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Abstract
Emerging Multicore SoC SmartNICs, enclosing rich comput-

ing resources (e.g., a multicore processor, onboard DRAM,

accelerators, programmable DMA engines), hold the poten-

tial to offload generic datacenter server tasks. However, it

is unclear how to use a SmartNIC in an efficient way to

maximize the offloading benefits, especially for distributed

applications. Towards this end, we characterize four such

commodity SmartNICs and summarize the offloading per-

formance implications from four angles: traffic control, com-

puting units, onboard DRAM, and host communication.

Based on our characterization, we build iPipe, an actor-

based framework for developing distributed applications that

is able to use a SmartNIC’s computing power efficiently. The

central piece of iPipe is a hybrid scheduler combining FCFS

and DRR-based processor sharing that can tolerate tasks with

variable execution costs and maximize NIC compute utiliza-

tion. Using iPipe, we build a real-time data analytics engine,

a distributed transaction system, and a replicated key-value

store, and evaluate them on commodity SmartNICs. Our eval-

uations show that when processing 10/25Gbps of application

bandwidth, NIC-side offloading can save up to 3.1/2.2 beefy

Intel cores, along with 23.0/28.0 µs latency savings.

1 Introduction
Multicore SoC SmartNICs have emerged for the datacenter,

aiming to mitigate the gap between increasing network band-

width and stagnating CPU computing power [15, 16, 22]. In

the last two years, major network hardware vendors have

released different SmartNIC products, such as Mellanox’s

Bluefield [46], Broadcom’s Stingray [10], Marvell(Cavium)’s

LiquidIO [45], Huawei’s IN5500 [27], and Netronome’s Ag-

ilio [51]. They not only target acceleration of traditional

networking/storage protocol processing (e.g., OVS/RoCE/i-

WARP/TCP offloading, traffic monitoring, firewall, etc.), but

also bring a new computing substrate into the data center to

expand the server computing capacity at a lower cost: Smart-

NICs usually enclose simple microarchitecture computing

cores that are cheap and cost-effective.

Generally, these SmartNICs comprise a multicore, possi-

bly wimpy, processor (i.e., MIPS/ARM ISA), onboard SRAM/-

DRAM, packet processing/domain specific accelerators, and

programmable DMA engines. Different architectural compo-

nents are connected by high-bandwidth coherent memory

buses or high-performance interconnects. Today, most of

these SmartNICs are equipped with one or two 10/25GbE

ports, and 100GbE is on the horizon. These rich computing

resources allows hosts to offload generic computations (with

complex algorithms and data structures) without sacrificing

performance (i.e., latency/throughput) and program gener-

ality. The key question we ask in this paper is how to use
these SmartNICs efficiently to maximize such benefits
for distributed applications?.

There have been some recent research efforts that offload

networking functions onto FPGA-based SmartNICs (e.g.,

ClickNP [41], AzureCloud [23]). They take a conventional

domain-specific acceleration approach that consolidates as

much of the application logic onto FPGA programmable

logic blocks. This approach is applicable to a specific class

of applications that exhibit sufficient parallelism, determin-

istic program logic, and regular data structures that can be

synthesized efficiently on FPGAs. Our focus, on the other

hand, is to target distributed applications with complex data

structures and algorithms that cannot be realized efficiently

on FPGA-based SmartNICs.

Towards this end, we perform a detailed performance

characterization of four commodity SmartNICs (i.e., Liq-

uidIOII CN2350, LiquidIOII CN2360, Bluefield 1M332A, and

Stingray PS225). We categorize the Multicore SoC SmartNIC

into four architectural components – traffic control, comput-

ing units, onboard memory, host communication – and use

microbenchmarks to understand their performance implica-

tions. The experiments identify the resource constraints that

we have to be cognizant of, illustrate the utility of a Smart-

NIC’s hardware acceleration units, and provide guidance on

how to efficiently utilize the SmartNIC resources.

We design and implement the iPipe framework based on

our characterization observations. iPipe introduces an actor

programming model for distributed application development.
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Figure 1: Architectural block diagram for a Multicore SoC
SmartNIC.

Each actor has self-contained private state and communi-

cates with other actors via messages. Our framework pro-

vides a distributed memory object abstraction and enables

actor migration, responding to dynamic workload changes

and ensuring the delivery of line rate traffic. A central piece

of iPipe is the actor scheduler that combines the use of FCFS

and DRR-based processor sharing, in order to tolerate tasks

with variable execution costs and maximize the SmartNIC

computing resource utilization. iPipe allows multiple actors

to coexist safely on the SmartNIC, protecting against actor

state corruption and denial-of-service attacks.

We prototype iPipe and build three applications (i.e., a

real-time data analytics engine, a distributed transaction

processing system, and a replicated key-value store) using

commodity 10GbE/25GbE SmartNICs. We evaluate the sys-

tem using an 8-node testbed and compare the performance

against DPDK-based implementations. Our experimental re-

sults show that we can significantly reduce the host load for

three real-world distributed applications; iPipe saves up to

3.1/2.2 beefy Intel cores used to process 25/10Gbps of appli-

cation bandwidth, along with up to 23.0µs and 28.0µs savings
in request processing latency.

2 CharacterizingMulticore SoC SmartNICs
This section provides the necessary background and presents

our detailed performance characterizations of Multicore SoC

SmartNICs. We explore their computational capabilities and

summarize implications that guide the design of iPipe.

2.1 Multicore SoC SmartNICs

A Multicore SoC SmartNIC is comprised of four major parts

(shown in Figure 1): (1) computing units, which includes

a general purpose ARM/MIPS multicore processor, along

with packet processing (e.g., deep packet inspection, packet

buffer management) and domain specific accelerators (e.g.,

encryption/decryption, hashing, pattern matching, compres-

sion); (2) onboard memory, enclosing fast scratchpad and

slower L2/DRAM; (3) traffic control module that transfers

packets between TX/RX ports and the packet buffer and an

internal traffic manager or NIC switch that provides packets

to NIC cores with low synchronization overheads; (4) host

communication DMA engines.

Table 1 lists the HW/SW specifications of four COTS Mul-

ticore SoC SmartNICs evaluated in this paper. They present

different design tradeoffs with regards to performance, pro-

grammability, and flexibility. The first two LiquidIOII Smart-

NICs enclose an OCTEON [11] processor with a rich set of ac-

celerators, but run in the context of a light-weight firmware.

Programmers have to use native hardware primitives to pro-

cess raw packets, issue DMA commands, and trigger accelera-

tor computations. Bluefield and Stingray cards run a highend

ARM Cortex-A72 [7] processor and hosts a full-fledged oper-

ating system. It offers lower barrier for application develop-

ment, and one can use traditional Linux/DPDK/RDMA stacks

to communicate with local and external traffic. The Bluefield

card even has NVDIMM support for fault tolerance. The link

speed for today’s Multicore SoC SmartNIC is 10/25 GbE and

100GbE ones will be available for both enterprises and data

centers in the next few years. Generally, a SmartNIC is a bit

more expensive than a traditional dumb NIC. For example,

a 10/25GbE SmartNIC costs 100∼200$ and 300∼1000$ [8], re-

spectively, while a data center 10/25GbE NIC costs 100∼200$.

SmartNICs have packet communication paths similar to

that of normal NICs, except that the computing units can

touch and modify the packet contents as they traverse the

NIC. For the transmit path (where a host server sends out

traffic via a SmartNIC), the host processor first creates a

DMA control command (including the instruction header

and packet buffer address) and then writes it into a command

ring. The NIC DMA engine then fetches the command and

data from host memory and writes into the packet buffer

(which is located in NIC memory). The traffic manager gen-

erates a work item (including the address of the packet) and

delivers it to the NIC core. After some processing, the NIC

core sends the packet out to the TX port directly via the

DMA engine. The receiving side (where a host server re-

ceives traffic from the SmartNIC) is similar but in the reverse

order. Some SmartNICs (e.g., Bluefield and Stingray) don’t

integrate a hardware packet buffer management engine and

will use a software driver instead. They also replaces the

traffic manager with a NIC programmable switch for installa-

tion of flow forwarding and steering rules so that host-only

traffic can bypass the NIC processor (e.g, ASAP2
[47]).

2.2 Performance Characterization

We characterize four Multicore SoC SmartNICs (listed in

Table 1) from four perspectives: traffic control, computing

units, onboard memory, host communication.

2.2.1 Experimentsetup. We use Supermicro 1U boxes

as host servers for both the client and server and an Arista
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SmartNICmodel Vendor Processor BW L1 L2 DRAM Deployed SW Nstack To/From host
LiquidIOII CN2350 [45] Marvell cnMIPS 12 core, 1.2GHz 2× 10GbE 32KB 4MB 4GB Firmware Raw packet Native DMA

LiquidIOII CN2360 [45] Marvell cnMIPS 16 core, 1.5GHz 2× 25GbE 32KB 4MB 4GB Firmware Raw packet Native DMA

BlueField 1M332A [46] Mellanox ARMA72 8 core, 0.8GHz 2× 25GbE 32K 1MB 16GB Full OS Linux/DPDK/RDMA RDMA

Stingray PS225 [10] Broadcom ARMA72 8 core, 3.0GHz 2× 25GbE 32K 16MB 8GB Full OS Linux/DPDK/RDMA RDMA

Table 1: Specifications of 4 studied COTS (commercial off-the-shelf) Multicore SoC SmartNICs. BW = bandwidth. Nstack =
networking stack.

DCS-7050S/Cavium XP70 ToR switch for 10/25GbE network.

The client is equipped with a dumb NIC (i.e., Intel XL710

for 10GbE and Intel XXV710-DA2 for 25GbE). We insert the

SmartNIC on one of the PCIe 3.0 ×8 slot at the server side.

The server box has a 12-core E5-2680 v3 Xeon CPU run-

ning at 2.5GHz with hyperthreading enabled, 64GB DDR3

DRAM, and 1TB Seagate HDD. When evaluating Bluefield

and Stingray cards, we use a 2U Supermicro server with two

8-core Intel E5-2620 v4 processors at 2.1GHz, 128GBmemory,

and 7 Gen3 PCIe slots.

We take the DPDK pkt-gen as the workload generator and

augment it with the capability to generate different applica-

tion layer packet formats at a desired packet interval. We re-

port end-to-end performance metrics (e.g., latency/through-

put), as well as microarchitectural counters (e.g., IPC, L2

cache misses per kilo instruction or MPKI).

2.2.2 Traffic control. As described above, traffic con-

trol is responsible for two tasks: packet forwarding (through

TX/RX ports) and packet feeding to the NIC computing cores.

Here, we use an ECHO server that entirely runs on a Smart-

NIC to understand: (1) how many NIC cores are sufficient

to saturate the link speed for different packet sizes and how

much computing capacity is left for other "offloaded appli-

cations"; (2) what are the synchronization overheads in sup-

plying packets to multiple NIC cores.

Figures 2 and 3 present experimental data for 10GbE Liq-

uidIOII CN2350 and 25GbE Stingray PS225. When packet

size is 64B/128B, neither NICs can achieve full link speed

even if all NIC cores are used. However, when packet size

is 256B/512B/1024B/1500B(MTU), the LiquidIOII requires

10/6/4/3 cores to achieve line rate, while Stingray takes

3/2/1/1 cores. Stingray uses fewer cores due to its much

higher core frequency (3.0GHz v.s. 1.20GHz). This indicates

that packet forwarding is not free, which is the default execu-

tion tax of a SmartNIC. Figure 4 reports the average and tail

(p99) latency when achieving the maximum throughput for

four different packet sizes using 6 and 12 cores. Interestingly,

the latencies don’t increase as we increase the core count;

compared to the 6 core case, the 12 core experiments only

add 4.1%/3.4% average/p99 latency on average across the

four scenarios. Such results can also be observed from the

Stingray card. This means that the hardware traffic manager

is effective at providing a shared queue abstraction with little

synchronization overhead for the packet buffer management.

Design implications: I1: Not only is packet forwarding

not free, but the packet size distribution of incoming traffic

significantly impacts the availability of computing cycles on

a Multicore SmartNIC. One should monitor the packet (re-

quest) sizes and adaptively make the offloading decisions. I2:
Hardware support reduces synchronization overheads and

enables scheduling paradigms that involve multiple workers

pulling incoming traffic from a shared queue.

2.2.3 Computing units. To explore the execution be-

havior of the computing units, we use the following: (1) a mi-

crobenchmark suite comprising of representative in-network

offloaded workloads from recent literature; (2) low-level

primitives to trigger the domain-specific accelerators. We

conduct experiments on the 10GbE LiquidIOII CN2350 and

report both system and microarchitecture results in Table 3

(in Appendix A.1). We observe the following results. First,

the execution times of the offloaded tasks vary significantly

from 1.9/2.0us (replication and load balancer) to 34.0/71.0us

(ranker/classifier). Second, low IPC
1
or high MPKI are indica-

tors of high computing cost, as in the case of the rate limiter,

packet scheduler, and classifier. Tasks with high MPKI are

memory bound tasks that are less likely to benefit from the

complex microarchitecture on the host, and they might be

ideal candidates for offloading. Third, SmartNIC accelerators

provide fast domain specific processing appropriate for net-

working/storage tasks. For example, the MD5/AES engine

is 7.0X/2.5X faster than the one on the host server (even

using the Intel AES-NI instructions). However, invoking an

accelerator is not free since the NIC core has to wait for

the execution completion and also incurs cache misses (i.e.,

higher MPKI) in feeding data to the accelerator. Batching

can amortize invocation costs but result in tying up the NIC

core for longer periods. Other SmartNICs (e.g., BlueField and

Stingray) display similar characteristics.

SmartNICs also usually enclose special accelerators for

packet processing. Take the LiquidIOII ones (CN2350/CN2360)

for example. It has packet input (PKI) and packet output units

(PKO) for moving data between MAC and packet buffer and

a hardware managed packet buffer along with fast packet

indexing. When compared with two host-side kernel-bypass

networking stacks (DPDK/RDMA), even with the polling

1
Note that the cnMIPS OCTEON [11] is a 2-way processor and the ideal IPC

is 2.

3



 0

 2

 4

 6

 8

 10

 12

 14

1 2 3 4 5 6 7 8 9 10 11 12

B
a

n
d

w
id

th
 (

G
b

p
s
)

Core (#)

64B
128B

256B
512B

1024B
1500B

Figure 2: SmartNIC bandwidth varying
the number of NIC cores for the 10GbE
LiquidIOII CN2350.

 0

 5

 10

 15

 20

 25

 30

 35

1 2 3 4 5 6 7 8

B
a

n
d

w
id

th
 (

G
b

p
s
)

Core (#)

64B
128B

256B
512B

1024B
1500B

Figure 3: SmartNIC bandwidth varying
the number of NIC cores for the 25GbE
Stingray PS225.

 0

 20

 40

 60

 80

 100

64 512 1024 1500

L
a

te
n

c
y
 (

u
s
)

Packet size (B)

6core-avg
12core-avg

6core-p99
12core-p99

Figure 4: Average/p99 latency when
achieving the max throughput on the
10GbE LiquidIOII CN2350.

L1(ns) L2(ns) L3(ns) DRAM(ns)
LiquidIOII CNXX 8.3 55.8 N/A 115.0

BlueField1M332A 5.0 25.6 N/A 132.0

Stingray PS225 1.3 25.1 N/A 85.3

Host Intel server 1.2 6.0 22.4 62.2

Table 2: Access latency of 1 cacheline to different memory
hierarchies on 4 SmartNICs and the Intel server. The cache-
line for LiquidIOII ones is 128B while the rest is 64B. The
performance of LiquidIOII CN2350 and CN2360 is similar.

model, for SEND, it shows 4.6X/4.2X speedups on average

across all cases (shown in Figure 5), respectively.

Designimplications: I3: The offloading framework should

be able to handle tasks with a wide range of execution la-

tencies and simultaneously ensure that the NIC’s packet

forwarding is not adversely impacted. I4: One should take

advantage of the available accelerators on the SmartNIC and

perform batched execution for domain specific ones if neces-

sary (at the risk of increasing queueing for incoming traffic).

2.2.4 Onboardmemory. Generally, a SmartNIC has

five onboard memory resources in its hierarchy: (1) Scratch-

pad/L1 cache is per-core local memory. It has limited size

(e.g., LiquidIO has 54 cache lines of scratchpad) with fast

access speed. (2) Packet buffer. This is onboard SRAM along

with fast indexing. A SmartNIC (like LiquidIOII) usually has

hardware based packet buffer management. Some Smart-

NICs (like Bluefield and Stingray) don’t have a dedicated

packet buffer region. (3) L2 cache, which is shared across all

NIC cores. (4) NIC local DRAM, which is accessed via the

onboard high-bandwidth coherent memory bus. Note that

a SmartNIC can also read/write the host memory using its

DMA engine (as evaluated in the next section).

We use a pointer chasing microbenchmark (with random

stride distance) to characterize the access latency for differ-

ent memory hierarchies for 4 SmartNICs and compare it with

the host server. The results in Table 2 illustrate that there

is significant diversity in memory subsystem performance

across SmartNICs. Also, the memory performance of many

of the SmartNICs is worse than the host server (e.g., the

access latency of SmartNIC L2 cache is comparable to the L3

cache on the host server), but the well-provisioned Stingray

has a performance comparable to the host.

Design implications: I5: When the application working

set exceeds the L2 cache size of the SmartNIC, executing

memory intensive workloads on the SmartNIC might result

in a performance loss than running on the host.

2.2.5 Host communication. A SmartNIC communi-

cates with host processors using DMA engines through the

PCIe bus. PCIe is a packet switched network with 500ns-2us

latency and 7.87 GB/s theoretical bandwidth per Gen3 x8

endpoint (which is the one used by all of our SmartNICs). Its

performance is usually impacted by many runtime factors.

With respect to latency, DMA engine queueing delay, PCIe

request size and its response ordering, PCIe completion word

delivery, and host DRAM access costs will all slow down PCIe

packet delivery [24, 32, 52]. With respect to throughput, PCIe

is limited by transaction layer packet (TLP) overheads (i.e., 20-

28 bytes for header and addressing), the maximum number of

credits used for flow control, the queue size in DMA engines,

and PCIe tags used for identifying unique DMA reads.

Generally, a DMA engine provides two kinds of primitives:

blocking accesses, which wait for the DMA completion word

from the engine, and non-blocking ones, which allow the

processing core to continue executing after sending the DMA

commands into the command queue. Figures 6 and 7 show

our performance characterizations of the 10GbE LiquidIO

CN2350. Non-blocking operations insert a DMA instruction

word into the queue and don’t wait for completion. Hence,

its read/write latency and throughput are independent of

packet size, which outperform the blocking primitives. For

blocking DMA reads/writes, a large message can fully utilize

the PCIe bandwidth. For example, with 2KB payloads, one

can achieve 2.1/1.4 GB/s per-core PCIe write/read bandwidth,

outperforming the 64B case by 8.7X/6.0X. This indicates that

one should take advantage of the DMA scatter and gather

technique.

Some SmartNICs (like BlueField and Stingray) expose

RDMAverbs instead of native DMAprimitives.We character-

ize the one-sided RDMA read/write latency from a SmartNIC

to its host using theMellanox Bluefield card, which resembles

the DMA blocking operations. We observe similar results as

the LiquidIOII ones, but it requires much larger payloads to

amortize the verbs software processing cost.
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SmartNICs can assist in intelligent packet steering. Mul-

tiqueue is a de-facto standard for today’s modern NICs. By

providing multiple transmit and receive queues, different

host CPU cores can process packets simultaneously without

coordination, achieving higher throughput. Normal NICs

usually apply a hashing function to map network flows into

different queues, referred as RSS [48] (receiver side scaling)

or Intel flow director [28]. SmartNICs can push this benefit

even further – by looking into the application header, one

can perform application level dispatching. The performance

benefits of this feature over host-side dispatching can be

significant (as shown in Appendix C.1).

Design implications: I6: There are significant perfor-

mance benefits to using non-blocking DMA and aggregating

transfers into large PCIe messages (via DMA scatter and

gather). In addition, SmartNICs can assist host processing

by performing intelligent application-layer dispatching.

3 iPipe framework
This section describes the design and implementation of our

iPipe framework. We use the insights from our characteri-

zation experiments to address the following challenges.

• Programmability: A commodity server equipped with

a SmartNIC is a non-cache-coherent heterogeneous com-

puting platform with asymmetric computing power. We

desire simple programming abstractions that can be used

for developing general distributed applications.

• Computation efficiency: There are substantial comput-

ing resources on a SmartNIC (e.g., a multicore processor,

modest L2/DRAM, plenty of accelerators, etc.), but one

should use them in an efficient way. Inappropriate offload-

ing could cause NIC core overloading, bandwidth loss, and

wasteful execution stalls.

• Isolation: A SmartNIC can hold multiple applications si-

multaneously. One should guarantee that different appli-

cations cannot touch each others’ state, that there is no

performance interference between applications; and tail

latency increases, if any, are modest.

3.1 Actor programmingmodel and APIs

iPipe applies an actor programming model [1, 26, 58] for

application development. iPipe uses the actor-based model,

instead of say dataflow or thread-based models for the fol-

lowing reasons. First, unlike a thread-based model, actors

interact with each other not through shared memory but

with explicit messages. Given the communication latencies

that we observe between the NIC and the host, explicit mes-

saging is more appropriate in our setting. Second, the ac-

tor model is able to support computing heterogeneity and

hardware parallelism automatically. While dataflow mod-

els also provide such support, the actor-based model allows

for non-deterministic and irregular communication patterns

that arise in complex distributed applications. Finally, actors

have well-defined associated states and can be migrated be-

tween the NIC and the host dynamically. This allows us to

have dynamic control over the use of SmartNIC computing

capabilities as we adapt to traffic characteristics (which is

necessary given our characterization experiments).

An actor is a computation agent that performs two kinds

of operations based on incoming type of messages: (1) trig-

ger its execution handlers and manipulate its private state;

(2) interact with other actors by sending messages asyn-

chronously. Actors don’t share memory. In our system, every

actor has an associated structure with the following fields:

(1) init_handler and exec_handler for state initialization and

message execution; (2) private_state, which can use differ-

ent data types (as described in Section 3.3); (3) mailbox is

a multi-producer multi-consumer concurrent FIFO queue,

which is used to store incoming asynchronous messages; (4)

exec_lock, used to decide whether an actor can be executed

on multiple cores; (5) some runtime information, such as port,
actor_id, and a reference to the actor_tbl, which contains the

communication address for all actors. The structure outlined

above represents a streamlined and lightweight actor design.

The iPipe runtime enables the actor-based model by pro-

viding support for actor allocation/destruction, runtime sched-

uling of actor handlers, and transparent migration of actors

and its associated state (see Table 4 in the Appendix B.1 for

the runtime API) for actor development. Specifically, iPipe

has three key system components: (1) an actor scheduler that

works across both SmartNIC and host cores and uses a hy-

brid FCFS/DRR scheduling discipline to enable execution of

actor handlers with diverse execution costs; (2) a distributed
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object abstraction that enables flexible actor migration, as

well as support for a software managed cache to mitigate the

cost of SmartNIC to host communications; (3) a security iso-

lation mechanism that protects actor state from corruption

and denial-of-service attacks. We describe them below.

3.2 iPipe Actor Scheduler

iPipe schedules the actor execution among SmartNIC/host

cores. The scheduler allocates actor execution tasks to com-

puting cores and specifies a custom scheduling discipline

for different tasks. In designing the scheduler, we not only

want to maximize the computing resource utilization on the

SmartNIC but also ensure that the computing efficiency does

not come at the cost of compromising the NIC’s primary

task of conveying traffic. Recall that all traffic is conveyed

through SmartNIC cores, so executing actor handlers could

adversely impact the latency and throughput of other traffic.

3.2.1 Problemformulationandbackground. The run-
time system executes on both the host and the SmartNIC, de-

termines on which side an actor executes, and schedules the

invocation of actor handlers. There are two critical decisions

in the design of the scheduler: (a) whether the scheduling

system is modeled as a centralized, single queue model or as

a decentralized, multi-queue model, and (b) the scheduling

discipline used for determining the order of task execution.

We consider each of these issues below.

It is well-understood that the decentralized multi-queue

model can be implemented without synchronization but

would suffer from temporary load imbalances, thus leading to

worse tail latencies. Fortunately, hardware traffic managers

on SmartNICs provide support for a shared queue abstrac-

tion with low synchronization overhead (see Section 2.2.2).

We therefore resort to using a centralized queue model on

the SmartNIC and a decentralized multi-queue model on the

host side, along with NIC-side support for flow steering.

We next consider the question of what scheduling dis-

cipline to use and how that impacts the average and tail

response times for scheduled operations (i.e., both actor han-

dlers and message forwarding operations). Note that the

response time or sojourn time is the total time spent includ-

ing queueing delay and request processing time. If our goal is

to optimize for mean response time, then Shortest Remaining

Processing Time (SRPT) and its non-preemptive counterpart,

Shortest Job First (SJF), are considered optimal regardless of

the task size and interarrival time distributions [55]. How-

ever, in our setting, we also care about the tail response time;

even if the application can tolerate it, a high response latency

in our setting means that the NIC isn’t performing its basic

duty of forwarding traffic in a timely manner. If we were to

consider minimizing the tail response time, then First Come

….

reqs

Actors
downgrade 

Cond: Tail > Tail_thresh

upgrade 
Cond: Tail < (1-a) Tail_threshNIC FCFS core

Host server

….
Actors

NIC DRR core

FCFS push migration 
Cond: Mean > Mean_thresh

FCFS pull migration 
Cond: Mean < (1-a) Mean_thresh

DRR push migration 
Cond: Mailbox.len > Q_thresh

Figure 8: An overview of iPipe scheduler on the SmartNIC.
Cond is the operation triggered condition.

First Served (FCFS) is considered optimal when task size

distribution has low variance [59] but has been shown to

perform poorly when the task size distribution has high dis-

persion or is heavy-tailed [4]. In contrast, Processor Sharing

is considered optimal for high variance distributions [61].

In addition to the issues described above, the overall set-

ting of our problem is unique. Our runtime manages the

scheduling on both the SmartNIC and the host with the flex-

ibility to move actors between the two computing zones.

Crucially, we want to increase the occupancy on the Smart-

NIC, without overloading it or causing tail latency spikes,

and can shed load to the host if necessary. Furthermore, given

that the offloaded tasks will likely have different cost distri-

butions (as we saw in our characterization experiments), we

desire a solution that is suitable for a broad class of tasks.

3.2.2 Schedulingalgorithm. Wepropose a hybrid sched-

uler that: (1) combines FCFS and DRR (deficit round robin)

service disciplines; (2) migrates actors between SmartNIC

and host processors when necessary. Essentially, the sched-

uler takes advantage of FCFS for tasks that have low disper-

sion in their service times and delegates tasks with a greater

variance in service time to a DRR scheduler. The scheduler

uses DRR for high variance tasks as DRR is an efficient ap-

proximation of Processor Sharing in a non-preemptible set-

ting [57]. Further, the scheduler places as much computation

as possible on the SmartNIC and migrates actors when the

NIC cannot promptly handle incoming bandwidth. To assist

in these transitions, the scheduler collects statistics regarding

the average and the tail execution latencies, actor-specific ex-

ecution latencies, and queueing delays. We mainly describe

the NIC-side scheduler below and then briefly describe how

the host-side scheduler differs from it.

The scheduler works as follows. Initially, all scheduling

cores start in FCFS mode, where they fetch packet requests

from the shared incoming queue, dispatch requests to the

target actor based on their flow information, and perform

run-to-completion execution (see lines 5-6, 11-12 of ALG 1

in Appendix). When the measured tail latency of operations

in the FCFS core is greater than tail_thresh, the scheduler
6



downgrades the actor with the highest dispersion (a mea-

sure that we describe later) by pushing the actor into a DRR

runnable queue and spawns a DRR scheduling core if neces-

sary (lines 13-16 ALG 1). All DRR cores share one runnable

queue to take advantage of the execution parallelism.

We next consider the DRR cores (see ALG 2 in Appendix).

These cores scan all actors in the DRR runnable queue in

a round robin way. When the deficit counter of an actor

is larger than its estimated latency, the core pops a request

from the actor’smailbox and conducts its execution. TheDRR

quantum value for an actor, which is added to the counter in

each round, is the maximum tolerated forwarding latency for

the actor’s average request size (obtained from the measure-

ments in Section 2.2.2). When the measured tail latency of

operations performed by FCFS is less than (1−α)tail_thresh
(where α is a hysteresis factor), the actor with the lowest

dispersion in the DRR runnable queue is pushed back to the

FCFS group (lines 10-12 of ALG 2).

Finally, when the scheduler detects that the mean request

latency for FCFS jobs is larger thanmean_thresh, it indicates
a queue build up at the SmartNIC and one should migrate

the actor that contributes the most to the overloading to

the host processor (lines 17-23 ALG 1). Similarly, when the

mean request latency of the FCFS core group is lower than

(1−α)mean_thresh and if there is sufficient CPU headroom

in the FCFS cores, the scheduler issues a pull request to the

host server to migrate the actor that will incur the least load

back to the SmartNIC. We use a dedicated core of the FCFS

group (core 0) for the migration tasks.

3.2.3 Bookeeping execution statistics. Our runtime

monitors the following statistics to assist the scheduler: (1)

Request execution latency distribution of all actors: We mea-

sure µ, the execution latency of each request (including its

queueing delay) using microarchitectural time stamp coun-

ters. To efficiently approximate the tail of the distribution,

we also track the standard deviation of the request latency

σ and use µ + 3σ as a tail latency measure. Note that this

is close to the P99 measure for normal distributions. All of

these estimates are updated using exponentially weighted

moving averages (EWMA). (2) Per-actor execution cost and

dispersion statistics. For each actor i , we track its request

latency µi , the standard deviation of the latency σi , request
sizes, and the request frequency. We use µi+3σi as a measure

of the dispersion of the actor’s request latency. Again, we

use EWMA to update these measures. (3) Per-core/per-group

CPU utilization. We monitor the per-core CPU usage for the

recent past and also use its EWMA to estimate its current uti-

lization. The CPU group utilization (for FCFS or DRR) is the

average among all cores’ CPU usage. Finally, we use measure-

ments from our characterization study to set the thresholds

mean_thresh and tail_thresh. We consider the MTU packet

Object ID SizeStart addressActor ID
0 1KB0x10f0000000

Object ID SizeStart addressActor ID
1 1KB0xfc00000001

iPipe-host object table iPipe-NIC object table

x 2KB0x10f001234xx 2KB0xfc0001234x
y 4KB0x10f005678yz 4KB0x10f005678z
x 8KB0x10f00abcdxx 8KB0x10f00abcdx

struct node{
    char key[KEY_LEN];    
    char *val;
    struct node *forwards[MAX_LEVEL];
}

Normal SkipList node

(a). Object migration

struct node{
    char key[KEY_LEN];    
    int val_object;
    int forward_obj_id[MAX_LEVEL];
}

DMO SkipList node 

(b). Skiplist node implementation in DMO

Figure 9: iPipe distributedmemory objects.

size at which the SmartNIC is able to sustain line rate and

use the average and P99 tail latencies experienced by traf-

fic forwarded through the SmartNIC as the corresponding

thresholds (Section 2.2.2). This means that we provide the

same level of service with offloaded computations as when

we have full line rate processing of moderately sized packets.

3.2.4 FCFSandDRRcoreauto-scaling. All cores start
in FCFSmode.When an actor is pushed into theDRR runnable

queue, the scheduler spawns a core for DRR execution.When

all cores in the DRR group is nearly fully used (CPUDRR ≥

95% and the CPUusage of the FCFS group is less than
100×(FCFSCore#−1)

FCFSCore#
%,

FCFS is able to spare one core for DRR, and the scheduler

will migrate a core to DRR. A similar condition is used for

moving a core back to the FCFS group.

3.2.5 SmartNICpush/pullmigration. We only allow

the SmartNIC to initiate the migration operation since it

is much more sensitive than the host processor in case of

overloading. As described before, when there is persistent

queueing and the mean response time is above a threshold,

the scheduler will move an actor to the host side. We pick the

actor with the highest load (i.e., average execution latency

scaled by frequency of invocation) for migration.We perform

a cold migration mechanism in four phases as described in

details in the Appendix B.3.

Summary: The scheduler manages the execution of actor

requests on both the SmartNIC and the host. We use a hybrid

scheme that combines FCFS and DRR on both sides. With the

scheme outline above, lightweight tasks with low dispersion

are executed on the SmartNIC’s FCFS cores, lightweight tasks

with high dispersion are executed on the SmartNIC’s DRR

cores, and heavyweight tasks are migrated to the host. These

decisions are performed dynamically to meet the desired

average and tail response times.

3.3 Distributedmemory objects and others

iPipe provides a distributed memory object (DMO) abstrac-

tion to enable flexible actor migration. Actors allocate and

de-allocate DMOs as needed, and a DMO is associated with

the actor that allocated it; there is no sharing of DMOs across
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actors. iPipe maintains an object table (Figure 9-a) on both

sides and utilizes the local memory manager to allocate/deal-

locate copies. At any given time, a DMO has only one copy,

either on the host or on the NIC. We also do not allow an

actor to perform reads/writes on objects across the PCIe

because remote memory accesses are 10x slower than local

ones (as shown in Section 2.2). Instead, iPipe would auto-

matically move DMOs along with the actor and all DMO

read/write/copy/move operations are performed locally.

When using DMOs to design a data structure, one has to

use the object ID for indexing instead of pointers. This pro-

vides a level of indirection so that we can change the actual

location of the object (say during migration to/from the host)

without impacting an actor’s local state regarding DMOs.

As an example, in our replicated key-value store application

(discussed later), we built the skiplist based memtable via

DMO. As shown in Figure 9-b, a traditional skiplist node

includes a key string, a value string, and a set of forward-

ing pointers. With DMO, the key field is the same. Value

and forwarding pointers are replaced by object IDs. When

traversing, one will use the object ID to get the start address

of the object, cast the type, and then read/write its contents.

Scratchpad. Our characterization experiments 2.2.4 have

shown that the scratchpad memory provide the fastest per-

formance but has very limited resources. Instead of exposing

this to applications and managing them, we decide to keep

this memory resource internally and use it for storing the

iPipe bookkeeping information.

3.4 Security Isolation

iPipe allows multiple actors to concurrently execute on a

SmartNIC. There are two attacks that iPipe should protect

against: (1) actor state corruption, where a malicious actor

manipulates other actors’ states; (2) denial-of-service, where

an actor hangs on the SmartNIC core and violates the service

availability of other actors. We primarily describe how to

protect against these attacks on the Cavium LiquidIOII, as

one can apply similar techniques to other SmartNICs.

Actorstatecorruption Since iPipe provides the distributed

memory object abstraction to use the onboardmemoryDRAM,

we rely on the processor paging mechanism to secure the

object accesses. LiquidIOII CN2350/CN2360 SmartNICs em-

ploy a MIPS processor (which has a software managed TLB)

and a lightweight firmware for memory management. In

this case, we use a physical partition approach. During the

initialization phase, iPipe creates large equal size chunks of

memory regions for each registered actor (where its size is

Memtotal−Memf imrware−Memruntime

Numactor
). iPipe runtime maintains

the mapping between actor ID, its base address, and size.

During execution, an actor can only allocate/reclaim/access

its objects within its region. Invalid reads/writes from an

actor causes a TLB miss and will trap into the iPipe runtime.

If the address is not in the region, access is not granted.

Denial-of-service.Amalicious actor might occupy a NIC

core forever (e.g., executing an infinite loop), violating actor

availability. We apply a timeout mechanism to address this

issue. LiquidIOII CN2350/CN2360 SmartNICs include a hard-

ware timer with 16 timer rings. We give each core a dedicated

timer. When an actor is executed, it clears out the timer and

initializes the time interval. The timeout unit will traverse all

timer rings and notify the NIC core when there is a timeout

event. If a NIC receives the timeout notification, iPipe dereg-

isters the actor, removes it from the dispatch table/runnable

queue (if it is in the DRR group), and frees the actor resource.

3.5 Host/NIC communication

We use a message passing mechanism to communicate be-

tween host and the SmartNIC. iPipe creates a set of I/O chan-

nels, and each one includes two circular buffers for sending

and receiving. A buffer is unidirectional and stored in the

host memory. NIC cores write into the receive buffer, and

a host core polls it to detect new messages. The send buffer

works in reverse. We use a lazy-update mechanism to syn-

chronize the header pointer between the host and the NIC,

wherein the host notifies the SmartNICwhen it has processed

half of the buffer via a dedicated message. We use batched

non-blocking DMA reads/writes for the implementation. In

order to avoid the case of a DMA engine not writing the

message contents in a monotonic sequence (unlike RDMA

NICs), we add a 4B checksum into the message header to

verify the integrity of the whole message. Table 4 (in the

Appendix B.1) shows the messaging API list.

4 Applications built with iPipe
We implement three distributed applications using iPipe: a

replicated key-value store, a distributed transaction system,

and a real-time analytics engine.

Replicated key-value store. Replicated key-value store

(RKV) is a critical datacenter service, comprising of two key

system components: a consensus protocol, and a key-value
data store. We use the traditional Multi-Paxos algorithm [37]

to achieve consensus among multiple replicas. Each replica

maintains an ordered log for every Paxos instance. There

is a distinguished leader that receives client requests and

performs consensus coordination using Paxos prepare/ac-

cept/learning messages. In the common case, consensus for

a log instance can be achieved with a single round of ac-

cept messages, and the consensus value can be disseminated

using an additional round (learning phase). Each node of

a replicated state machine can then execute the sequence

of commands in the ordered log to implement the desired

replicated service. When the leader fails, replicas will run a

two-phase Paxos leader election (which determines the next
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leader), choose the next available log instance, and learn

accepted value from other replicas if its own log has gaps.

Typically, the Multi-Paxos protocol can be expressed as a se-

quence of messages that are generated and processed based

on the state of the RSM log.

For the key-value store, we take the log-structure merge

tree (LSM) that is widely used for many KV systems (such

as Google’s Bigtable [13], LevelDB [39], Cassandra [5]). An

LSM tree accumulates recent updates in memory and serves

reads of recently updates values from in-memory data struc-

ture, flushes the updates to the disk sequentially in batches,

and merges long-lived on-disk persistent data to reduce disk

seek costs. There are two key system components:memtable,
a sorted data structure (i.e., SkipList) and SSTables, collec-
tions of data items sorted by their keys and organized into

a series of levels. Each level has a size limit on its SSTables,

and this limit grows at an exponential rate with the level

number. Low-level SSTables are merged into high-level ones

via minor/major compact operations. Deletions are a special

case of insertions wherein a deletion marker is added. Data

retrieval might require multiple lookups on the Memtable

and the SSTables (starting with level 0 and moving to high

levels) until a matching key is found.

In iPipe, we implement RKV with four kinds of actors:

(1) consensus actor, receives application requests and trig-

gers the Multi-Paxos logic; (2) LSM memtable actor, accu-

mulates incoming writes/deletes and serves fast reads; (3)

LSM SSTable read actor, serves SSTable read requests when

requests are missing in the Memtable; (4) LSM compaction

actor, performs minor/major compactions. The consensus

actor sends a message to the LSM memtable one during the

commit phase. When requests miss in the Memtable actor,

they are forwarded to the SSTable read actor. Upon a minor

compaction, the Memtable actor migrates its Memtable ob-

ject to the host and issues a message to the compaction actor.

Our system has multiple shards, based on the NIC DRAM ca-

pacity. The two SSTable related actors are stationary on the

host because they have to interact with persistent storage.

Distributed Transactions. We build a distributed trans-

actions system that uses optimistic concurrency control and

two-phase commit for distributed atomic commit, follow-

ing the design used by other systems [31, 62]. Note that

we choose to not add a replication layer as we try to elim-

inate the application function overlap with our replicated

key-value store. The application includes a coordinator and

participants that run a transaction protocol. Given a read set

(R) and a write set (W ), the protocol works as follows: Phase

1 (read and lock): the coordinator reads values for the keys

in R and locks the keys inW . If any key in R orW is already

locked, the coordinator aborts the transaction and replies

with the failure status; Phase 2 (validation): after locking the

write set, the coordinator checks the version of keys in its

read set by issuing a second read. If any key is locked or its

version has changed after the first phase, the coordinator

aborts the transaction; Phase 3 (log): the coordinator logs the

key/value/version information into its coordinator log and

then sends a reply to the client with the result; Phase 4 (com-

mit): the coordinator sends commit messages to nodes that

store theW set. After receiving this message, the participant

will update the key/value/version, as well as unlock the key.

In iPipe, we implement the coordinator and participant as

actors running on the NIC. The key storage abstractions re-

quired to implement the protocol are the coordinator log [18]

and the data store, which we realize using a traditional ex-

tensible hashtable [25]. Both of these are realized using dis-

tributed shared objects. We also cache responses from out-

standing transactions. There is also a logging actor pinned

to the host since it requires persistent storage access. When

the coordinator log reaches a storage limit, the coordinator

migrates its log object to the host side and sends a check-

pointing message to the logging actor.

Real-time Analytics. Data processing pipelines use a

real-time analytics engine to gain instantaneous insights

into vast and frequently changing datasets. We acquired the

implementation of FlexStorm [33] and extended its func-

tionality. All data tuples are passed through three workers:

filter, counter, and ranker. The filter applies a pattern match-

ing module [17] to discard uninteresting data tuples. The

counter uses a sliding window and periodically emits a tuple

to the ranker. Rankingworkers sort incoming tuples based on

count and then emit the top-n data to an aggregated ranker.

Each worker uses a topology mapping table to determine

the next worker to which the result should be forwarded.

In iPipe, we implement the three workers as actors. Fil-

ter actor is a stateless one. Counter uses the software man-

aged cache for statistics. Ranker is implemented using a

distributed shared object, and we consolidate all top-n data

tuples into one object. Among them, ranker performs quick-

sort to order tuples, which could impact the NIC’s ability to

receive new data tuples when the network load is high. In

such cases, iPipe will migrate the actor to the host side.

5 Evaluation

Our evaluations aim to answer the following questions:

• What are host CPU core savings when offloading compu-

tations using iPipe? (§5.2)

• What are the latency savings with iPipe? (§5.3)

• How effective is the iPipe actor scheduler? (§5.4)

• When compared with another SmartNIC programming

system (i.e., Floem [54]), what are the design trade-offs in

terms of performance and programmability? (§5.5)

• Can we use iPipe to build other applications (e.g., network

functions)? How does it perform? (§5.6)
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5.1 Experimental methodology

We use the same testbed as our characterization experiments

Section 2.2.1. For evaluating our application case studies,

we mainly use the LiquidIOII CN2350/CN2360 (10/25 GbE)

as we had a sufficient number of cards to build a small dis-

tributed testbed. We built iPipe into the LiquidIOII firmware

using the Cavium Development Kit [12]. On the host side,

we use pthreads for iPipe execution and allocate 1GB pinned

hugepages for the message ring. Each runtime thread peri-

odically polls requests from the channel and performs actor

execution. It transits to idle C-states when there is no more

work. The iPipe runtime spreads across the NIC firmware

and host system with 10683 LOCs and 4497 LOCs, respec-

tively. To show the effectiveness of the actor scheduler, we

also present results for the Stingray card.

Programmers use the C langugage to build applications

(which are compiled with SmartNIC/host GNU tool chains).

Our three workloads, real-time analytics (RTA), distributed

transactions (DT), replicated key-value store (RKV), built

with iPipe have 1583 LOCs, 2225 LOCs, and 2133 LOCs, re-

spectively, and we compare them with similar implementa-

tions that useDPDK. Ourworkload generator is implemented

using DPDK and invokes operations in a closed-loop man-

ner. For RTA, we generate the request based on the Twitter

tweets [38]. The number of data tuples in each request vary

based on the packet size. For DT, each request is a multi-key

read-write transaction including 2 reads and 1 writes (used in

previous work [31]). For RKV, we generate the <key,value>
pair in each packet, with the following characteristics: 16B

key, 95% read/5%write, zipf distribution (skewness=0.99), and

1 million keys (used in previous work[42, 53]). For both DT

and RKV, the value size increases with the packet size.

We deploy each of the applications on three servers, equipped

with SmartNICs in the case of iPipe and normal Intel NICs in

the case of DPDK. The RTA application runs a RTA worker

on each server, the DT application runs coordinator logic on

one server and participant logic on two servers, and the RKV

application involves a leader node and two follower nodes.

5.2 Host core savings

We find that we can achieve significant host core savings

by offloading computations to the SmartNIC. Figure 10 re-

ports the average host server CPU usage of three applica-

tions when achieving the maximum throughput for different

packet sizes under 10/25GbE networks. First, when packet

size is small (i.e., 64B), iPipe will use all NIC cores for packet

forwarding, leaving no room for actor execution. In this

case, one will not save host CPU cores. Second, host CPU

usage reduction is related to both packet size and bandwidth.

Higher link bandwidth and smaller packet size bring in more

packet level parallelism. When the SmartNIC is able to ab-

sorb enough requests for execution, one can reduce host CPU

loads significantly. For example, applications built on iPipe

save 3.1, 2.6, and 2.5 host cores for 256/512/1KB cases, on

average across three applications using the 25GbE CN2360

cards. Such savings are marginally reduced with the 10GbE

CN2350 ones (i.e, 2.2, 1.8, 1.8 core savings). Among these

three applications, DT participant saves the most since it is

able to run all its actors on the SmartNIC, followed by the

DT coordinator, RTA worker, RKV follower, and RKV leader.

5.3 Latency versus Throughput

Wenext examine the latency reduction and per-core through-

put increase provided by iPipe and find that SmartNIC of-

floading provides considerable benefits. Figures 11 and 12

report the results comparing DPDK and iPipe versions of

the applications, when we configure the system to achieve

the highest possible throughput with the minimal number

of cores. When calculating the per-core throughput of three

applications, we use the CPU usage of RTA worker, DT co-

ordinator, and RKV leader to account for fraction core usage.

First, under 10GbE SmarNICs, applications (RTA, DT, and

RKV) built with iPipe outperform the DPDK ones by 2.3X,

4.3X, and 4.2X, respectively, as iPipe allows applications to

use a fewer number of host CPU cores. The benefits dimin-

ish a little under the 25GbE setup (with 2.2X, 2.9X, and 2.2X

improvements) since actors running on the host CPU re-

ceive more requests and require more CPU power. Second, at

low to medium request rates, NIC-side offloading reduces re-

quest execution latency by 5.7µs, 23.0µs, 8.7µs for 10GbE and

5.4µs, 28.0µs, 12.5µs for 25GbE, respectively. Even though the
SmartNIC has only a wimpy processor, the iPipe scheduler

keeps the lightweight fast path tasks on the NIC and moves

the heavyweight slow ones to the host. As a result, PCIe trans-

action savings, fast networking primitives, and hardware ac-

celerated buffermanagement can help reduce the fast path ex-

ecution latency. DT benefits the most as both the coordinator

and the participants mainly run on the SmartNIC processor

and the host CPU is only involved for the logging activity.

P99 tail latency.Wemeasured the tail latency (P99) when

achieving 90% of the maximum throughput for the two link

speeds. For the three applications, iPipe reduces tail latency

by 7.3µs, 11.6µs, 7.5µs for 10GbE and by 3.4µs, 10.9µs, 12.8µs
for 25GbE. This is not only due to fast packet processing

(discussed above), but also because iPipe’s NIC-side runtime

guarantees that there is no significant queue build up.

5.4 iPipe actor scheduler

We evaluate the effectiveness of iPipe’s scheduler, com-

paring it with standalone FCFS and DRR schedulers under
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Figure 10: Host used CPU cores compared between DPDK and iPipe on three different applications varying packet sizes for a
10GbE/25GbE network.
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Figure 11: Latency versus per-core throughput for three applications under 10GbE, compared between DPDK and iPipe cases.
Packet size is 512B.
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Figure 12: Latency versus per-core throughput for three applications under 25GbE, compared between DPDK and iPipe cases.
Packet size is 512B.
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(a) Low dispersion on 10GbE
LiquidIOII CN2350.
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(c) Low dispersion on 25GbE
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Figure13:P99 tail latencyvarieswith thenetworking load for lowandhighdispersion request distribution for10GbELiquidIOII
CN2350 and 25GbE Stingray cards.

two different request cost distributions: one is exponential

with low dispersion; the other one is bimodal-2 with high

dispersion. We choose two SmartNICs (i.e., 10GbE LiquidIOII

CN2350 and 25GbE Stingray) representing the cases where

the actor scheduler runs as firmware hardware threads and

OS pthreads, respectively. The workload generator is built

using packet traces obtained from our three real world appli-

cations and issues requests assuming a Poisson process. We

measure the latency from the client side. The mean service

times of the exponential distribution on the two SmartNICs

(i.e., LiquidIOII and Stingray) is 32µs and 27µs, while b1/b2
of the bimodal-2 distribution is 35µs/60µs and 25µs/55µs.
Figure 13 shows the P99 tail latency as we increase the

network load for four different cases. For the low dispersion

one, iPipe’s scheduler behaves similar to FCFS, but outper-

forms DRR. Under 0.9 networking load, iPipe can reduce 9.6%

and 21.7% of DRR’s tail latency for LiquidIOII and Stingray,

respectively. For the high dispersion one, iPipe scheduler is
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able to tolerate the request execution variation and serve

short tasks in time, outperforming the other two. For ex-

ample, when the networking load is 0.9, iPipe can reduce

68.7%(61.4%) and 10.9% (12.9%) of the tail latency for FCFS

and DRR cases on LiquidIOII (Stingray).

5.5 Comparison with Floem

Floem [54] is a programming system aimed at easing the

programming effort for SmartNIC offloading. It applies a

data-flow language to express packet processing and pro-

poses a couple of programming abstractions, such as logic

queue, per-packet state, etc. iPipe also has similar designs

(like message rings, packet metadata). However, compared

with iPipe, the key difference is that the language runtime

of Floem doesn’t use the SmartNIC computing power in an

efficient way. First, the offloaded elements (computation) on

Floem is stationary, no matter what the incoming traffic is.

However, we have shown that, when the packet size is small

and networking load is high (Section 2.2.2), such Multicore

SoC SmartNICs have no room for application computation.

In iPipe, we will migrate the computation to the host side.

Second, the common computation elements of Floem mainly

comprise of simple tasks (like hashing, steering, or bypass-

ing). Complex ones (even though they can be expressed) are

performed on the host side. In iPipe, we have shown that

complex operations can also be offloaded, and our runtime

will dynamically schedule them in the right place.

We take the real time analytics (RTA) workload, and com-

pare its Floem and iPipe implementations. With the same

experimental setup, Floem-RTA achieves at most 1.6Gbps/-

core (in the best case), while iPipe-RTA can achieve 2.9Gbps.

As described above, this is because iPipe can offload the en-

tire actor computationwhile Floem utilizes a NIC-side bypass

queue to mitigate the multiplexing overhead. For the small

packet size case (i.e., 64B), iPipe-RTA delivers 0.6Gbps/core,

outperforming Floem by 88.3%, since iPipe moves all the

actors to the host side and uses all NIC cores for packet for-

warding, while Floem still uses the NIC-side for offloading. In

sum, we believe iPipe can be an efficient backend for Floem.

5.6 Network functions on iPipe

The focus of iPipe is to accelerate distributed applications

with significant complexity in program logic and maintained

state. For network functions with easily expressed states (or

even stateless ones) that have sufficient parallelism, FPGA-

based SmartNICs are an appropriate fit. We now consider

how well iPipe running on multicore SmartNICs can approx-

imate FPGA-based SmartNICs for such workloads. We built

two network functions with iPipe (i.e., Firewall and IPSec

gateway) and evaluated them on the 10/25GbE LiquidIOII

cards. For the firewall, we use a software based TCAM imple-

mentation matching wildcard rules. Under 8K rules and 1KB

packet size, the average packet processing latency ranges

from 3.65µs to 19.41µs as we increase the networking load.
However, a FPGA based solution achieves 1.23∼1.6µs. For the
IPsec gateway, we take advantage of the crypto engines to

accelerate packet processing. For 1KB packets, iPipe achieves

8.6Gbps and 22.9Gbps bandwidth on the 10/25 GbE Smart-

NIC cards, respectively. Such results are comparable to the

ClickNP ones (i.e., 37.8Gbps under 40GbE link speed). In

other words, if one can use the accelerators on a Multicore

SoC SmartNIC, one can achieve comparable performance as

FPGA based ones for network functions.

6 Related work
SmartNICacceleration. In addition to Floem [54], ClickNP [41]

is another framework using FPGA-based SmartNICs for net-

work functions. It uses the Click [36] dataflow programming

model and statically allocates a regular dataflow graphmodel

during configuration, whereas iPipe is able to move compu-

tations based on runtime workload (e.g., request execution

latency, incoming traffic). There are a few other studies that

use SmartNICs for application acceleration. KV-Direct [40]

is an in-memory key-value store system, which runs key-

value operations on the FPGA and uses the host memory as

a storage pool. HotCocoa [6] proposes a set of hardware ab-

stractions to offload the entire congestion control algorithm

to a SmartNIC.

In-networkcomputations. Recent RMT switches [9] and

SmartNICs enable programmability along the packet data

plane. Researchers have proposed the use of in-network com-

putation, where one can offload compute operations from

endhosts into these network devices in order to reduce dat-

acenter traffic and improve application performance. For

example, IncBricks [44] is an in-network caching fabric with

some basic computing primitives. NetCache [29] is another

in-network caching design, which uses a packet-processing

pipeline on a Barefoot Tofino switch to detect, index, store,

invalidate, and serve key-value items. DAIET [3] conducts

data aggregation (for MapReduce and TensorFlow) along the

network path using programmable switches.

RDMA-baseddatacenterapplications.Recent years have
seen growing use of RDMA in datacenter environments due

to its low-latency, high-bandwidth, and low CPU utiliza-

tion benefits. These applications include key-value store sys-

tem [19, 30, 49], DSM system [19, 50], database and trans-

actional system [14, 20, 31, 60]. Generally, RDMA provides

fast data access capabilities but limited opportunities to re-

duce the host CPU computing load. While one-sided RDMA

operations allow applications to bypass remote server CPUs,

they are hardly used in general distributed systems given the

narrow set of remote memory access primitives associated
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with them. In contrast, iPipe provides a framework to offload

simple but general computations onto SmartNICs. It does

however borrow some techniques approaches from related

RDMA projects (e.g., lazy updates for the send/receive rings

in FaRM [19]).

7 Conclusion
This paper makes a case for offloading distributed applica-

tions onto aMulticore SoC SmartNICs.We conduct a detailed

performance characterization on different commodity Mul-

ticore SoC SmartNICs and build the iPipe framework based

on experimental observations. We then develop three appli-

cations using iPipe and prototype them on these SmartNICs.

Our evaluations show that by offloading computation to

a SmartNIC, one can achieve considerable host CPU and

latency savings. This work does not raise any ethical issues.
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Figure 14: Read/Write latency to different onboard memory
varying block size for LiquidIOII CN2350. Y is log scale.

Appendix A More characterization results
This section presents more characterization results of four

Multicore SoC SmartNICs that are not included in the main

paper.

A.1 Performance of microbenchmarks and accelera-
tors

Table 3 summarize the system and microarchietcture results.

A.2 Locking primitives

Multicore SoC SmartNICs provide various locking primitives

so that applications can take advantage of the parallel exe-

cution power without building complex lock-free/wait-free

data structures. Usually, there are three types of locking prim-

itives: spinlock, read-write lock, and packet-linked lock. The

first two are common. The last one is a special kind of locking

mechanism existed on SmartNICs, which is supported by the

hardware-assisted scheduler. The NIC core enters/leaves a

critical region by switching the packet metadata (i.e., tag type

on LiquidIOII). When a core stays in the critical session, all

other cores are unable to pull incoming traffic. This is a coarse

grained global locking approach. To characterize the locking

overhead, we use an Echo server and perform lock/unlock op-

erations for per-packet computation. We use client observed

throughput to measure the overhead for locking.We find that

on LiquidIOII CN2350/CN2360, 1 RW read lock < 1 spin-
lock < 1RWwrite lock < packet-linked lock <N× read-
write/spinlock (whereN ≥ 2). One should carefully choose
the right lock mechanism based on the size of critical session.

A.3 Memory read/write latency

Figure 14 presents the memory read/write latency varying

block size on the LiquidIOII CN2350 SmartNIC. To measure

the latency L2 cache, we firstly use firstly use MIPS prefetch

instructions to load the data and perform read/write tests.

Unsurprisingly, for both reads/writes, scratchpad shows the

lowest latency, followed by the packet buffer, L2 cache, local

memory, and host memory. Also, we find that for any mem-

ory resource, writes outperform reads. This is due ot write

back configuration on the memory hierarchy.

Appendix B Moredetails intheiPipeframework
This section describes more details of the iPipe framework

that is not included in the main paper.

B.1 iPipe runtime APIs

Table 4 presents the major APIs. Specifically, the actor man-

agement APIs are used by our runtime. We provide five calls

for managing DMOs. When creating an object on the NIC, iP-

ipe first allocates a local memory region using the dlmalloc2
allocator and then inserts an entry (i.e., object ID, actor ID,

start address, size) into the NIC object table. Upon dmo_free,
iPipe frees the space allocated for the object and deletes

the entry from the object table. dmo_memset, dmo_memcpy,
dmo_memmove resemble memset/memcpy/memmove APIs

in glibc, except that it uses the object ID instead of a pointer.

For the networking stack, iPipe takes advantage of packet

processing accelerators to build a shim networking stack

for the SmartNIC. This stack performs Layer2/Layer3 proto-

col processing, such as packet encapsulating/decapsulation,

fragmentation, checksum verification, etc. When building

a packet, it uses the DMA scatter-gather technique to com-

bine the header and payload if they are not colocated. This

helps improve the bandwidth utilization, as shown in our

characterization (Section 2.2.5).

B.2 iPipe actor scheduling algorithm

Algorithms 1 and 2 show the details of our iPipe hybrid

scheduler.

B.3 iPipe actormigration procedure

We describe the 4 phase migration as follows:

• Phase 1: The actor transitions into the Prepare state and
removes itself from the runtime dispatcher. An actor in

the DRR group is also removed from the DRR runnable

queue. The actor stops receiving incoming requests and

buffers them in the iPipe runtime.

• Phase 2: The actor finishes the execution of its current

tasks and changes to the Ready state. Note that, for an ac-

tor in the DRR group, it finishes executing all the requests

in its mailbox.

• Phase 3: The scheduler moves the distributed objects of an

actor to the host runtime, starts the host actor, and marks

the NIC actor state as Gone.
• Phase 4: The scheduler forwards the buffered requests

from the NIC to the host and rewrites their destination

addresses. We will label the NIC actor as Clean.
When migrating an actor to the host, as shown in Figure 9,

our runtime (1) collects all objects that belong to the actor;

(2) sends the object data to the host side using messages and

DMA primitives; (3) creates new objects on the host side and

then inserts entries into the host-side object table; (4) deletes

related entries from the NIC-side object table upon deleting
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Applications Computation DS Exe. Lat.(us) IPC MPKI Accelerator IPC MPKI Exe. Lat.(us)
bsz=1 bsz=8 bsz=32

Baseline (echo) N/A N/A 1.87 1.4 0.6 CRC 1.2 2.8 2.6 0.7 0.3

Flowmonitor [56] Count-min sketch 2-D array 3.2 1.4 0.8 MD5 0.7 2.6 5.0 3.1 3.0

KV cache [40] key/value Rr/Wr/Del Hashtable 3.7 1.2 0.9 SHA-1 0.9 2.6 3.5 1.2 0.9

Top ranker [54] Quick sort 1-D array 34.0 1.7 0.1 3DES 0.8 0.9 3.4 1.3 1.1

Rate limiter [41] Leaky bucket FIFO 8.2 0.7 4.4 AES 1.1 0.9 2.7 1.0 0.8

Firewall [41] Wildcard match TCAM 3.7 1.3 1.6 KASUMI 1.0 0.9 2.7 1.1 0.9

Router [35] LPM lookup Trie 2.2 1.3 0.6 SMS4 0.8 0.9 3.5 1.4 1.2

Load balancer [21] Maglev LB Permut. table 2.0 1.3 1.3 SNOW3G 1.4 0.5 2.3 0.9 0.8

Packet scheduler [2] pFabric scheduler BST tree 12.6 0.5 4.9 FAU 1.4 0.6 1.9 1.4 1.0

Flow classifier [43] Naive Bayes 2-D array 71.0 0.5 15.2 ZIP 1.0 0.2 190.9 N/A N/A

Packet replication [34] Chain replication Linklist 1.9 1.4 0.6 DFA 1.3 0.2 9.2 7.5 7.3

Table 3: Performance comparison among generic offloaded applications and accelerators for the 10GbE LiquidIOII CN2350.
Request size is 1KB for all cases. We report both per-request execution time as well as microarchitectural counters. DS=Data
structure. IPC=Instruction per cycle. MPKI=L2 cache misses per kilo-instructions. bsz=Batch size. DFA=Deterministic Finite
Automation.

API Explanation

A
c
t
o
r

actor_create (*) create an actor

actor_register (*) register an actor into the runtime

actor_init (*) initialize an actor private state

actor_delete (*) delete the actor from the runtime

actor_migrate (*) migrate an actor to host

D
M
O

dmo_malloc allocate a dmo obj.

dmo_free free a dmo obj.

dmo_mmset set space in a dmo with value.

dmo_mmcpy copy data from a dmo to a dmo.

dmo_mmmove move data from a dmo to a dmo.

dmo_migrate migrate a dmo to the other side.

M
S
G

msg_init initialize a remoge message I/O ring

msg_read (*) read newmessages form the ring

msg_write write messages into the ring

N
s
t
a
c
k

nstack_new_wqe create a newWQE

nstack_hdr_cap build the packet header

nstack_send send a packet to the TX

nstack_get_wqe get theWQE based on the packet

nstack_recv(*) receive a packet from the RX

Table 4: iPipe major APIs. There are four categories: actor
management (Actor), distributed memory object (DMO),
message passing (MSG), and networking stack (Nstack). The
Nstack has additional methods for packet manipulation.
APIs with * are mainly used by the runtime as opposed to
actor code.

the actor. The host-side DMO works similarly, except that

it uses the glibc memory allocator.

We estimate the migration cost (SmartNIC-pushed) by

breaking down the time elapsed of four phases 3.2.5. We

choose 8 actors from three applications. our experiments

are conducted under 90% networking load and we force the

actor migration after the warm up (5s). Figure 15 presents

our results. First, phase 3 dominates the migration cost (i.e.,

67.8% on average of 8 actors) since it requires to move the

distributed objects to the host side. For example, the LSM

memtable actor has around 32MB object and consumes 35.8ms.

Phase 4 ranks the second (i.e., 27.2%) as it pushes buffered

requests to the host. Also, it varies based on the networking

load. Phase 1 and Phase 2 are two lightweight parts because

Algorithm 1 iPipe FCFS scheduler algorithm
1: wqe : contains packet data and metadata

2: DRR_queue : the runnable queue for the DRR scheduler

3: procedure FCFS_sched ▷ on each FCFS core

4: while true do
5: wqe=iPipe_nstack_recv()
6: actor =iPipe_dispatcher (wqe)
7: if actor.is_DRR then
8: actor .mailbox_push(wqe)
9: Continue

10: end if
11: actor .actor_exe(wqe)
12: actor .bookeepinд() ▷ Update execution statistics

13: if T_tail > Tail_thresh then ▷Downgrade

14: actor .is_DRR=1
15: DRR_queue .push(actor )
16: end if
17: if core_id is 0 then ▷Management core

18: if T_mean >Mean_thresh then ▷Migration

19: iPipe_actor_miдrate(actor_chosen)
20: end if
21: if T_mean < (1-α )Mean_thresh then ▷Migration

22: iPipe_actor_pull()
23: end if
24: end if
25: endwhile
26: end procedure

they only introduce the iPipe runtime locking/unlocking and

state manipulation overheads.

Appendix C More evaluations

C.1 SmartNIC as a dispatcher

SmartNICs allows application-specific flow steering into

multiple transmit/receive NIC queues. To demonstrate this,

we use a sharded key-value store (which uses the Memtable
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Algorithm 2 iPipe DRR scheduler algorithm

1: procedureDRR_sched ▷On each DRR core

2: while true do
3: for actor in all DRR_queue do
4: if actor.mailbox is not empty then
5: actor .update_de f icit_val()
6: if actor.deficit > actor.exe_lat then
7: wqe=actor .mailbox_pop()
8: actor .actor_exe(wqe)
9: actor .bookeepinд()
10: if T_tail < (1-α )Tail_thresh then ▷ Upgrade
11: actor .is_DRR=0
12: DRR_queue .remove(actor )
13: end if
14: end if
15: if actor.mailbox is empty then
16: actor .de f icit =0
17: end if
18: if actor.mailbox.len>Q_thresh then ▷Migration

19: iPipe_actor_miдrate(actor )
20: end if
21: end if
22: end for
23: endwhile
24: end procedure
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Figure 16: Throughput comparison varying packet size (on
10GbE), compared among SmartNIC, dedicated, and shared
dispatchers.

implementation of the RKV) along with our workload gen-

erator and compare with three different dispatcher designs.

Specifically, we configure the system with 4 host CPU cores

(where each core runs one shard), 4 NIC queues, and use the

10GbE LiquidIO CN2350. We compare three scenarios: (1)

SmartNIC dispatcher, where NIC cores obtain the shard infor-

mation from the request application header and push request

into the appropriate queue. (2) dedicated dispatcher, where
we use one dedicated host core to poll incoming requests

from all NIC queues, and push them to the other three cores

appropriately. We divide the key space into three shards in

this case. (3) shared dispatcher, where we run the dispatcher

on all 4 cores and co-locate it with the key-value store. In

this case, we also enable RSS. Note that the dedicated and

shared dispatchers have a lockless FIFO command queue to

buffer requests from other cores.

Figure 16 reports the measured throughput for different

packet sizes. On average, the SmartNIC dispatcher outper-

forms the dedicated and shared dispatchers by 32.9% and

25.8%, respectively. This is because the SmartNIC steering

eliminates the inter-core request transfer and command

queue operation overheads.
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