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Abstract
This paper presents the first analysis of operating system execution
on a simultaneous multithreaded (SMT) processor. While SMT has
been studied extensively over the past 6 years, previous research
has focused entirely on user-mode execution. However, many of
the applications most amenable to multithreading technologies
spend a significant fraction of their time in kernel code. A full
understanding of the behavior of such workloads therefore requires
execution and measurement of the operating system, as well as the
application itself.

To carry out this study, we (1) modified the Digital Unix 4.0d
operating system to run on an SMT CPU, and (2) integrated our
SMT Alpha instruction set simulator into the SimOS simulator to
provide an execution environment. For an OS-intensive workload,
we ran the multithreaded Apache Web server on an 8-context
SMT. We compared Apache’s user- and kernel-mode behavior to a
standard multiprogrammed SPECInt workload, and compared the
SMT processor to an out-of-order superscalar running both
workloads. Overall, our results demonstrate the micro-
architectural impact of an OS-intensive workload on an SMT
processor and provide insight into the OS demands of the Apache
Web server. The synergy between the SMT processor and Web and
OS software produced a greater throughput gain over superscalar
execution than seen on any previously examined workloads,
including commercial databases and explicitly parallel programs.

1.  INTRODUCTION

Simultaneous multithreading (SMT) is a latency-tolerant CPU
architecture that executes multiple instructions from multiple
threads each cycle. SMT works by converting thread-level
parallelism into instruction-level parallelism, effectively feeding
instructions from different threads into the functional units of a
wide-issue, out-of-order superscalar processor [42, 41]. Over the
last six years, SMT has been broadly studied [22, 23, 21, 45, 24,
43, 35] and Compaq has recently announced that the Alpha 21464
will include SMT [10]. As a general-purpose throughput-
enhancing mechanism, simultaneous multithreading is especially
well suited to applications that are inherently multithreaded, such

as database and Web servers, as well as multiprogrammed and
parallel scientific workloads.

This paper provides the first examination of (1) operating system
behavior on an SMT architecture, and (2) a Web server SMT
application. For server-based environments, the operating system
is a crucial component of the workload. Previous research suggests
that database systems spend 30 to 40 percent of their execution
time in the kernel [4], and our measurements show that the Apache
Web server spends over 75% of its time in the kernel. Therefore
any analysis of their behavior should include operating systems
activity. 

Operating systems are known to be more demanding on the
processor than typical user code for several reasons. First,
operating systems are huge programs that can overwhelm the
cache and TLB due to code and data size. Second, operating
systems may impact branch prediction performance, because of
frequent branches and infrequent loops. Third, OS execution is
often brief and intermittent, invoked by interrupts, exceptions, or
system calls, and can cause the replacement of useful cache, TLB
and branch prediction state for little or no benefit. Fourth, the OS
may perform spin-waiting, explicit cache/TLB invalidation, and
other operations not common in user-mode code. For these
reasons, ignoring the operating system (as is typically done in
architectural simulations) may result in a misleading
characterization of system-level performance. Even for
applications that are not OS-intensive, the performance impact of
the OS may be disproportionately large compared to the number of
instructions the OS executes.

For SMT, a functional processor and operating system do not yet
exist. In lieu of these, we extended the SimOS-Alpha infrastructure
[9], adding an Alpha-based SMT core as the instruction execution
engine. SimOS [34] is a simulator detailed enough to boot and
execute a complete operating system; in the case of the Compaq
Alpha, SimOS executes PAL code as well. We also modified the
Digital Unix 4.0d operating system to support SMT. This
modification is quite straightforward, because Digital Unix is
intended to run on conventional shared-memory multiprocessors
and is therefore already synchronized for multithreaded operation.

As the first study of OS behavior in an SMT environment, our goal
is to answer several basic questions. First, how would previously
reported results change, if at all, when the operating system is
added to the workload? In particular, we wish to verify the IPC
results of previous studies to see whether they were overly
optimistic by excluding the OS. For these studies, we used a
multiprogrammed workload consisting of multiple SPECInt
benchmarks. Second, and more important, what are the key
behavioral differences at the architectural level between an
operating-system-intensive workload and a traditional (low-OS)
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workload, both executing on SMT? For example, how does the
operating system change resource utilization at the micro-
architecture level, and what special problems does it cause, if any,
for a processor with fine-grained resource sharing like SMT? For
this question, we studied one OS-intensive application, the widely-
used Apache web server [19], driven by the SPECWeb benchmark
[32]. We compared the Apache workload and the SPECInt
workload to study the differences in high-OS and low-OS usage.
Third, how does a Web server like Apache benefit from SMT, and
where does it spends its time from a software point of view? This
analysis is interesting in its own right, because of the increasing
importance of Web servers and similar applications. We therefore
present results for Apache on an out-of-order superscalar as well as
SMT. Overall, our results characterize both the architectural
behavior of an OS-intensive workload and the software behavior
(within the OS) of a key application, the Apache Web server.

The paper is organized as follows. Section 2 details our
measurement methodology, our simulation environment, and the
workloads we use. Section 3 presents measurement results for our
two workloads on SMT including operating system execution. The
first half of Section 3 examines a multiprogrammed workload
consisting of SPECInt applications, while the second half focuses
on the Apache workload. Section 4 describes previous work and its
relationship to our study, and we conclude in Section 5.

2.  METHODOLOGY

This section describes the methodology used in our simulation-
based experiments. We begin with a description of our SMT
processor model and details of the simulated hardware
configuration. We then describe the operating system simulation
environment at both the hardware and software levels. Finally, we
describe the two workloads evaluated: a multiprogramming
workload of SPECInt95 benchmarks and the Apache Web server.

2.1  SMT and superscalar processor models
SMT is a latency-tolerant CPU architecture that executes multiple
instructions from multiple threads each cycle. The ability to issue
instructions from different threads provides better utilization of
execution resources by converting thread-level parallelism into
instruction-level parallelism. Previous research has established
SMT as effective in increasing throughput on a variety of
workloads, while still providing good performance for single-
threaded applications [41, 22, 23, 21, 45]. 

At the hardware level, SMT is a straightforward extension of
modern, out-of-order superscalars, such as the MIPS R10000 [15]
or the Alpha 21264 [16]. SMT duplicates the register file, program
counter, subroutine stack and internal processor registers of a
superscalar to hold the state of multiple threads (we call the set of
hardware resources that contains the state of a thread a context). In
addition to duplicating thread state, SMT has per-context
mechanisms for pipeline flushing, instruction retirement,
subroutine return prediction, and trapping. Compaq estimates that
the modifications to an out-of-order superscalar necessary to
support SMT translate into only a 10% increase in chip area [10].

Table 1 lists the parameters of the SMT processor and memory
system simulated, chosen to be characteristic of processors in the
near future. The out-of-order superscalar we evaluate is
provisioned with hardware resources identical to the SMT, except
that it lacks the extra hardware contexts and has 2 fewer pipeline
stages, due to its smaller register file.

2.2   Operating system execution
2.2.1 OS simulation environment

At one level the OS is simply a large program; however, it is
unique in having access to low-level hardware resources (e.g., I/O
device registers and internal CPU registers) and responding to low-
level hardware events (e.g., exceptions and interrupts). To simulate
the OS thus requires simulating those resources and events.   In
this work, we built upon the SimOS-Alpha hardware simulation
framework [9], integrating our SMT CPU simulator into SimOS.
This allows us to boot and run the operating system on the
simulator and include in our simulation every instruction,
privileged or non-privileged, that would be executed on a real
CPU. The SimOS environment also executes Alpha PAL code - a
layer of software that exists below the operating system itself. PAL
code is used, for example, to respond to TLB misses and to handle
synchronization within the OS (SETIPL). We also model almost
all OS/hardware interactions that affect the memory hierarchy,
such as DMA operations and cache flush commands. The one
exception is DMA operations from the network interface; although
including network-related DMA would double the number of
memory bus transactions for the Apache workload (the SPECInt
workload doesn’t use the network), the average memory bus delay
would remain insignificant, since it is currently only 0.25 cycles
per bus transaction.

Our studies focus on CPU and memory performance bottlenecks.
In the interest of simulation time, we simulate a zero-latency disk,

Pipeline 9 stages
Fetch Policy 8 instructions per cycle from up to 2 contexts 

(the 2.8 ICOUNT scheme of [41])
Functional Units 6 integer (including 4 Load/Store and 2 Syn-

chronization units)
4 floating point

Instruction Queues 32-entry integer and floating point queues
Renaming Registers 100 integer and 100 floating point
Retirement bandwidth 12 instructions/cycle
TLB 128-entry ITLB and DTLB
Branch Predictor McFarling-style, hybrid predictor [26]

Local Predictor 4K-entry prediction table indexed by 2K-
entry history table

Global Predictor 8K entries, 8K-entry selection table
Branch Target Buffer 1K entries, 4-way set associative

Cache Hierarchy
Cache Line Size 64 bytes
Icache 128KB, 2-way set associative, single port

2 cycle fill penalty
Dcache 128KB, 2-way set associative, dual ported 

(only from CPU, r/w). Only 1 request 
at a time supported from the L2

2 cycle fill penalty
L2 cache 16MB, direct mapped, 20 cycle latency, fully 

pipelined (1 access per cycle)
MSHR 32 entries for the L1 caches, 32 entries for the 

L2 cache
Store Buffer 32 entries
L1-L2 bus 256 bits wide, 2 cycle latency
Memory bus 128 bits wide, 4 cycle latency
Physical Memory 128MB, 90 cycle latency, fully pipelined

Table 1:  SMT parameters.



modeling a machine with a large, fast disk array subsystem.
However, all OS code to manipulate the disk is executed, including
the disk driver and DMA operations. Modeling a disk-bound
machine could alter system behavior, particularly in the cache
hierarchy.

2.2.2 OS modifications

We execute the Compaq/Digital Unix 4.0d operating system, a
(shared-memory) multiprocessor-aware OS. By allowing SMT to
appear to the OS as a shared-memory multiprocessor (SMP), the
only required changes to the OS occur where the SMT and SMP
architectures differ. In the case of the Alpha, these differences are
SMT’s shared TLB and L1 caches, versus the per-processor TLB
and L1 caches of an Alpha SMP. Of these two differences, only the
TLB-related OS code required modification.

The Alpha TLB includes an address space number (ASN) tag on
TLB entries, which allows multiple address spaces to share the
TLB and reduces TLB flushing on context switches. Because
multiple threads can simultaneously access an SMT processor’s
shared TLB, manipulating these ASNs requires appropriate mutual
exclusion during context switches. We therefore made several
changes to the TLB-related code. First, we modified the ASN
assignment algorithm to cover multiple executing threads. Second,
we replicated, on a per-context basis, the internal processor
registers used to modify TLB entries; this removes a race condition
and allows multiple contexts to process a TLB miss in parallel.
Third, we removed the TLB shootdown code, which is
unnecessary in the uniprocessor SMT.

Although the architectural interface to the caches differs between
an SMT processor and an MP, this does not necessitate OS
modifications. The interface provides commands to flush the L1
instruction and data caches, which in an SMT causes flushing of
the thread-shared cache rather than a thread-local cache.   Since the
cache is soft state, the extra flushing that results may be
unnecessary, but is never incorrect. 

The OS we execute contains the set of minimal changes required to
run Digital Unix on an SMT, but does not explore the numerous
opportunities for optimizations. For example, OS constructs such
as the idle loop and spin locking are unnecessary and can waste
resources on an SMT. (However, in the experiments presented in
this paper, idle cycles constituted no more than 0.7% of steady-
state CPU cycles, and spin locking accounted for less than 1.2% of
the cycles in the SPECInt workload and less than 4.5% of cycles in
the Apache workload.) Another possible optimization would be to
replace the MP OS process scheduler with an SMT-optimized
scheduler [36, 30]. We plan to investigate OS optimizations as
future work, but it is encouraging that an SMP-aware OS can be
modified in a straight-forward fashion to work on an SMT
processor.

2.3  Simulated workloads
In this study, we examine 2 different workloads. The first is a
multiprogrammed workload composed of all 8 applications from
the SPEC95 integer suite [32], which we simulated for 650 million
instructions. SPECInt95 was chosen for two reasons. First, since it
is commonly used for architecture evaluations, including studies of
SMT, we wished to understand what was omitted by not including
OS activity in the previous work. Second, since Apache is also an
integer program, the performance characteristics of SPECInt can
serve as a baseline to help understand Apache’s performance.

The second workload is Apache (version 1.3.4), a popular, public-
domain Web server run by the majority of Web sites [19]. Because
it makes heavy use of OS services (our measurements show that
75% of execution cycles are spent in the kernel), it is a rich
environment in which to examine OS performance.1 Most of the
Apache data presented in this paper is based on simulations of over
1 billion instructions, starting at a point when the server is idle.
However, the superscalar experiments in Section 3.2 were
performed on simulations of around 700 million instructions,
limited by constraints on simulation time.

We drove Apache using SPECWeb96, a Web server performance
benchmark [38]. We configured Apache with 64 server processes
and SPECWeb with 128 clients that provide requests. To support
the request rate needed to saturate Apache, we executed the
SPECWeb benchmark as two driver processes, each with 64
clients. If the driver processes ran on a native Alpha (i.e., at full-
speed), and drove our simulated Apache and OS software directly
(SimOS causes slowdowns as much as a million-fold), then the
network code would be unable to operate properly, and messages
would be dropped by TCP. Therefore, we built a framework in
which we run three copies of SimOS on a single Alpha: one
executing Apache, and two running copies of SPECWeb96. The
result is that the SPECWeb96 clients see exactly the same
slowdown as Apache. The clients generate packets at a rate that
can be handled by Apache, and the OS code on both sides can
properly manage the network interface and protocols. Between the
three SimOS environments, we simulate a direct network
connection that transmits packets with no loss and no latency. The
simulated network cards interrupt the CPUs at a time granularity of
10 ms, and the network simulator enforces a barrier
synchronization across all machines every simulated 10 ms. The
barrier keeps the simulators running in lock-step and guarantees
deterministic execution of the simulations for repeatability of our
experiments.

2.3.1 Simulating application code only

To more precisely characterize the impact of the OS on
performance, we compared the simulation of a workload that
includes the OS with one that models only application code. The
application-only simulations are done with a separate simulator,
derived from the SMT simulators that have been used in previous
SMT studies. The application-only simulator models all system
calls and kernel traps as completing instantly, with no effect on
hardware state.

3.  RESULTS

This section presents results from our SimOS-based measurements
of operating system behavior and its impact on an SMT processor.
In Section 3.1 we consider a SPECInt multiprogrammed workload;
Section 3.2 examines an Apache workload and compares it to
results seen for SPECInt.

3.1  Evaluation of SPECInt workloads
Traditionally, architects have based processor and memory
subsystem design decisions on analyses of scientific and program
development workloads, as typified by the SPECInt benchmark
suite. However, most such analyses examine user-mode code only.
In this section we evaluate the appropriateness of that

1 Apache was designed for portability. Its behavior may not be representa-
tive of other web servers, such as Flash [29], which were designed for per-
formance (i.e., high throughput).



methodological strategy in the context of simultaneous
multithreading. We wish to answer two questions in particular.
First, what is the impact of including (or excluding) the operating
system on SMT, even for a multiprogrammed workload of
SPECInt benchmarks? While we expect OS usage in SPECInt to
be low, previous studies have shown that ignoring kernel code,
even in such low-OS environments, can lead to a poor estimation
of memory system behavior [13, 1]. Second, how does the impact
of OS code on an 8-context SMT compare with that of an out-of-
order superscalar? SMT is unique in that it executes kernel-mode
and user-mode instructions simultaneously. That is, in a single
cycle, instructions from multiple kernel routines can execute along
with instructions from multiple user applications, while all are
sharing a single memory hierarchy. In contrast, a superscalar
alternates long streams of user instructions from a single
application with long streams of kernel instructions from a single
kernel service. This difference may impact memory system
performance differently in the two architectures. In Section 3.2, we
examine similar questions in light of Apache, a more OS-intensive
workload.

3.1.1 The OS behavior of a traditional SPEC integer 
workload executing on an SMT processor 

Figure 1 shows the percentage of execution cycles for the
multiprogrammed SPECInt95 benchmarks that are spent in user
space, kernel space, or are idle when executing on an SMT
processor. During program start-up, shown to the left of the dotted
line, the operating systems presence is 18% of execution cycles on
average. Once steady state is reached, it drops to a fairly consistent
5%, which is maintained at least 1.6 billion cycles into execution
(only a portion of that is shown in the figure). The higher OS
activity during program initialization is primarily due to TLB miss
handling (12% of all execution cycles) and system calls (5%), as
shown in Figure 2. Most of the TLB activity centers on handling
data TLB misses in user space (roughly 95%). The TLB misses
result in calls to kernel memory management, and page allocation
accounts for the majority of these calls, as shown in Figure 3. The
majority of application-initiated system calls (Figure 4) are for the
file system; in particular, reading input files contributes 3.5% to
execution cycles, which is consistent with applications reading in
source and/or configuration files. Process creation and control and
the kernel preamble (identifying and dispatching to a particular
system call) fill most of the remaining system call time. Note that
kernel activity dwarfs the execution of Alpha PAL code. 

Once steady state is reached, kernel activity falls to 5% of
execution cycles, but keeps roughly the same proportion of TLB
handling and system call time as during start-up. The only
significant change is a reduction in file read calls, since program
execution has shifted away from initialization.

Table 2 shows the distribution of instructions across the major
instruction categories in the kernel; these values are typical for
integer applications, including the SPEC integer benchmarks.
Kernel instructions differ from user instructions in three respects.
First, roughly half of the memory operations in program start-up,
and one-third of loads and two-thirds of stores in steady state, do
not use the TLB, i.e., they specify physical addresses directly.
Second, kernel control transfers include PAL entry/return
branches. Third, compared to user code, kernel code in steady state
has half the rate of conditional branches taken. However, since the
kernel executes a small portion of the time, the overall impact of
these differences is small.

Figure 1.  Breakdown of execution cycles when SPECInt95
executes on an SMT. Cycles spent in the kernel as a percentage
of all execution cycles are shown as the dark color at the top.

Figure 2.  Breakdown of kernel time for SPECInt95.

Figure 3.  Incursions into kernel memory management code
by number of entries.

Figure 4.  System calls as a percentage of total execution
cycles.
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3.1.2 What do we miss by not simulating the operating 
system on SPECInt workloads? 

Table 3 (top part) shows the total miss rate in several hardware
data structures when simulating both SPECInt95 and the operating
system on an SMT. The total miss results mirror what other
researchers have found in single-threaded processor studies,
namely, that the operating system exhibits poorer performance
than SPECInt-like applications [13, 1]. The kernel miss rate in the
branch target buffer is particularly high, because of two factors: the
OS executes so infrequently that it cannot build up a persistent
branch target state, and most kernel misses (78%) displace other
kernel entries or are mispredictions due to repeated changes in the
target address of indirect jumps.

The miss-distribution results in the lower part of Table 3 indicate
that, with the exception of the instruction cache, conflicts within or
between application threads were responsible for the vast majority
of misses. Kernel-induced conflict misses accounted for only 10%
of BTB misses, 18% of data cache misses, 9% of L2 cache misses
and 18% of data TLB misses. In contrast, the majority of

instruction cache misses (60%) were caused by the kernel.
Compulsory misses are minuscule for all hardware structures, with
the exception of the L2 cache, in which the kernel prefetches data
for the applications and therefore absorbs the cost of many first
reference misses for both.

At a high level, the kernel’s poor hardware-component-specific
performance is ameliorated by the infrequency of kernel execution
for the multiprogrammed SPECInt workload. Table 4 (columns 2
through 4) illustrates this effect by comparing several architectural
metrics for the SPECInt workload executing in steady state on an
SMT, with and without operating system activity. The numbers
indicate that instruction throughput dropped only slightly due to
the OS (5%) and, with few exceptions, the utilization of the thread-
shared hardware resources moderately degraded when including
the kernel. Those hardware components in which we observe a
large percentage drop in performance did not greatly affect the
performance bottom line, because they had not exhibited
particularly bad behavior originally.

The rise in the number of speculative instructions squashed was

Instruction Type

Program Start-up Steady State

User Kernel Overall User Kernel Overall

Load 19.5 16.5 (51%) 19.2 (5%) 20.0 12.2 (35%) 19.7 (1%)

Store 12.3 19.0 (57%) 13.1 (10%) 9.6 11.8 (68%) 9.7 (3%)

Branch 15.1 15.9 15.3 14.8 15.0 14.9

Conditional (64%) 65.9 (56%) 65.3 (63%) 65.8 (56%) 68.3 (26%) 59.9 (54%) 68.0

Unconditional 19.5 14.1 18.8 18.3 6.5 17.8

Indirect Jump 14.7 11.7 14.3 13.3 5.5 13.0

PAL call/return .01 8.9 1.1 .01 28.1 1.2

Total 100.0 100.0 100.0 100.0 100.0 100.0

Remaining Integer 50.0 48.6 49.7 53.3 61.0 53.5

Floating Point 3.1 0.0 2.7 2.3 0.0 2.2

Table 2: Percentage of dynamic instructions in the SPECInt workload by instruction type. The percentages in parenthesis for
memory operations represent the proportion of loads and stores that are to physical addresses. A percentage breakdown of branch
instructions is also included. For conditional branches, the number in parenthesis represents the percentage of conditional
branches that are taken.

Miss Percentages

Branch Target 
Buffer 

L1 Instruction 
Cache L1 Data Cache L2 Cache Data TLB

User Kernel User Kernel User Kernel User Kernel User Kernel

Total miss rate 30.5 75.2 1.8 8.4 3.2 18.8 0.9 10.5 0.5 3.2

Cause of misses Percentage of Misses Due to Conflicts (sums to 100%)

Intrathread conflicts 51.0 4.9 6.5 .2 14.6 .8 34.7 1.2 17.5 .2

Interthread conflicts 39.5 1.1 33.7 .2 59.5 5.2 18.9 .7 64.5 .8

User-kernel conflicts 1.8 1.7 4.6 3.2 5.7 6.6 6.2 .9 8.2 8.8

Invalidation by the OS 40.9 10.7

Compulsory .01 .01 7.3 .3 .5 36.6

Table 3: The total miss rate and the distribution of misses in several hardware data structures when simulating both SPECInt95
and the operating system on SMT. The miss categories are percentages of all user and kernel misses. Bold entries signify kernel-
induced interference. User-kernel conflicts are misses in which the user thread conflicted with some type of kernel activity (the
kernel executing on behalf of this user thread, some other user thread, a kernel thread, or an interrupt). 



the most serious of the changes caused by simulating the kernel
and depended on the interaction between two portions of the fetch
engine, the branch prediction hardware and the instruction cache.
Branch mispredictions rose by 15% and instruction cache misses
increased 1.9 times, largely due to interference from kernel
execution. Instruction misses were induced primarily by cache
flushing that was caused by instruction page remapping, rather
than by conflicts for particular cache locations. The rise in
instruction misses caused, in turn, an 8% decrease in the number of
fetchable contexts (i.e., those contexts not servicing an instruction
miss or an interrupt). Because simulating the kernel reduced the
average number of fetchable contexts, a mispredicting context was
chosen for fetching more often and consequently more wrong-path
instructions were fetched.

Surprisingly, the kernel has better branch prediction than the
SPECInt applications, despite its lack of loop-based code. (When
executing the two together, the misprediction rate in the user code
is 9.3 and in the kernel code is 8.2 (data not shown)). Most
conditional branches in the kernel are used in diamond-shaped
control in which the target code executes an exceptional condition.
Although the kernel BTB miss rate is high, the default prediction
on a miss executes the fall-through code, and therefore more kernel
predictions tend to be correct.

In summary, despite high kernel memory subsystem and branch
prediction miss rates, SMT instruction throughput was perturbed
only slightly, since kernel activity in SPECInt programs is small
and SMT hides latencies well. Therefore researchers interested in
SMT bottomline performance for SPECInt-like scientific
applications can confidently rely on application-level simulations.
However, if one is focusing on the design of a particular hardware
component, such as the data TLB, or a particular hardware policy,
such as when to fetch speculatively, including the execution-time
effects of the operating system is important.

3.1.3 Should we simulate the operating system when 
evaluating wide-issue superscalars?

In terms of overall execution cycles, the operating system behaves
similarly on both an out-of-order superscalar and an SMT
processor when executing the SPECInt benchmarks. A superscalar
processor spends only a slightly larger portion of its execution

cycles during start-up in the OS compared to SMT (24% versus
18% (data not shown)). The percentage of operating system cycles
in steady state is the same for both processors.

Likewise, the distribution of OS cycles in both start-up and steady
state is similar on the superscalar and the SMT processor (shown
in Figure 2). One exception is the larger portion of time spent by
the superscalar on kernel miss handling for the data TLB. Also,
kernel processing of DTLB misses exhibits poor instruction cache
behavior, which inflates the time spent in this code. The kernel
instruction cache miss rate on the superscalar is 13.8% (compared
to a minuscule .3% for user code) and 81% of these misses are
caused by kernel DTLB miss-handling code.

At the microarchitectural level, the operating system plays a
different role on an out-of-order superscalar. Instruction
throughput on the superscalar is roughly half that of the SMT
processor, as shown in Table 4. Although misses in the superscalar
hardware data structures are less frequent, because only one thread
executes at a time, the superscalar lacks SMT’s ability to hide
latencies. As in all past studies of SMT on non-OS workloads [41,
22, 21, 23], SMTs latency tolerance more than compensates for the
additional interthread conflicts in its memory subsystem and
branch hardware. The lack of the superscalar’s latency-hiding
ability was most evident in the operating system, which managed
to reach only 0.6 IPC in steady state! In contrast, user code
achieved an IPC of 3.0. In addition, the superscalar squashed
proportionally about twice as many instructions as SMT, because
the superscalar has only one source of instructions to fetch, i.e., the
thread it is mispredicting.

In summary, including the operating system in superscalar
simulations of a SPECInt workload perturbed bottomline
performance more than on an SMT (a 15% vs. a 5% drop in IPC),
because key hardware resources (the instruction cache and the L2
cache) were stressed several-fold and superscalar performance is
more susceptible to instruction latencies. (In other hardware
components performance drops were either smaller or reflected a
large degradation to a previously well-behavior component.) This
result suggests that researchers should be less confident of
omitting effects of the operating system when evaluating
superscalar architectures.

Metric

SMT Superscalar

SPEC only SPEC+OS Change SPEC only SPEC+OS Change

IPC 5.9 5.6 -5% 3.0 2.6 -15%

Average # fetchable contexts 7.7 7.1 -8% 1.0 0.8 -20%

Branch misprediction rate (%) 8.1 9.3 15% 5.1 5.0 -2%

Instructions squashed (% of instruc-
tions fetched)

15.1 18.2 21% 31.8 32.3 2%

L1 Icache miss rate (%) 1.0 2.0 190% 0.1 1.3 1300%

L1 Dcache miss rate (%) 3.2 3.6 15% 0.6 0.5 -15%

L2 miss rate (%) 1.1 1.4 27% 1.0 1.8 72%

ITLB miss rate (%) 0.0 0.0 0.0 0.0

DTLB miss rate (%) 0.4 0.6 36% 0.04 0.05 25%

Table 4: Architectural metrics for SPECInt95 with and without the operating system for both SMT and the superscalar. The
maximum issue for integer programs is 6 instructions on the 8-wide SMT, because there are only 6 integer units.



3.2  Evaluating Apache: An OS-intensive 
workload

Apache is the most widely deployed Web server. Its role is simple:
to respond to client HTTP request packets, typically returning a
requested HTML or other object. The objects are stored in a file-
oriented database and are read from disk if not cached in the
server’s memory. We examine the Apache-based workload below.

3.2.1 The role of the operating system when executing 
Apache

Figure 5 shows the percentage of cycles spent in kernel and user

mode for the Apache workload. This data differs significantly from
the SPECInt multiprogramming workload in several ways. First,
Apache experiences little start-up period; this is not surprising,
since Apache’s ‘start-up’ consists simply of receiving the first
incoming requests and waking up the server threads. Second, once
requests arrive, we see that Apache spends over 75% of its time in
the OS, i.e., the majority of execution for Apache is in the
operating system, not in application code.1

Figure 6 shows a high-level breakdown of the kernel cycles for
Apache (shown as a percentage of total cycles), compared to the
SPECInt start-up and steady state periods. For Apache, the
majority of its kernel time (57%) is spent executing system calls.
That is, while the SPECInt workload is dominated by implicit OS
use (responding to TLB-miss exceptions), Apache uses the OS
more explicitly. Apache also shows significant kernel activity that
is initiated through network interrupts - there is no counterpart to
this in the SPECInt workload. Apache spends 34% of kernel cycles
(26% of all cycles) processing interrupt requests or responding to
network interrupts in the netisr threads, the set of identical threads
responsible for managing the network protocol stack on behalf of
arriving messages. Only a moderate amount of kernel activity in
Apache is due to DTLB misses (13%); in contrast, most of the
SPECInt workload’s kernel time is related to TLB miss handling
(82% for steady state, and 58% for start-up). 

Figure 7 shows a more detailed breakdown of the system calls for
Apache. On the left-hand side, we see the percentage of all
execution cycles due to each of the various system calls Apache
executes. As the figure indicates, the majority of time is spent
processing calls to I/O routines: for example, Apache spends 10%
of all cycles in the stat routine (querying file information), 19% of
cycles in read/write/writev, and 10% of cycles in I/O control
operations such as open. The right-hand side of Figure 7 shows a
different breakdown of the same data. Here we qualify execution
time by the type of resource - network or file - as well as the
operation type. We see from this graph that network read/write is
the largest time consumer, responsible for approximately 17% of
all cycles and 22% of Apache’s kernel cycles. As noted above, file
inquiry (the stat routine) is the next largest consumer, followed by
file control operations, which account for 6% of all cycles and 8%
of kernel cycles. Overall, time spent in system calls for the
network and file systems is nearly equivalent, with network

Figure 5.  Kernel and user activity in Apache executing on an
SMT.

Figure 6.  Breakdown of kernel activity in Apache on an SMT.
Corresponding data from the startup and steady-state phases
of the SPECInt workload are included for comparison.
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services accounting for 21% of all kernel cycles and file services
accounting for 18%.

3.2.2 Architectural performance characteristics

Table 5 shows a breakdown by instruction type for kernel and user
code in Apache. In general, this is similar to the corresponding
SPECInt table. The steady-state load/store percentages for Apache
are closer to the start-up load/store percentages for SPECInt,
because the SPECInt start-up includes a variety of OS services,
while the steady-state SPECInt workload is dominated by the
TLB-handling routine. Overall, about half of all kernel memory
access operations for Apache bypass the TLB, i.e., they specify
physical addresses directly. 

Table 6 shows architectural performance characteristics for
Apache and compares them to the SPECInt workload in steady
state. The chart also shows statistics for Apache running on a
superscalar. The Apache workload achieves an instruction
throughput of 4.6 instructions per cycle on SMT (out of a
maximum of 6), 18% less than the SPECInt workload. The causes
of the lower performance are spread across most major hardware
components, where Apache performs significantly worse than
SPECInt. With the exception of the data TLB, all components of
the memory subsystem experience more conflicts: e.g., Apache’s
L2 miss rate is 1.5 times worse than SPECInt’s, its D-cache miss
rate is 2.3 times worse, and its I-cache miss rate is 2.5 times worse.

The fetch unit also performs more poorly for Apache compared to
SPECInt. On average, Apache has 20% fewer fetchable contexts
than SPECInt, and sees many more instructions squashed. Apache
also achieves 33% fewer cycles in which the six issue slots were
fully utilized. However, despite these huge differences in memory
and fetch system behavior, SMT still does a good job of tolerating
latencies by handling more misses in parallel with the more
demanding workload (last three rows).

SMT’s ability to hide latencies in Apache resulted in an average
instruction throughput of 4.6 IPC - 4.2 times greater than the
superscalar throughput, and the highest relative gain for any
workload studied for SMT [11, 21]. The superscalar processor
realized an IPC of only 1.1 - just 42% of the IPC it achieved for
SPECInt. (In contrast, IPC for Apache on the SMT processor is

82% of what it realizes for SPECInt.) Most telling of the
performance difference, the superscalar was unable to fetch or
issue during more than 60% of the cycles, and it squashed 46% of
the instructions fetched, due to branch mispredictions. SMT
squashed fewer instructions, because multithreading reduces the
distance that a mispredicted branch path will execute before the
condition is resolved.

3.2.3 Interthread competition and cooperation

As mentioned previously, SMT can issue instructions from
multiple kernel threads in a single cycle, which creates new
potentials for interthread conflicts. Table 7 presents more detail on
the miss behavior of Apache, focusing on the causes for conflicts.
Compared to the SPECInt workload, most striking are the kernel/
kernel and user/kernel conflicts, shown in bold. The highest cause
of cache misses in Apache is conflicts within the kernel: 65% of
L1 Icache misses, 65% of L1 Dcache misses, and 41% of L2 cache
misses are due to either intrathread or interthread kernel conflicts.
These misses are roughly evenly split between the two categories,
except in the L2 cache, where kernel interthread misses are almost
twice as numerous as intrathread misses. User/kernel conflicts are
very significant as well: 25% of L1 Icache misses, 10% of L1
Dcache misses, and 22% of L2 cache misses are due to conflicts
between kernel and user code or data.

The effect of running multiple kernel threads simultaneously on
SMT can also be seen by comparing it with the superscalar, in
which only one kernel thread can be active at a time. On a
superscalar execution of Apache (data not shown), the percentage
of misses due to kernel interthread conflicts are lower by 24%,
28%, and 38% for the Icache, Dcache, and L2 cache, respectively,
when compared to Apache on an SMT.

In the BTB, kernel intrathread conflicts dominate, accounting for
68% of all BTB misses, while 6% of the misses are due to user/

Instruction Type User Kernel Overall

Load 21.8 19.9 (54.2) 20.3 (42.0)

Store 10.1 11.5 (40.3) 11.2 (32.7)

Branch 16.7 17.8 17.6

Conditional (54%) 70.6 (53%) 65.1 (52%) 66.2

Unconditional 12.9 16.0 15.4

Indirect Jump 16.3 13.7 14.2

PAL call/return 0.2 5.1 4.2

Total 100.0 100.0 100.0

Remaining Int. 51.4 50.8 50.9

Floating Point 0.0 0.0 0.0

Table 5: Percentage of dynamic instructions when executing
Apache by instruction type. The percentages in parenthesis for
memory operations represent the proportion of loads and
stores that are to physical addresses and do not use the DTLB.
A percentage breakdown of branch instructions is also
included. For conditional branches, the number in parenthesis
represents the percentage of conditional branches that are
taken.

Metric
SMT 

Apache
SMT SPEC 
steady-state

Superscalar 
Apache

IPC 4.6 5.6 1.1

Instructions squashed (% of 
instructions fetched)

26.9 18.2 45.9

Avg. # of fetchable contexts 5.7 7.1 .4

Branch mispredict. rate (%) 9.1 9.3 7.4

ITLB miss rate (%) .8 .0 .7

DTLB miss rate (%) 0.6 0.6 0.2

L1 Icache miss rate (%) 5.0 2.0 6.5

L1 Dcache miss rate (%) 8.4 3.6 3.4

L2 miss rate (%) 2.1 1.4 1.5

0-fetch cycles (%) 13.8 6.6 65.0

0-issue cycles (%) 3.1 0.6 62.4

Max. (6) issue cycles (%) 58.2 87.1 6.3

Avg. # of outstanding

I$ misses 1.9 0.9 0.5

D$ misses 2.7 1.2 0.3

L2$ misses 1.3 1.0 0.2

Table 6: Architectural metrics comparing Apache executing on
an SMT to SPECInt95 on SMT and Apache on a superscalar.
All applications are executing with the operating system. The
maximum issue for integer programs is 6 instructions on the 8-
wide SMT, because there are only 6 integer units.



kernel conflicts. In contrast, it is user code that is responsible for
the majority of misses in both TLBs (53% of data TLB misses and
86% of instruction TLB misses are due to user/user conflicts). This
is despite the fact that user code accounts for only 22% of cycles
executed.

While the data presented above concerns conflicts, executing
threads simultaneously can result in constructive interthread
behavior as well. In particular, prefetching occurs when one thread
touches data that will soon be accessed by a second thread; the
second thread will then find the data in the cache, avoiding a miss.
It is interesting to compare the amount of such constructive sharing
on SMT with the same behavior on a superscalar. Because there is
finer-grained parallelism on SMT, there is more opportunity for
this prefetching activity. Table 8 shows, for several resources, the
percentage of misses avoided due to constructive sharing in
Apache. For example, on SMT, the overall miss rate of the L1
Icache would have been 66% higher, had it not been for Icache
pre-loading of one kernel thread’s instructions by other threads
also executing in the kernel. In contrast, the effect of such sharing
on a superscalar running Apache was only 28%. Again, the
difference is due to SMT’s executing multiple kernel threads
simultaneously, or within a shorter period of time than occurs on a
superscalar.

The impact of kernel-kernel prefetching is even stronger for the L2
cache, where an additional 71% of misses were avoided. Twelve
percent of kernel TLB misses were avoided as well.

3.2.4 The effect of the operating system on hardware 
resources

Similar to the previous analysis of the SPECInt workload (Section
3.1.2 and Table 4), we now investigate the impact of the operating
system on the cache and branch prediction hardware (Table 91).
The OS increased conflicts in all hardware structures, ranging from
a 35% increase in the L1 data miss rate to over a five-fold increase
in the L1 instruction miss rate. The increases roughly correspond
to the conflict miss data of Table 7, i.e., the extent to which the
user miss rate in a hardware structure degrades due to the
additional kernel references is roughly proportional to the
proportion of user misses caused by conflicts with the kernel. 

With the exception of the superscalar instruction cache miss rate,
the OS had a greater effect on the hardware structures when

Percentage of Misses

Branch Target 
Buffer 

L1 Instruction 
Cache L1 Data Cache L2 Cache Data TLB Instruction TLB

User Kernel User Kernel User Kernel User Kernel User Kernel User Kernel

Total miss rate 44.5 63.3 4.7 5.1 8.2 8.4 1.9 2.2 1.0 0.3 0.8

Cause of the misses Percentage of Misses Due to Conflicts (sums to 100%)

Intrathread conflicts 12.2 67.8 6.4 36.0 5.8 32.9 .1 13.9 18.4 7.3 26.7

Interthread conflicts .4 13.8 1.0 28.6 11.7 32.4 2.8 27.1 34.6 7.3 59.6

User-kernel conflicts 2.4 3.4 13.6 11.6 5.0 5.0 13.0 9.3 8.6 13.7

Invalidation by the OS .5 2.0 0 0 0 0 6.3 3.8 13.7

Compulsory .1 .2 .3 6.9 2.0 31.8

Table 7: The distribution of misses in several hardware data structures when simulating Apache and the operating system on an
SMT. Bold entries signify kernel-induced interference: user-kernel conflicts are misses in which the user thread conflicted with some
type of kernel activity (the kernel executing on behalf of this user thread, some other user thread or a kernel thread, or an
interrupt).

.

Mode that 
would have 

missed

Misses avoided due to interthread prefetching as a percentage of total misses

Branch Target 
Buffer 

L1 Instruction 
Cache L1 Data Cache L2 Cache Data TLB

User Kernel User Kernel User Kernel User Kernel User Kernel

Apache - SMT

User 0 0 8.7 0.2 1.7 0.1 7.7 0.4 0 0.1

Kernel 0 19.5 0.6 65.5 0.3 20.8 1.3 70.7 5.0 12.2

Apache - Superscalar

User 0 0 3.4 0.5 2.5 0.5 4.8 1.1 0 0.04

Kernel 0 1.9 1.2 27.5 1.3 29.6 1.3 55.0 9.3 5.5

Table 8: Percentage of misses avoided due to interthread cooperation on Apache, shown by execution mode. The number in a table
entry shows the percentage of overall misses for the given resource that threads executing in the mode indicated on the leftmost
column would have encountered, if not for prefetching by other threads executing in the mode shown at the top of the column.

1 Our simulators cannot execute Apache without operating systems code.
However, we were able to omit operating systems references to the hard-
ware components in Table 9, in order to capture user-only behavior.



executing Apache than it did for the SPECInt workload. The
difference occurs primarily because operating systems activities
dominate Apache execution, but also because they are more varied
and consequently exhibit less locality than those needed by
SPECInt (the Apache workload exercises a variety of OS services,
while SPECInt predominantly uses memory management).

3.3  Summary of Results
In this section, we measured and analyzed the performance of an
SMT processor, including its operating system, for the Apache
Web server and multiprogrammed SPECInt workloads. Our results
show that for SMT, omission of the operating system did not lead
to a serious misprediction of performance for SPECInt, although
the effects were more significant for a superscalar executing the
same workload. On the Apache workload, however, the operating
system is responsible for the majority of instructions executed.
Apache spends a significant amount of time responding to system
service calls in the file system and kernel networking code. The
result of the heavy execution of OS code is an increase of pressure
on various low-level resources, including the caches and the BTB.
Kernel threads also cause more conflicts in those resources, both
with other kernel threads and with user threads; on the other hand,
there is an interthread sharing effect as well. Apache presents a
challenging workload to a processor, as indicated by its extremely
low throughput (1.1 IPC) on the superscalar. SMT is able to hide
much of Apache’s latency, enabling it to realize a 4.2-fold
improvement in throughput relative to the superscalar processor.

4.  RELATED WORK

In this section, we discuss previous work in three categories:
characterizing OS performance, Web server behavior, and the
SMT architecture.

Several studies have investigated architectural aspects of operating
system performance. Clark and Emer [8] used bus monitors to
examine the TLB performance of the VAX-11/780; they provided
the first data showing that OS code utilized the TLB less
effectively than user code. In 1988, Agarwal, Hennesy, and
Horowitz [1] modified the microcode of the VAX 8200 to trace
both user and system references and to study alternative cache
organizations. 

Later studies were trace-based. Some researchers relied on
intrusive instrumentation of the OS and user-level workloads [7,
25] to obtain traces; while such instrumentation can capture all
memory references, it perturbs workload execution [7]. Other
studies employed bus monitors [12], which have the drawback of
capturing only memory activity reaching the bus. To overcome
this, some have used a combination of instrumentation and bus
monitors [5, 39, 46, 40]. As an example of more recent studies,

Torrellas, Gupta, and Hennessy [39] measured L2 cache misses on
an SMP of MIPS R3000 processors; they report sharing and
invalidation misses and distinguish between user and kernel
conflict misses. Maynard, Donnelly, and Olszewski [25] looked at
a trace-driven simulation of an IBM RISC system/6000 to
investigate the performance of difference cache configurations
over a variety of commercial and scientific workloads. Their
investigation focused on overall memory system performance and
distinguishes between user and kernel misses. Gloy et al. [13]
examined a suite of technical and system-intensive workloads in a
trace-driven study of branch prediction. They found that even
small amounts of kernel activity can have a large effect on branch
prediction performance. Due to the limited coverage and accuracy
of the measurement infrastructure, each of these studies has
investigated OS performance with respect to only one hardware
resource (e.g., the memory hierarchy). In contrast, we provide a
detailed characterization of the interaction of user and kernel
activity across all major hardware resources. We also quantify the
effect of kernel activity on overall machine performance. 

SimOS makes possible architectural studies that can accurately
measure all OS activity. One of the first SimOS-based studies, by
Rosenblum et al. [33], examined the performance of successive
generations of superscalars and multiprocessors executing
program development and database workloads. Their investigation
focused on cache performance and overall memory performance of
different portions of the operating system as different
microarchitectural features were varied. Barroso, Gharachorloo,
and Bugnion [4] investigated database and Altavista search engine
workloads on an SMP, focusing on the memory-system
performance. Other investigations using SimOS do not investigate
OS activity at all [28, 44, 27, 17].

Web servers have been the subject of only limited study, due to
their relatively recent emergence as a workload of interest. Hu,
Nanda, and Yang [19] examined the Apache Web server on an
IBM RS/6000 and an IBM SMP, using kernel instrumentation to
profile kernel time. Although they execute on different hardware
with a different OS, their results are roughly similar to those we
report in Figure 7. Radhakrishnan and Rawson [31] characterizes
Apache running on Windows NT; their characterization is limited
to summaries based on the hardware performance counters.

Previous studies have evaluated SMT under a variety of
application-level workloads. Some workloads examined include
SPEC (92 and 95) [42, 41], SPLASH-2 [22], MPEG-2
decompression [35] and a database workload [21]. Evaluations of
other multithreading and CMP architectures have similarly been
limited to application code only [3, 18, 6, 2, 37, 20, 14] or
PALcode [47]. 

Our study is the first to measure operating system behavior on a

Metric

SMT Superscalar

Apache only Apache+OS Change Apache only Apache+OS Change

Branch misprediction rate (%) 4.4 9.1 2.1x 3.3 7.4 2.2x

BTB misprediction rate (%) 36.7 59.6 62% 31.1 55.3 77%

L1 Icache miss rate (%) 0.9 5.0 5.5x 1.8 6.5 3.6x

L1 Dcache miss rate (%) 6.2 8.4 35% 2.9 3.4 17%

L2 miss rate (%) 0.6 2.1 3.5x 0.3 1.5 5x

Table 9: Impact of the operation system on specific hardware structures.



simultaneous multithreading architecture. SMT differs
significantly from previous architectures with respect to operating
system execution, because kernel instructions from multiple
threads can execute simultaneously, along with user-mode
instructions, all sharing a single set of low-level hardware
resources. We measure both the architectural aspects of OS
performance on SMT, and the positive and negative interactions
between kernel and user-mode code in the face of this low-level
sharing. We also show how an operating-system intensive Web
server workload benefits from simultaneous multithreading.

5.  CONCLUSION

In this paper, we reported the first measurements of an operating
system executing on a simultaneous multithreaded processor. For
these measurements, we modified the Compaq/DEC Unix 4.0d OS
to execute on an SMT CPU, and executed the operating system
and its applications by integrating an SMT instruction-level
simulator into the Alpha SimOS environment. Our results showed
that:

1. For the SPECInt95 workload, simulating the operating system
does not affect overall performance significantly for SMT,
although the OS execution does have impact on a superscalar. 

2. Apache spends most of its time in the OS kernel, executing file
system and networking operations.

3. The Apache OS-intensive workload is very stressful to a pro-
cessor, causing significant increases in cache miss rates com-
pared to SPECInt. 

4. From our detailed analysis of conflict misses, there is signifi-
cant interference between kernel threads on an SMT, because
SMT can execute instructions from multiple kernel threads
simultaneously. On the other hand, there are opportunities for
benefiting from cooperative sharing, as we showed in our anal-
ysis of interthread prefetching.

5. Overall, operating system code causes poor instruction
throughput on a superscalar. This has a large impact for the
Apache Web server, which achieves an IPC of only 1.1.

6. SMT’s latency tolerance is able to compensate for many of the
demands of operating system code. When executing Apache,
SMT achieves a 4-fold improvement in throughput over the
superscalar, the highest relative gain of any SMT workload to
date.

Finally, we showed that it is relatively straightforward to modify
an SMP-aware operating system to execute on a simultaneous
multithreaded processor. In the future, we intend to experiment
with OS structure in order to optimize the OS for the special
features of SMT.
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