creation of custom domain models is thus
a key challenge in the development of personalized educational tools that adapt to their user’s needs.

This paper presents RuleSy, a new framework for computer-aided authoring of optimal domain models for
educational applications. RuleSy takes as input a set of example problems (e.g., x + 1 = 2), a set of basic axiom
rules for solving these problems (e.g., factoring), and a function expressing the desired educational objective.
Given these inputs, it first synthesizes a set of tactic rules (e.g., combining like terms) that integrate multiple
axioms into advanced problem-solving strategies. The axioms and tactics are then searched for a domain
model that optimizes the objective. RuleSy is based on new algorithms for mining tactic specifications from
examples and axioms, synthesizing tactic rules from these specifications, and selecting an optimal domain
model from the axioms and tactics.

We evaluate RuleSy on the domain of K-12 algebra, finding that it recovers textbook tactics and domain
models, discovers new tactics and models, and outperforms a prior tool for this domain by orders of magnitude.
But RuleSy generalizes beyond K-12 algebra: we also use it to (re)discover proof tactics for propositional logic,
demonstrating its potential to aid in the development of custom models for a variety of educational domains.

Additional Key Words and Phrases: Program Synthesis

1 INTRODUCTION
Background. A key challenge in the design of educational applications is modeling the operational

knowledge that captures the expertise of a given domain. This knowledge takes the form of a domain

model, which consists of rules that experts apply to solve problems in that domain. For example,
factoring, ax +bx → (a +b)x , is an expert problem-solving rule for K-12 algebra. Educational appli-
cations rely on domain models to automate tasks such as problem and progression generation [2],
hint and feedback generation [29], student modeling [3], and misconception detection [39].

Domain modeling is a pressing problem in education technology for two reasons. First, domain
models are currently created by hand, taking hundreds of hours of development time to model a
single hour of instructional material [27]. Second, many different domain models can capture the
operational knowledge for a domain, and basing an application on a singlemodel limits its usefulness.
Recent research [24] shows that to achieve mastery by over 95% of students, some students need
over six times more content than others. To best serve a broad population of students, applications
therefore need multiple models that optimize different educational objectives, such as maximizing
solving efficiency by including many specialized rules versus minimizing memorization burden
by including as few general rules as possible. For both of these reasons—the high cost of building a

University of Washington Technical Report UW-CSE-2017-10-02, October 2017

0:2 Eric Butler, Emina Torlak, and Zoran Popović

singlemodel and the need formany custommodels—domainmodeling is amajor technical roadblock
in ongoing efforts to build applications that deliver effective personalized education [9, 31].

Problem and Scope. This paper proposes a new approach to rapid development of optimal domain
models that is based on program synthesis. We realize this approach in RuleSy, a framework that
assists developers with both creating problem-solving rules and assembling them into domain
models that optimize desired educational objectives. The RuleSy framework was motivated by
practical experience: some of the authors work for an educational technology company building
adaptive K12 applications that need custom domain models. These applications are the intended use
case for our work, and our company is already adopting key ideas from RuleSy (e.g., the DSL from
Section 3). Here, we focus on presenting and evaluating the novel technical aspects of RuleSy, with
the future goal of integrating the framework fully into our company’s workflow and evaluating its
impact on the productivity of the company’s developers.

Approach. RuleSy is a framework for modeling domains that express operational knowledge
with condition-action rules, such as ax + bx → (a + b)x . A rule of this form describes one step
that an expert would take to solve a problem. The rule’s condition recognizes problem states that
trigger rule application, and its action specifies how to transition to the next problem state from the
current one. For example, the factoring rule ax + bx → (a + b)x rewrites algebra terms of the form
ax +bx to (a +b)x . These rules are easy to explain and align with existing instructional design [40].
But crafting a set of such rules (i.e., a domain model) that best meets an educational objective is
difficult, and RuleSy helps automate this task.

To illustrate the difficulty of model authoring, consider creating a domain model for K-12 algebra.
Suppose that our model includes the basic rules, or axioms, for solving algebra problems: e.g.,
factoring and constant folding, c0+c1 → c2 where c0 and c1 are constants and c2 is their sum. Should
this model also include the rule for combining like terms, c0x+c1x → c2x , which composes factoring
and constant folding? While such compound rules, or tactics, are not necessary for problem solving,
some are always included in textbook domain models (e.g., Charles et al. [8]) because they enable
more efficient problem solving with less cognitive load [36]. Yet there is a limit to how many rules
students can remember, so the optimal mix of axioms and tactics for a domain model depends on the
desired tradeoff between maximizing solving efficiency and minimizing the memorization burden.

RuleSy helps navigate such tradeoffs by generating an optimal domain model given only a set
of axioms for the domain, a set of representative example problems, and an objective function that
expresses the desired optimization criteria in terms of rule and solution costs. Using the axioms and
the examples, RuleSy first synthesizes an exhaustive set of tactics that combine multiple axioms
into advanced problem-solving strategies. Each of these tactics shortens the solution to at least one
example problem compared to using the axioms alone. Having generated the tactics, RuleSy then
applies discrete optimization to both the axioms and the tactics, producing a domain model that
solves the example problems and optimizes the provided objective.
To enable tactic synthesis, RuleSy treats condition-action rules as programs in a high-level

domain-specific language (DSL). These programs consume and produce problem states expressed
as trees; a program consists of a pattern to match against a tree, and a set of tree editing actions
to apply to the matched subtrees. A condition-action rule (and, hence, a program in our DSL)
can fire on any part of the problem state to transform it to another state. For example, given the
problem z + 0 = 0 + y, the additive identity rule x + 0→ x can fire on either z + 0 or 0 + y (due to
the commutativity of addition), giving rise to two possible output states, z = 0 + y or z + 0 = y.
This non-determinism makes rule programs a challenging target for synthesis—to our knowledge,
existing tools can neither synthesize such programs directly, nor scale to support indirect encodings
that enumerate all possible applications of a rule.

University of Washington Technical Report UW-CSE-2017-10-02, October 2017

Synthesizing Optimal Domain Models for Educational Applications 0:3

RuleSy tackles the rule synthesis challengewith a novel reduction to a set of classic syntax-guided
synthesis [1] queries. The reduction employs two stages: specification mining and rule synthesis.
Specifications mining uses the axioms and the examples to produce a set of deterministic functions
that define sound and useful tactics. In particular, each mined function captures a subset of the input-
output behaviors allowed by a sequence of axiom applications, including behaviors that shorten the
solution to at least one example problem. The rule synthesis stage uses these functions as specifica-
tions, thus side-stepping the need to reason about the semantics of rule firing. To scale to practical
rules, RuleSy employs a novel formulation of the classic syntax-guided synthesis query, exploiting
the structure of its DSL and specifications to reduce the synthesis search space asymptotically.

Once it synthesizes the tactics for a given set of examples and axioms, RuleSy needs to explore
the resulting design space to find a domain model that solves the examples and optimizes the desired
objective. Finding such a model is undecidable in general, since an arbitrary set of rules (i.e., a
candidate model) in our DSL may not be terminating [11]. We therefore constrain this optimization
task to be decidable and develop a new algorithm for discharging it. In particular, RuleSy finds a
domain model that solves the examples while minimizing the objective over the model’s rules and
the shortest (rather than all) solutions obtainable with those rules.
Our work builds on a short paper by Butler et al. [7], published in the education technology

literature. That paper argued for computer-aided development of custom domain models, and
presented a prototype tool for creating such models for the domain of introductory K-12 algebra.
The prior tool employs a procedure for synthesizing tactics that is neither sound nor complete,
and it uses heuristics to try and tackle the undecidability of the domain model optimization query.
Unlike that tool, RuleSy generalizes beyond K-12 algebra, and it is based on new algorithms for
sound specification mining, sound and complete rule synthesis, and decidable optimization.

Evaluation. To evaluate RuleSy, we applied it to the domain of introductory K-12 algebra, seeking
to assess the quality of its output and the performance of its algorithms. We use a standard algebra
textbook [8] as the baseline for evaluating the quality of the synthesized tactics and domain models,
and the prior tool by Butler et al. [7] as the baseline for evaluating runtime performance. Applying
RuleSy to examples and axioms from the textbook, we find that it recovers standard algebra tactics
(such as combining like terms) presented in the book, while also discovering additional advanced
tactics. We also find that RuleSy can not only recover the textbook’s domain model when given a
specific objective, but that it can also discover different variants of this model that optimize different
objectives. Finally, we show that RuleSy significantly outperforms the prior tool by Butler et al.
[7], both in terms of output quality and runtime of its algorithms.

While our evaluation focuses on the domain of K-12 algebra, our approach is not specific to this
domain. The approach assumes that problem states are represented as trees and that rule programs
transform trees. To show the framework’s generality, we instantiate it a with a DSL for proving
theorems in propositional logic, and use it to synthesize proof tactics from textbook [6] axioms
and exercises. We find that RuleSy synthesizes both new and standard tactics for this domain (e.g.,
modus ponens), just as it did for K-12 algebra.

Summary. In summary, this paper makes the following contributions:

• A formal development of the RuleSy framework for computer-aided development of optimal
domain models, expressed as sets of condition-action rules.
• New algorithms for mining tactic specifications from a set of examples and axioms; for
synthesizing rule programs that implement those specifications; and for selecting a subset of
the axioms and tactics that solves the examples while optimizing a given objective.

University of Washington Technical Report UW-CSE-2017-10-02, October 2017

0:4 Eric Butler, Emina Torlak, and Zoran Popović

• An extended case study demonstrating the effectiveness of RuleSy in the domain of intro-
ductory algebra, and a brief case study demonstrating the framework’s applicability to other
domains, such as logic proofs.

The rest of the paper is organized as follows. Section 2 presents an overview of RuleSy and its
application to a toy algebra domain. Section 3 describes the DSL for condition-action rules that
RuleSy targets for synthesis. Section 4 describes our algorithms for specification mining, rule
synthesis, and rule set optimization. Section 5 presents two case studies that apply RuleSy to the
domains of K-12 algebra and propositional logic. We conclude with a discussion of related work in
Section 6 and a summary of contributions in Section 7.

2 OVERVIEW
This section illustrates RuleSy’s functionality on the problem of creating optimal domain models
for a toy algebra domain. The domain focuses on solving linear equations that involve addition of
variables and constants, e.g., x + 2 = 3. People solve an equation of this kind by repeatedly applying
rewrite rules until the unknown (x) is isolated on one side of the equality symbol (x = 1). Many
sets of rules (i.e., domain models) can be used to accomplish this task depending on the educational
objective—e.g., minimizing memorization for novice students or maximizing solving efficiency for
advanced students. Our goal is to generate domain models that optimize such objectives.

To use RuleSy, the domain model developer provides a set of example problems; a set of initial
rules, or axioms, sufficient to define the domain and solve the example problems; and an educational
objective expressed as a function of rule and solution costs. RuleSy then synthesizes a set of
shortcut, or tactic, rules, and finds a subset of the axioms and tactics that optimizes the objective.
This section shows sample inputs for our toy algebra domain and uses them to illustrate RuleSy’s
algorithmic pipeline.

2.1 Examples, Axioms, and Objectives
Examples. Figure 1 shows the example problems we will use for the toy algebra domain. The

problems (b) are represented as s-expressions (c). We consider a tiny subset of algebra that includes
equations of the form x +

∑
i ci = ck , where x is a variable and ci , ck are integer constants. Such

a problem is solved by reducing it to an equation of the form x = c .

Axioms. To solve a toy algebra equation, we use a set of condition-action rules to repeatedly
rewrite the problem until it takes the reduced form. Figure 1a shows three such rules that are
sufficient to solve our example problems (as well as all problems expressed in the syntax from
Figure 1c). A rule consists of a condition, which matches a syntax tree with a specific shape, and an
action, which creates a new tree by applying editing operations (such as adding or removing nodes)
to the matched tree. For example, rule A matches trees of the form (+ 0 e . . .), where the order
of subtrees is ignored, and it rewrites such trees by removing the constant 0 to produce (+ e . . .).
These rules will serve as our axioms for solving toy algebra problems; e.g., we can solve p1 in two
steps, by applying the rules B ◦ A to obtain x + 1 + −1 = 5→B x + 0 = 5→A x = 5. RuleSy uses
the axioms to synthesize tactic rules (Figure 3) that can solve the example problems in fewer steps.

Objective. By design, axioms are more general than tactics but lead to longer solutions, while
tactics lead to more efficient solutions but apply less generally. The best mix of axioms and tactics
for a domain model therefore depends on the desired educational objective. RuleSy expresses these
objectives as functions of rule and solution costs. Figure 1d shows an example objective function,
given as a weighted sum of two components: rule set complexity and solution efficiency, which
are proxy measures for the difficulty of learning and applying knowledge encoded in the given

University of Washington Technical Report UW-CSE-2017-10-02, October 2017

Synthesizing Optimal Domain Models for Educational Applications 0:5

; Additive identity: (+ 0 e . . .) → (+ e . . .)

(define A

(Rule
(Condition

(Pattern (Term + (ConstTerm) _ etc))
(Constraint (Eq? (Ref 1) 0)))

(Action (Remove (Ref 1)))))

; Constant folding: (+ c1 c2 . . .) → (+ c . . .),

c = c1 + c2
(define B

(Rule
(Condition

(Pattern
(Term + (ConstTerm) (ConstTerm) etc))

(Constraint true))
(Action

(Replace (Ref 1)

(Apply + (Ref 1) (Ref 2)))

(Remove (Ref 2)))))

; Adding the negation of a term to both sides:

; (= (+ e0 . . .) e1) → (= (+ (− e0) e0 . . .) (+ e1 (− e0)))

(define C

(Rule
(Condition

(Pattern (Term = (Term + _ etc) _))
(Constraint true))

(Action
(Replace

(Ref 1)

(Cons (Make - (Ref 1 1)) (Ref 1)))

(Replace
(Ref 2)

(Make + (Ref 2)

(Make - (Ref 1 1)))))))

(a) Axioms as production rules in our DSL.

Problem Representation
p0 : x + 0 = 3 (= (+ x 0) 3)
p1 : x + 1 + −1 = 5 (= (+ x 1 -1) 5)
p2 : x + 2 = −4 (= (+ x 2) -4)

(b) Example problems for the toy algebra domain.

p : (= e c)
e : id | (+ id c+)
id : identifier
c : integer literal

(c) Syntax for example problems.

; Computes α · R(Rules) + (1 − α) · S (Solutions), where

; α ∈ [0, 1] is a weighting term, R is the sum of

; the costs of the Rules, and S is the average

; cost of the Solutions.

(define (objective Rules Solutions alpha)

(+ (* alpha

(apply + (map rule-cost Rules)))

(* (- 1 alpha)

(apply

mean

(map sol-cost Solutions)))))

(d) A sample objective function.

Fig. 1. The inputs to our system for the toy algebra domain consist of a set of axioms (a), example problems

(b-c), and an objective function (d). The axioms (a) are expressed in the production rule DSL described in

Section 3. The rule condition consists of a pattern to match against the input’s abstract syntax tree (AST)

and a constraint that the matched AST must satisfy; the action specifies a set of functional edits to this

AST. A reference expression (Ref i . . .) identifies a nested subexpression in the matched AST, with child

indexing starting at 1. Rule application ignores the order of arguments to commutative operators. The example

problems (b) are expressed in a simple S-expression syntax (c). The objective function (d), used for choosing an

optimal subset of learned rules, is a weighted sum of the cost of a candidate rule set and the cost of applying

it to solve the input problems.

University of Washington Technical Report UW-CSE-2017-10-02, October 2017

0:6 Eric Butler, Emina Torlak, and Zoran Popović

(= (+ x 0) 3)

(= x 3)

A

(= (+ x 2) -4)

(= (+ -2 2 x) (+ -4 -2))

C

(= (+ 0 x) (+ -4 -2))

B

(= (+ -2 2 x) -6)

B

(= x (+ -4 -2))

A

(= (+ 0 x) -6)

B

(= x -6)

B A

B

(= (+ x 1 -1) 5)

(= (+ 0 x) 5)

B

(= x 5)

A

(a) All shortest solutions for the toy problems in

Figure 1b, using the axioms in Figure 1a.

[⟨B, [], {[] 7→[], [1] 7→[2], [2] 7→[3]}⟩,
⟨A, [], {[] 7→[], [1] 7→[1]}⟩]

(b) A plan for applying the axioms B ◦ A.

Input Axiom Binding Output
(= (+ x 1 -1) 5) B (= (+ 1 -1 x) 5) (= (+ 0 x) 5)
(= (+ 0 x) 5) A (= (+ 0 x) 5) (= x 5)

(c) Using the plan in (b) to solve the problem p1 (Fig-

ure 1b).

Fig. 2. Mining a tactic specification from the problem p1 (Figure 1b) using the toy algebra axioms (Figure 1a).

RuleSy first finds all shortest solution paths for each problem using the axioms (a). A specification takes

the form of a plan (b) for applying a sequence of axioms to a given AST (c). Each step in the plan specifies a

permutation of its input that satisfies the axiom’s condition, given as a binding from the references (Ref i . . .)
to the indices they match in the input AST.

domain model [36]. Rule set complexity is taken to be the sum of individual rule costs, where the
cost of a rule is a function of its syntactic structure. Solution efficiency measures the average cost
of solving all example problems using a given rule set. We take the cost of solving a problem to
be the sum of the costs of the individual rewrite steps, measured by the number of syntax tree
manipulations performed during the application of a rule. RuleSy finds the mix of axioms and
tactics that optimizes the desired trade-off between rule set complexity and solution efficiency.

2.2 Specification Mining
To find an optimal domain model, RuleSy first needs to synthesize a set of tactic rules that can
help solve the input problems more efficiently than the axioms alone. For example, we could solve
p1 in one step if we had a “cancelling opposite constants” rule that composes the axioms B and A.
In contrast, creating a rule that composes C with itself would not help solve any of the examples
in fewer steps. RuleSy determines which rules to synthesize, and how those rule should behave,
by mining a set of tactic specifications from the input problems and axioms.

A tactic specification defines a plan for applying a sequence of axioms, as shown in Figure 2b. A
plan describes which axioms to apply, in what order, and how. Since an axiom may be applied to
an algebraic expression in multiple ways, a plan associates each axiom with an application index
and a binding for the axiom’s pattern. The application index identifies a subtree in the expression’s
abstract syntax tree (AST), and the binding specifies a mapping from the index space of the axiom’s
pattern to the index space of the subtree. The plan in Figure 2b solves p1 in one step by reducing
the expression (+x 1−1) to x . In essence, plans represent functional specifications of tactic rules
that can help solve the example problems in fewer steps. This removal of non-determinism from
tactic specifications is key to making synthesis tractable, since we need to be able to reduce tactic
semantics to efficiently-solvable SMT formulas in order to verify that a candidate rule implements
a given specification.

University of Washington Technical Report UW-CSE-2017-10-02, October 2017

Synthesizing Optimal Domain Models for Educational Applications 0:7

RuleSy computes tactic specifications in two stages. The first stage uses the axioms to find all
shortest solutions to each example problem. Figure 2a shows the shortest solutions for our toy
examples and axioms; we represent the solutions to a given problem as a directed acyclic multigraph
with a single source and at least one sink. The second stage (Figures 2b and 2c) enumerates a set
of plans that describe all paths between every pair of nodes in the resulting graphs. These plans
capture the behaviors of all solution-shortening tactics that can be inferred from the given example
problems and axioms.

2.3 Rule Synthesis
Given a set of tactic specifications,RuleSy synthesizes a set of tactic rules, expressed in the sameDSL
(Section 3) as the input axioms. Our synthesis algorithm builds on an existing tool [38] for syntax-
guided synthesis [1, 34], which takes as input a specification and a sketch of the implementation.
A sketch is a program with missing expressions, called “holes,” to be filled by the synthesizer so
that the resulting implementation satisfies the specification. Ideally, a sketch would consist of a
single hole, and the synthesizer would fill that hole with a correct condition-action program. But
this naive approach does not scale in practice. To achieve scalability, RuleSy implements a sound
and complete technique for synthesizing conditions independently of actions.

Figure 3 shows two sample tactics synthesized for our toy algebra tutor using the specifications
(e.g., Figure 2c) mined from the toy examples and axioms. Note that the tactics perform fewer tree
manipulations than the axiom sequences they replace, leading to cheaper (and shorter) solutions.
For example, the tactic BA performs two tree manipulation actions, while the axiom sequence B◦A
performs three such actions. But the tactic also applies to fewer problem states than the axioms.
RuleSy uses discrete optimization to decide which axioms and tactics to include in a domain model,
depending on the desired educational objective.

; Canceling opposite constants:

; (+ c −c e . . .) → (+ e . . .).

(define BA

(Rule
(Condition

(Pattern
(Term + (ConstTerm) (ConstTerm) _ etc))

(Constraint
(Eq? (Ref 1) (Apply - (Ref 2)))))

(Action
(Remove (Ref 1))

(Remove (Ref 2)))))

; Move negated constant to other side with

; only one other term:

; (= (+ c1 e . . .) c2) → (= (+ e . . .) c), c = c2 − c1.

(define CBAB

(Rule
(Condition

(Pattern
(Term = (Term + (ConstTerm) _ etc)

(ConstTerm)))
(Constraint true))

(Action
(Remove (Ref 1 1) 0)

(Replace
(Ref 2)

(Apply - (Ref 2) (Ref 1 1))))))

Fig. 3. Sample tactics synthesized for the specifications (e.g., Figure 2b) mined from the toy inputs (Figure 1b

and 1a).

2.4 Rule Set Optimization
The optimizer takes as input the objective function, the example problems, and the axiom and
tactic rules. The objective returns a positive real value when applied to a set of rules and a set of
solutions. Given these inputs, the optimizer finds a subset of the rules that is sufficient to solve the
example problems, while minimizing the objective over all shortest solutions obtainable with such
sufficient subsets.

University of Washington Technical Report UW-CSE-2017-10-02, October 2017

0:8 Eric Butler, Emina Torlak, and Zoran Popović

ℛ0.1 = {A,BA,CBAB} ℛ0.9 = {BA,CBAB}

Fig. 4. Optimal rule sets for our toy problems (Figure 1b), rules (Figure 1a and 3), and objective (Figure 1d).

program := (Rule cond action)

cond := (Condition (Pattern pattern) (Constraint constr))
pattern := _ | (ConstTerm) | (VarTerm) | (BaseTerm)

| (Term op pattern
+) | (Term op pattern

+ etc)
constr := true | pred | (And constr constr)
pred := (Eq? ref const) | (Neq? ref const)

action := (Action cmd
+)

cmd := (Remove ref) | (Replace ref expr)

expr := const | obj

obj := (Make op expr
+) | (Cons expr ref)

| (Cons expr obj)
const := int | ref | (Apply op const

+)
ref := (Ref) | (Ref int

+)

term := int | var | (op term
+)

int := integer literal
var := identifier
op := + |- | * | / | =

Fig. 5. Syntax for the algebra DSL. The notation form
+
means one or more repetitions of the given form.

Figure 4 shows two sample optimal rule sets for our toy domain. The rule sets ℛ0.1 and ℛ0.9
minimize the value of the toy objective (Figure 1d) for different values of the weighting factor
alpha. Setting alpha to 0.1 emphasizes solution efficiency, while setting it to 0.9 emphasizes rule set
economy. As a result,ℛ0.1 includes more rules thanℛ0.9. RuleSy thus helps with both creating
new tactics and using them to form domain models that best satisfy desired objectives.

3 A DOMAIN-SPECIFIC LANGUAGE FOR CONDITION-ACTION RULES
This section presents a RuleSy language for specifying condition-action rules, instantiated for
the domain of K-12 algebra. We use this instantiation to show examples throughout the paper,
and to describe our rule synthesis and optimization algorithms. But RuleSy generalizes beyond
the domain of K-12 algebra: it is applicable to any domain in which problems are expressed as
(abstract syntax) trees and rules as condition-action programs that transform those trees. We
describe another instantiation of RuleSy, for the domain of propositional logic, in Section 5.

3.1 Specifying Problems and Rules
Our algebra DSL (Figure 5) represents rules as programs that operate on algebra problems expressed
as terms. A term may be an integer constant, a variable, or an expression that combines terms using
standard arithmetic operators. RuleSy is parametric in the definition of terms; for example, we
could instantiate the framework with boolean terms by using boolean constants instead of integers
and logical connectives instead of arithmetic operators. The structure of rules, on the other hand, is
fixed. A rule consists of a condition, which determines if the rule is applicable to a given term, and
an action, which specifies how to transform terms. Conditions include a pattern to match against
the term’s structure and a boolean constraint to evaluate on that structure. Actions are sequences of
term editing operations, such as removing or replacing a subterm. Both constraints and actions can
use references to identify specific subterms of the term to which the rule is being applied. The toy
problems (Figure 1b) and rules (Figures 1a and 3) from Section 2 are all valid terms and programs
in the algebra DSL.

3.2 Interpreting Rules
Semantics of Rule Firing. Rule programs denote partial functions from terms to terms (Figure 6).

If a term satisfies the rule’s condition, the result is a term; otherwise, the result is an undefined
value (⊥). We solve algebra problems by applying rules exhaustively, via fire(R, t), on permutations
and subterms of a given term. Permuting a term (Definition 3.3) reorders the arguments to any
commutative operators while leaving the rest of the term’s structure unchanged. To fire a rule on

University of Washington Technical Report UW-CSE-2017-10-02, October 2017

Synthesizing Optimal Domain Models for Educational Applications 0:9

J(Ruleca)Kt = if JcKt then JaKt else ⊥

J(Conditionpb)Kt = JpKt ∧ JbKt
J(Patternp)Kt = JpKt
J(Constraintb)Kt = JbKt

J(Termop1 ... pk)Kt = (t = (o t1 ... tk)) ∧ ∀1≤i≤k Jpi Kti
J(Termop1 ... pk etc)Kt = (t = (o t1 ... tn)) ∧ n ≥ k ∧ ∀1≤i≤k Jpi Kti
J(ConstTerm)Kt = literal(t)
J(VarTerm)Kt = variable(t)
J(BaseTerm)Kt = literal(t) ∨ variable(t)
J_Kt = true
JtrueKt = true
J(Eq?r e)Kt = (JrKt = JeKt)
J(Neq?r e)Kt = (JrKt , JeKt)
J(Andb1b2)Kt = Jb1Kt ∧ Jb2Kt

J(Actiona1 ... ak)Kt = (Ja1K ∥ ... ∥ Jak K)(t)
J(Remover)Kt = rm(t, index(r))
J(Replacer e)Kt = replace(t, index(r), JeKt)

J(Makeoe1 ... ek)Kt = (o Je1Kt ... Jek Kt)
J(Conse1e2)Kt = cons(Je1Kt, Je2Kt)
J(Applyoe1 ... ek)Kt = JoK(Je1Kt, ... , Jek Kt)
J(Refi1 ... ik)Kt = ref (t, [i1, ... , ik])

index((Refi1 ... ik)) = [i1, ... , ik]
replace(t, [], s) = s
replace((o t1 ... tk), [i], s) = (o t1 ... ti−1 s ti+1 ... tk)
replace((o t1 ... tk), [i, j, ...], s) = (o t1 ... replace(ti , s, [j, ...]) ... tk)
rm((o t1 ... tk), [i]) = (o t1 ... ti−1 ti+1 ... tk)
rm((o t1 ... tk), [i, j, ...]) = (o t1 ... rm(ti , [j, ...]) ... tk)
cons(t, (o t1 ... tk)) = (o t t1 ... tk)

fire(R, t) = {JRKt | JRKt , ⊥} where literal(t) ∨ variable(t)
fire(R, t) = {JRKt β | JRKt β , ⊥ ∧ β ∈ ℬ(pattern(R), t)} ∪⋃

1≤i≤n {replace(t, [i], s) | s ∈ fire(R, ti)}
where t = (o t1 ... tn)

Fig. 6. Semantics for the algebra DSL (Figure 5). The expression (o t1 . . . tn) constructs a term with the

given operator and children; ∥ stands for parallel function composition; [x , . . .] denotes a sequence; and other

notation is described in Definitions 3.2-3.5.

a term, we permute the term “just enough” to establish a one-to-one mapping between the rule’s
pattern and the term’s structure (Definition 3.5). By establishing such mappings for all subterms of
a term, fire implements the intuitive notion of rule application given in Section 2: a rule fires on all
subterms that satisfy the rule’s condition, ignoring the order of arguments to commutative operators.

Example 3.1. To illustrate the semantics of fire, consider firing the rule A from Figure 1a on
the term t = (+ (∗ x 2) 0). The set refs(t) of all valid tree indices for t consists of the indices
[], [1], [1, 1], [1, 2], [2], which identify the subterms t , (∗ x 2),x , 2, 0, respectively (Definition 3.2).
Since both addition and multiplication are commutative, valid tree permutations Π(t) for t consist
of the following mappings (Definition 3.3):
• tπ0 = t where π0 = {[] 7→ [], [1] 7→ [1], [1, 1] 7→ [1, 1], [1, 2] 7→ [1, 2], [2] 7→ [2]};
• tπ1 = (+ (∗ 2 x) 0) where π1 = {[] 7→ [], [1] 7→ [1], [1, 1] 7→ [1, 2], [1, 2] 7→ [1, 1], [2] 7→ [2]};
• tπ2 = (+ 0 (∗ x 2)) where π2 = {[] 7→ [], [1] 7→ [2], [1, 1] 7→ [2, 1], [1, 2] 7→ [2, 2], [2] 7→ [1]};
and
• tπ3 = (+ 0 (∗ 2 x)) where π3 = {[] 7→ [], [1] 7→ [2], [1, 1] 7→ [2, 2], [1, 2] 7→ [2, 1], [2] 7→ [1]}.

Next, we observe that the scope (Definition 3.4) of A’s pattern consist of the indices {[], [1], [2]}.
Finally, we use the permutations of t and the scope of A to compute all valid bindings for A and
t (Definition 3.5): β0 = {[] 7→ [], [1] 7→ [1], [2] 7→ [2]} with t β0 = tπ0 and β1 = {[] 7→ [], [1] 7→

University of Washington Technical Report UW-CSE-2017-10-02, October 2017

0:10 Eric Butler, Emina Torlak, and Zoran Popović

[2], [2] 7→ [1]} with t β1 = tπ2 . The rule A applies only to the binding β1 (and none of the subterms
of t), so fire(A, t) yields {(∗ x 2)}.

Definition 3.2 (Tree Indices). A tree index is a finite sequence of positive integers that identifies
a subterm of a term as follows:
ref (t , []) = t ;
ref ((o t1 . . . tk), [i]) = ti if 1 ≤ i ≤ k ;
ref ((o t1 . . . tk), [i, j, . . .]) = ref (ti , [j, . . .]) if 1 ≤ i ≤ k ;
ref (t , idx) = ⊥ otherwise.

We write refs(t) to denote the set {idx | ref (t , idx) , ⊥}.

Definition 3.3 (Tree Permutations). A function π is a tree permutation for a term t if it defines a
bijective mapping from refs(t) to itself. A permutation π is valid for t if it reorders only the children
of commutative operators in t . That is, for each [i1, . . . , in] ∈ refs(t), π ([i1, . . . , in]) = [j1, . . . , jn]
such that π ([i1, . . . , in−1]) = [j1, . . . , jn−1] and in = jn or ref (t , [i1, . . . , in−1]) = (op . . .) where op
is commutative. We write Π(t) to denote the set of all valid permutations of t , and tπ to denote the
term obtained by applying π ∈ Π(t) to refs(t).

Definition 3.4 (Scopes). A tree index idx is in the scope of a condition pattern p if scope(p, idx) , ⊥
where:
scope(p, []) = p;
scope((Term o p1 . . .pk), [i]) = pi if 1 ≤ i ≤ k ;
scope((Term o p1 . . .pk), [i, j, . . .]) = scope(pi , [j, . . .]) if 1 ≤ i ≤ k ;
scope((Term o p1 . . .pk etc), idx) = scope((Term o p1 . . .pk), idx);
scope(p, idx) = ⊥ otherwise.

We write scope(p) to denote the set {idx | scope(p, idx) , ⊥}.

Definition 3.5 (Bindings). Let β be a bijection from tree indices to tree indices with a finite domain
dom(β) and range ran(β). We say that β is a binding for a pattern p if the domain of β is the scope
of p; i.e., dom(β) = scope(p). A binding β is valid for a term t if there is a permutation π ∈ Π(t)
such that β−1 ⊆ π and for all [i1, . . . , in] ∈ refs(t), if [i1, . . . , ik] ∈ ran(β) and [i1, . . . , ik+1] < ran(β),
then π ([i1, . . . , in]) = β−1[i1, . . . , ik] ⊕ [ik+1, . . . , in], where ⊕ stands for sequence concatenation.
We define bind(β , t) to return an arbitrary but deterministically chosen permutation π ∈ Π(t) for
which β is valid, if one exists, or ⊥ otherwise. We write ℬ(p, t) to denote the set {β | dom(β) =
scope(p) ∧ bind(β, t) , ⊥} of all valid bindings for p and t , and we write t β to denote tbind(β,t).

Semantics of Conditions and Actions. Rule conditions denote functions from terms to booleans,
and actions are functions from terms to terms. A condition maps a term to ‘true’ if the term matches
the condition’s pattern and satisfies its constraint. The pattern (Term o p1 . . .pk) matches terms t
with the operator o and with k children that match the subpatterns p1 . . .pk . If a Term pattern ends
with etc, then t can have an arbitrary number of unmatched children, in addition to the k matched
children. Other patterns match literals, variables, both, or all terms. Constraints capture conditions
that are not expressible through pattern matching, such as two subterms being syntactically equal.
Actions apply a set of parallel functional edits to disjoint subterms of the input term t . Actions can
create new terms (via Make), and both conditions and actions can evaluate expression terms with
literal arguments (via Apply).

Well-formed Rule Programs. The meaning of rule conditions and actions is defined only for
well-formed programs (Definition 3.6), which contain no invalid references. A reference expression
(Ref i1 . . . in) specifies an index [i1, . . . , in] into the matched term’s syntax tree (Definition 3.2).
The empty index [] identifies the term itself; [i] identifies the term’s ith child; [i, j] identifies the

University of Washington Technical Report UW-CSE-2017-10-02, October 2017

Synthesizing Optimal Domain Models for Educational Applications 0:11

ith’s child jth child and so on. If a term matches the pattern of a well-formed program, then every
reference in that program is guaranteed to specify a valid index into the term’s abstract syntax tree.
Additionally, Apply and Cons expressions always reference subterms of the right kind; the program’s
actions always edit disjoint subtrees of the term’s AST; and (in)equality predicates only compare
subterms matched by terminal patterns. Well-formed programs are therefore free of runtime errors
caused by invalid references to subterms. RuleSy consumes and creates only well-formed programs.

Definition 3.6 (Well-Formed Programs). Let R be a rule with the condition (Condition (Pattern

p) (Constraint b)) and action (Action a1 . . . an). We say that R is well-formed if the following
constraints hold:
• Each (Ref i1 . . . in) expression in R specifies a tree index that is in the scope of p: [i1, . . . , in] ∈
scope(p).
• For all references ei in an (Apply o e1 . . . en) expression, scope(p, index(ei)) is a (ConstTerm)

pattern.
• If e2 is a reference in a (Cons e1 e2) expression, then scope(p, index(e2)) is a (Term . . .) pattern.
• Let rk denote the first argument to a command ak in R, which is always a reference. For all
distinct ai ,aj in R, index(ri) is not a prefix of index(r j) and vice versa.
• For all references e in an Eq? or Neq? predicate, scope(p, index(e)) is not a Term pattern.

4 RULE MINING, SYNTHESIS, AND OPTIMIZATION
The RuleSy framework computes an optimal set of condition-action rules for a given educational
objective, example problems, and axioms for solving those problems. Section 2 illustrates the three
stages of this computation: (1) specification mining, (2) rule synthesis, and (3) rule set optimization.
This section presents the algorithms underlying each stage and states their guarantees.1

4.1 Specification Mining
As illustrated in Section 2.2, specification mining takes as input a set of examples and axioms, and
produces a set of specifications for tactic rules. The core technical contribution behind this stage is
our definition of tactic specifications and the algorithm for mining them. We introduce the problem
of specifying tactics next; show how our notion of execution plans addresses it; and present the
FindSpecs algorithm for computing such plans from a given set of examples and axioms.

Specifying Tactics. To enable synthesis of useful rules, a tactic specification should satisfy two re-
quirements: (1) it should describe a partial function from terms to terms, and (2) this function should
capture a general problem-solving strategy that helps solve some problems in fewer steps than ax-
ioms alone. The first requirement arises from the semantics of the RuleSy DSL: since rule programs
denote partial functions from terms to terms, synthesis would necessarily fail on specifications
that capture non-functional relations.2 The second requirement ensures that no individual axiom
denotes the specified function, and that the function is useful for solving problems in the target
domain. Naïve specification approaches can easily satisfy one of these requirements but not both.

To see why, suppose that we specify the semantics of tactics using axiom sequences such as I ◦B,
where I implements factoring (Figure 7a) and B implements constant folding (Figure 1a). Intuitively,
1Proofs of these statements are available in Appendix A.
2In this paper, we are interested in synthesizing a rule program R that satisfies a given specification S on all terms, i.e.,
∀t .JRKt = JSKt . In principle, one could instead synthesize a rule program R that satisfies S when fired on all terms, i.e.,
∀t .fire(R, t) = JSKt , which would enable use of non-functional specifications S . But in order to verify that a candidate
program R is correct according to the latter formulation, the synthesizer would have to reason about the semantics of fire,
which, in turn, requires reasoning about the semantics of R on all permutations and subterms of an arbitrary term t—an
intractable task even for state-of-the-art SMT solvers.

University of Washington Technical Report UW-CSE-2017-10-02, October 2017

0:12 Eric Butler, Emina Torlak, and Zoran Popović

we would like this sequence to capture the meaning of the tactic IB (Figure 7b) for combining like
terms, which applies both factoring and constant folding. Yet no interpretation of the sequence
I ◦ B captures the meaning of IB while satisfying our requirements. If we interpret I ◦ B using the
fire semantics as λt .fire(B,fire(I, t)), the resulting specification is non-functional, violating the first
requirement. For example, I ◦ B can fire on the term (+ (∗ 2x) (∗ 3x) (∗ 4y) (∗ 5y)) in two different
ways, thus mapping the input term to both (+ (∗ 5x) (∗ 4y) (∗ 5y)) and (+ (∗ 9y) (∗ 2x) (∗ 3x)). But
if we interpret this sequence as the composition of the partial functions denoted by its axioms—i.e.,
as λt .JBK(JIKt)—the resulting specification is trivially empty, violating the second requirement.
In particular, no term produced by I is directly consumable by B. As a result, axiom sequences
alone are insufficient to capture the behavior of useful tactics we would like to synthesize, such
as combining like terms. The same is true for other naïve forms of specification—e.g., input-output
terms extracted from solutions to example problems.

; Factoring:

; (+ (∗ e0 e) (∗ e1 e) . . .) → (+ (∗ (+ e0 e1) e) . . .)
(define I

(Rule
(Condition

(Pattern
(Term + (* _ _) (* _ _) etc))

(Constraint
(Eq? (Ref 1 2) (Ref 2 2))))

(Action
(Remove (Ref 1))

(Replace
(Ref 2 1)

(Make + (Ref 1 1) (Ref 2 1))))))

(a) Axiom for term factoring.

; Combining like terms:

; (+ (∗ c0 e) (∗ c1 e) . . .) → (+ (∗ c e) . . .), c = c0 + c1
(define IB

(Rule
(Condition

(Pattern
(Term + (* (ConstTerm) _) (* (ConstTerm)

_) etc))
(Constraint

(Eq? (Ref 1 2) (Ref 2 2))))

(Action
(Remove (Ref 1))

(Replace (Ref 2 1)

(Apply + (Ref 1 1) (Ref 2 1))))))

(b) Tactic for combining like terms.

Fig. 7. Combining like terms (IB) is a common algebra tactic that composes factoring (I) and constant folding

(B in Figure 1a). Yet the axiom sequence I ◦ B does not capture its specification. Under the fire semantics,

I ◦ B defines a non-functional relation, but composing the functions denoted by I and B yields the empty

relation: i.e., JIK ◦ JBK = ∅ according to the semantics in Figure 6.

Execution Plans. We address the challenge of specifying tactic rules with execution plans. An
execution plan (Definition 4.2) is a partial function from terms to terms, encoded as a sequence of
execution steps (Definition 4.1). An execution step combines a ruleR with a tree index idx and a bind-
ing β for R’s pattern. The step ⟨R, idx, β⟩ uses the binding β , if it is valid for the subterm ref (t , idx)
of a term t , to evaluate the rule R. An execution step thus specifies where to apply a rule (i.e., to
which subterm of a term) and how (i.e., to which permutation of the subterm), while an execution
plan composes a sequence of such rule applications. For example, the plan [⟨I, [], β0⟩, ⟨B, [1, 1], β0⟩],
where β0 denotes the identity binding, captures the behavior of the combine-like-terms rule on
terms of the form (+ (∗ c0 e) (∗ c1 e) . . .). Moreover, firing a program that implements this plan (e.g.,
IB) captures the common understanding of what it means to combine like terms when solving
algebra problems. In essence, execution plans satisfy our requirements for tactic specifications
by accounting for the semantics of fire (which ensures usefulness and generality) while defining
functional relations (which enables synthesis).

Definition 4.1 (Execution Step). An execution step ⟨R, idx, β⟩ combines a rule program R with
a tree index idx and a binding β for R’s pattern. A step denotes a partial function from terms to

University of Washington Technical Report UW-CSE-2017-10-02, October 2017

Synthesizing Optimal Domain Models for Educational Applications 0:13

terms as follows: J⟨R, idx, β⟩Kt = replace(t , idx, JRKsβ) if s = ref (t , idx), β ∈ ℬ(pattern(R), s), and
JRKsβ , ⊥; otherwise, J⟨R, idx, β⟩Kt = ⊥.

Definition 4.2 (Execution Plan). An execution plan S is a finite sequence of execution steps
[⟨R1, idx1, β1⟩, . . . , ⟨Rn , idxn , βn⟩]. The plan 𝒮 composes its steps as follows: JSKt0 = tn if J⟨Ri , idxi ,
βi ⟩Kti−1 = ti and ti , ⊥ for all 1 ≤ i ≤ n; otherwise, JSKt0 = ⊥. The plan S is general if the step
indices idx1, . . . , idxn have the empty index [] as their greatest common prefix.

Computing Plans. RuleSymines execution plans from a set of example problems and axioms using
the FindSpecs procedure shown in Figure 8. FindSpecsworks in two phases. First, it uses the axioms
to Solve the example problems (line 3), producing a set of solution graphs (Definition 4.3) that encode
all shortest solutions to a given problem. The Solve procedure (Appendix A) computes these graphs
by performing breadth-first search to find all shortest sequences of the axioms that transform a given
term to a reduced form, such as (= x c) for the toy algebra domain. Having solved each problem,
FindSpecs then computes an execution plan for every path between every pair of nodes in the
problem’s solution graph (line 6). The resulting plans capture the behavior of all axiom compositions
(i.e., tactics) that can shorten the solution to at least one example problem (Theorem 4.8).

1: function FindSpecs(T : set of terms, 𝒜: set of well-formed programs)
2: 𝒮 ← {}
3: for all ⟨N , E ⟩ ∈ {Solve(t, 𝒜) | t ∈ T } do
4: for all src, tgt ∈ N do
5: paths← allPaths(src, tgt, ⟨N , E ⟩) ◃ All paths from src to tgt

6: 𝒮 ← 𝒮 ∪ {⟨FindPlan(p), src, tgt ⟩ | p ∈ paths ∧ |p | > 1}
7: return 𝒮 ◃ Execution plans for T and 𝒜

8: function FindPlan(p : n0 →R1 n1 →R2 . . . →Rk nk)
9: S ← an empty array of size k with indices starting at 1
10: for all 1 ≤ i ≤ k do
11: idx, β ← firingParameters(Ri , ni−1, ni)
12: S [i] ← ⟨Ri , idx, β ⟩
13: root ← greatestCommonPrefix({idx | ⟨R, idx, β ⟩ ∈ S })
14: for all 1 ≤ i ≤ k do ◃ Drop the common prefix from all indices

15: ⟨R, idx, β ⟩ ← S [i]
16: S [i] ← ⟨R, dropPrefix(idx, root), β ⟩
17: return S ◃ A general execution plan for replaying p

Fig. 8. FindSpecs takes as input a set of example problems T and axioms 𝒜, and produces a set of plans 𝒮
for composing the axioms into tactics. The Solve procedure takes as input a term t and a set of rules ℛ, and

outputs a solution graph that encodes all shortest solutions to t usingℛ. The plans produced by FindSpecs

thus capture all compositions of the axioms that would lead to shorter solutions to the example problems

if expressed as tactic rules.

Definition 4.3 (Solution Graph). A directed multigraphG = ⟨N ,E⟩ is a solution graph for a term t ,
predicate Reduced, and rulesℛ if t ∈ N ; E is a set of labeled edges ⟨src, tgt⟩R such that src, tgt ∈ N ,
R ∈ ℛ, and tgt ∈ fire(R, src);G is acyclic; t is the only term inG with no incoming edges;G contains
at least one sink term with no outgoing edges; and each sink term satisfies the Reduced predicate.

FindSpecs computes execution plans using the FindPlan procedure. FindPlan takes as input a
path p in a solution graph and produces a general execution plan (Definition 4.2) for replaying that
path (Definition 4.4). Intuitively, each step in the resulting plan specifies the rule application that
created an edge in the path p during solving, and the plan itself specifies the sequence of rule appli-
cations that form p. In particular, given a path p from n0 to nk , FindPlan first creates a plan S that
replays the path exactly: i.e., JSKn0 = nk . The loop at lines 10-12 iterates over every edge ⟨ni−1,ni ⟩Ri
in p and creates an execution step for reproducing it. The function firingParameters (line 11) returns

University of Washington Technical Report UW-CSE-2017-10-02, October 2017

0:14 Eric Butler, Emina Torlak, and Zoran Popović

the parameters used to fire the rule Ri on ni−1 to produce ni . These include the index idx of the
subterm to which Ri was applied, as well as the binding β for permuting that subterm. The resulting
execution step (line 12) thus reproduces the edge ⟨ni−1,ni ⟩Ri : J⟨Ri , idx, β⟩Kni−1 = ni . The second
loop, at lines 13–16, generalizes S to be more widely applicable, while still replaying the path p.

Definition 4.4 (Replaying Paths). Let p = n0 →R1 . . . →Rk nk be a path in a solution graph,
consisting of a sequence of k edges labeled with rules R1, . . . ,Rk . An execution plan S replays the
path p if S is a sequence of k steps [⟨R1, idx1, β1⟩, . . . , ⟨Rk , idxk , βk ⟩], one for each edge in p, and
there is an index idx ∈ refs(n0) such that nk = replace(n0, idx, JSKref (n0, idx)).

Example 4.5. To illustrate, consider applying FindPlan to the path (= (+ x 1 -1) 5)→B (= (+ 0 x) 5)→A
(= x 5) in Figure 2a. The Solve procedure computes this path p by firing
• B with idx = [1], βB = {[] 7→ [], [1] 7→ [2], [2] 7→ [3]},
• A with idx = [1], βA = {[] 7→ [], [1] 7→ [1]]}.

As a result, the loop at lines 10-12 executes twice to produce the plan S = [⟨B, idx, βB⟩, ⟨A, idx, βA⟩].
The plan S replays p exactly: it describes a tactic for applying the axioms B ◦ A to a term whose
first child has two opposite constants as its second and third children. The loop at lines 13-16
generalizes S to produce the plan in Figure 2b. This plan replays p but applies to any term with
opposite constants as its second and third children.

Characterization. The FindSpecs algorithm is sound and complete (Theorem 4.8) in the following
sense. Each generated plan describes a set of term transformations that are allowed by the axioms,
without allowing any other transformations. Moreover, the union of these sets includes every
transformation that can help solve at least one input problem in fewer steps.

Definition 4.6 (Soundness). Let f be a partial function from terms to terms. We say that f is sound
with respect to a set of rules ℛ if for every term t0, f (t0) = ⊥ or there is a finite sequence of terms
t1, . . . , tk such that f (t0) = tk and ∀i ∈ {1, . . . ,k}. ∃R ∈ ℛ. ti ∈ fire(R, ti−1).

Definition 4.7 (Shortcuts). A path p is a shortcut path in a solution graph G if p contains more
than one edge and p is a subpath of a shortest path from G’s source to one of its sinks.

Theorem 4.8. LetT be a set of terms, Reduced a predicate over terms, and𝒜 a set of rules. If every

term in T can be Reduced using 𝒜, then FindSpecs(T ,𝒜) terminates and produces a set 𝒮 of plan

and term triples with the following properties: (1) for every ⟨S, src, tgt⟩ ∈ 𝒮 , JSK is sound with respect

to 𝒜, and (2) for every shortcut path p from src to tgt in a solution graph for t ∈ T , 𝒜, and Reduced,

there is a triple ⟨S, src, tgt⟩ ∈ 𝒮 such that S replays p.

4.2 Rule Synthesis
RuleSy synthesizes tactics by searching for well-formed programs that satisfy specifications
⟨S, src, tgt⟩ produced by FindSpecs. This search is a form of syntax-guided synthesis [1]: it draws
candidate programs from a given syntactic space, and uses an automatic verifier to check if a
chosen candidate satisfies the specification. To enable sound, complete, and efficient synthesis,
RuleSy needs (1) an automatic verifier for its DSL, and (2) a method for pruning the candidate
space without omitting any correct implementations. We address both challenges by reformulating
the classic syntax-guided synthesis query to exploit the structure of well-formed rule programs
and specifications produced by FindSpecs. This reformulated query, together with the algorithm
for solving it, is the key technical contribution of the rule synthesis stage of our system. We
illustrate the challenges of classic syntax-guided synthesis for rule programs next; show how our
best-implements query addresses them; and present the FindRules algorithm for sound, complete,
and efficient solving of this query.

University of Washington Technical Report UW-CSE-2017-10-02, October 2017

Synthesizing Optimal Domain Models for Educational Applications 0:15

Classic Synthesis for Rule Programs. In our setting, the classic syntax-guided synthesis query
takes the form ∃R.∀t .JRKt = JSKt , where R is a well-formed program in the RuleSy DSL and S is an
execution plan. Existing tools [1, 34, 38] can, in principle, solve this query by searching for a correct
R in a space of candidate programs defined by a syntactic sketch (Rule (Condition (Pattern ??p)
(Constraint ??c)) (Action ??a)), where ??p , ??c , and ??a stand for holes to be filled with a pattern,
constraint, and action expressions, respectively. But in practice, these generic search engines fail
to find useful rules because the classic synthesis query is (1) overly strict and (2) insufficiently
tractable in our setting.

The classic synthesis query represents an all-or-nothing approach to tactic generation: if there is
no well-formed program that exhibits all behaviors specified by a plan S , then no rule is generated
even when there are programs that implement desirable subsets of S . For example, consider the
specification ⟨S, src, tgt⟩ where S is [⟨A, [1], β0⟩, ⟨A, [2], β0⟩], src is (+ (+ 0x) (+ 0y)), tgt is (+x y),
A is the additive identity axiom (Figure 1a), and β0 is the identity binding. The plan S specifies a gen-
eral tactic for transforming a term of the form (op (+ 0 e0) (+ 0 e1)) to the term (op e0 e1), where op is
any binary operator in our DSL. Such a tactic cannot be expressed as a well-formed program (Defini-
tion 3.6), since Term patterns cannot abstract over the operator, and using _ for the pattern makes it
impossible to reference the first and second children of the matched term. But many useful special-
izations of this tactic are expressible, including the following generic rule for transforming src to tgt:

(Rule (Condition (Pattern (Term + (Term + (ConstTerm) _) (Term + (ConstTerm) _) etc))
(Constraint (And (Eq? (Ref 1 1) 0) (Eq? (Ref 2 1) 0))))

(Action (Replace (Ref 1) (Ref 1 2)) (Replace (Ref 2) (Ref 2 2))))

Since we aim to generate a large set of useful rules for domain model optimization, an ideal synthesis
query for RuleSy would admit many such specialized yet widely applicable implementations of S .
In addition to being overly strict, the classic synthesis query also leads to intractable search

spaces in our setting. The generic sketch for rule programs shown above defines a space ofO(2 |p | ∗
2 |c | ∗ 2 |a |) candidate programs, where |p |, |c |, and |a | are the number of control bits used for
selecting expressions (of some finite depth) from the pattern, constraint, and action grammars. For
the candidate space to include realistic rules (e.g., Figure 11), these control parameters need to be
sufficiently large, leading to exponential explosion. An ideal synthesis query for RuleSy would
therefore enable the synthesizer to explore an exponentially smaller subset of the generic sketch,
without missing any rules that satisfy the query.

The Best-Implements Synthesis Query. To address the challenges of classic synthesis, we reformu-
late the synthesis task for RuleSy as follows: given ⟨S, src, tgt⟩, find all rules R that fire on src to pro-
duce tgt, that are sound with respect to S , and that capture a locally maximal subset of the behaviors
specified by S . We say that such rules best implement S for ⟨src, tgt⟩ (Definition 4.9), andwe search for
them using the FindRules algorithm shown in Figure 9. Intuitively, FindRules generates rules that
include asmany transformations from JSK as possible (according to each rule’s pattern), while always
including the transformation ⟨src, tgt⟩ that shortens the solution to at least one example problem.
We present FindRules next, highlighting how the best-implements query enables both sound and
complete verification of candidate programs as well as efficient exploration of the candidate space.

Definition 4.9 (Best Implementation). Let S be an execution plan that replays a path from a term
src to a term tgt. A well-formed rule R best implements S for ⟨src, tgt⟩ if tgt ∈ fire(R, src) and
∀t .Jpattern(R)Kt =⇒ JRKt = JSKt .

University of Washington Technical Report UW-CSE-2017-10-02, October 2017

0:16 Eric Butler, Emina Torlak, and Zoran Popović

1: function FindRules(S : plan, src, tgt: terms, k̄ : ints)
2: idx ← replayIndex(S, src, tgt)
3: s, t ← ref (src, idx), JSKref (src, idx)
4: p0 ← termToPattern(s) ◃ Most refined pattern that matches s
5: ℛ←

⋃
p0⊑p FindRule(p, S, s, t, k̄)

6: returnℛ ◃ Rules that best implement S for ⟨src, tgt ⟩

7: function FindRule(p : pattern, S : plan, s,t : terms, k̄ : ints) ◃JpKs∧t=JSKs
8: ??c ← WellFormedConstraintHole(p, k̄)
9: C ← (Condition (Pattern p) (Constraint ??c)) ◃Condition sketch

10: ??a ← WellFormedCommandHoles(p, k̄)
11: A← (Action ??a) ◃ Action sketch with a sequence ??a of holes

12: T← {t | JpKt } ◃ Symbolic representation of all terms that satisfy p
13: c ← CEGIS(JCKs ∧ (∀τ ∈ T.JCKτ ⇐⇒ JSKτ , ⊥))
14: a ← CEGIS(JAKs = t ∧ (∀τ ∈ T.JSKτ , ⊥ =⇒ JAKτ = JSKτ))
15: return {(Rule c a) | c , ⊥ ∧ a , ⊥}

Fig. 9. The rule synthesis algorithm FindRules takes as input a bound k̄ on the size of rule programs and an

execution plan S that replays a path from src to tgt. Given these inputs, it synthesizes all rule programs of

size k̄ that best implement S with respect to src and tgt (Definition 4.9).

Sound and Complete Verification. Verifying that a program R best implements a plan S involves
checking that R produces the same output as S on all terms t accepted by R’s pattern. The verifica-
tion task is therefore to decide the validity of the formula ∀t .Jpattern(R)Kt =⇒ JRKt = JSKt . We do
so by observing that this formula has a small model property when R is well-formed (Definition 3.6):
if the formula is valid on a carefully constructed finite set of terms T, then it is valid on all terms.
At a high level, T consists of terms that satisfy R’s pattern in a representative fashion. For example,
T = {x} for the pattern (VarTerm) because all terms that satisfy (VarTerm) are isomorphic to the
variable x up to a renaming.3 Encoding the set T symbolically (rather than explicitly) enables
FindRules to discharge its verification task efficiently with an off-the-shelf SMT solver [26].

Efficient Search. To accelerate the search for best implementations of a specification ⟨S, src, tgt⟩,
we observe that all such implementations must fire on src to produce tgt, which has two key conse-
quences. First, because S replays a path from src to tgt (by Theorem 4.8), src contains a subterm s at
an index idx such that t = JSKs and tgt = replace(src, idx, t) (lines 2-3). Any rule R that outputs t on
s will therefore fire on src to produce tgt, so it sufficient to look for rules R that transform s to t , with-
out having to reason about the semantics of fire. Second, if a rule accepts s , its patternmust be refined
(Definition 4.10) by themost specific patternp0 (line 4) that accepts s . To constructp0, we replace each
literal in s with (ConstTerm), variable with (VarTerm), and operator o with the tokens Term o. Since
p0 refines finitely many patterns p, we can enumerate all of them (line 5). Once p is fixed through
enumeration, FindRule can then efficiently search for a best implementation R with that pattern,
by using an off-the-shelf synthesizer [38] to perform two independent searches for R’s condition
(line 13) and action (line 14). These two searches explore an exponentially smaller search space than
a direct search for R within the generic sketch (Rule (Condition (Pattern p) (Constraint ??c))
(Action ??a)), without missing any correct rules (Theorem 4.11). In particular, given a pattern p,
FindRule explores a space of size O(2 |c | + 2 |a |), while the generic sketch contains O(2 |c | ∗ 2 |a |)
candidates. As a result, FindRules itself is asymptotically more efficient than classic syntax-guided
synthesis, searching a space of O(2 |p | ∗ (2 |c | + 2 |a |)) rather than O(2 |p | ∗ 2 |c | ∗ 2 |a |) candidates.

Definition 4.10 (Pattern Refinement). A condition pattern p1 refines a pattern p2 if p1 ⊑ p2,
where ⊑ is defined as follows: p ⊑ p; p ⊑ _; (ConstTerm) ⊑ (BaseTerm); (VarTerm) ⊑ (BaseTerm);

3See Appendix A for the construction of the set T for other patterns.

University of Washington Technical Report UW-CSE-2017-10-02, October 2017

Synthesizing Optimal Domain Models for Educational Applications 0:17

1: function Optimize(T : set of terms, 𝒜,𝒯 : set of rules, f : objective)
2: 𝒢𝒜∪𝒯 ← {}
3: for t ∈ T such that ¬Reduced(t) do
4: ⟨N , E𝒜 ⟩ ← Solve(t, 𝒜) ◃ Solve with axioms

5: E𝒯 ←
⋃
R∈𝒯

⋃
s,t∈N { ⟨s, t ⟩ | t ∈ fire(R, s)} ◃ Tactic edges

6: 𝒢𝒜∪𝒯 ← 𝒢𝒜∪𝒯 ∪ {⟨N , E𝒜 ∪ E𝒯 ⟩ }

7: f∅ ← λℛ.𝒢 . if ⟨∅, ∅⟩ ∈ 𝒢 then return∞ else return f (ℛ, 𝒢)
8: return min

ℛ⊆𝒜∪𝒯
f∅(ℛ, {Restrict(G, ℛ) |G ∈ 𝒢𝒜∪𝒯 })

9: function Restrict(⟨N , E ⟩: solution graph, ℛ: set of rules)
10: t ← source of the graph ⟨N , E ⟩
11: Eℛ ← {⟨src, tgt ⟩R ∈ E | R ∈ ℛ} ◃ Edges with labels in ℛ
12: paths←

⋃
t̂∈N∧Reduced(t̂) allPaths(t, t̂, ⟨N , Eℛ ⟩)

13: E ←
⋃
p∈paths pathEdges(p)

14: N ← {n | ∃e ∈ E . source(e) = n ∨ target(e) = n }
15: return ⟨N , E ⟩ ◃ Solution graph for t and ℛ or ⟨∅, ∅⟩

Fig. 10. Outline of the RuleSy optimization algorithm. The algorithm takes as input a set of terms T , axioms

𝒜 for reducing T , macros 𝒯 synthesized from 𝒜 and T using FindRules and FindSpecs, and an objective

function f . The output is a set of rules ℛ ⊆ 𝒜 ∪ 𝒯 that minimizes f .

(Term o p1 . . .pk) ⊑ (Term o q1 . . .qk) if pi ⊑ qi for all i ∈ [1..k]; and (Term o p1 . . .pn) ⊑ (Term o

q1 . . .qk etc) if n ≥ k and pi ⊑ qi for all i ∈ [1..k].

Characterization. The FindRules algorithm is a sound and complete procedure for synthesizing
rules of size k̄ that best implement a specification ⟨S, src, tgt⟩ (Theorem 4.11). Each rule returned
by FindRules best implements S for ⟨src, tgt⟩, and the result set includes a sound rule R of size k̄
if one exists. Composing these properties with those of FindSpecs, we find that all rules produced
by RuleSy are sound with respect to the input axioms, and each shortens the solution to at least
one input problem (Theorem 4.12).

Theorem 4.11. Let S be an execution plan that replays a shortcut path from src to tgt, and k̄ a

bound on the size of rule programs. FindRules(S, src, tgt, k̄) returns a set of rulesℛ with the following

properties: (1) every R ∈ ℛ best implements S for ⟨src, tgt⟩; (2) ℛ includes a sound rule R of size k̄
if one exists; and (3) for every pattern p that refines or is refined by R’s pattern,ℛ includes a sound

rule with pattern p and size k̄ if one exists.

Theorem 4.12. Let T be a set of terms, 𝒜 a set of rules that can Solve each term in T , and k̄
a bound on the size of rule programs. Let 𝒯 =

⋃
⟨S,src, tgt ⟩∈𝒮 FindRules(S, src, tgt, k̄) where 𝒮 =

FindSpecs(T ,𝒜). For every rule R ∈ 𝒯 , JRK is sound with respect to 𝒜, and the longest path in

Solve(t ,𝒜 ∪ {R}) is shorter than the longest path in Solve(t ,𝒜) for some term t ∈ T .

4.3 Rule Set Optimization
After synthesizing tactic rules 𝒯 for the examplesT and axioms𝒜, RuleSy applies discrete optimiza-
tion to find a subset of𝒜∪𝒯 that minimizes the objective function f . We formulate this optimization
problem in a way that guarantees termination. In particular, our Optimize algorithm (Figure 10)
returns a set of rules ℛ ⊆ 𝒜 ∪ 𝒯 that can solve each example in T and that minimize f over all
shortest solution graphs for T and 𝒜 ∪ 𝒯 (Theorem 4.13). Restricting the optimization to shortest
solutions enables us to decide whether an arbitrary rule setℛ ⊆ 𝒜∪ 𝒯 can solve an example t ∈ T
without having to invoke Solve(t ,ℛ). The ability to perform this check without invoking Solve
is crucial, since Solve(t ,ℛ) may not terminate for an arbitrary term t and rule set ℛ in our DSL.4

4To see why, note that breadth-first search would run forever trying to reduce the term (= x (+ 1 2)) with just the rule
e → (∗ 1 e).

University of Washington Technical Report UW-CSE-2017-10-02, October 2017

0:18 Eric Butler, Emina Torlak, and Zoran Popović

The Optimize procedure works in three steps. First, for each example term t ∈ T , lines 4-5
construct a solution graph ⟨N ,E𝒜 ∪ E𝒯 ⟩ that contains shortest solutions for t and all subsets of
𝒜 ∪ 𝒯 . Next, line 7 creates a function f∅ that takes as input a set of rules ℛ and a set of graphs
𝒢, and produces ∞ if 𝒢 contains the empty graph (indicating that ℛ cannot solve some term in
T) and f (ℛ,𝒢) otherwise. Finally, line 8 searches for ℛ ⊆ 𝒜 ∪ 𝒯 that minimizes f over 𝒢𝒜∪𝒯 .
This search relies on the procedure Restrict(G,ℛ) to extract from G a solution graph for t ∈ T
and ℛ if one is included, or the empty graph otherwise. For linear objectives f , the search can be
delegated to an optimizing SMT solver [26]. For other objectives, we use a greedy algorithm to find
a locally minimal solution (thus weakening the optimality guarantee in Theorem 4.13).

Theorem 4.13. Let T , 𝒜, and 𝒯 be sets of terms and rules as defined in Theorem 4.12, and f a

total function from sets of rules and solution graphs to positive real numbers. Optimize(T ,𝒜, 𝒯 , f)
returns a set of rules ℛ ⊆ 𝒜 ∪ 𝒯 that can Solve each term in T , and for all such ℛ′ ⊆ 𝒜 ∪ 𝒯 ,

f (ℛ, {Solve(t ,ℛ) | t ∈ T }) ≤ f (ℛ′, {Solve(t ,ℛ′) | t ∈ T }).

5 EVALUATION
To evaluate RuleSy’s effectiveness at synthesizing domain models, we answer the following four
research questions:
RQ 1. Can RuleSy’s synthesis algorithm recover standard tactics from a textbook and discover

new ones?
RQ 2. Can RuleSy’s optimization algorithm recover textbook domain models and discover variants

of those models that optimize different objectives?
RQ 3. Does RuleSy significantly outperform RuleSynth, a prior tool by Butler et al. [7]?
RQ 4. Can RuleSy support different educational domains?
The first two questions assess the quality of RuleSy’s output by comparing the synthesized tactics
and domain models to a gold standard—a textbook [8] written by domain experts. The third question
evaluates the performance ofRuleSy’s algorithms by comparison to an existing tool for synthesizing
tactics and domain models. The fourth question assesses the generality of our approach.
Our evaluation takes the form of two case studies. We address the first three questions by

applying RuleSy to the domain of K-12 algebra. The algebra case study answers all questions
positively and shows that RuleSy is an order-of-magnitude more efficient than RuleSynth [7],
which is specialized to the domain of K-12 algebra. We address the fourth question by applying
RuleSy to the domain of semantic proofs for propositional logic. This case study demonstrates that
RuleSy extends to other domains.

5.1 Case Study with Algebra (RQ 1–3)
We assessed the quality of RuleSy’s output and the performance of its algorithms by conducting
three sets of experiments in the domain of K-12 algebra, designed to answer RQ 1-3. Each experiment
was executed on an Intel 2nd generation i7 processorwith 8 virtual threads. The systemwas limited to
a synthesis timeout of 20 minutes per mined specification. The details and results of our experiments
are presented in the remainder of this section.

Table 1. The problems used for the algebra case study.

ID Source # Problems
PR RuleSynth [7] 55
PT Chapter 2, Sections 1-4 of Charles et al. [8] 92

University of Washington Technical Report UW-CSE-2017-10-02, October 2017

Synthesizing Optimal Domain Models for Educational Applications 0:19

Table 2. The axioms used for the algebra case study.

ID Name Example
A Additive Identity x + 0→ x
B Adding Constants 2 + 3→ 5
C Multiplicative Identity 1x → x
D Multiplying by Zero 0(x + 2) → 0
E Multiplying Constants 2 ∗ 3→ 6
F Divisive Identity x

1 → x
G Canceling Fractions 2x

2y →
x
y

H Multiplying Fractions 3
(2x

4
)
→
(2∗3)x

4
I Factoring 3x + 4x → (3 + 4)x
J Distribution (3 + 4)x → 3x + 4x
K Expanding Terms x → 1x
L Expanding Negatives −x → −1x
M Adding to Both Sides x + −1 = 2→ x + −1 + 1 = 2 + 1
N Dividing Both Sides 3x = 2→ 3x

3 =
2
3

O Multiplying Both Sides x
3 = 2→ 3

(x
3
)
= 2 ∗ 3

Quality of Synthesized Rules (RQ 1). To evaluate the quality of the rules synthesized by RuleSy,
we apply the system to the examples (PT in Table 1) and axioms (Table 2) from a standard algebra
textbook [8], and compare its output (607 tactics) to the tactics from the same textbook. Since the
book demonstrates rules on examples rather than representing them explicitly, determining which
rules are shown involves some amount of interpretation. For example, the book demonstrates the
transformation of the term 5x + 2− 2x = 2x + 14− 2x to the term 3x + 2 = 14 under the description
“Simplify.” We interpret this as demonstrating two independent tactics, one for each side of the
equation, rather than one tactic with unrelated subparts. The second column of Table 3 lists all the
tactics presented in the book, and we find that RuleSy recovers each of them or a close variation.
In addition to recovering textbook tactics, RuleSy also finds interesting variations on rules

commonly taught in algebra class. Figure 11 shows an example of such a rule, which isolates a
variable from a negated fraction and an addend. This rule composes 9 axioms, demonstrating
RuleSy’s ability to discover advanced new tactics.

Quality of Synthesized Domain Models (RQ 2). We next evaluate RuleSy’s ability to recover
textbook domain models along with variations that optimize different objectives. An important
part of creating domain models for educational tools (and curricula in general) is choosing the
progression—the sequence in which different concepts (i.e., rules) should be learned. We use RuleSy
to find a progression of optimal domain models for the problems (PT in Table 1) and axioms (Table 2)
in Charles et al. [8], and we compare this progression to the one in the book.

We create a progression by producing a sequence of domain models for Sections 1–4 of Chapter 2
in Charles et al. [8]. Every successive model is constrained to be a superset of the previous model(s):
students keep what they learned and use it in subsequent sections. To generate a domain model Dn
for section n, we apply RuleSy’s optimizer to the exercise problems from section n; the objective
function in Figure 1d with α ∈ {.05, .125, .25}; and all available rules (axioms and tactics), coupled
with the constraint that D1 ∪ . . . ∪ Dn−1 ⊆ Dn .

Table 3 shows the resulting progressions of optimal domain models for Charles et al. [8], along
with the rules that are introduced in the corresponding sections. For each rule presented in a section,
the corresponding optimal model for α = .05 contains either the rule itself or a close variation.
Increasing α leads to new domain models that emphasize rule set complexity over solution efficiency.

University of Washington Technical Report UW-CSE-2017-10-02, October 2017

0:20 Eric Butler, Emina Torlak, and Zoran Popović

; Isolate a variable from a negated

; fraction and an addend:

; (= (+ (− (/ (∗ x . . .)b)) c) e) → (= (∗ x . . .) (∗b (− c e)))
(define MBALNGOHG

(Rule
(Condition

(Pattern
(Term =

(Term +

(Term -

(Term / (Term * (VarTerm) etc)
(BaseTerm)))

(ConstTerm))
_))

(Constraint true))
(Action

(Replace (Ref 1) (Ref 1 1 1 1))

(Replace (Ref 2)

(Make * (Ref 1 1 1 2)

(Make - (Ref 1 2) (Ref 2)))))))

Fig. 11. A custom algebra tactic discovered by RuleSy.

; Modus ponens: if I � A→ B and I � A,

; then I � B.
(define xpq

(Rule
(Condition

(Pattern
(Term known

(Term |= (Term → _ _))
(Term |= _) etc))

(Constraint
(Eq? (Ref 1 1 1) (Ref 2 1))))

(Action
(Replace

(Ref)
(Cons (Make |= (Ref 1 1 2))

(Ref))))))

Fig. 12. A proof tactic synthesized by RuleSy.

This result demonstrates that RuleSy can recover textbook domain models, as well as find new
models that optimize different objectives.

Table 3. A textbook [8] progression, along with optimal domain models found by RuleSy for the correspond-

ing exercise problems, using for 3 different settings of α (Figure 1d). Row i shows the rules that the ith model

adds to the preceding models.

Section Textbook Rules ODM α = 0.05 ODM α = 0.125 ODM α = 0.25
2-1 B, M, N, G, O, BA, HG M, A, K, L, LNG, NG, NG, OHG, MBA NG, OHG, MBA

OHG, IBD, MBA
2-2 L, E LE LNG, LE E, L
2-3 J, IB, KIB, JB E, J, KIB, IB, BMBA E, K, L, J, B, IB I, K, J, B
2-4 LEIBDA, LEIB C, BD, LEIB, MLEI M, C, BD, IBD, LEIB, MLEI M, C, D, LEIB

Comparison to Prior Work (RQ 3). We compare the performance of RuleSy to the prior system
RuleSynth by applying both tools to the example problems PR in Table 1 and the axioms in
Table 2. We use the same problems as the original evaluation of RuleSynth because its algorithms
encounter performance problems on the (larger) textbook problems PT . We instead compare to
its original evaluated output. Given these inputs, RuleSy synthesizes 144 tactics, which include the
13 rules synthesized by RuleSynth.5 Figure 13 graphs the number of rules per minute produced
by each system, which accounts for the time to mine specifications and synthesize rules for those
specifications. These results show that our system both learns more rules and does so at a faster rate.

RuleSy outperforms RuleSynth thanks to the soundness and completeness of its specification
mining and synthesis algorithms. RuleSynth employs a heuristic four-step procedure for synthe-
sizing tactics: (1) use the axioms to solve the example problems; (2) extract pairs of input-output
terms for all axiom sequences that appear in the solutions; (3) heuristically group those pairs into
sets that are likely to be specifying the same tactics; and (4) synthesize a tactic for each resulting

5In particular, RuleSy synthesizes 13 programs that are semantically equivalent to those found by RuleSynth.

University of Washington Technical Report UW-CSE-2017-10-02, October 2017

Synthesizing Optimal Domain Models for Educational Applications 0:21

set. This process is neither sound nor complete, so RuleSynth can produce incorrect tactics and
fail to identify tactic specifications found by RuleSy.

0

20

40

60

80

100

120

140

160

0 10 20 30 40 50 60 70 80 90

C
u

m
m

u
la

ti
ve

 R
u

le
s

Le
ar

n
e

d

Time (minutes)

RuleSy

RuleSynth [8]

Fig. 13. The number of rules synthesized by

RuleSy (blue) and RuleSynth (orange) over time

on the same inputs. RuleSy learns 10×more rules

at a quicker rate.

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120 140 160

O
p

ti
m

ia
ti

o
n

 T
im

e
 (

se
co

n
d

s)

Total Number of Rules (including axioms)

Fig. 14. Optimizer performance on design spaces

derived from PR of various sizes, using the objec-

tive in Figure 1d with α = .125.

To show that RuleSy can efficiently explore spaces of rules to find optimal domain models, we
compare its runtime performance to that of RuleSynth. Since the two systems use different input
languages, we manually transcribed the 13 tactics generated by RuleSynth into our DSL. Given
these tactics, the axioms in Table 2, and the examples PR , RuleSynth finds an optimal rule set in
20 seconds (for the objective tradeoff parameter α = .4), whereas RuleSy takes 14 seconds. As the
optimization is superlinear in the number of rules, we can expect this performance difference to be
magnified on larger rule sets. Figure 14 shows that RuleSy’s optimization algorithm finds domain
models quickly, even on much larger design spaces.

5.2 Case Study with Propositional Logic (RQ 4)
To evaluate the extensibility and generality ofRuleSy, we applied it to the domain of semantic proofs
for elementary propositional logic theorems. Many students have trouble learning how to construct
proofs [13], so custom educational tools could help by teaching a variety of proof strategies.

Table 4. The axioms [6] used for the logic case study.

ID Name Description
p Contradiction If I � A and I 2 A then I � ⊥
q Branch elimination If I � ⊥ | A then I � A
r And 1 If I � A ∧ _ then I � A
s And 2 If I 2 A ∧ B then I 2 A | I 2 B
t Or 1 If I � A ∨ B then I � A | I � B
u Or 2 If I 2 A ∨ _ then I 2 A
v Not 1 If I � ¬A then I 2 A
w Not 2 If I 2 ¬A then I � A
x Implication 1 If I � A→ B , then I 2 A | I � B
y Implication 2 If I 2 A→ B , then I � A
z Implication 3 If I 2 A→ B , then I 2 B

To conduct this case study, we instantiated RuleSy with a DSL for expressing semantic proofs.
The DSL represents problem states as proof trees. Such a tree consists of a set of branches, each of
which contains a set of facts that have been proven so far. The DSL encodes this proof structure with

University of Washington Technical Report UW-CSE-2017-10-02, October 2017

0:22 Eric Butler, Emina Torlak, and Zoran Popović

commutative operators branch and known. The problem-solving task in this domain is to establish the
validity of a propositional formula, such as (p∧q) → (p → q), by assuming a falsifying interpretation
and applying proof rules to arrive at a contradiction in every branch. Tactic rules apply multiple
proof steps (i.e., axioms) at once. One of the paper’s authors took two days to implement this DSL.

We applied the propositional instantiation of RuleSy to the axioms (Table 4) and proof exercises
(3 in total) from the textbook by Bradley and Manna [6]. The system synthesized a total of 85
rules in 72 minutes. The resulting design space includes interesting general proof rules for each
of the exercises. For example, given the problem (p ∧ (p → q)) → q, RuleSy automatically mines
and synthesizes the modus ponens tactic shown in Figure 12. These results show that RuleSy’s
applicability and effectiveness extend beyond the domain of K-12 algebra.

6 RELATEDWORK
Automated rule learning. Automated rule learning is a broad and well-studied problem in Artifi-

cial Intelligence and Machine Learning. RuleSy is most closely related to rule learning approaches
in discrete planning domains, such as cognitive architectures [18]. In particular, RuleSy learns
macro rules from basic axioms, which is similar to chunking in SOAR [17], knowledge compilation
in ACT [4], and macro-learning from AI planning [16]. But unlike these systems, RuleSy relies on
program synthesis over a DSL as its primary rule learning mechanism. This design choice enables
our framework to efficiently learn rules for transforming problems represented as trees, and to
express domain-specific objective criteria over rules and solutions.

Inductive logic programming in education. Within educational technology, researchers have inves-
tigated automating various aspects of development, including learning rules and domain models for
intelligent tutors [15]. Previous efforts have focused on using inductive logic programming (ILP) to
learn a set of rules from a small set of expert-provided solution traces [14, 21, 22, 25, 32]. These efforts
assume that the provided solution traces fully specify the desired domain model. RuleSy, in con-
trast, uses a small set of axioms and example problems to synthesize a large and diverse set of sound
tactic rules. These rules, together with the basic axioms, define a design space of domain models,
which can be automatically searched for a rule set that optimizes a desired educational objective.

Program synthesis in education. Prior educational applications of program synthesis and auto-
mated search include problem and solution generation [2, 12], hint and feedback generation [19,
33, 37], and checking of student proofs [20]. RuleSy solves a different problem—that of generating
condition-action rules and domainmodels. General approaches to programming-by-example [23, 30]
have investigated the problem of learning useful programs from a small number of training ex-
amples. One approach [30] produces a set of programs for the same input-output examples and
chooses the best program based on ranking criteria; another [23] takes as input a set of examples
that demonstrate different functions, and employs a prior to learn a program for each set. RuleSy,
in contrast, relies on axioms to define program correctness, and it uses examples to bias the search
toward useful programs (i.e., tactic rules that shorten solutions).

Term rewrite systems. RuleSy helps automate the construction of rule-based domain models,
which are closely related to term rewrite systems [10]. Our work can be seen as an approach for
learning compound rewrite rules from axioms, and then selecting a cheapest rewrite system that ter-
minates on a given finite set of terms. RuleSy terms are a special case of recursive data types, which
have been extensively studied in the context of automated reasoning [5, 28, 35]. Our DSL is designed
to support effective automated reasoning by reduction to the quantifier-free theory of bitvectors.

University of Washington Technical Report UW-CSE-2017-10-02, October 2017

Synthesizing Optimal Domain Models for Educational Applications 0:23

7 CONCLUSION
This paper presented RuleSy, a framework for computer-aided development of custom domain
models for educational applications. RuleSy helps create optimal domain models that are expressed
as condition-action rules. Given a set of example problems and axiom rules for solving them,
RuleSy synthesizes a set of tactic rules that combine the axioms into more efficient problem-solving
strategies. The resulting tactics, together with the input axioms, form a design space of domain
models. RuleSy searches this space for a model that both solves the example problems and optimizes
a desired educational objective. Thanks to its new algorithms for specificationmining, rule synthesis,
and domain model optimization, RuleSy efficiently recovers textbook tactics and models for K-12
algebra, discovers new ones, and generalizes to other domains. As the need for tools to support
personalized education grows, RuleSy has the potential to help tool developers rapidly create a
variety of custom domain models that target individual students’ educational goals, skills, and traits.

A APPENDIX
Solving. FindSpecs (Figure 8) uses the Solve procedure (below) to find all shortest sequences

of the axioms ℛ that transform a term t to a reduced term t̂ . Solve finds these sequences by
performing breadth-first search (lines 4–9). Each iteration of the search applies the rules ℛ to the
terms created in the previous iteration. The variable N stores the terms created so far; E stores the
edges between those terms so that ⟨src, tgt⟩R ∈ E if some iteration of the search uses the rule R
to transform src to tgt. If the search terminates, Solve constructs a solution graph (Definition 4.3)
consisting of all shortest paths in ⟨N ,E⟩ from t to a reduced term t̂ (lines 10–13). This graph
represents all shortest solutions to t that can be obtained using the rulesℛ.

1: function Solve(t : term, ℛ: set of well-formed programs)
2: N ← {t } ◃ Set of terms reachable from t via the rules in ℛ
3: E ← {} ◃ Edges from N to N , labeled with rules from ℛ
4: while (∀n ∈ N . ¬Reduced(n)) do
5: for all src ∈ {n ∈ N | ∀e ∈ E . n , source(e)} do
6: for all R ∈ ℛ do ◃ Apply all rules to src

7: for all tgt ∈ fire(R, src) do
8: N ← N ∪ {tgt }
9: E ← E ∪ {⟨src, tgt ⟩R }
10: paths←

⋃
t̂∈N∧Reduced(t̂) allShortestPaths(t, t̂, ⟨N , E ⟩)

11: E ←
⋃
p∈paths pathEdges(p) ◃ Edges comprising the shortest paths

12: N ← {t } ∪ {n | ∃e ∈ E . source(e) = n ∨ target(e) = n }
13: return ⟨N , E ⟩ ◃ Solution graph with all shortest solutions to t

Lemma A.1. If a term t can be transformed to a Reduced form t̂ by applying the rules ℛ, then

Solve (t ,ℛ) terminates and returns a solution graph that represents all shortest solutions to t using ℛ.

Proof. Solve performs breadth-first exploration of the set of all terms reachable from t by
applying the rules ℛ (lines 4–9). This ensures that a reduced term t̂ will either be reached after the
smallest number of rule applications, or the search diverges. If the search terminates, the multigraph
⟨N ,E⟩ contains all shortest sequences of rule applications that reduce t to t̂ at line 10. Lines 11–12
preserve these sequences, while eliminating all cycles from ⟨N ,E⟩ and ensuring that the reduced
terms t̂ are the sole sinks in ⟨N ,E⟩. The graph returned at line 13 therefore satisfies the definition
of a solution graph, completing the proof. �

Lemma A.2. Given a path p in a solution graph, FindPlan produces a general execution plan S that

replays p.

Proof. The proof consists of three parts. First, we show that J⟨Ri , idx, β⟩Kni−1 = ni at line 12.
Because ⟨ni−1,ni ⟩Ri is an edge in a solution graph, it follows from Definition 4.3 and the defi-
nition of fire (Figure 6) that line 11 is able to find an index idx and binding β such that ni =

University of Washington Technical Report UW-CSE-2017-10-02, October 2017

0:24 Eric Butler, Emina Torlak, and Zoran Popović

replace(ni−1, idx, JRiKref (ni−1, idx)
β). As a result, the conditions in Definition 4.1 are satisfied, so

J⟨Ri , idx, β⟩K ni−1 = ni . Next, by induction on i and the definition of execution plans (Definition 4.2),
we conclude that JSKn0 = nk at line 13 and S replays p (Definition 4.4). Finally, observe that root
holds the greatest common prefix of the step indices idx1, . . . , idxk for the steps in S . Since the
loop at lines 13–16 drops root from these indices, the plan S at line 17 is general (by Definition 4.2),
and nk = replace(n0, root, JSKref (n0, root)) so S replays p. �

Theorem 4.8. Let T be a set of terms, Reduced a predicate over terms, and 𝒜 a set of rules. If
every term in T can be Reduced using 𝒜, then FindSpecs(T ,𝒜) terminates and produces a set 𝒮
of plan and term triples with the following properties: (1) for every ⟨S, src, tgt⟩ ∈ 𝒮 , JSK is sound
with respect to 𝒜, and (2) for every shortcut path p from src to tgt in a solution graph for t ∈ T ,
𝒜, and Reduced, there is a triple ⟨S, src, tgt⟩ ∈ 𝒮 such that S replays p.

Proof. Termination follows from Theorem A.1 and the fact that all loops in FindSpecs and Find-
Plan iterate over finite structures. Soundness (1) follows from line 6 of FindSpecs, Theorem A.2,
and Definitions 4.1, 4.2, and 4.6. Completeness (2) follows from lines 3–6, Lemmas A.1–A.2, and
Definitions 4.4 and 4.7. �

Lemma A.3. Let p be a pattern, S be a plan, and s, t be terms such that JpKs and t = JSKs . Also
let (Rule (Condition (Pattern p) (Constraint ??c)) (Action ??a)) be a sketch with well-formed

holes of size k̄ . If this sketch includes a rule that best implements S for ⟨s, t⟩, FindRule(p, S, s, t , k̄)
returns a singleton set containing such a rule; otherwise, it returns ∅.

Proof. The proof consists of two parts. First, we show that the synthesis query for the sketch
RCA = (Rule C A) can be decomposed into two queries for the sketches C and A, where C is
(Condition (Pattern p) (Constraint ??c)) and A is (Action ??a). Then, we show that the CEGIS
engine [38] invoked at lines 13–14 is sound and complete for these two queries. Hence, if RCA

contains a rule that best implements S for ⟨s, t⟩, it will be found (due to completeness); otherwise,
FindRule returns the empty set (due to soundness).

Decomposition. To find a rule in RCA that satisfies Definition 4.9 for S , s , and t , we pose the
following synthesis query:

∃??c , ??a . t ∈ fire(RCA, s) ∧ ∀τ .JpKτ =⇒ JRCAKτ = JSKτ (1)

Using JpKs and t = JSKs , we can simplify Equation 1 to
∃??c , ??a . t = JRCAKs ∧ ∀τ .JpKτ =⇒ JRCAKτ = JSKτ (2)

By semantics of rule programs, JRCAKτ = JSKτ is equivalent to
(if JCKτ then JAKτ else ⊥) = JSKτ (3)

Equation 3 expands into the following formulas:
(JCKτ =⇒ (JAKτ ,⊥ ∧ JAKτ =JSKτ)) ∧ (¬JCKτ =⇒ JSKτ =⊥) (4)
(JCKτ =⇒ (JSKτ ,⊥ ∧ JAKτ =JSKτ)) ∧ (JSKτ ,⊥ =⇒ JCKτ) (5)

(JCKτ =⇒ JAKτ =JSKτ) ∧ (JCKτ ⇐⇒ JSKτ ,⊥) (6)
(JSKτ ,⊥ =⇒ JAKτ =JSKτ) ∧ (JCKτ ⇐⇒ JSKτ ,⊥) (7)

After substituting (7) into (2), rewriting t = JRCAKs into JCKs ∧ t = JAKs, letting T stand for {t | JpKt},
and simplifying, we get

∃??c , ??a .JCKs ∧ t = JAKs ∧

∀τ ∈ T.(JSKτ ,⊥ =⇒ JAKτ =JSKτ) ∧

∀τ ∈ T.(JCKτ ⇐⇒ JSKτ ,⊥)

(8)

University of Washington Technical Report UW-CSE-2017-10-02, October 2017

Synthesizing Optimal Domain Models for Educational Applications 0:25

Since ??c occurs only inC and ??a only inA, we can rewrite Equation 8 into the following separately
solvable conjuncts:

(∃??c . JCKs ∧ ∀τ ∈ T. JCKτ ⇐⇒ JSKτ ,⊥)∧ (9)

(∃??a . t = JAKs ∧ ∀τ ∈ T. JSKτ ,⊥ =⇒ JAKτ =JSKτ) (10)

These are the formulas solved at lines 13–14 of FindRule.

CEGIS. FindRule uses an off-the-shelf CEGIS engine [38] to solve the synthesis queries at lines
13–14. This engine is sound and complete for finite (loop-free) programs and inputs. Since rule
programs are finite by definition, it remains to be shown that the input space T can be finitized
without loss of soundness or completeness. Assuming that RuleSy treats integers as n-bit signed
values, denoted by Zn , we show that T can be replaced with a finite set T0 ⊆ T in Equations 9–10
without affecting their satisfiability.

Case 1. p includes no _ or etc tokens. Letv be the number of (VarTerm) and (BaseTerm) patterns
in p, and V be a set of v fresh uninterpreted constants. Create a term tp by removing the token
Term from all patterns in p, and replacing each remaining pattern in tp with a fresh symbolic name
xidx , where idx is the index of xidx in tp . Construct T0 by letting each xidx in tp range over Zn if
scope(p, idx) = (ConstTerm),V if scope(p, idx) = (VarTerm), and Zn∪V if scope(p, idx) = (BaseTerm).
By construction, for each term t ∈ T, there is a term t ′ ∈ T0 that is isomorphic to t up to a renaming
of variables. Since rule programs can only refer to variables via references (not by name), replacing
T with T0 is sound.
Case 2. p may include _ but not etc. Let c = (o i) be a complex term with an arbitrary operator

o from the domain and i ∈ Zn . Construct T0 as for Case 1, additionally letting xidx in tp range over
Zn ∪V ∪ {c} if scope(p, idx) = _. This reduction is sound because a well-formed rule treats subterms
matched by _ as opaque: the rule’s constraint can compare them for (in)equality, and the action
can use them as atomic components (in Make).

Case 3. p may include both _ and etc. Let k be the number of occurrences of etc in p. Create
a set Q of 2k patterns by either removing each etc from p or replacing it with _. Construct T0 for
each q ∈ Q as for Case 2, and take the union of the resulting sets to be T0 for p. This construction
is sound because well-formed rules cannot reference any subterms matched by etc. As a result,
for each occurrence of etc, T0 only needs to include enough terms to distinguish between etc

matching no subterms and one subterm. �

Theorem 4.11. Let S be an execution plan that replays a shortcut path from src to tgt, and k̄
a bound on the size of rule programs. FindRules(S, src, tgt, k̄) returns a set of rules ℛ with the
following properties: (1) every R ∈ ℛ best implements S for ⟨src, tgt⟩; (2)ℛ includes a sound rule R
of size k̄ if one exists; and (3) for every pattern p that refines or is refined by R’s pattern,ℛ includes
a sound rule with pattern p and size k̄ if one exists.

Proof. Because S replays a path from src to tgt in a solution graph (Definition 4.4), there is
an index idx such that tgt = replace(src, idx, JSKref (src, idx)). Due to acylicity of solution graphs
(Definition 4.3), src , tgt, and hence, idx is uniquely defined at line 2. As a result, all rules that
best implement S for ⟨s, t⟩ at line 3 are the only rules that best implement S for ⟨src, tgt⟩. Line 4
defines p0 to be the most refined pattern that matches s , so by Definition 4.10 and the semantics
of patterns, p0 refines the pattern of every rule applicable to s . Since there are finitely many such
patterns (by Definition 4.10), termination, soundness (1), and completeness (2-3) follow from line
5 and Theorem A.3. �

Theorem 4.12. Let T be a set of terms, 𝒜 a set of rules that can Solve each term in T , and
k̄ a bound on the size of rule programs. Let 𝒯 =

⋃
⟨S,src, tgt ⟩∈𝒮 FindRules(S, src, tgt, k̄) where

University of Washington Technical Report UW-CSE-2017-10-02, October 2017

0:26 Eric Butler, Emina Torlak, and Zoran Popović

𝒮 = FindSpecs(T ,𝒜). For every rule R ∈ 𝒯 , JRK is sound with respect to 𝒜, and the longest path
in Solve(t ,𝒜 ∪ {R}) is shorter than the longest path in Solve(t ,𝒜) for some term t ∈ T .

Proof. The proof follows from Theorems 4.8-4.11, Definition 4.6, Definition 4.9, and semantics
of rule programs. �

Theorem 4.13. Let T , 𝒜, and 𝒯 be sets of terms and rules as defined in Theorem 4.12, and f a
total function from sets of rules and solution graphs to positive real numbers. Optimize(T ,𝒜, 𝒯 , f)
returns a set of rules ℛ ⊆ 𝒜 ∪ 𝒯 that can Solve each term in T , and for all such ℛ′ ⊆ 𝒜 ∪ 𝒯 ,
f (ℛ, {Solve(t ,ℛ) | t ∈ T }) ≤ f (ℛ′, {Solve(t ,ℛ′) | t ∈ T }).

Proof. Let R be the set of all sets ℛ ⊆ 𝒜 ∪ 𝒯 such that Solve(t ,ℛ) terminates for each
t ∈ T . By construction of 𝒯 (Theorem 4.12), we can show that for every ℛ ∈ R, Solve(t ,ℛ)
produces a subgraph of the graph ⟨N ,E𝒜 ∪ E𝒯 ⟩ defined at lines 4–5. Hence, for each non-Reduced
term t ∈ T , 𝒢𝒜∪𝒯 contains a solution graph G consisting of Solve(t ,ℛ) for all ℛ ∈ R. As a
result, Restrict(G,ℛ) returns Solve(t ,ℛ) if ℛ ∈ R and the empty graph otherwise. By line 7,
f∅(ℛ, {Restrict(G,ℛ) |G ∈ 𝒢𝒜∪𝒯 }) is equal to f (ℛ, {Solve(t ,ℛ) | t ∈ T }) for ℛ ∈ R, and it
is infinite otherwise. Consequently, the minimization operation at line 8 selects a cheapest set
ℛ ∈ R. �

REFERENCES
[1] Rajeev Alur, Rastislav Bodík, Eric Dallal, Dana Fisman, Pranav Garg, Garvit Juniwal, Hadas Kress-Gazit, P. Madhusudan,

MiloM. K.Martin, Mukund Raghothaman, Shambwaditya Saha, Sanjit A. Seshia, Rishabh Singh, Armando Solar-Lezama,
Emina Torlak, and Abhishek Udupa. 2015. Syntax-Guided Synthesis. In Dependable Software Systems Engineering.
1–25. https://doi.org/10.3233/978-1-61499-495-4-1

[2] Erik Andersen, Sumit Gulwani, and Zoran Popović. 2013. A Trace-based Framework for Analyzing and Synthesizing
Educational Progressions. In CHI.

[3] John R Anderson, Albert T Corbett, Kenneth R Koedinger, and Ray Pelletier. 1995. Cognitive tutors: Lessons learned.
The journal of the learning sciences 4, 2 (1995), 167–207.

[4] John R Anderson and Christian Lebiere. 1998. The Atomic Components of Thought. (1998).
[5] Clark Barrett, Igor Shikanian, and Cesare Tinelli. 2007. An abstract decision procedure for satisfiability in the theory

of recursive data types. Electronic Notes in Theoretical Computer Science 174, 8 (2007), 23–37.
[6] Aaron R. Bradley and Zohar Manna. 2007. The Calculus of Computation: Decision Procedures with Applications to

Verification. Springer-Verlag New York, Inc., Secaucus, NJ, USA.
[7] Eric Butler, Emina Torlak, and Zoran Popović. 2016. A Framework for Parameterized Design of Rule Systems Applied

to Algebra. In Intelligent Tutoring Systems. Springer.
[8] Randall I. Charles, Basia Hall, Dan Kennedy, Allan E. Bellman, Sadie Chavis Bragg, William G. Handlin, Stuart J.

Murphy, and Grant Wiggins. 2012. Algebra 1: Common Core. Pearson Education, Inc.
[9] Jennifer Demski. 2012. This Time It’s Personal: True Student-Centered Learning Has a Lot of Support from Education

Leaders, but It Can’t Really Happen without All the Right Technology Infrastructure to Drive It. and the Technology
Just May Be Ready to Deliver on Its Promise. THE Journal (Technological Horizons In Education) 39, 1 (2012), 32.

[10] Nachum Dershowitz and Jean-Pierre Jouannaud. 1989. Rewrite systems. Citeseer.
[11] Nachum Dershowitz and Jean-Pierre Jouannaud. 1990. Handbook of Theoretical Computer Science (Vol. B). MIT Press,

Cambridge, MA, USA, Chapter Rewrite Systems, 243–320. http://dl.acm.org/citation.cfm?id=114891.114897
[12] Sumit Gulwani. 2014. Example-based learning in computer-aided stem education. Commun. ACM 57, 8 (2014), 70–80.
[13] Guershon Harel and Larry Sowder. 2007. Toward comprehensive perspectives on the learning and teaching of proof.

Second handbook of research on mathematics teaching and learning 2 (2007), 805–842.
[14] Matthew P Jarvis, Goss Nuzzo-Jones, and Neil T Heffernan. 2004. Applying machine learning techniques to rule

generation in intelligent tutoring systems. In Intelligent Tutoring Systems. Springer, 541–553.
[15] Kenneth R Koedinger, Emma Brunskill, Ryan SJd Baker, Elizabeth A McLaughlin, and John Stamper. 2013. New

potentials for data-driven intelligent tutoring system development and optimization. AI Magazine 34, 3 (2013), 27–41.
[16] Richard E. Korf. 1985. Macro-operators: A weak method for learning. Artificial Intelligence 26, 1 (1985), 35 – 77.

https://doi.org/10.1016/0004-3702(85)90012-8
[17] John E. Laird, Allen Newell, and Paul S. Rosenbloom. 1987. SOAR: An architecture for general intelligence. Artificial

Intelligence 33, 1 (1987), 1 – 64.

University of Washington Technical Report UW-CSE-2017-10-02, October 2017

https://doi.org/10.3233/978-1-61499-495-4-1
http://dl.acm.org/citation.cfm?id=114891.114897
https://doi.org/10.1016/0004-3702(85)90012-8

Synthesizing Optimal Domain Models for Educational Applications 0:27

[18] Pat Langley, John E Laird, and Seth Rogers. 2009. Cognitive architectures: Research issues and challenges. Cognitive
Systems Research 10, 2 (2009), 141–160.

[19] Timotej Lazar and Ivan Bratko. 2014. Data-Driven Program Synthesis for Hint Generation in Programming Tutors. In
Intelligent Tutoring Systems. Springer, 306–311.

[20] Colleen Lee. 2012. DeduceIt: a tool for representing and evaluating student derivations. Stanford Digital Repository:
http://purl.stanford.edu/bg823wn2892. (2012).

[21] Nan Li, William Cohen, Kenneth R Koedinger, and Noboru Matsuda. 2010. A machine learning approach for automatic
student model discovery. In Educational Data Mining 2011.

[22] Nan Li, Abraham J Schreiber, WW Cohen, and KR Koedinger. 2012. Efficient complex skill acquisition through
representation learning. Advances in Cognitive Systems 2 (2012).

[23] Percy Liang, Michael I Jordan, and Dan Klein. 2010. Learning programs: A hierarchical Bayesian approach. In
Proceedings of the 27th International Conference on Machine Learning (ICML-10). 639–646.

[24] Yun-En Liu, Christy Ballweber, Eleanor O’rourke, Eric Butler, Phonraphee Thummaphan, and Zoran Popović. 2015.
Large-Scale Educational Campaigns. ACM Trans. Comput.-Hum. Interact. 22, 2, Article 8 (March 2015), 24 pages.
https://doi.org/10.1145/2699760

[25] Noboru Matsuda, William W Cohen, and Kenneth R Koedinger. 2005. Applying programming by demonstration in an
intelligent authoring tool for cognitive tutors. In Aaai workshop on human comprehensible machine learning (technical

report ws-05-04). 1–8.
[26] Leonardo Moura and Nikolaj Bjørner. 2008. Tools and Algorithms for the Construction and Analysis of Systems: 14th

International Conference, TACAS 2008, Held as Part of the Joint European Conferences on Theory and Practice of Software,

ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings. Springer Berlin Heidelberg, Berlin, Heidelberg,
Chapter Z3: An Efficient SMT Solver, 337–340. https://doi.org/10.1007/978-3-540-78800-3_24

[27] Tom Murray. 1999. Authoring intelligent tutoring systems: An analysis of the state of the art. International Journal of
Artificial Intelligence in Education 10 (1999).

[28] Derek C Oppen. 1978. Reasoning about recursively defined data structures. In Proceedings of the 5th ACM SIGACT-

SIGPLAN symposium on Principles of programming languages. ACM, 151–157.
[29] Eleanor O’Rourke, Erik Andersen, Sumit Gulwani, and Zoran Popović. 2015. A Framework for Automatically Generating

Interactive Instructional Scaffolding. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing

Systems (CHI ’15). ACM, New York, NY, USA, 1545–1554.
[30] Oleksandr Polozov and Sumit Gulwani. 2015. FlashMeta: A framework for inductive program synthesis. In Proceedings

of the 2015 ACM SIGPLAN Inter. Conf. on Object-Oriented Programming, Systems, Languages, and Applications. ACM,
107–126.

[31] Sam Redding. 2013. Getting personal: The promise of personalized learning. Handbook on innovations in learning

(2013), 113–130.
[32] Ute Schmid and Emanuel Kitzelmann. 2011. Inductive rule learning on the knowledge level. Cognitive Systems Research

12, 3 (2011), 237–248.
[33] Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama. 2013. Automated Feedback Generation for Introductory

Programming Assignments. In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and

Implementation. 12.
[34] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and Vijay Saraswat. 2006. Combinatorial Sketching

for Finite Programs. In Proceedings of the 12th Inter. Conf. on Architectural Support for Programming Languages and

Operating Systems. ACM, 12. https://doi.org/10.1145/1168857.1168907
[35] Philippe Suter, Mirco Dotta, and Viktor Kuncak. 2010. Decision procedures for algebraic data types with abstractions.

Acm Sigplan Notices 45, 1 (2010), 199–210.
[36] John Sweller. 1988. Cognitive load during problem solving: Effects on learning. Cognitive science 12, 2 (1988), 257–285.
[37] Nikolai Tillmann, Jonathan de Halleux, Tao Xie, and Judith Bishop. 2014. Constructing coding duels in Pex4Fun and

Code Hunt. In ISSTA. ACM, 445–448.
[38] Emina Torlak and Rastislav Bodik. 2014. A Lightweight Symbolic Virtual Machine for Solver-aided Host Languages. In

Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation. 12.
[39] Kurt VanLehn. 1990. Mind bugs: The origins of procedural misconceptions. MIT press.
[40] Kurt VanLehn. 2011. The relative effectiveness of human tutoring, intelligent tutoring systems, and other tutoring

systems. Educational Psychologist 46, 4 (2011), 197–221.

University of Washington Technical Report UW-CSE-2017-10-02, October 2017

https://doi.org/10.1145/2699760
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/1168857.1168907

	Abstract
	1 Introduction
	2 Overview
	2.1 Examples, Axioms, and Objectives
	2.2 Specification Mining
	2.3 Rule Synthesis
	2.4 Rule Set Optimization

	3 A Domain-Specific Language for Condition-Action Rules
	3.1 Specifying Problems and Rules
	3.2 Interpreting Rules

	4 Rule Mining, Synthesis, and Optimization
	4.1 Specification Mining
	4.2 Rule Synthesis
	4.3 Rule Set Optimization

	5 Evaluation
	5.1 Case Study with Algebra (RQ 1–3)
	5.2 Case Study with Propositional Logic (RQ 4)

	6 Related Work
	7 Conclusion
	A Appendix
	References

