
Gravel: Automated Software Middlebox Verification
Kaiyuan Zhang Danyang Zhuo

Aditya Akella Arvind Krishnamurthy Xi Wang

Abstract
Building formally-verified software middlebox is attractive

for network reliability. In this paper, we explore the feasibil-

ity of verifying “almost unmodified” software middleboxes.

Our key observation is that software middleboxes are already

designed and implemented in a modular way (e.g., Click).

Further, to achieve high performance, the number of opera-

tions each element or module performs is finite and small.

These two characteristics place them within the reach of

automated verification through symbolic execution.

We perform a systematic study to test how many existing

Click elements can be automatically verified using symbolic

execution. We show that 47% of the elements can be auto-

matically verified and an additional 21% of click elements

can be automatically verified with slight code modifications.

To allow automated verification, we build Gravel, a software

middlebox verification framework. Gravel allows developers

to specify high-level middlebox properties and checks cor-

rectness in the implementation without requiring manual

proofs. We then use Gravel to specify and verify middlebox-

specific properties for several Click-based middleboxes. Our

evaluation shows that Gravel avoids bugs that are found in

today’s middleboxes with minimal code changes and that

the code modifications needed for proof automation do not

affect middlebox performance.

1 Introduction
Middleboxes (e.g., NATs, firewalls, and load balancers) play

a critical role in modern networks. Yet, building functionally

correct middleboxes remains challenging. Critical bugs have

routinely been found in today’s middlebox implementations.

Many of these bugs [4–8] directly lead to system failure

or information leaks. Worse still, some of these bugs can

be exploited simply by malformed packets, exposing severe

security vulnerabilities.

Given the importance of building functionally correct

middleboxes, researchers have turned to using formal veri-

fication in building middleboxes and have made significant

progress [13, 26]. Crucially, these efforts tackle real middle-

box implementations rather than abstract middlebox models

and verify non-trivial program properties. However, just

as with using software verification in other areas of com-

puter systems, this can incur a non-trivial amount of proof

effort (e.g., 10:1 proof to code ratio in VigNAT [26]). At the

same time, the excessive proof effort prevents researchers

from exploring verification of high-level middlebox-specific

properties (e.g., a middlebox rejects unsolicited external con-

nection). As a consequence, recent verification efforts fo-

cus either entirely on low-level code properties (e.g., free of

crashes, memory safety) [13] or on proving equivalence to

pseudocode-like low-level specifications [26].

In this paper, we ask whether it is possible to make soft-

ware middlebox verification completely automated with min-

imal proof effort. In particular, our goal is two-fold: (1) we

want verification to work on real-world “almost unmodified”

middlebox implementations, and (2) we want developers to

be able to express and verify high-level middlebox properties

directly translated from RFCs (e.g., RFC5382 [2] for NAT)

without writing manual proofs towards each of these prop-

erties. To deliver on these goals, we seek to replicate the

automated reasoning approach used in some recent verifi-

cation projects that focus on file systems and OS system

calls [22, 25]. Specifically, we would like to automatically

encode a middlebox implementation and its high-level speci-

fication using satisfiability modulo theories (SMT) and then

use automated solvers to verify that the implementation is

consistent with the specification.

Our key observation regarding the suitability of this ap-

proach is that many existing middleboxes are already de-

signed and implemented in a modular way (e.g., Click [19])

for reusability. As they aim for high performance, the num-

ber of operations they perform on each packet is finite and

small. Both characteristics place these middleboxes within

the reach of automated verification through symbolic ex-

ecution. The goal of this paper is to identify and address

last-mile obstacles.

We begin by studying whether such automated verifica-

tion can be applied to existing software middleboxes. We

perform a systematic study on all 425 unmodified Click ele-

ments (≈60K lines of code) in Click’s official repository to

test whether they are suitable for automated verification.

We find that 47% of the elements are suitable for automated

verification. We then classify code patterns (e.g., unbounded

loops, pointers) that can prevent automated verification, and

we find that an additional 21% of Click elements can be made

amenable to automated verification by modifying the inter-

faces by which they invoke common data structures (e.g.,

Vector,HashSet,HashMap).

Encouraged by the results of the empirical study, we de-

signed and implemented Gravel, a framework for automated

software verification of middleboxes written using Click [19].

1

Gravel provides developers programming interfaces to spec-

ify high-levelmiddlebox-specific properties in Python. Gravel

symbolically executes the LLVM intermediate representation

compiled from an element’s C++ implementation. Gravel

then uses Z3 [12] to verify the correctness of the middlebox

without the burden of manual proofs.

We then evaluate Gravel by porting four Click middle-

boxes: MazuNAT, a load balancer, a stateful firewall, and a

web proxy. We verify their correctness against high-level

specifications from RFCs and other desirable middlebox prop-

erties. Only 133 out of 6457, 63 out of 4294, 63 out of 6336,

50 out of 2683 lines of code need to be modified to make

them automatically verifiable. The high-level specification of

the middlebox-specific properties can be expressed concisely

in Gravel, using only 177, 70, 68, and 39 lines of code. Our

evaluation shows that Gravel can avoid bugs similar to those

found in existing unverified middleboxes with minimal code

modification. Finally, we show that the code modifications

do not degrade the performance of the ported middleboxes.

This paper makes the following contributions:

• An empirical study to check whether existing Click

elements are suitable for automated verification.

• A framework, Gravel, for automated software middle-

box verification based on Click.

• Four case studies (MazuNAT, a stateful firewall, a load

balancer, and a web proxy) of middlebox verification

with Gravel.

2 Encoding Existing Software Middleboxes
To understand the feasibility of applying automated veri-

fication to existing software middleboxes, we perform an

empirical study of all the 425 Click elements [19] in Click’s

official repository. In this section, we first explain what au-

tomated verification is and then describe the restrictions

needed to be put on middlebox source code for automated

verification. Finally, we show that 68% of Click elements

are amenable to automated verification after some limited

modifications to the code.

2.1 Automated verification
There are primarily two approaches to software verification.

One style is deductive verification. In this style, a developer

generates a collection of proof obligations from the software

and its specifications. Proof assistants, such as Coq [11],

Isabelle [23], and Dafny [20], are highly expressive, allowing

mathematical reasoning in high-order logic. However, the

verification process is largely manual, requiring significant

effort from the developer to convey his/her knowledge of

why the software is correct to the verification system. For

example, when applied to a NAT, VigNAT shows 10:1 proof

to code ratio.

class CntSrc : public Element {

// omitting constructor and destructor

Packet *process_packet(Packet *pkt) {

if (pkt->ip_header->saddr == _target_src)

_cnt++;

return pkt;

}

IPAddress _target_src;

uint64_t _cnt;

}

Figure 1: A C++ implementation of a simple packet counter.

Another style of software verification is to exhaustively

explore the target software using symbolic execution. This

style of software verification has recently become popular be-

cause it no longer requires developers’ manual proof effort. It

has already been used successfully to verify file systems [25]

and operating systems [22] with minimal proof effort. How-

ever, this style is more restrictive than deductive verification,

putting restrictions on the programming model. For example,

Hyperkernel disallows unbounded loops in any of its system

call handlers.

To see an example of symbolic execution based verifi-

cation, Figure 1 shows a simple packet counter. This code

increments a counter when the source IP address of a packet

matches a signature (i.e., _target_src). Here we model this

process_packet function in the following way:

f : S × P 7→ S × P

where S is the set of all possible internal states (_target_src
and _cnt) and P denotes the set of all possible packets. For
simplicity, this formulation assumes that at most one out-

going packet is generated for each incoming packet. The

symbolic execution over the code snippet in Figure 1 gener-

ates the following symbolic expression:

∀s, s ′ ∈ S,∀p,p ′ ∈ P·
f (s,p) = (s ′,p ′) ⇒

(p ′ = p) ∧ (s ′.tarдet_src = s .tarдet_src)

∧(p.saddr = s .tarдet_src ⇒ s ′.cnt = s .cnt + 1)

∧(p.saddr , s .tarдet_src ⇒ s ′.cnt = s .cnt))

This symbolic expression says that for all possible inputs,

outputs and state transitions: (1) the input packet should be

the same as the output packet; (2) the _target_src should

not change; (3) if the packet’s source IP address matches

_target_src, the _cnt in the new state should be the _cnt in

the old state plus 1; (4) if the packet’s source IP address does

not match _target_src, the _cnt should not change.

Symbolic execution alone is not enough for automated

verification, it only ensures that the above expression can be

automatically generated. To ensure automated verification,

when the developer verifies the above expression against a

2

specification using an off-the-shelf theorem solver, such as

Z3 [12], the solver needs to be able to solve it efficiently.

A program is suitable for automated verification if the

following two conditions hold:

(1) Symbolic execution of the program halts.

(2) After the symbolic execution, the resulting symbolic

expression of program state is restricted to an effec-

tively decidable fragment of first-order logic.

Condition 1 means the program has to halt on every pos-

sible input. Condition 2 depends on which fragment of first-

order logic a solver, such as Z3, can solve efficiently. This

fragment changes as solver technologies improve over time.

Empirically, we know that if we can restrict the symbolic

expression to only the bitvector and equality with unin-

terpreted functions, a solver can tackle the expression ef-

ficiently [22].

2.2 Feasibility of automated verification onClick
To measure what fraction of Click elements are suitable

for automated verification, we implement a static analyzer

that checks whether each element satisfies the above two

conditions. We make our static analyzer strictly conservative.

If the static analyzer says a Click element is suitable for

automated verification, then Click element is indeed suitable

for automated verification. If the static analyzer says a Click

element is not suitable for automated verification, then Click

element might still be suitable for automated verification

with additional static analysis techniques, in which case we

have a false negative.

As the two conditions are undecidable, our static analyzer

checks for the following two more restrictive properties in

the compiled LLVM byte code
1
of Click elements:

Absence of loops and recursion. To determine whether

Click element’s execution is bounded (Condition 1), the an-
alyzer first uses a straightforward indicator: whether the

program contains loops or recursion. Loops in C++, such

as “for” loops, “while” loops, “do while” loops, and “back-

ward goto” statements, all compile to backward jumps in

LLVM. This means our analyzer first checks whether: (1) the

function call graph has no cyclic dependency, and (2) there

is no backward jump in the LLVM byte code. In the case

of detecting a backward jump, we also analyze the code to

determine whether the loop can be eliminated by unrolling

(i.e., loops with a static number of iterations).

Absence of pointers in element state. For the second
condition, our static analyzer checks whether the program

state can be expressed solely by bit vectors and uninterpreted

1
We chose to implement the static analyzer on LLVM byte code rather than

C++ abstract syntax tree. This is because the compiled LLVM IR code makes

it easier to reason about the control flow of the program by eliminating C++

related complexities (e.g., function overloading and interface dispatching).

Loop

No Yes

P
o
i
n
t
e
r

No 200 (47%) 19 (4%)

Yes 178 (42%) 28 (7%)

(a) Before

Loop

No Yes

P
o
i
n
t
e
r

No 289 (68%) 13 (3%)

Yes 95 (22%) 28 (7%)

(b) After

Table 1: Categorization of Click elements based on the
boundedness of states and execution steps.

functions. Recall that in Click, packet handlers of each ele-

ment can only access two types of program states: packet

data and the element’s state. Packet data, on one hand, has a

relatively small size upper bound (i.e. 1500 bytes MTU for

Ethernet packets). Thus, we use a bitvector to express it. Ele-

ment state, on the other hand, requires greater care so that

they are encoded efficiently. Though in theory, one could use

bitvectors to encode the entire memory into a symbolic state.

However, such an expression could not be efficiently solved

due to the sheer size of the search space. Therefore, the static

analyzer chooses a conservative criterion, the absence of

pointers in element states, as it is easy to see that elements

without pointers always have bounded state. Each element

in Click is a C++ class. In C++, each class can only have a

finite number of member variables, and each non-pointer

variable can only consume a finite amount of memory. Thus,

the state space of a Click element without pointers can al-

ways be expressed by constant size bitvectors. Of course,

such criteria introduces false negative to the analyzer. For

example, a program uses pointers to access a bounded data

structure (e.g., fixed-size array).

We run the static analyzer over all the 425 Click elements.

Table 1a shows the results. We found that 200 of the existing

Click elements (47%) can be automatically verified without

code modification. Among the ones that failed our test, 206

(178 + 28) elements failed because of pointers and 47 (19 +

28) of them failed because of loops. 28 of the elements have

both pointers and unbounded loops. Next, we study how

these Click elements use pointers and loops, and how some

slight code modifications can eliminate the usage of pointers

to make them amenable for automatic verification.

There are several limitations of our static analysis:

C++ function pointers. C++ has other features that can

complicate checking for the absence of loops. For example,

C++ allows function pointers and virtual functions, making

it impossible to reason about the control flow of the program

at compile-time. Fortunately, existing Click elements do not

use these features in C++. In general, these C++ features

complicate verification. Our framework, Gravel, does not

allow usage of function pointers or virtual functions for

programming new Click elements.

3

class CheckIPAddress : public Element {

// omitting constructor and destructor

Packet *process_packet(Packet *pkt) {

auto saddr = pkt->ip_header->saddr;

- for (size_t i = 0; i < _num_bad_src; i++)

- if (_bad_src[i] == saddr)

+ if (_bad_src.find(saddr) != _bad_src.end())

return NULL;

return pkt;

}

- IPAddress *_bad_src;

- size_t _num_bad_src;

+ HashSet<IPAddress> _bad_src;

}

Figure 2: Modification of CheckIPAddress’s implementation.

Click Program versus Click Elements. The analysis

we have done is at the level of Click elements. A Click pro-

gram is a datagraph connecting these elements. Even if all

the elements are free of loops, a loop can be introduced at

the datagraph-level, and thus prevent automated verification

for the entire Click program. Our framework rejects a Click

configuration with unbounded loops. (See §4.)

2.3 CodeModification for automated verification
We propose one form of code modifications that can make

a larger fraction of elements amenable for automated ver-

ification. The modification is to mask the use of pointers

under well-defined data structure interfaces. Let’s take the

CheckIPAddress element as an example (Figure 2). This el-

ement serves as a source IP packet filter. Before our pro-

posed modifications, CheckIPAddress stores a list of bad IP

addresses (_bad_src). A packet is dropped if the source IP

address of the packet is listed in the bad IP address list. In

this element, _bad_src and _num_bad_src together represents

a fixed size array containing the bad IP addresses. To check

whether the source IP address of a received packet matches

any address in the array, CheckIPAddress uses a “for” loop to

go through this array to find a matching source IP address.

Before modification, CheckIPAddress is not suitable for au-

tomated verification: (1) the size of the array that _bad_src

is pointing to is not known by the symbolic executor, thus

the executor may flag an out-of-bound memory access; (2)

the symbolic executor faces a path explosion problem as the

number of iterations in the loop can be very large (up to

2
64 − 1 iterations on a 64-bit machine).

To make this element meet the conditions for automated

verification, developers can modify its implementation as

shown in Figure 2. After the modification, the pointer-size

pair _bad_src and _num_bad_src is replaced with an abstract

data structure, Hashset. Besides that, the “for” loop to check

whether the source IP address is in the bad IP address list

is also replaced with a find method call. The code changes

... ...

void handler(...) {
...

}

verifier

proof or

counterexample

compiler

front-end

LLVM IR

compiler

back-end

runtime

libraries
executable

High-level

Properties (Python)

Element-level

Specification (Python)

Element Implementation (C)

Figure 3: Development Flow of Gravel. Top three boxes de-
note inputs from middlebox developers; rounded boxes de-
note compilers and verifiers of Gravel; rectangular boxes de-
note intermediate and final outputs.

remove both the use of pointers and unbounded loops. Fun-

damentally, this approach avoids the symbolic execution of

the data structure implementation by hiding the implemen-

tation under a well-defined data structure interface. When

performing the symbolic execution, we can simply provide

an encoding in satisfiability modulo theories (SMT) using

uninterpreted function theory for common data structures,

such as HashSet. Note that not all data structures can have

their interfaces encoded in SMT. The key challenge here is

to prevent state-space explosion: the size of the encoding

should not depend on the actual size of the data structure. We

managed to encode three commonly used data structures in

Click, Vector, HashSet, HashMap, into SMT. (See Appendix A.)

We now investigate how many of the elements can be

automatically verified with our data structure interfaces. We

let the static analyzer omit elements whose internal state is

stored exclusively using Vector, HashSet, HashMap. Table 1b

shows the result. The result shows that with the code modifi-

cation, 289 of Click elements (68%) are suitable for automated

verification.

3 The Gravel Framework
Gravel is a framework for specifying and verifying software

middleboxes written using Click [19]. It aims to verify high-

level middlebox properties, such as a load balancer’s connec-

tion persistency, against a low-level C++ implementation of

the middlebox.

Figure 3 shows the workflow of Gravel. Gravel expects

three inputs from middlebox developers:

(1) A Click configuration, which is a datagraph of Click

elements.

(2) A set of high-level middlebox specifications.

4

(3) Element-level specifications for all Click elements used

in the configuration.
2

Like building a normal Click middlebox, Gravel first takes

as input a directed graph of Click elements. In Click, a middle-

box is decomposed into smaller packet processing “elements”.

Each element keeps its own private state that is accessible

only to itself and has a set of handlers for events such as

incoming packet or timer events. Elements can also have a

number of input and output ports through which elements

can be connected with others and transfer packets. The di-

rected graph in Click configuration connects Click elements

together to form the dataplane for packet processing. The

topology of the directed graph remains unchanged during

the execution of the middlebox.

Then, Gravel requires a formalization of the high-level

middlebox properties. In order to check middlebox proper-

ties automatically with SMT solver, properties need to be

expressed using first-order logic. In Gravel, middlebox prop-

erties are formalized as predicates over a trace of events.

Gravel includes a Python library for developers to specify

the middlebox-specific properties.

Similarly, for each Click element, Gravel also requires a

specification. The element-level specification describes each

element’s private state and packet processing behavior. The

purpose of having an element-level specification is to provide

a simplified description of an element’s behavior and to omit

low-level details such as performance optimizations in the el-

ement’s C++ implementation. Gravel also provides a Python

library for developers to write element-level specifications.

With these three inputs, Gravel verifies the correctness

of the middlebox in two steps. First, Gravel checks whether

Click configuration composed using Click elements satis-

fies the desired high-level properties of the middlebox. A

high-level property is expressed as a symbolic trace of the

middlebox’s behavior (in Python). Gravel verifies the high-

level property by symbolically executing the datagraph of el-

ements using element-level specifications (in Python). Then,

Gravel verifies that the low-level C++ implementation of

each element has equivalent behavior as the element-level

specification. Gravel compiles the low-level C++ implemen-

tation into LLVM intermediate representation (LLVM IR) and

then symbolically executes the LLVM IR to obtain a symbolic

expression of the element. Gravel then checks whether the

element-level specification holds in the element’s symbolic

expression. If there is any bug in Click configuration or in the

element implementation, Gravel outputs a counterexample

that contains the element state and incoming packet that

makes the middlebox violate its specification.

2
Gravel provides specifications for commonly used elements.

Input

CheckIPHeader

CheckTCPHeader FlowTable

RoundRobinSwitch

TCP

Checksum

Output

Figure 4: Breakdown of ToyLB’s functionalities into packet-
processing elements.

3.1 A Sample Application: ToyLB
The rest of this section describes the Gravel framework in

the context of a simple running example corresponding to a

Layer-3 load balancer, ToyLB. ToyLB receives packets on its

incoming interface and forwards them to a pool of servers

in a round-robin fashion. It steers traffic by rewriting the

destination IP address on the packet. At a high-level, ToyLB

resembles popular Layer-3 load balancer designs used by

large cloud providers [14, 16].

The ToyLB middlebox is decomposed into 5 elements,

as shown in Figure 4. When there is an incoming packet,

it first goes through two header-checking elements (the

CheckIPHeader and the CheckTCPHeader). These two elements

act like filters and discard any packet that is not a TCP packet.

Then, the FlowTable element checks whether the packet be-

longs to a TCP flow that has been seen by ToyLB earlier. If

so, FlowTable encapsulates the packet with the correspond-

ing backend server’s IP address stored in the FlowTable and

sends the packet to the destination server. Otherwise, the

FlowTable consults a RoundRobinSwitch scheduler element to

decide which destination server should the new connection

bind to. After the RoundRobinSwitch decides which backend

server to forward the packet to, RoundRobinSwitch notifies

the FlowTable of the decision. The FlowTable stores the deci-

sion into its internal state and also rewrites the destination

address of the packet into the destination server. For further

simplicity, low-level functionalities such as ARP lookup are

omitted for ToyLB.

In the rest of the section, we describe how Gravel can be

used to model high-level specifications of middleboxes such

as ToyLB and then outline how the element-level properties

are specified. Later (§4), we show how Gravel performs the

aforementioned two steps of verification.

3.2 High-level Specifications
Gravel models the execution of a middlebox as a state ma-

chine. State transitions can occur in response to external

events such as incoming network packets or passage of time.

In Gravel, the passage of time is modeled as an external event.

The time event can be used to implement garbage collection

for middlebox states. For each state transition, the middle-

box may also send packets out. Overall, this models packet

rewriting, forwarding, and broadcasting.

5

Gravel follows a “run-to-completion” model: When pro-

cessing an incoming packet or event, the application always

runs until the packet is fully processed by the middlebox

before handling any other incoming packet or event.

To encode high-level middlebox properties, Gravel pro-

vides a specification programming interface, embedded in

Python. Developers can use Gravel’s specification program-

ming interface to describe the middlebox properties on a

symbolic event sequence. (See Appendix A.)

A packet in Gravel’s high-level specification is expressed

using a key-value map abstraction, where the keys are the

name of the header fields and values are the content of the

fields. This abstraction makes the specification concise and

hides the implementation details that are less related to high-

level properties (e.g., the position of source IP addresses in

the packet header).

Gravel provides three kinds of core interfaces (Appen-

dix A) in its high-level specification: (1) a set of sym_* func-

tions that allows developers to create symbolic representa-

tions of different types of states such as IP address, packet, or

middlebox state; (2) middlebox’s event handling functions,

like handle_packet(state, pkt), handle_time(state, timestamp),

that take as input the current state of the middlebox and the

incoming packet/time event, and returns the output from

the middlebox as well as the resulting states after a state

transition; and (3) the verify(formula) function call that first

encodes the given logical formula in SMT and invokes the

SMT solver to check if formula is always true. Besides that,

Gravel also provides some helper functions for developers

to encode high-level middlebox properties.

To make this concrete, we next describe how to encode

two high-level properties of ToyLB using this specification

programming interface. We describe how to encode two load

balancer properties: (1) liveness (2) connection persistency.

Let us first consider the liveness guarantee:

Property 1 (ToyLB liveness). For every TCP packet re-

ceived, ToyLB always produces an encapsulated packet.

In Gravel, this can be specified as:

def toylb_liveness():

create symbolic packet and symbolic ToyLB state

p, s0 = sym_pkt(), sym_state()

get the output packet after processing packet p

o, s1 = handle_packet(s0, p)

verify(Implies(is_tcp(p), Not(is_none(o))))

In this liveness formulation, we first construct a symbolic

packet p and the symbolic state of the middlebox s0. Then,

we let the middlebox with state s0 process the packet p by in-

voking the handle_packet function. After that, the state of the

middlebox changes to s1, and the output from the middlebox

is o. If o is None, the middlebox has not generated an outgoing

packet. This high-level specification says that, if the incom-

ing packet is a TCP packet, the middlebox has an outgoing

packet.

Note that the formulation of the liveness property is ab-

stract given that it does not say anything about what the state

of the middlebox looks like. We don’t even formulate the

set of data structures used in the middlebox. This is indeed

the benefit of using high-level specification in middlebox

verification. These formulations are concise and are directly

related to the desired middlebox properties.

Now, we move to a more complex load balancer property—

connection persistency. This property is crucial to the correct

functioning of a load balancer as it ensures that packets from

the same TCP connection are always forwarded to the same

backend server.

Property 2 (ToyLB persistency). If ToyLB forwards a TCP

packet to a backend b at time t , subsequent packets of the
same TCP connection received by ToyLB before time t +
WINDOW , where WINDOW is a pre-defined constant, will

also be forwarded to b.

Formulation of Property 2 is more complex than the live-

ness property because, the formulation requires a forwarding

requirement (i.e., the forwarding of packets of a certain TCP

connection to b) to hold over all possible event sequences

between time t and time t +WINDOW . This means that we

cannot formulate connection persistency with traces con-

taining only a single event, but, rather, we need to use in-

duction to verify that the property holds on event traces of

unbounded length.

Gravel allows us to specify Property 2 as an inductive in-

variant. First, we formulate the packet forwarding condition

that should be held during the time window:

def steer_to(state, pkt, dst_ip, t):

o0, s_n = handle_time(state, t)

o1, s_n2 = handle_packet(s_n, pkt)

return And(Not(is_none(o1)),

o1.ip4.dst == dst_ip,

payload_eq(o1, pkt))

The steer_to function defined above determines whether a

packet received at time t will be forwarded to the backend

server with address dst_ip. The code snippet first lets the

middlebox handle a time event with timestamp t, followed

by the handling of pkt. We ascertain whether the packet is

forwarded to dst_ip by checking that the output from the

packet processing is not None and that the resulting packet’s

destination address is dst_ip.

Then, for the base case of induction, we prove that once

ToyLB forwards a packet of a certain TCP connection to

a backend, subsequent packets from the same connection

received within a time periodWINDOW will be forwarded

to the same backend.

6

def base_case():

p0, p1, s0 = sym_pkt(), sym_pkt(), sym_state()

o, s1 = handle_packet(s0, p0)

dst_ip, t0 = sym_ip(), s0.curr_time()

t = sym_time()

ddl = t0 + WINDOW

verify(Implies(And(Not(is_none(o)),

o.ip4.dst == dst_ip,

from_same_flow(p0, p1)),

ForAll([t],

Implies(t <= ddl,

steer_to(s1, p1, dst_ip, t)))))

Similar to the formulation of the liveness property, the above

code snippet first creates two symbolic packets and a sym-

bolic middlebox state, then invokes handle_packet to obtain

the output packet as well as the new state after packet pro-

cessing. After that, the code requires the verifier to prove

that if p0 is forwarded to dst_ip, then a packet, p1, in the same

connection received any time before the expiration time ddl

is also forwarded to dst_ip, assuming that the middlebox

state hasn’t changed from state s1.

In addition to requiring the base case invariant, the specifi-

cation includes two inductive cases showing that processing

an additional event (e.g., processing a packet from a different

connection, processing a time event) does not change the

forwarding behavior.

def step_packet():

dst_ip, p0, p1 = sym_ip(), sym_pkt(), sym_pkt()

s0, t0, p_other = sym_state(), sym_time(), sym_pkt()

o, s1 = handle_packet(s0, p_other)

verify(Implies(And(steer_to(s0, p0, dst_ip, t0),

from_same_flow(p0, p1)),

steer_to(s1, p1, dst_ip, t0)))

def step_time():

dst_ip, p0, p1 = sym_ip(), sym_pkt(), sym_pkt()

s0, t0, t1 = sym_state(), sym_time(), sym_time()

_, s1 = handle_time(s0, t1)

verify(Implies(And(steer_to(s0, p0, dst_ip, t0),

t1 < t0,

from_same_flow(p0, p1)),

steer_to(s1, p1, dst_ip, t0)))

The two inductive cases prove that the invariant steer_to(...)

holds on the middlebox states when processing packets or

handling time events as long as the timestamp is before the

expiration time.

3.3 Element-level Specifications
Gravel also requires the developer to give specifications of

each individual element. The element-level specification in

Gravel consists of two parts: the definition of abstract states

that will be used by the element during execution, and a set

of event handling behaviors in response to incoming packets

and time events.

Element states. The specification of a Gravel element

starts with a declaration of the state associated with the ele-

ment. To ensure efficient encoding with SMT, Gravel requires

the state to be bounded. More specifically, elements’ state in

Gravel may contain: (1) fixed size variables including bitvec-

tors; (2) maps from one finite set to another (e.g., map from

IP address space to 64-bit integer). For example, in ToyLB,

the state of FlowTable is defined as:

class FlowTable(Element):

num_in_ports = 2

num_out_ports = 2

decisions = Map([AddrT, PortT, AddrT, PortT], AddrT)

timestamps = Map([AddrT, PortT, AddrT, PortT], TimeT)

curr_time = TimeT

...

This part of element-level specifications define three compo-

nents of FlowTable’s state:

• decisions maps from a TCP connection to a backend

server address. FlowTable identifies a TCP connection

by the tuple of source and destination addresses and

port numbers. This map is used to store the results

from the Selector element.

• timestamps stores the latest times at which packets

were received for each TCP flow stored in decision.

• curr_time stores the current time.

Here the types such as AddrT and TimeT are pre-defined in-

tegers of different bitwidths. Besides the state, the code

also informs Gravel as to how many input/output ports the

FlowTable element has through num_in_ports/num_out_ports.

Event handlers. As mentioned above, Gravel requires

each element to have a handler function for packets received

from its input ports. This packet handler needs to be speci-

fied in the element-level specification. The specification of

the packet handler describes the operations the element per-

forms when handling packets. Similarly, in the element-level

specification, developers can also declare handlers for other

events such as time events. In Gravel, the two event handlers

are defined as functions with the following signatures:

flowtable_handle_packet(state, pkt, in_port) → action_list

flowtable_handle_time(state, timestamp) → action_list

The return value of each event handler (action_list) is a list

of condition-action pairs. Each entry in the list describes the

action an element should take under certain conditions. In

the python code, developers can write:

Action(cond, { port_i : pkt_i }, new_state)

7

def flowtable_process_packet(s, p, in_port):

flow = p.ip4.saddr, p.tcp.sport, \

p.ip4.daddr, p.tcp.dport

the case when flowtable has record of the flow

known_flow = And(

packet is received from the network

in_port == IN_TCP_FILTER,

flowtable has record of the flow

flow in s.decisions)

construct the encapsulated packet

fwd_pkt = p.copy()

fwd_pkt.ip4.dst = s.decisions[flow]

update the timestamp of the flow with current time

after_fwd = s.copy()

after_fwd.timestamps[flow] = s.curr_time

known_flow_action =

Action(known_flow,

{PORT_TO_EXT: fwd_pkt}, after_fwd)

Figure 5: Example of an element-level action.

to denote an action that sends pkt_i to output port port_i

while also updating the element state to new_state. This ac-

tion will be taken when condition cond holds. To make it con-

crete, let’s consider the packet handler of FlowTable. Upon

receiving a packet, FlowTable does one of the followings:

• If the packet is from the CheckTCPHeader element, and

the decisions map contains a record for the connec-

tion, FlowTable rewrites the destination address and

sends the packet to TCP Checksum element, as shown

in Figure 5.

• If the FlowTable does not have a record for a packet,

the packet is sent to RoundRobinSwitch element.

• If the packet is sent from RoundRobinSwitch, FlowTable

records the destination decided by RoundRobinSwitch

and forwards the packet to TCP Checksum.

ToyLB’s element-level specifications are listed in Appendix B.

Similarly, FlowTable’s behavior in response to time changes

is also specified as condition-actions:

def flowtable_process_time(self, s, time):

new = s.copy()

update the "curr_time" state

new.curr_time = time

records with older timestamps should expire

def should_expire(k, v):

return And(s.timestamps.has_key(k),

time >= WINDOW + s.timestamps[k])

new.decisions = new.decisions.filter(should_expire)

new.timestamps = new.timestamps.filter(should_expire)

return [If(True, {}, new)]

When FlowTable is notified of a time change, it updates its

curr_time to the given time value. Gravel offers a filter inter-

face for its map object, which takes a predicate, should_expire,

and deletes all the entries that satisfy the predicate. FlowTable

uses this to remove all the records that were inactive for a

period longer than a constant WINDOW value.

4 Verifier Implementation
Gravel proves the middlebox properties with two theorems:

Theorem 1 (Graph Composition). The element-level speci-

fications, when composed using the given graph of the ele-

ments, meet the requirement in the high-level specification

of the middlebox.

Theorem 2 (Element Refinement). The C++ implementa-

tion of Click is a refinement of that element’s specification.

That is, every possible state transition and packet processing

action of the C++ implementation must have an equivalent

counterpart in the element-level specification.

Theorem 1 verifies that the composition of element-level

specifications meets the requirement in the high-level specifi-

cations. Theorem 2 verifies that Click’s C++ implementation

of each element meets its element-level specification.

4.1 Graph Composition
Gravel verifies the Graph Composition theorem (Theorem 1)

in two steps. First, Gravel symbolically executes an event

sequence specified in the high-level specifications. Second,

Gravel checks whether the high-level specifications hold

on the resulting state of the symbolic execution and the

outgoing packets.

Gravel performs symbolic execution on the directed graph.

Before the symbolic execution, Gravel creates a symbolic

state of the entire middlebox, which is a composition of the

symbolic states of all the elements in the middlebox. Re-

member that the high-level specification describes required

middlebox behavior on an event sequence. The goal here in

the symbolic execution is to reproduce the event sequence

symbolically. For example, if the high-level specification con-

tains an incoming packet, Gravel generates a symbolic in-

coming packet at the source element of the directed graph.

This incoming packet, when processed by the first element

of the graph, can trigger events in other downstream ele-

ments. These events are symbolically executed as well. If the

element-level specification contains a branch (e.g., depend-

ing on the packet header, a packet can be forward to one of

the two downstream elements), Gravel performs symbolic

execution in a breadth-first search manner.

After performing symbolic execution for each event type,

Gravel records the updated state of each element as well

as the packet produced by each output element. This infor-

mation is used by Gravel as the return value of the handle_*

functions in the high-level specification. Gravel then invokes

the functions defined in the high-level specification. Once

the verify function is invoked, Gravel encodes the high-level

8

specifications into SMT form and inquires the Z3 SMT solver

to see if they always hold.

Loops in the graph. Gravel allows the directed graph of

elements to contain loops in order to support bi-directional

communications between elements, such as FlowTable and

RoundRobinSwitch in ToyLB (§3). However, loops may in-

troduce non-halting execution when we symbolically ex-

ecute the datagraph. To address this issue, Gravel sets a

limit on the number of elements the symbolic execution

can traverse. When the symbolic execution hits this limit,

Gravel raises an alert and fails the verification. For exam-

ple, in ToyLB, the FlowTable is hit at most twice: when

FlowTable cannot find a record for a certain packet, the

packet is sent to RoundRobinSwitch, which will later send

the packet back to FlowTable; upon receiving packets from

RoundRobinSwitch, FlowTable records the selected backend

server into its own records and does not send the packet

back to RoundRobinSwitch. Thus, the maximum number of

elements traversed during the symbolic execution is 6, and

developers can safely set 6 as the limit for ToyLB.

The graph composition verifier is implemented with 1981

lines of Python code. The verifier exposes a similar set of

interfaces as Click configuration language so that developers

could port existing Click elements into the verifier. Currently,

the translation from Click configuration to the graph compo-

sition verifier can only be done manually. The verifier uses

the Python binding of Z3 to generate symbolic packets and

element states.

4.2 Element Refinement
Gravel verifies the Element Refinement theorem (Theorem 2)

in two steps. First, a symbolic expression of the element is

generated by symbolically execution of each event handler’s

compiled LLVM intermediate representation. Second, Gravel

checks if the element’s specification holds on the symbolic

expression of the implementation.

Before performing the symbolic execution, Gravel first

uses the LLVM library to extract the memory layout of the

C++ class of the element, along with the types of each of its

member variables. The verifier can later use this information

to determine which field is accessed when it encounters a

memory access instruction in LLVM bytecode. As mentioned

in §2.3, in order to bound the symbolic execution step and

state size, abstract data structures are executed by using their

abstract SMT model instead of actual implementation code.

A complete list of the data structures and interfaces replaced

is given in Appendix A.

For packet content access and modification, Gravel’s sym-

bolic executor is compatible with Click’s Packet interface. In

the compiled LLVM bytecode, packet content accesses are

compiled into memory operations over a memory buffer. To

establish the relation between packet header fields and mem-

ory offsets, Gravel needs to extract the symbolic header field

value for each output packet after the symbolic execution.

To do so, Gravel first computes offsets for each header field.

Note that these offsets are also symbolic values as they de-

pend on the content of other packet fields. After that, Gravel

extracts the value of each header field from the memory

buffer of the packet. Each extracted value is then encoded

into an SMT formula and compared against fields from the

abstract packet object using an SMT solver. Gravel concludes

that the packet object and the memory buffer are equivalent

when values of all fields are equivalent.

At the end of symbolic execution, the verifier gets a list

of ending states, along with the packets sent out at each

output port and the path conditions under which it can be

reached. For each entry in the list, Gravel uses Z3 to find an

equivalent counterpart in the element specification. If such

a counterpart exists for all of the entries, the refinement of

the element is proved.

Gravel’s element refinement verifier is implemented in

C++ on top of the LLVM library. The verifier invokes LLVM li-

brary’s IR parser to load the compiled LLVMbytecode of each

Click element. To perform the symbolic execution, Gravel

uses the InstVisitor interface to traverse through the in-

structions. Besides the SMT encoding of all LLVM instruc-

tions used in the compiled Click elements, the verifier also

has the SMT encoding of the abstract data types as described

in §2. The refinement verifier and the symbolic executor

consists of 10396 lines of C++.

4.3 Trusted Computing Base
The trusted computing base (TCB) of Gravel includes the

verifier (used for proving Theorem 1 and Theorem 2), the

high-level specifications, the tools it depends on (i.e., the

Python interpreter, the LLVM compiler framework, and the

Z3 solver), and Click runtime. Note that the specification of

each element is not trusted.

5 Evaluation
This section aims to answer the following questions:

• Howmuch effort is needed to port existing Click appli-

cations into Gravel? Can Gravel scale to verify existing

Click applications?

• Can Gravel’s verification framework prevent bugs?

• How much run-time overhead does the code modifica-

tion introduce to middleboxes in order for them to be

automatically verifiable by Gravel?

5.1 Case Studies
To evaluate whether Gravel can work for existing Click appli-

cations, we port four Click applications to Gravel. For each

application, we choose a set of high-level middlebox-specific

9

Component LOC Verif. LOC

Time (s) changed

MazuNAT Impl 6457 – 133

Spec (element) 443 64.60 –

Spec (high-level) 177 3.78 –

Firewall Impl 4294 – 63

Spec (element) 73 32.30 –

Spec (high-level) 70 0.67 –

Load

Balancer

Impl 4336 – 63

Spec (element) 101 10.87 –

Spec (high-level) 68 1.48 –

Proxy Impl 2683 – 50

Spec (element) 92 30.63 –

Spec (high-level) 39 0.72 –

Table 2: Development effort and verification time of using
Gravel on four Click-based middleboxes.

properties either by formalizing them directly or extracting

them from existing RFCs. We use Gravel to verify that these

properties hold for Click applications. Gravel also automati-

cally verifies the low-level properties, such as memory safety

and bounded execution.

5.1.1 MazuNAT
MazuNAT is a NAT that has been used by Mazu Networks.

MazuNAT consists of 33 Click elements. (See Appendix C.)

MazuNAT forwards traffic between two network address

spaces, the internal network, and the external network. It

mainly performs two types of packet rewriting:

(1) For a packet whose destination address is the NAT, the

NAT rewrites its destination IP address and port with

the corresponding endpoint in the internal network.

(2) For a packet going from the internal to the external net-

work, NAT assigns an externally visible source IP ad-

dress and port to the connection. The NAT also needs

to keep track of assigned addresses and ports to guar-

antee persistent address rewriting for packets in the

same connection.

One common middlebox property we have for all four

applications is that the middlebox should not change the

payload of the packet:

Property 3 (Payload Preservation). For any packet that

is processed by the middlebox, the middlebox never modifies

the payload of the packet.

For NAT-specific properties, we verified that MazuNAT

meets the requirements proposed in RFC5382 [2]. These

requirements are proposed to make NATs transparent to

applications running behind them [15].

Property 4 (Endpoint-Independent Mapping). For pack-

etsp1 andp2, both sent from internal address and port (X : x),
where

• p1 is targeting external endpoint (Y1 : y1) and got its

source address and port translated to (X ′
1
: x ′

1
)

• p2 is targeting external endpoint (Y2 : y2) and got its

source address and port translated to (X ′
2
: x ′

2
)

then the NAT should guarantee that (X ′
1
: x ′

1
) and (X ′

2
: x ′

2
)

are always equal.

Property 5 (Endpoint-Independent Filtering). Consider

external endpoints (Y1 : y1) and (Y2 : y2). If NAT allows con-

nections from (Y1 : y1), then it should also allow connections

from (Y2 : y2) to pass through.

Property 6 (Hairpinning). If the NAT currently maps in-

ternal address and port (X1 : x1) to (X ′
1
: x ′

1
), a packet p

originated from the internal network whose destination

is (X ′
1
: x ′

1
) should be forwarded to the internal endpoint

(X1 : x1). Furthermore, the NAT also needs to create an ad-

dress mapping for p’s source address and rewrite its source

address according to the mapping.

These properties are essential to ensure the transparency

of the NAT and is required for TCP hole punching in peer-

to-peer communications.

We also prove that the MazuNAT preserves the address

mapping for a constant amount of time:

Property 7 (Connection Memorization). If at time t , the
NAT forwards a packet from a certain connection c , then for

all states s ′ reachable before time t + THRESHOLD, where
THRESHOLD is a predefined constant value, packets in c can
still be forwarded.

Property 7 guarantees that the NAT can translate the ad-

dress of all packets from a TCP connection consistently. The

constant THRESHOLD defines a time window where the TCP

connection should be memorized by NAT, leaving to the ac-

tual implementation the freedom to recycle the resources

used for storing connection information after the time win-

dow expires.

5.1.2 Load Balancer
Besides the round-robin load balancer mentioned in §3, we

also verified a load balancer using Maglev’s hashing algo-

rithm [14]. Its element graph looks exactly the same as in

Figure 4. The only difference is that the RoundRobinSwitch

element is replaced by a hashing element that uses consistent

hashing. The load balancer steers packets by rewriting the

destination IP address.

We verified connection persistency for both of the load

balancers. The goal of connection persistency is to make load

balancing transparent to the clients.

Property 8 (Load Balance Persistence). For all packets

p1 and p2 from connection c , if the load balancer steers p1
to a backend server, then the load balancer steers p2 to the

same backend server before c is closed.
10

Middlebox Bug ID Description Can be prevented? Why/Why not?

Load

Balancer

bug #12 Packet corruption ✓ high-level specification

bug #11 Counter value underflow ✓ element refinement

bug #10 Hash function not balanced ✗ not formalized in specification

bug #6 throughput not balanced ✗ not formalized in specification

Firewall bug #822 Counter value underflow ✓ element refinement

bug #691 segfault by uninitialized pointer ✓ element refinement

bug #1085 Malformed configuration leading crash ✗ Gravel assumes correct init

NAT bug #658 Invalid packet can bypass NAT ✓ element refinement

bug #227 Stale entries may not expire ✓ high-level specification

bug #148 Infinite loop ✓ element refinement

Table 3: Bugs from real-world software middleboxes

5.1.3 Stateful Firewall

The stateful firewall is adapted from the firewall example

in the Click paper [19]. Besides performing static traffic fil-

tering, it also keeps track of connection states between the

internal network and the external network. The firewall up-

dates connection states when processing TCP control packets

(e.g., SYN, RST, and FIN packets), and removes records for

connections that are finished or disconnected.

We prove that the stateful firewall can prevent packets

from unsolicited connections [21]. Also, the firewall should

garbage collect finished connections.

Property 9 (Firewall Blocks Unsolicited Connection).

For any connection c , any packet p in c from the external

network is not allowed until a SYN packet has been sent

from the internal network.

Property 10 (Firewall Garbage-collects Records). For

any connection c , a packet p in c from the external network

is blocked after the firewall sees a FIN or RST packet.

5.1.4 Web Proxy

The Web proxy is a middlebox that transparently forwards

all web request packets to a dedicated proxy server. When

the middlebox receives a packet, it first identifies if it is a

web request by checking the TCP destination port number.

For web request packets, the proxy middlebox rewrites the

packet header to redirect the packet to the proxy server, and

also memorize the translation in order to forward the reply

messages from the proxy.

We prove that the web proxy middlebox forwards packets

in both directions.

Property 11 (Web Proxy Bi-directional). For a web re-

quest packet p with 5-tuple (SA, SP, DA, DP, PROTO), if the

middlebox forwardsp from the external network to the proxy

server and rewrites the 5-tuple to (SA’, SP’, DA’, DP’, PROTO),

then a packet from the reply flow with 5-tuple (DA’, DP’, SA’,

SP’, PROTO) should be forwarded back to the sender.

5.2 Verification Cost
To understand the cost of middlebox verification on Gravel,

we evaluate the amount of development effort and also the

verification time. Table 2 shows the result.

Development effort.We find that porting existing Click

applications to Gravel requires little effort and that writing

specifications with Gravel are also easy. We only modified

113 lines of code in MazuNAT to make it compatible with

Gravel. The firewall and load balancer required only 63 lines

of code modifications. Our proxy middlebox required 50 lines

of code to be changed. The specifications needed to verify

those middleboxes are concise. The high-level specification is

below 200 lines of code and the element-level specifications

are less than 450 lines of code for all three middleboxes. The

associated developer effort is also small. For the web proxy, it

took less than one person-day for writing both the high-level

properties and the element specifications. The load balancer

and the stateful firewall each required a full day’s effort in

order to port them to Gravel and verify their correctness. The

most complicated middlebox in our case study, MazuNAT,

took about 5 person-days to port and specify.

Verification time. With Gravel’s two-step verification

process, Gravel’s verifier can efficiently prove that themiddle-

box applications provide the desired properties. Most of the

verification time is spent on proving the equivalence of the

C++ implementation of each element and its element-level

specification. Verification of the high-level specifications

from the element-level specifications took less than 4 seconds

for the different applications. Overall, even for MazuNAT,

the overall verification time is just over a minute.

5.3 Bug prevention
When verifying MazuNAT with Gravel, we found that the

original MazuNAT implementation does not possess the end-

point independent mapping property (Property 4). Mazu-

NAT uses a 5-tuple as the key to memorize rewritten flows.

This means that when MazuNAT forwards a packet coming

from the external network, the packet’s source IP address

and source port affects the forwarding behavior, violating

Property 4. To fix this, we changed the implementation of

11

IPRewriter element of MazuNAT to use only a part of the

5-tuple when memorizing flows.

To evaluate the effectiveness of Gravel at a broader scope,

we manually analyze bugs from several open-source middle-

box implementations. We wanted to understand whether

these bugs can happen if the middlebox is built using Gravel.

We examine bug trackers of software middleboxes with simi-

lar functionalities as those in our case studies (i.e., NAT, load

balancer, firewall) and search the CVE list for related vulner-

abilities. We inspect bug reports from the NAT and firewall

of the netfilter project [3], and the Balance load balancer [1].

Since the netfilter project contains components other than

the NAT and the firewall, we use the bug tracker’s search

functionality to find bugs relevant only to its NAT and fire-

wall components. We inspect the most recent 10 bugs for all

three kinds of middleboxes and list the result in Table 3.

Of the 30 bugs we inspected, we exclude 10 bugs for fea-

tures that are not supported in our middlebox implemen-

tations, 3 bugs related to documentation issues, 5 bugs on

command line interface, and 2 bugs on performance.

From the remaining 10 bugs, Gravel’s verifier is able to

catch 7 of them. Among these bugs, Bug #12 in the load

balancer and bug #227 in the NAT can be captured by the

verification of the high-level specification as they lead to the

violation of Property 3 and Property 7 respectively. Other

bugs involving integer underflow or invalid memory access

can be captured by the C verifier. Note that there are still

three bugs Gravel cannot capture, such as incorrect initial-

ization of the system and properties that are not in our high-

level specifications (e.g., unbalanced hashing).

5.4 Run-time Performance

To examine the run-time overhead introduced by the code

modifications we made, we compare the performance of the

middleboxes before and after the code modifications. We run

these Click middleboxes on DPDK.

Our testbed consists of two machines each with Intel Xeon

E5-2680 (12 physical cores, 2.5 GHz), running Linux (v4.4)

and has a 40Gbps Intel XL710 NIC. The two machines are

directly connected via a 40Gbps link. We run the middlebox

application with DPDK on one machine and use the other

machine as both the client and the server.

The code modification to make these Click applications

compatible with Gravel has minimal run-time overhead. We

measure the throughput of 5 concurrent TCP connections

using iperf, and use NPtcp for measuring latency (round trip

time of a 200-byte TCP message). Table 4 shows the results.

The code modifications introduce negligible overheads in

terms of throughput and latency.

Throughput Latency

Middlebox (Gbits / sec) (µ sec)

MazuNAT Unverified 37.43 32.15

Gravel 37.41 33.16

Load

Balancer

Unverified 37.48 30.68

Gravel 37.47 30.79

Firewall Unverified 37.42 32.20

Gravel 37.42 32.37

Proxy Unverified 37.60 32.03

Gravel 37.59 32.17

Table 4: Performance of verified middleboxes, compared to
their unmodified counterparts.

6 Related Work
Middlebox verification. Verifying correctness of middle-

boxes is not a new idea. Software dataplane verification [13]

uses symbolic execution to catch low-level programming

errors in existing Click elements [19]. Gravel targets high-

level middlebox-specific properties, such as load balancer’s

connection persistency. VigNAT [26] further proves a NAT

with a low-level pseudocode specification. We believe it is

non-trivial to extend VigNAT to verify the set of high-level

NAT properties (e.g., hairpinning, endpoint-independence)

Gravel can verify.

Network verification. In the broader scope of network

verification, most existing work [9, 10, 17, 18, 24] targets

verifying network-wide objectives (e.g., no routing loop)

assuming an abstract switch/middlebox operation model.

Gravel, alongwith othermiddlebox verificationwork [13, 26],

aims to verify the low-level C/C++ implementation of a single

middlebox’s implementation.

SMT-based automated verification. Automated soft-

ware verification using symbolic execution has recently be-

come popular. This technique has been used to success-

fully verify file systems [25], and operating systems [22].

However, this technique usually requires a complete re-

implementation of the target application because of the re-

stricted programming model. We conduct a systematic study

on (§2) whether unmodified Click elements can be automati-

cally verified.

7 Conclusion
Verifying middlebox implementations has long been an at-

tractive approach to obtain network reliability. We explore

the feasibility of verifying “almost unmodified” software

middleboxes. Our empirical study on existing Click-based

middleboxes shows that existing Click-based middleboxes,

with small modifications, are suitable for automated veri-

fication using symbolic execution. Based on this, we have

designed and implemented a software middlebox verifica-

tion framework, Gravel. Gravel allows verifying high-level

12

middlebox properties of “almost unmodified” Click appli-

cations. We ported four Click applications to Gravel. Our

evaluation shows that Gravel can avoid bugs found in ex-

isting middleboxes with small proof effort. Our evaluation

also shows that the modifications required for automated

verification incur negligible performance overheads. All of

Gravel’s source code will be publicly available online. This

work does not raise any ethical issues.

References
[1] Balance, Inlab Networks. https://www.inlab.net/

balance/.

[2] NAT Behavioral Requirements for TCP. Available from

IETF https://tools.ietf.org/html/rfc5382.

[3] The netfilter.org project. https://www.netfilter.org.

[4] CVE-2013-1138. Available from MITRE, CVE-ID CVE-

2013-1138., 2013.

[5] CVE-2014-3817. Available from MITRE, CVE-ID CVE-

2014-3817., 2014.

[6] CVE-2014-9715. Available from MITRE, CVE-ID CVE-

2015-9715., 2014.

[7] CVE-2015-6271. Available from MITRE, CVE-ID CVE-

2015-6271., 2015.

[8] CVE-2017-7928. Available from MITRE, CVE-ID CVE-

2017-7928., 2017.

[9] Arashloo, M. T., Koral, Y., Greenberg, M., Rexford,

J., and Walker, D. SNAP: Stateful Network-Wide Ab-

stractions for Packet Processing. In SIGCOMM (2016).

[10] Beckett, R., Gupta, A., Mahajan, R., and Walker, D.

A General Approach to Network Configuration Verifi-

cation. In SIGCOMM (2017).

[11] Coq development team. The Coq Proof Assistant
Reference Manual, Version 8.5pl2. INRIA, July 2016.

http://coq.inria.fr/distrib/current/refman/.

[12] de Moura, L., and Bjørner, N. Z3: An efficient SMT

solver. pp. 337–340.

[13] Dobrescu, M., and Argyraki, K. Software Dataplane

Verification. In NSDI (2014).
[14] Eisenbud, D. E., Yi, C., Contavalli, C., Smith, C.,

Kononov, R., Mann-Hielscher, E., Cilingiroglu, A.,

Cheyney, B., Shang, W., and Hosein, J. D. Maglev: A

Fast and Reliable Software Network Load Balancer. In

NSDI (2016).
[15] Ford, B., Srisuresh, P., and Kegel, D. Peer-to-peer

communication across network address translators. In

USENIX Annual Technical Conference, General Track
(2005), pp. 179–192.

[16] Gandhi, R., Liu, H. H., Hu, Y. C., Lu, G., Padhye, J.,

Yuan, L., and Zhang, M. Duet: Cloud Scale Load Bal-

ancing with Hardware and Software. In SIGCOMM
(2014).

[17] Kazemian, P., Varghese, G., andMcKeown, N. Header

Space Analysis: Static Checking for Networks. In NSDI
(2012).

[18] Khurshid, A., Zou, X., Zhou, W., Caesar, M., and

Godfrey, P. B. VeriFlow: Verifying Network-wide In-

variants in Real Time. In NSDI (2013).
[19] Kohler, E., Morris, R., Chen, B., Jannotti, J., and

Kaashoek, M. F. The Click modular router. TOCS
(2000).

[20] Leino, K. R. M. Dafny: An automatic program verifier

for functional correctness. pp. 348–370.

[21] Moshref, M., Bhargava, A., Gupta, A., Yu, M., and

Govindan, R. Flow-level State Transition as a New

Switch Primitive for SDN. In HotSDN (2014).

[22] Nelson, L., Sigurbjarnarson, H., Zhang, K., Johnson,

D., Bornholt, J., Torlak, E., and Wang, X. Hyperker-

nel: Push-Button Verification of an OS Kernel. In SOSP
(2017).

[23] Nipkow, T., Paulson, L. C., and Wenzel, M. Is-
abelle/HOL: A Proof Assistant for Higher-Order Logic.
Springer-Verlag, Feb. 2016.

[24] Panda, A., Lahav, O., Argyraki, K. J., Sagiv, M., and

Shenker, S. Verifying Reachability in Networks with

Mutable Datapaths. In NSDI (2017).
[25] Sigurbjarnarson, H., Bornholt, J., Torlak, E., and

Wang, X. Push-button Verification of File Systems via

Crash Refinement. In OSDI (2016).
[26] Zaostrovnykh, A., Pirelli, S., Pedrosa, L., Argyraki,

K., and Candea, G. A Formally Verified NAT. In

SIGCOMM (2017).

13

https://www.inlab.net/balance/
https://www.inlab.net/balance/
https://tools.ietf.org/html/rfc5382
https://www.netfilter.org
http://coq.inria.fr/distrib/current/refman/

A Gravel Programming Interface
A.1 High-level Specification Interface
Table 5 gives a list of the interfaces Gravel offers to the

developers. The core interfaces of Gravel includes:

• Functions that generates symbolic value (bitvectors)

of different sizes (the sym_* API).

• Functions that performs graph composition and re-

turns the result of packet or event processing (handle_*)

• The verify function which informs Gravel’s verifier

the verification task to perform.

Besides the core interfaces, Gravel also provides a set of

helper functions to ease the formalization effort. These func-

tions include functions that access header fields and func-

tions that checkswhether two packets are from the same TCP

flow. Table 5 also lists some examples of helper functions.

A.2 Modeling Abstract Data Structure
As discussed in §4, Gravel masks the actual C++ implementa-

tion of several data structures and replace them with an SMT

encoding during the symbolic execution in order to generate

SMT expressions that could be efficiently reasoned about by

SMT solvers. Table 6 lists all the interfaces that Gravel’s sym-

bolic executor masks during the verification process. This

section gives more details on how Gravel generates SMT

encoding for these data structure interfaces in a way that

the resulting formular can be effciently solved.

Unlike bounded data such as the content of a network

packet or an integer field in element state, which can be

encoded as a symbolic byte sequence using the bitvector

theory of SMT, these data structures have a large state space.

This means that encoding them with bitvectors does not

results in practically solvable expression. For example, the

state of a HashMap<IPAddress, IPAddress> could grow up to

2
64−1 bytes. This sheer size makes it infeasible to be encoded

using bitvectors.

Gravel’s symbolic executor choose to use a different ap-

proach and represents data structures as a set of uninter-

preted functions. In the aforementioned HashMap example,

Gravel represents the map as two functions:

fcontain : {0, 1}32 7→ {⊥,⊤}

fvalue : {0, 1}
32 7→ {0, 1}32

fcontain maps from the key space {0, 1}32 to boolean space

and represents whether certain key is present in the HashMap.

Similarly, fvalue represents the mapping between hashmap

keys and the corresponding values.

Each of the data structure interfaces is also modeled by

Gravel as operations performed on uninterpreted functions.

For the find(K k) interface of HashMap, Gravel first gets the

symbolic value representing whether the key is in the map

by computing fcontain(k). Based on the result, Gravel takes

different actions:

If fcontain(k) = ⊤, find(k) = fvalue (k)

If fcontain(k) = ⊥, find(k) = ⊥

In the actual implementation,⊥ is represented as HashMap::end().

The intert(K k, V v) interface performs update on the

content of the HashMap. In Gravel, this is modeled as creating

a new set of uninterpreted functions, f ′contain and f ′value
such that:

∀k ′ ∈ {0, 1}32·

f ′contain(k
′) = (fcontain(k

′) ∨ (k = k ′))

∧(k , k ′) ⇒ f ′value (k
′) = fvalue (k

′)

∧f ′value (k) = v

Similarly, erase(K k) replaces fcontain with a new func-

tion f ′contain such that:

∀k ′ ∈ {0, 1}32 · f ′contain(k
′) = fcontain(k

′) ∧ (k , k ′)

Besides modeling interfaces from existing Click code base,

Gravel also adds a set of iteration interfaces that corresponds

to commonly used data structure traverse paradigms. These

interfaces could be used to abstract away loops in the Click

implementation and making more elements feasible for au-

tomated verification.

Gravel currently provides two interfaces for HashMap, map

and filter. for map interface, Gravel takes as parameter a

function д and replace fvalue with a function f ′value where:

∀k ∈ {0, 1}32 · f ′value (k) = д(k, fvalue)

Similarly, filter takes a predicate p and create a function

f ′contain such that:

∀k ∈ {0, 1}32 · f ′contain(k) = p(k, fvalue)

The modeling of interfaces of Vector and HashSet are sim-

ilar to the modeling of HashMap mentioned above. The main

difference are that HashSet only uses fcontain function, where
as Vector uses a symbolic integer to denote the size of the

vector and does not have a fcontain function.

B ToyLB’s Element-level Specification
This section gives a detailed description of the element-level

specification of ToyLB. As mentioned in §3, element-level

specification in Gravel is given as a list of “condition-action”

pairs. In Gravel, developers write python functions that gen-

erates the list of possible actions for an element. For example,

The CheckIPHeader element only forwards packets that are

both IP packets and are not from a known “bad” address:

def checkipheader_process_packet(s, p, in_port):

is_bad_src = p.ip.src in s.bad_src

return [Action(And(p.ether.ether_type == 0x0800,

Not(is_bad_src)),

14

Function name Description

Core Interfaces:

sym_*() → SymValT Create a symbolic value of corresponding type

handle_packet(s, pkt, in_port) → o1, · · · , on, ns Handle the packet and returns the outputs and new state

handle_time(s, timestamp) → o1, · · · , on, ns Handle time event, return value is same as handle_packet

verify(formula) Encode given formula and verify that a formula always holds

Helper Functions:

is_none(output) → Bool Check if an output is None

payload_eq(p1, p2) → Bool Determine if two packets have the same payload

from_same_flow(p1, p2) → Bool Determine if two packets are from the same TCP connection

is_tcp(pkt) → Bool Check if a packet is TCP packet

Table 5: Gravel’s specification programming interface.

{0: p},

s)]

Remember that the Action is used to create a condition-action
entry, which denotes an action that the element takes under

certain condition (§3).

Similarly, CheckTCPHeader filters all packets that are not

TCP packets.

def checktcpheader_process_packet(s, p, in_port):

return [Action(p.ip.proto == 6,

{0: p},

s)]

RoundRobinSwitch not only performs address rewriting for

incoming packets, it also updates packet header fields and

its own state:

def roundrobinswitch_process_packet(s, p, in_port):

ns, np = s.copy(), p.copy()

dst_ip = s.addr_map[s.cnt]

ns.cnt = (s.cnt + 1) % s.num_backend

np.ip4.dst = dst_ip

return [Action(True, {0: np}, ns)]

The FlowTable element have a more complex specification

as it takes one of three actions based on both the content of

the incoming packet and its own state:

def flowtable_process_packet(s, p, in_port):

flow = p.ip4.saddr, p.tcp.sport, \

p.ip4.daddr, p.tcp.dport

the case when flowtable has record of the flow

known_flow = And(

packet is received from the network

in_port == IN_TCP_FILTER,

flowtable has record of the flow

flow in s.decisions)

construct the encapsulated packet

fwd_pkt = p.copy()

fwd_pkt.ip4.dst = s.decisions[flow]

update the timestamp of the flow with current time

after_fwd = s.copy()

after_fwd.timestamps[flow] = s.curr_time

known_flow_action =

Action(known_flow,

{PORT_TO_EXT: fwd_pkt}, after_fwd)

the case when flowtable does not know the flow

consult_sched = And(

in_port == INPORT_NET,

Not(flow in s.decisions))

unknown_flow_action =

Action(consult_sched, {PORT_TO_SCHED: p}, s)

packet from the Scheduler

register_new_flow = in_port == IN_SCHED

extract the new_flow

new_flow = p.inner_ip.saddr, p.tcp.sport, \

p.inner_ip.daddr, p.tcp.dport

add the record of the new_flow to FlowTable

after_register = s.copy()

after_register.decisions[new_flow] = p.ip4.daddr

after_register.timestamps[new_flow] = s.curr_time

register_action =

Action(register_new_flow, {PORT_TO_EXT: p},

after_register)

return [known_flow_action,

unknown_flow_action,

register_action]

C Verifying Properties of MazuNAT
The MazuNAT middlebox is the most complicated applica-

tion Gravel verifies in the case study (§5.1). Figure 6 shows

the directed graph of Click elements extracted from its con-

figuration file.

The three properties of MazuNAT proved by Gravel are

extracted from RFC [2]. They are important to provide trans-

parency guarantees for application running inside the net-

work. Here we give the formalization of them in Gravel using

Gravel’s Python interface.

Payload Preservation (Property 3). The specification
of Property 3 simply says that the payload of any packet

15

Function name Description

Vector<T>:

const T& get(unsigned int) Get value by index

void set(unsigned int i, T v) Set i-th value of vector to v

void map(void(*)(T) f) Apply function f for all value in vector

HashMap<K, V>:

V &find(K k) Lookup by key k

void insert(K k, V v) Insert key-value pair k, v into the hashmap

void erase(K k) Delete key k from the hashmap

void map(void(*)(K k, V v) f Apply function f to all key-value pair in hashmap

void filter(bool(*)(K k, V v) p) Filter key-value pairs in the hashmap with predicate p

HashSet<T>:

T &find(T v) Check if v is present in hashset

void insert(T v) Insert v into the hashset

void erase(T v) Delete v from the hashset

void filter(bool(*)(T v) p) Filter with predicate p

Table 6: Data structure interfaces supported by Gravel.

forwarded by the middlebox remains the same. Note that

this is a general property that can be verified on multiple

middleboxes.

def test_payload_unchanged(self):

p, s = sym_pkt(), sym_state()

for source in sources:

ps, _ = handle_packet(s, source, p)

for sink in sinks:

verify(Implies(Not(ps[sink].is_empty()),

ps[sink].payload == p.payload))

Endpoint Independent (Property 4). The high-level

specification of Property 4 starts with creating symbolic

packet p1 and symbolic state s. Then it creates a new packet

p2 by replace only the source address and port with fresh sym-

bolic values. After that the specification uses process_packet

to get the resulting packets from processing p1 and p2. Finally,

we ask the verifier to check whether the resulting packets

(o1 and o2 in the code snippet below) are sent to the same

destination.

def test_ep_independent(self):

p1, s = sym_pkt(), sym_state()

ps1, _ = handle_packet(s, 'from_extern', p1)

p2 = p1.copy()

p2.ip.src = sym_ip()

p2.tcp.src = sym_port()

p2.udp.src = sym_port()

ps2, _ = handle_packet(s, 'from_extern', p2)

for sink in sinks:

o1 = ps1[sink]

o2 = ps2[sink]

verify(Implies(Not(o1.is_empty()),

And(Not(o2.is_empty()),

o1.ip.dst == o2.ip.dst,

dst_port(o1) == dst_port(o2))))

Hairpinning (Property 6). As shown below, rather than

inspecting the state of elements in MazuNAT to determine

whether a address mapping is established. Gravel uses the

packet forwarding behavior as the indicator. The specifica-

tion says that if a packet p1 from external network is for-

warded to internal network. any packet p2 with the same

destination address and port received from internal network

is also forwarded to the same destination in the internal

network.

def test_hairpinning(self):

p1, p2, s = sym_pkt(), sym_pkt(), sym_state()

out1, _ = handle_packet(s, 'from_extern', p1)

out2, _ = handle_packet(s, 'from_intern', p2)

o1 = out1['to_intern']

o2 = out2['to_intern']

verify(Implies(And(p1.ip.dst == p2.ip.dst,

p1.ip.proto == p2.ip.proto,

dst_port(p1) == dst_port(p2),

o1.not_empty()),

And(o2.not_empty(),

o1.ip.dst == o2.ip.dst,

o1.tcp.dst == o2.tcp.dst)))

Connection memorization (Property 7). The formaliza-

tion of Property 7 uses the same inductive approach as in

the ToyLB example. As shown below, the specification is

decomposed into a base case and two inductive cases. The

base case states that when a packet from internal network is

forwarded to external world by MazuNAT, the translation

will be still effective within the time window THRESHOLD.

def test_memorize_init(self):

p0, p1, s0 = sym_pkt(), sym_pkt(), sym_state()

o, s1 = handle_packet(s0, 'from_intern', p0)

ext_port = o['to_extern'].tcp.src

t = s0['rw'].curr_time

16

ddl = t + THRESHOLD

verify(Implies(is_tcp(p0),

steer_to(c, s1, p0, ext_port, ddl)))

Then, the two inductive cases show that processing a packet

from other flows or any time event before the end of the

time window do not effect existing translation mappings.

def test_memorize_step_pkt(self):

p0, p1, s0 = sym_pkt(), sym_pkt(), sym_state()

t = sym_time()

p_diff = sym_pkt()

ext_port = sym_port()

_, s1 = handle_packet(s0, 'from_intern', p_diff)

verify(Implies(And(steer_to(c, s0, p0, ext_port, t),

from_same_flow(p0, p1)),

steer_to(c, s1, p0, ext_port, t)))

def test_memorize_step_time(self):

ext_port = fresh_bv('port', 16)

p0, p1, s0 = sym_pkt(), sym_pkt(), sym_state()

t0, t1 = sym_time(), sym_time()

_, s1 = handle_time(s0, 'rw', t1)

verify(Implies(And(steer_to(c, s0, p0, ext_port, t0),

z3.ULT(t1, t0),

from_same_flow(p0, p1)),

steer_to(c, s1, p1, ext_port, t0)))

17

From Internal From External

Classifier Classifier

StripStrip

CheckIPHeader CheckIPHeaderARPResponder

IPClassifierARPResponder IPClassifier

IPClassifier FTPPortMapper IPClassifier

IPRewriter

TCPRewriter Discard

IPClassifier IPClassifier

CheckIPHeader CheckIPHeaderTee

To Host

ARPQuerier

EtherEncap

To Internal

To External

Classifier Classifier

StripStrip

CheckIPHeader CheckIPHeaderARPResponder

IPClassifierARPResponder IPClassifier

IPClassifier FTPPortMapper IPClassifier

IPRewriter

TCPRewriter Discard

IPClassifier IPClassifier

CheckIPHeader CheckIPHeaderTee

ARPQuerier

EtherEncap

Figure 6: The directed graph of elements in MazuNAT.

18

	Abstract
	1 Introduction
	2 Encoding Existing Software Middleboxes
	2.1 Automated verification
	2.2 Feasibility of automated verification on Click
	2.3 Code Modification for automated verification

	3 The Gravel Framework
	3.1 A Sample Application: ToyLB
	3.2 High-level Specifications
	3.3 Element-level Specifications

	4 Verifier Implementation
	4.1 Graph Composition
	4.2 Element Refinement
	4.3 Trusted Computing Base

	5 Evaluation
	5.1 Case Studies
	5.2 Verification Cost
	5.3 Bug prevention
	5.4 Run-time Performance

	6 Related Work
	7 Conclusion
	References
	A Gravel Programming Interface
	A.1 High-level Specification Interface
	A.2 Modeling Abstract Data Structure

	B ToyLB's Element-level Specification
	C Verifying Properties of MazuNAT

