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Abstract
Several manufacturers have recently announced the

first simultaneous-multithreaded processors, both as sin-
gle CPUs and as components of multi-CPU chips. All are
small scale, comprising only two to four thread contexts. A
significant impediment to the construction of larger-scale
SMTs is the register file size required by a large number of
contexts. This paper introduces and evaluates mini-
threads, a simple extension to SMT that increases thread-
level parallelism without the commensurate increase in
register file size. A mini-threaded SMT CPU adds addi-
tional per-thread state to each hardware context; an appli-
cation executing in a context can create mini-threads that
will utilize its own per-thread state, but share the context’s
architectural register set. The resulting performance will
depend on the benefits of additional TLP compared to the
costs of executing mini-threads with fewer registers. Our
results quantify these factors in detail and demonstrate
that mini-threads can improve performance significantly,
particularly on small-scale, space-sensitive CPU designs.

1.  Introduction

Simultaneous Multithreading (SMT) is a latency-tolerant
CPU architecture that adds multiple hardware contexts to
an out-of-order superscalar to dramatically improve
machine throughput [14, 32, 25, 13]. Recently, several
manufacturers have announced small-scale SMTs (e.g., 2
to 4 thread contexts), both as single CPUs and as compo-
nents of multiple CPUs on a chip [12, 30]. While these
small-scale SMTs increase performance, they still leave
modern wide-issue CPUs with underutilized resources,
i.e., substantial performance potential is still untapped. 

A primary obstacle to the construction of larger-scale
SMTs is the register file. On the Alpha architecture, for
example, an 8-context SMT would require 896 additional
registers compared to a superscalar of similar structure. In
terms of area, Burns and Guadiot [6] estimate that adding
8 SMT contexts to the R10000 would increase the register
file and renaming hardware from 13% to 30% of the pro-
cessor core. On Compaq’s 4-context SMT, the Alpha

21464, the register file would have been 3 to 4 times the
size of the 64KB instruction cache [23]. In addition to the
area requirements, the large register file either inflates
cycle time or demands additional stages on today’s aggres-
sive pipelines; for example, the Alpha 21464 architecture
would have required three cycles to access the register file
[23]. The additional pipeline stages increase the branch
misprediction penalty, increase the complexity of the for-
warding logic, and compound pressure on the renaming
registers (because instructions are in flight longer). Alter-
natively, lengthening the cycle time to avoid the extra
pipeline stages directly degrades performance by reducing
the rate at which instructions are processed.

This paper proposes and provides an initial evaluation
of a new mechanism to boost thread-level parallelism (and
consequently throughput) on small-scale SMTs, without
the commensurate increase in register file size. The mech-
anism, called mini-threads, alters the basic notion of a
hardware context. On the hardware level, mini-threads add
additional per-thread state (aside from general purpose
registers) to each SMT hardware context. Using this hard-
ware, an application can exploit more thread-level paral-
lelism within a context, by creating multiple mini-threads
that will share the context’s architectural register set. We
denote as mtSMT an SMT with mini-threads, and use the

notation mtSMTi,j to indicate an mtSMT that supports i

hardware contexts with j mini-threads per context. For
example, an mtSMT4,2 − a 4-context mtSMT − has the
potential to deliver the same thread-level parallelism as an
8-context SMT, but with half the number of registers and
greatly reduced interconnect.

Mini-threads improve on traditional SMT processors in
three ways. First, mini-threads conserve registers, because
each executing mini-thread does not require a full archi-
tectural register set. Second, mtSMT allows each applica-
tion the freedom to trade-off ILP for TLP within its
hardware contexts. Applications can choose to use mini-
threads to increase TLP, or to ignore them to maximize the
performance of an individual thread. In the latter case,
where the application dedicates its context to a single
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thread, the processor performs identically to SMT.
Because of this, for single-program workloads, mtSMT

will always perform better than or equal to SMT.
Third, in addition to the savings in registers, mini-

threads open up new possibilities for fine-grained thread
programming. Each application can choose how to man-
age the architectural registers among the mini-threads that
share them. For example, mini-threads can simply parti-
tion the architectural register set. A wide range of more
complex schemes also exist, including sharing register
values among mini-threads and even dynamically distrib-
uting registers to mini-threads as their execution-time
needs change. While sharing the architectural register set
among mini-threads within a context creates many oppor-
tunities to optimize architectural register usage, it also
introduces some interesting problems and trade-offs as
well, some of which we examine here.

The principal goals of this paper are to (1) introduce the
concept of mini-threads on SMT, mapping out the breadth
of the design space it involves, and (2) perform an initial
evaluation on one part of that design space to show that
there is a potential performance gain from adopting

mtSMT. There are many possible ways in which mini-
threads can be applied in both hardware and software. In
this paper, we chose to evaluate the most straightforward
of these: two mini-threads per context with static partition-
ing of the architectural register file between the mini-
threads. Only if that scheme provides benefit is it worth
exploring more complex schemes (and issues) that require
a larger amount of effort, such as communicating and syn-
chronizing through mini-thread-shared registers.

For all schemes, two opposing factors determine the
performance of mtSMT versus SMT. On the one hand,
extra mini-threads per context may boost performance by
increasing TLP, thereby increasing instruction throughput.
On the other hand, performance may degrade due to addi-
tional spill code, since each mini-thread is limited to a sub-
set of the architectural registers. mtSMT wins when the

TLP benefits of additional mini-threads outweigh the costs
of fewer architectural registers per mini-thread.

This paper evaluates these opposing factors in detail
using five workloads: four applications from the
SPLASH-2 parallel scientific benchmark suite and the
multithreaded Apache web server. These programs are
naturally suited to mtSMT because they explicitly control
their degree of thread-level parallelism. In the bulk of the
paper, we quantify the factors that determine mtSMT per-
formance; for example, we provide a detailed analysis of
the changes in spill-code (which can increase as well as
decrease!) due to reducing the number of registers per
mini-thread. Our results show a significant improvement
for mtSMT over SMT, averaging 40% on small SMTs of 4-

contexts or less, and extending even to 8-context SMTs for
some applications. Perhaps surprisingly, most applications
suffer only minor per-thread performance degradation
when two mini-threads share a partitioned architectural
register set. Thus, the increase in TLP due to the extra
mini-thread translates directly into higher performance.
This is particularly important for small-scale SMTs, which
both need and enjoy the largest performance gains. Small
SMTs are also the most practical to build, positioning

mtSMT as an important technique for realistic implemen-

tations.
The rest of this paper proceeds as follows. Section 2

defines the mtSMT architecture, the mini-thread program-
ming model, and their operating system and run-time sup-
port. In Section 3 we discuss the methodology of the
simulator, workloads, and compilers used in our simula-
tion-based experiments. Section 4 presents results that
quantify the factors that contribute to mtSMT perfor-
mance: the benefits of adding thread-level parallelism and
the costs of reducing the number of registers available to
each mini-thread. In Section 5 we tie this analysis together
with results that show the overall performance benefit of

mtSMT, when all factors are taken into account. Section 6

reviews previous research related to our study. We con-
clude in Section 7.

2.  The mtSMT architecture

mtSMT improves on SMT by introducing architectural
modifications and a thread model that optimizes architec-
tural register usage. This section describes the basic

mtSMT architecture, its programming model, and operat-
ing system and run-time support for mini-threads.

2.1  mtSMT architecture

An SMT processor can issue multiple instructions from
multiple threads each cycle. An SMT context is the hard-
ware that supports the execution of a single thread, such as
a PC, a return stack, re-order and store buffers and excep-
tion handling and protection registers. Each context also
contains a set of architectural registers, distinct from the
architectural registers of all other contexts. A thread exe-
cuting in one context cannot access the architectural regis-
ters of a thread in a different context. (A more in-depth
discussion of SMT can be found in [31].)

mtSMT augments SMT by adding to each context the
hardware needed to support an additional executing thread
except for the registers. The key feature of mtSMT is that

the mini-threads in a context share the context’s architec-
tural register set. Specifically, when two instructions from
two different mini-threads in the same context reference
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the same architectural register, they inherently reference
the same physical register, accessing the same value. Note
that the register renaming hardware has not changed − the
mapping from architectural registers to physical registers
proceeds exactly as it does on SMT. What has changed is
the way that architectural register numbers are mapped to
locations in the renaming table (and from there renamed to
physical register numbers). Figure 1 depicts this register
sharing on an mtSMT2,2. The mini-threads executing on

the two PCs in each context map the same architectural
register set.

mtSMT requires hardware similar to adding extra con-
texts to SMT. For example, a 4-context mtSMT with 2
mini-threads per context closely resembles an 8-context
SMT in terms of the number of mini-thread hardware
resources, such as re-order and store buffers and return
stacks. A few additional registers are also required beyond
that on a 4-context SMT to support per-mini-thread excep-
tion handling and protection (~22 registers on the Alpha
21264 [8]). However, mtSMT has the reduced register

hardware, renaming complexity and register file access
time of the 4-context SMT. 

Although the implementation of architectural register
sharing between mini-threads on mtSMT requires minimal
hardware modification, the sharing itself creates a very
different architectural interface. We begin with new termi-
nology. Analogous to a context on SMT, a mini-context
refers to the hardware necessary to execute a mini-thread.
The architectural interface of a mini-context resembles
that of an SMT context, including the architectural register
set. However, on mtSMT, all mini-contexts within the
same context share this architectural register set. There-
fore a mini-thread must manage the sharing of its registers
in cooperation with the other mini-threads that execute
within the same context. i.e., a mini-thread must be specif-
ically compiled to execute in a mini-context.

The following section describes how mini-threads man-
age the sharing of their register sets.

2.2  mtSMT programming model

On SMT, a program begins execution when the operating
system first schedules it on a context, starting at the main
program entry point. Later, the program may fork an addi-
tional thread by calling a thread-fork function and passing
it the starting PC for the new thread. After the fork, the
original thread continues executing in its context and the
new thread begins execution on a different context. Each
thread references its own distinct set of (architectural and
physical) registers; threads communicate through shared
memory.

On mtSMT, a program starts as a single mini-thread at

the main program entry point and executes in one of the
mini-contexts. To create a second mini-thread, it calls a
mini-thread-fork function. The two mini-threads share the
same architectural register set, and, because they were
compiled as a mini-threaded program, they have arranged
a priori (through the compiler) to coordinate their register
usage.

Mini-threads can manage their registers in a variety of
ways, including statically or dynamically partitioning reg-
isters among mini-threads, sharing registers, i.e., sharing
values, or a combination. Our models for register set shar-
ing are similar to those proposed by Waldspurger and
Weihl [34] for the April coarse-grain multithreaded pro-
cessor [1]. mtSMT permits all of these variations, because

the application controls what register allocation is used
and when. In all cases a compiler would have to compile a
mini-thread for a specific scheme.

As an initial evaluation of mini-threads, this paper
focuses on one of these alternatives: statically partitioning
each architectural register set in half between two mini-
threads. There are two ways to achieve this partitioning. In
the first, each mini-thread is compiled for different archi-
tectural registers within a register set. An alternative strat-
egy compiles both mini-threads for the same subset of the
architectural registers and differentiates between them
with an extra software-programmable state bit. The
decode stage of the pipeline inserts this bit into the high-
order bit of an instruction register field before accessing a
register. Thus, the bit is set to 1 on the mini-context using
the upper half of the register set, and to 0 on the other
mini-context. With this scheme, an application compiled

FIGURE 1. Register sharing among mini-threads on
an mtSMT2,2. There are two hardware contexts, each
supporting two mini-threads that share architectural
registers within the context.
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to use the lower half of the register set will run correctly
on either of the mini-contexts.

2.3  Operating system and run-time support

The new architectural model introduced by mini-threads
creates several new operating system and run-time support
issues. First, because mini-threads execute within both
run-time and OS procedures, those procedures must be
compiled to use registers compatibly with the executing
mini-thread. Second, when entered by one mini-thread, the
OS must protect its registers from modification by other
mini-threads executing in the same context, since they
share the same architectural register set. Third, one or both
of the OS and runtime must be modified to support mini-
thread management operations. 

We see two application environments for mini-threads
and propose a run-time and OS support solution appropri-
ate to each. One environment is dedicated and homoge-
neous, e.g., a dedicated server in which all threads run
instances of the same code. The OS and runtime would be
compiled specifically for this environment, to allow maxi-
mum concurrency. The second environment is heteroge-
neous, i.e., different contexts execute different programs,
some multithreaded and some not. Here the standard OS
and runtime could be used, with only one mini-thread in a
context allowed to execute within them at a time (an
approach also used on non-symmetric multiprocessors).

The first environment is exemplified by web servers.
Here, all of the processes execute identical copies of the
same server code, each handling a different request. The
entire system is set up (statically) for that purpose (it is
not, for example, running scientific programs at the same
time). In this environment a single version of the OS and
runtime executes, compiled to use half of the register set.
The hardware partition bit described in Section 2.2 allows
a single OS/runtime image to execute on either mini-con-
text and isolates each mini-thread’s registers from the
other’s. When the partition bit is used, the mini-contexts
are indistinguishable from distinct contexts on an SMT,
albeit with fewer architectural registers. Hence, OS and
runtime code that manages contexts on SMT can manage
mini-threads with minimal modification. (Most of the OS
can be compiled automatically to use half of the register
set, except for the small number of assembly language
files, which require manual register specification.)

This OS and runtime solution grants complete freedom
to mini-threads to execute independently. Specifically,
both mini-threads in a context may execute in the OS
simultaneously, a performance-critical capability for OS-
intensive workloads such as Apache (which spends 75%
of its time within the OS [25]). This performance advan-
tage comes at the price of a loss in mini-thread flexibility
to manage their common architectural registers. All mini-

threads must partition the register set identically and can-
not share any register values. Because of their homogene-
ity, mini-threads in web-server-like workloads perform
well despite this restricted functionality.

The second environment is typified by a multipro-
grammed workload in which some programs use mini-
threads and others do not. In this environment we execute
a single operating system image compiled to use the full
architectural register set, as on a standard SMT. The OS
remains mostly ignorant of mini-threads, deferring mini-
thread management to the runtime.

Applications that choose not to use mini-threads exe-
cute in the OS exactly as on SMT. However, when a mini-
threaded application traps into the OS, the hardware
blocks all other mini-threads in the same context. This
guarantees that only one mini-thread per context executes
in the kernel at a time, thereby protecting shared kernel
registers from the actions of other mini-threads. On a nor-
mal SMT, the kernel saves the PC and registers on a trap
before executing; for mtSMT, we modify the trap handler
to save the PCs, registers, and mini-thread IDs of both the
trapping mini-thread and the blocked mini-threads within
the context. After saving this state, the OS continues nor-
mal execution within the full register set; the mini-thread
state is then restored on return to user mode. The OS
remains ignorant of mini-threads, except for the extra state
saved and restored on traps.

The Tru64 UNIX OS that we use already supports a
form of scheduler activations [2], which allows the kernel
to communicate thread activity to the pthreads runtime. A
scheduler activation is a kernel upcall into the user-level
threads package that alerts it about kernel scheduling
events. This kernel-to-runtime communication is modified
to also include information about blocked mini-threads in
a context. If a trapping mini-thread blocks in the kernel,
the kernel communicates the PC, registers, and minicon-
text ID of the other (hardware-blocked) mini-threads as
part of an upcall to the user-level runtime system. The
pthreads runtime views mini-threads as simply user-level
threads that have scheduling constraints, and hence, it
requires few modifications. In our example, when the run-
time receives the kernel upcall, it can place the hardware-
blocked mini-threads on a queue; when the event that
caused the trapping mini-thread to block in the kernel is
resolved, the kernel again performs a runtime upcall, this
time identifying the state of the trapping mini-thread to the
runtime, which then schedules all mini-threads in the con-
text to run. 

In a statically partitioned, two-mini-thread environment
this requires two versions of the runtime, one compiled for
each register usage convention (i.e., 16 and 32 registers).
Each application links to its appropriate version. There is
ample precedence for multiple runtimes on a single plat-
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form. For example, Microsoft Windows OS supports mul-
tiple versions of library routines; 32-bit and 64-bit
programs executing on 64-bit x86-compatible processors
have to link to different versions. Similarly, many applica-
tions already install private versions of library routines for
their own use. In SPLASH-2-like workloads all threads
are compiled to use the same runtime, and therefore avoid
the issue of multiple runtime copies.

In summary, we take two approaches. For the server
approach, which is OS-intensive, we recompile the OS and
runtime to allow mini-threads in a context to execute them
simultaneously, at the cost of limiting register-sharing
flexibility among mini-threads. For the multiprogramming
approach, we place no restrictions on register usage and
sharing among mini-threads, but allow only one mini-
thread within the OS at a time.

3.  Simulation and evaluation infrastructure

In this section we describe the infrastructure and method-
ology used in our simulation-based experiments.

3.1  SMT and superscalar simulation 
methodology

Our simulator is an enhanced version of the Alpha-based
SMT simulator used in [25]. It combines an execution-
driven processor simulator with the SimOS [26] machine
simulation framework. The processor simulator models
the pipeline and the memory system in great detail. (Table
1 lists the base processor parameters; see [23] for a more
complete list). The SMT pipeline consists of 9 stages, with
2 stages each dedicated to reading and writing the large
register file. The superscalar simulations use a shorter 7-
stage pipeline, since they lack the need for additional read
and write stages. In this work all processors are configured
identically except for the number of contexts and pipeline
stages.

The SimOS framework allows us to include in our sim-
ulation all operating system activity, including PAL code,
interrupts, and network activity. It models the privileged
processor state and the non-processor components of a
machine in enough detail to boot and execute a version of
Compaq Tru64 Unix adapted to SMT.

We emulate mtSMT by compiling applications to use
fewer registers and simulating the applications on a stan-
dard SMT. For example, to model an mtSMT4,2 we com-

pile an application into threads that use only 1/2 the
normal registers and simulate it on an 8-context SMT. This
methodological simplification does not affect perfor-
mance; each context touches no more registers than would
be available on mtSMT. We choose this methodology
because it greatly simplifies compilation and allows us
flexibility in choosing which specific registers to use. Sec-

tion 3.3 discusses compiler support in more detail.

3.2  Workloads

We evaluate mtSMT on five programs: the Apache web
server [3] and four applications from the SPLASH-2
benchmark suite [29]. All are naturally suited to SMT,
because they are parallel applications that control their
degree of parallelism. Apache adapts to more contexts by
processing more requests in parallel, and SPLASH-2 forks
multiple threads via a command-line argument.

Apache is a popular, public-domain Web server run by
the majority of Web sites [19]. We generate requests with
SPECWeb96, a web server performance benchmark [28].
We configure Apache with 64 server processes and
SPECWeb with 128 clients that provide requests. To
match the speed of the simulated server, we execute three
synchronized copies of SimOS on a single Alpha: one exe-
cuting Apache and two running copies of SPECWeb with
64 clients each. [25] describes this setup in more detail.

SPLASH-2 is a suite of explicitly parallel scientific
applications. We evaluate four programs from this suite:
Barnes, Fmm, Raytrace, and Water-spatial. We adapt each
application to SMT by replacing the heavyweight synchro-
nization primitives with the faster SMT hardware lock-
based synchronization primitives [33].

Traditional throughput metrics such as IPC may not
accurately reflect overall speedup for threaded programs.
Instead, we use a higher-level performance metric of work
per unit time as the basis for comparison. To define equiv-
alent units of work, we modified each application to insert
special markers at appropriate points in the code to indi-
cate the progress that a particular thread has made. Our
metric counts markers per unit time, where a marker corre-
sponds to a unit of work.

TABLE 1. SMT parameters.
Fetch Policy 8 instructions per cycle from up to 2 contexts (the 

2.8 ICOUNT scheme of [31])

Functional Units 6 integer (including 4 Load/Store and 1 Synchro-
nization unit); 4 floating point

Instruction Queues 32-entry integer and floating point queues

Renaming Registers 100 integer and 100 floating point

Retirement bandwidth 12 instructions/cycle

TLB 128-entry ITLB and DTLB

Branch Predictor McFarling-style, hybrid predictor [16]

Icache 128KB, 2-way set associative, single port
2 cycle fill penalty

Dcache 128KB, 2-way set associative, dual ported
2 cycle fill penalty

L2 cache 16MB, direct mapped, 20 cycle latency, fully 
pipelined (1 access per cycle)

L1-L2 bus 256 bits wide, 2 cycle latency

Memory bus 128 bits wide, 4 cycle latency

Physical Memory 128MB, 90 cycle latency, fully pipelined
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3.3  Compiler methodology

In this work we compile applications to use only 1/2 of the
architectural register set for each mtSMT configuration.

We employed a combination of Gcc 2.95.3, a modern,
widely-used, open-source compiler, and Compaq C 6.4,
the closed-source compiler for Tru64 UNIX systems. Gcc
provides a simple command-line option to control which
architectural registers are available to the register allocator
when compiling a program. We compiled the SPLASH-2
applications with Gcc.

Apache requires special compiler methodology. While
the SPLASH-2 applications spend a negligible amount of
time in the kernel (less than 1%), Apache spends a full
75% of execution cycles in the operating system. Because
OS behavior dominates the performance of this workload,
any evaluation of Apache must include it.

We compiled the OS for mtSMT with Compaq’s C com-
piler (Gcc is unable to compile it). The Compaq C com-
piler lacks Gcc’s simple command-line option to control
register allocation. Instead, it supports a set of pragmas
that manipulate register usage, and require manual modifi-
cations to each OS source file. For this study, we modified
enough files to cover 57% of all dynamic OS instructions
when executing Apache. To compensate for the unmodi-
fied portions of the kernel, we extrapolated the trends
observed over the modified regions of the OS to the entire
OS. We applied the same methodology to factor out the
twelve percent of Apache’s dynamic instructions that are
from user-level shared libraries (we did not recompile
shared libraries).

Modeling mtSMT on SMT as described in Section 3.1
lets multiple mini-threads execute in the OS simulta-
neously. This corresponds to the OS-intensive environ-
ment described in Section 2.3. While this environment
suits Apache, the SPLASH-2 applications would most
likely execute in the environment in which other mini-
threads in a context block when one traps. We do not
explicitly model this blocking, but take it into account
arithmetically. Our calculations suggest that the impact of
blocking on our results would be only 1%, because
SPLASH-2 spends so little time in the kernel.

4.  Evaluating the register / mini-thread 
trade-off

mtSMT allows applications to make a trade-off between
one thread per context with a full architectural register set,
or multiple mini-threads per context, each with a subset of
the architectural register set. Two factors determine the
efficacy of this trade-off: (1) the performance benefit due
to the extra executing mini-threads, and (2) the perfor-
mance degradation due to fewer available registers per

mini-thread. For each of these factors, there are also two
levels of potential impact. At the hardware level, each can
improve or degrade IPC, and at the software level, each
can alter the number of instructions per unit of work. Of
these four factors, two are straightforward. The extra mini-
threads allow the processor to take advantage of greater
TLP, possibly increasing throughput, while the reduction
in the number of registers per mini-thread burdens the reg-
ister allocator, possibly resulting in increased spill code.
The other two factors reflect less obvious effects. First, the
extra spill code can impact cache performance, affecting
IPC. Second, an increase in the number of mini-threads
can increase total thread overhead, altering the number of
instructions executed.

These four factors completely describe mtSMT perfor-
mance relative to a traditional SMT processor. In the inter-
ests of space, the following sections investigate only two
of these, the IPC benefit of increased TLP and the
increased instruction count due to fewer registers per mini-
thread. Section 5 then presents overall mtSMT perfor-
mance, and quantifies the relative impact on performance
of all four factors.

4.1  Throughput improvement due to the extra 
mini-threads

This section measures the maximum throughput improve-
ment due solely to the addition of extra mini-threads, i.e.,
due to the increase in thread-level parallelism. We can
compute this effect by measuring the boost in throughput
that is provided by a conventional SMT with the number
of hardware contexts equal to the total number of mini-
threads. For example, to calculate the maximum TLP ben-
efit of mtSMT2,2 over the base 2-context SMT without
mini-threads, we compare a 4-context SMT with a 2-con-
text SMT. Comparing throughput on these two SMT
machines isolates the throughput improvement from any
effects of the reduced number of registers.

The top of Figure 2 graphs SMT throughput for all
SMT sizes corresponding to the mtSMT configurations
that we evaluate, ranging from a superscalar up through a
16-mini-thread machine. The table at the bottom of Figure
2 shows, for each mtSMT, the percentage improvement in

IPC over its base SMT due to the extra mini-threads. Each
entry in the table represents a rough upper bound on the
potential performance improvement of mtSMT.

In most cases, doubling the number of mini-threads
increases instruction throughput, and the benefit dimin-
ishes as the number of contexts increases. This is reflected
by the levelling off of IPC in the graph and by the decreas-
ing percentage IPC improvement with increasing base
SMT size in the table. For example, on a 2-context SMT,
the boost in IPC due to doubling the number of contexts
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averages 40% over all workloads (the maximum is 60%),
while on an 8-context SMT, the benefit averages only 9%.
In other words, extra contexts are most valuable for small
SMTs, which have difficulty providing enough sources of
instructions to fully utilize the machine; but because the
processor’s execution resources are finite, the marginal
benefit of additional contexts decreases as the number of
contexts increases. Nonetheless, with the exception of
water-spatial, adding mini-contexts provides additional
instruction throughput to any base SMT.

Apache and Water-spatial embody two extremes of
sensitivity to the additional TLP provided by mini-threads.
Apache benefits the most from extra contexts. Its poor
superscalar performance deserves most of the blame [25].
At the opposite extreme, Water-spatial squanders extra
contexts. Part of the reason that Water-spatial does not
successfully leverage increased TLP is its relatively high
superscalar IPC. In general, the more a single thread can
utilize a processor, the less opportunity exists for other
instruction sources (i.e., other threads) to further increase
utilization. Two other factors also limit Water-spatial’s
performance, and, in fact, cause IPC to drop as the number
of contexts increases: the D-cache miss rate balloons from
0.3% on a 2-context SMT to 20% with 16 contexts, and
the average percentage of cycles a context is blocked on a
user-level lock rises from 17% to 25%.

4.2  Extra instructions due to fewer registers

This section measures a second factor affecting the regis-
ter/mini-thread trade-off: the change in the number of
instructions per unit of work as the number of available

registers decreases. To quantify the change, we compared
each workload executing on two machines: an mtSMT, and
a conventional SMT with the same number of contexts as
the mtSMT has mini-contexts. The two machines differ

only in the number of architectural registers available to
each thread; comparing them therefore isolates the effect
of reducing the number of registers per mini-thread.

Figure 3 graphs the percentage change in dynamic
instructions due to fewer architectural registers for each

mtSMT configuration. With the exception of Fmm, the
applications are remarkably insensitive to the number of
available registers. The increase in dynamic instructions
ranged between 16% for Fmm to -7% for Barnes, with an
average of 3%.

For one application, Barnes, the amount of spill code
decreases as registers become scarce, dropping an average
of 7%. The entire reduction occurred in one procedure in
which the register allocator substituted caller-saved regis-
ters for callee-saved registers when the number of archi-
tectural registers was reduced. Consequently, mandatory
spills at procedure entry and exit were replaced with a
smaller increase in spill code in the interior of the calling
procedure.

The results for Apache provide our first glimpse into
the sensitivity of the operating system to the number of
available registers. In fact, the graph slightly overstates
kernel sensitivity, because it combines user and kernel
instruction counts, and Apache’s user-level instruction
count rise is relatively larger (4%). Factoring out the user-
level behavior leaves kernel instruction counts that barely
budge upwards 0.8% as the number of architectural regis-

mtSMT1,2 mtSMT2,2 mtSMT4,2 mtSMT8,2

Apache 76 60 45 15

Barnes 89 50 33 12

Fmm 62 41 23 9

Raytrace 53 34 24 10

Water-spatial 32 15 3 -3

FIGURE 2. Improvement in throughput due to extra contexts. The graph shows the IPC of a range of SMT sizes. The
table lists the component of mtSMT IPC performance due solely to the extra mini-threads. For example, the mtSMT2,2
column shows the percentage IPC improvement of a 4-context SMT over a 2-context SMT.
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ters decrease! Two factors contribute to the kernel’s insen-
sitivity to a reduced register set. First, the frequency of
pointer usage in the kernel prevents the register allocator
from keeping many values in registers. Second, simple
operations with short-lived values, such as checking per-
missions or error conditions, dominate OS activity, leading
to a low average number of simultaneously live values.

For most programs, loads and stores to the stack, pri-
marily for procedure call handling, constitute the bulk of
spill instructions that are generated with the 32-register
compile. As the number of available registers decreases,
the rise in stack operations causes the total number of
loads and stores to increase slightly from an average of
32% to 37% of all instructions. In addition, spilling within
a procedure rather than around procedure calls begins to
dominate, with the largest increase coming from register
moves. Two effects contribute to the increase in non-load-
store spill code as the number of available registers
decreases. First and foremost, the compiler generates more
register-to-register moves to shuffle values within the
restricted set of architectural registers. Second, the register
allocator chooses to undo simple CSE optimizations and
recompute some constant values rather than spill them to
memory, thereby generating extra non-load-store opera-
tions. [24] breaks down spill code in more detail.

4.3  Summary

Overall, adding mini-contexts increases TLP, significantly
boosting IPC in most, but not all configurations. We
observe increases in IPC solely due to this effect ranging
from 89% down to -3%. On the other hand, reducing the
number of available registers per mini-thread generally
degrades performance due to increased spill code. The
extra spill code both increases the dynamic instruction
count and negatively impacts IPC by raising the number of
Dcache and DTLB misses (data not shown).

5.  Performance on mtSMT

The previous section examined in isolation two of the four
factors that contribute to mtSMT performance. This sec-
tion addresses two remaining questions. First, how do the
four factors relate in importance to each other? And sec-
ond, does mtSMT improve overall performance?

To enable an intuitive comparison of the different fac-
tors, in this section we present a stacked bar chart (Figure
4) that combines the impact of each factor on mtSMT’s
performance relative to SMT. We cannot graph the factors
directly, because they are related multiplicatively (see [24]
for the derivation), and a stacked bar chart expresses addi-
tive relationships. To convert the relationship of the fac-
tors to an additive one, we take the logarithm of each
factor, representing each log term as a bar segment. The
advantage of graphing the logarithm of each factor is that
the relationship between bar heights becomes intuitive.
Two factors of equal magnitude will be the same height,
and if they have different signs, they will cancel each
other’s effect on performance.

The triangles in Figure 4 signify the overall perfor-
mance improvement of mtSMT over SMT, taking into
account the factors’ positive and negative effects. The
magnitude of a bar segment measures the contribution to
speedup of a particular factor. Note that the height of any
bar or combination of bars can only be interpreted against
the y-axis if it is transposed to the origin. Table 2 echoes
the triangles in the graph, reporting the total percentage

mtSMT speedup.
Apache benefits the most from mini-threads and these

benefits appear on all mtSMT configurations. However,

the greatest performance improvement occurs on the
smallest SMTs, where TLP is the most limited. For exam-
ple, adding an extra mini-thread to a superscalar (the bar at
the left of the graph) increases Apache’s request through-
put 83%. As the size of the SMT grows, the performance
improvement due to mini-threads progressively decreases.
However, even on an 8-context SMT, trading off registers

FIGURE 3. Change in instruction counts due to fewer registers per thread on mtSMT. Each bar measures the
percentage change in instruction counts between an mtSMT configuration and an SMT which has the same number of
contexts as the total number of mini-contexts in the mtSMT.
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for contexts boosts request throughput by 10%1.
The SPLASH-2 applications also benefit from mini-

threads, although on average less than Apache. Mini-
threads improve the performance of all applications on the
smaller SMTs. For example, speedups on a 2-context SMT
lie between 8% to 53%, with a median improvement of

32%. For half of the applications, the improvement also
scales to larger SMTs. Barnes and Raytrace see speedups
averaging 32% with 4 contexts and 9% with 8. The other
two applications do not benefit on either of the larger
SMTs, with average performance degrading by 4% and
20% on the 4- and 8-context SMTs, respectively.

The magnitude of each factor explains why perfor-
mance improves so much. For most applications and most

mtSMT configurations, the IPC boost due to extra mini-
threads far dominates any other factor. With the exception
of Fmm and Water-spatial executing on larger SMTs, the

FIGURE 4. Performance improvement of mtSMT over SMT, broken down by factor. The x-axis enumerates different
mtSMT configurations, arranged in order of increasing total number of mini-contexts. Each column consists of four bars
and measures the speedup of mtSMT compared to the corresponding base SMT. Each of the four segments of each bar
measures the change in performance due to that factor. The y-axis indicates percentage speedup. Note that the y-axis
scale differs for each application. The triangle in each column represents the sum of the heights of the bars in the column
which equals the total mtSMT speedup.
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1. At 16 contexts, hardware context 0 becomes a performance bottle-
neck, because certain OS activities such as network interrupts are
funneled through it, resulting in 20% idle time on other contexts.
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IPC benefit of the extra mini-threads averages 41%.
Reducing the number of available registers has little effect
on performance, allowing the IPC boost to translate
directly into improved overall mtSMT performance. The
performance decline from decreasing the number of regis-
ters available to each mini-thread (effect on IPC combined
with executing more instructions) averaged only 2%.

For Fmm and Water-spatial, the large cost of reducing
the number of registers and the relatively small boost in
IPC due to extra mini-threads meant that mtSMT did not

pay off for larger SMT configurations. The overall impact
of reducing the number of registers averaged -29% for
Fmm and -6% for Water-spatial. In contrast, the overall
benefit of the extra mini-threads averaged only 15% and
1%, respectively, insufficient to overcome the cost of the
reduced number of registers.

Surprisingly, the IPC impact of the increase in instruc-
tions equaled or exceeded that of the instructions them-
selves. In 35% of all configurations and applications
examined, the IPC impact of fewer registers exceeded the
percentage increase in the dynamic instruction count. In
70% of all configurations, the IPC impact was at least 50%
of that of the instruction count. 

Overall, our results show that trading off registers for
contexts improves performance, especially on the smaller
SMTs that are characteristic of the first commercial imple-
mentations. In particular, performance improved by an
average of 38% (averaged over all applications) on a 2-
context SMT, with decreasing improvements on succes-
sively larger SMTs. In the above experiments, we forced
applications to use mini-threads. If we allow them instead
to use mini-threads only when advantageous (as they can
do, since employing mini-threads is an application-spe-
cific decision), then the average performance improve-
ment on 4- and 8-context SMTs is 22% and 6%, rather
than 20% and -2%, respectively. 

Finally, to further map out the mini-thread design
space, we evaluated SPLASH-2 applications on mtSMTs
with three mini-threads per context, compiling applica-
tions to use one third of the register set (with a few regis-
ters left over). On a two-context mtSMT, three mini-
threads raised the average performance improvement com-
pared to SMT to 43% from 31% with two mini-threads.

On larger SMTs, they performed worse than two mini-
thread mtSMTs, because larger SMTs benefit less from

extra mini-threads and the even further reduced number of
registers induced more spill code.

6.  Related work

Many researchers have explored methods for conserving
registers in various contexts. Closest to our work is Wald-
spurger and Weihl’s study of register relocation [34] in the
April/Alewife processor, a distributed shared-memory
multiprocessor that uses software multithreading to toler-
ate latencies from remote memory references and failed
synchronization attempts [1]. April executes one thread at
a time until it incurs a miss, at which point a hardware trap
signals the OS to context switch to another thread. Wald-
spurger and Weihl propose treating the 4 hardware con-
texts of the April CPU as a single large register file,
partitioning the entire file in software. Their scheme uses a
register relocation mask mechanism to offset thread-local
register numbers into the large register file. The compiler
must ensure protection between all of the threads execut-
ing on the machine; hence, all loaded threads are assumed
to be part of a single application. Waldspurger and Weihl
evaluate this scheme for April using a synthetic workload
with stochastic run lengths and varying inter-fault laten-
cies to show how utilization changes with inter-fault
latency for alternative register management schemes.

In contrast, our work exists in a more realistic and mod-
ern hardware and software environment. We evaluate
intra-context architectural register partitioning among
mini-threads for an out-of-order, simultaneously-multi-
threaded CPU with multiple hardware contexts and regis-
ter renaming. We simulate real parallel programs and a
multithreaded server compiled for mini-threads, include
operating system code, and we provide detailed measure-
ment and analysis of all of the factors that influence per-
formance.

Several researchers have investigated adding special-
purpose PCs with reduced register requirements to a
superscalar, mostly for the purpose of improving perfor-
mance of a primary thread by prefetching or warming up
the branch prediction hardware [11, 4, 35, 27, 7]. These
special purpose PCs usually lack an independent set of
registers, and instead share registers with the primary reg-
ister set and/or have private registers written by hardware.
The special PCs begin execution on a cache miss or, alter-
natively, by request from the primary thread [35]. 

Mowry and Ramkissoon investigate software-based
multithreading on an architecture in which a cache miss
causes the processor to branch to a predetermined user-
level PC [18]. They set this PC to a light-weight context-
switch routine and suggest compiler-based register-file

TABLE 2. Total percentage mtSMT speedup

mtSMT1,2 mtSMT2,2 mtSMT4,2 mtSMT8,2

Apache 83 66 43 10

Barnes 85 53 36 14

Fmm 60 26 -6 -30

Raytrace 48 37 29 5

Water-spatial 24 8 -3 -9
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partitioning to reduce context-switch overhead.
Multiple threads executing within a single stack frame

and possibly a single register set have been investigated in
the context of dataflow architectures on large parallel
machines, such as *T, pRISC, and TAM [20, 21, 10]. In
these architectures, threads consists of only a few instruc-
tions, and are used to hide latencies of, for example, mem-
ory operations. The compiler manages register and stack
frame usage between threads. This management is typi-
cally conservative because of the large number of threads
and the uncertainty in their dynamic execution order. For
example, threads may not rely on any values in registers
when they begin execution.

Every architecture designer must decide how many reg-
isters to support in the ISA. Researchers have investigated
the sensitivity of applications to the number of architec-
tural registers. Bradlee et al. [5] found that reducing the
number of integer registers from 32 to 16 had a negligible
effect on execution time on some integer programs, and
caused a 17% degradation on scientific applications. Pos-
tiff et al. [22] argue that application sensitivity to the num-
ber of architectural registers increases as compiler
technology improves. 

mtSMT conserves registers by mapping a single archi-
tectural register set among multiple mini-threads.
Researchers have explored other ways to reduce the regis-
ter file burden in architectures. Cruz et al. [9] suggest
structuring the register file as a multi-level cache, com-
plete with a pseudo-LRU replacement policy. They find
that, due to the savings in access time, such an organiza-
tion outperforms a non-pipelined, single banked architec-
ture by 90% for the SPEC95 benchmarks. Monreal et al.
[17] focus on conserving renaming registers by delaying
the pipeline stage at which physical registers for destina-
tion operands are allocated. They find a 25% reduction in
the number of renaming registers with little loss in perfor-
mance. Lo et al. [15] investigate deallocating registers on
SMT after their last use via compiler-inserted annotations.
They observed up to an average speedup of 60% with the
most efficient annotation mechanisms. They also found
that deallocating the registers of idle contexts supports a
25% reduction in the number of registers on a 4-context
SMT with no loss in performance. Lo and Monreal both
focus on improving the sharing of renaming registers.

mtSMT focuses on economizing architectural registers as
well as renaming registers, and could work synergistically
with both of their techniques. All three of these techniques
could benefit from Cruz’s optimizations.

7.  Conclusion

Small-scale SMTs will clearly become a part of the CPU
landscape in the next several years. While such CPUs can

obtain significant performance improvements through
multithreading, they are still likely to underutilize the mas-
sive processing and storage resources available on the next
generation of out-of-order processors.

This paper has introduced and evaluated a simple mod-
ification to SMT that greatly increases throughput. This
modification, called mini-threads, adds partial thread-state
hardware to each context, allowing mini-threads executing
within the same context to share its architectural register
set. Consequently, mini-threads allow processor imple-
menters to increase the degree of parallelism supported by
SMT by avoiding a primary obstacle to scaling up SMT:
the size of the register file and renaming hardware. Essen-
tially, they propel SMT further along the throughput curve.

Implementing mini-threads allows applications to trade
off register set size for TLP. Each application decides
independently whether or not to use mini-threads. If it
ignores the mini-contexts, the machine behaves identically
to an SMT. Alternatively, if it chooses to create mini-
threads, it can boost TLP and machine throughput. How-
ever, since mini-threads in each context share the architec-
tural register set, the application must arrange for its
threads to manage it. Because of the flexibility of applica-
tions to use mini-threads only when beneficial, adding
mini-thread contexts to SMT will never degrade perfor-
mance for single-program workloads.

This paper evaluates mini-threads with a statically par-
titioned register model and two mini-threads per context
on the Apache web server and 4 SPLASH-2 parallel scien-
tific applications. Overall, our results show that trading off
register set size for TLP improves performance, especially
on the smaller SMTs, which are characteristic of the first
commercial implementations. (Adding mini-threads
improves performance over all applications evaluated by
an average of 38% (and a maximum of 66%) on a 2-con-
text SMT, with decreasing improvements on larger SMTs.)
The reason for the large improvement is that almost all
applications can exploit the extra mini-threads to boost
IPC, and most suffer only minor performance degrada-
tions due to partitioning the register set. In particular,
restricting applications to half of the register set degraded
performance by only 5% on average. However, the TLP
benefit due to the extra mini-threads ranged from 41% on
a small 2-context SMT to 7% on an 8-context SMT.

While in this work we partitioned the register set
equally among the mini-threads that share it, nothing in
the mini-thread architecture precludes other schemes,
should appropriate compiler and programming technology
be developed. Mini-threads also allow a variable partition-
ing of the register file adapted to the needs of particular
mini-threads and the sharing of register values between
mini-threads. We plan to explore these more aggressive
schemes as future work.
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